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Abstract Bayesian Optimization (BO) is a class of surrogate-based, sample-efficient algorithms for

optimizing black-box problems with small evaluation budgets. The BO pipeline itself is

highly configurable with many different design choices regarding the initial design, surrogate

model, and acquisition function (AF). Unfortunately, our understanding of how to select

suitable components for a problem at hand is very limited. In this work, we focus on the

definition of the AF, whose main purpose is to balance the trade-off between exploring

regions with high uncertainty and those with high promise for good solutions. We propose

Self-Adjusting Weighted Expected Improvement (SAWEI), where we let the exploration-

exploitation trade-off self-adjust in a data-driven manner, based on a convergence criterion

for BO. On the noise-free black-box BBOB functions of the COCO benchmarking platform,

our method exhibits a favorable anytime performance compared to handcrafted baselines

and serves as a robust default choice for any problem structure. The suitability of our method

also transfers to HPOBench. With SAWEI, we are a step closer to on-the-fly, data-driven,

and robust BO designs that automatically adjust their sampling behavior to the problem at

hand.

1 Introduction

Black-box problems are challenging to optimize because we do not have direct access to the

underlying structure of the problem landscape. To optimize them, we can sequentially evaluate

different points 𝑥 and use the obtained objective values 𝑓 (𝑥) to choose which point(s) to evaluate

next, but we do not have a priori information where to find the most promising regions or how

to best trade off exploration of the search space with exploitation of regions that appear to be

very promising. Formally, in black-box optimization we want to find the minimum 𝑥∗ of a given
function 𝑓 , 𝑥∗ ∈ arg min𝑥∈X 𝑓 (𝑥), without having access to the function itself other than through

the queries. Typical black-box problems occur in engineering or hyperparameter optimization

(HPO), where the quality of potential solutions is evaluated via numeric simulations or training

machine learning models.

Balancing exploration with exploitation is particularly challenging when we have a low number

of available function evaluations in relation to the size of the search spaceX . A popular approach to

address such settings is Bayesian optimization (BO) (Mockus, 1989; Garnett, 2023), often promoted as

sample-efficient for expensive black-box optimization. The main idea of BO is to use a probabilistic

surrogate model (e.g., a Gaussian Process), iteratively refining an approximation of the problem

landscape that guides the optimization process. BO starts with an initial design or design of
experiment (DoE), obtained from sampling strategies, e.g., random sampling, low-discrepancy

sequences such as Sobol’, or Latin Hypercube design (Brochu et al., 2010). With these initial

points, the surrogate model is built to approximate the unknown objective function and capture the

uncertainty of the true function value on unobserved points. The acquisition function (AF) (a.k.a.

infill criterion) is a utility function to trade off exploration of underexplored areas and exploitation
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of presumably promising ones. The point with the highest acquisition function value is queried.

Afterwards, the surrogate model is adjusted with the new observation, and the optimum is updated

if the new point improves the target value of the best-so-far observation. These steps are repeated

for a given overall optimization budget.

Besides accurate probabilistic surrogate models and the type and size of initial design (Lindauer

et al., 2019; Bossek et al., 2020; Cowen-Rivers et al., 2021), the exploration-exploitation trade-off is

crucial for successful and efficient optimization. Since the landscape of the black-box optimization

problem is unknown, it is a priori unclear which AF should be chosen for the optimization problem

at hand. Even worse, since each problem has its unique landscape, we need different exploration-

exploitation trade-offs (Benjamins et al., 2022a,b).

Because there are different choices of AFs, e.g., Probability of Improvement (PI) (Kushner, 1964),

Expected Improvement (EI) (Mockus et al., 1978), Upper Confidence Bound (UCB) (Forrester et al.,

2008), Thompson Sampling (TS) (Thompson, 1933), Entropy Search (Hennig and Schuler, 2012) and

Knowledge Gradient (Frazier et al., 2009), selecting a suitable one for the problem at hand with

insights on the landscape remains challenging. Furthermore, in the past, the choice of an AF has

been considered static over the BO process. Prior works suggest that mixed AF-strategies (Hoffman

et al., 2011; Kandasamy et al., 2020) or even very simple schedules switching from EI to PI can

improve anytime performance of BO; however, for each problem different schedules, incl. static

ones, perform best (Benjamins et al., 2022b).

Performance can be improved by selecting an AF-schedule with a meta-learned selector based

on the exploratory landscape analysis (ELA) features (Mersmann et al., 2011) of the initial design

which factors in the problem at hand (Benjamins et al., 2022a). Nevertheless, this approach has its

limitations. First, it requires a large and expensive initial design compared to the overall budget in

order to compute the ELA features, and the ideal size of it is unknown (Belkhir et al., 2016). Second,

the selector is trained for a specific budget, and it is unclear how it transfers to other dimensions,

optimization budgets, or initial designs.

In this work, we instead aim for a self-adjusting yet simple approach to adapt the exploration-

exploitation trade-off in a data-driven way throughout the optimization process. For this, we

propose to adaptively set the weight 𝛼 of Weighted Expected Improvement (WEI) (Sobester et al.,

2005) in an online parameter control fashion (Karafotias et al., 2015; Doerr and Doerr, 2020).

Depending on how we parametrize WEI, we can be more explorative, recover EI, or lean towards a

modulated, exploitative PI. The crucial questions to answer here are (i) When should we adjust 𝛼?

and (ii) How should we adjust 𝛼?

We propose a new method, dubbed Self-Adjusting Weighted Expected Improvement (SAWEI).

Inspired by a termination criterion for BO (Makarova et al., 2022), we adjust the weight 𝛼 whenever

BO tends to converge, indicated by the Upper Bound Regret (UBR). We adjust 𝛼 opposite to the

dominant search attitude, either towards exploration or exploitation. The key mechanism behind

SAWEI is illustrated in Figure 1. We demonstrate the effectiveness of our method SAWEI on the

BBOB functions of the COCO benchmark (Hansen et al., 2020) and on tabular benchmarks from

HPOBench (Eggensperger et al., 2021) against baselines of established AFs and previously proposed

handcrafted AF-schedules for 𝛼 .

2 Related Work
One line of works directly focuses on improving AFs (Qin et al., 2017; Balandat et al., 2020; Volpp

et al., 2020). To overcome the fact that EI can sometimes be too exploitative, Qin et al. (2017)

uniformly sample one of the two most promising points instead of always choosing the most

promising one according to EI. Balandat et al. (2020) offer efficient implementation of Monte-

Carlo AFs (no closed-form solution available) as well as a one-shot formulation of the Knowledge

Gradient. A different approach is to meta-learn a neural AF via Reinforcement Learning to achieve

better sample-efficiency on downstream tasks (Volpp et al., 2020). A different line of work is
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Figure 1: With SAWEI we self-adjust the exploration-exploitation trade-off parameter 𝛼 based on

the Upper Bound Regret (UBR) (left). Whenever the gradient of UBR (2nd left) becomes

approximately 0 (marked by vertical lines), we adjust 𝛼 (2nd right), further reducing the log

regret (right). BBOB F20, 8d.

concerned with combining different AFs, e.g., by building a portfolio of AFs (EI, PI, UCB with

different hyperparameter settings) and then using an online multi-armed bandit strategy to assign

probabilities of which AF to use at which step, called GP-Hedge or Portfolio Allocation (Hoffman

et al., 2011). Their work indicates that the performance of Portfolio Allocation highly varies with

the number of arms and their respective hyperparameter settings. Similarly to Portfolio Allocation,

Kandasamy et al. (2020) update weights of their portfolio (UCB, EI, TS (Thompson, 1933), Top-Two

Expected Improvement (TTEI) (Qin et al., 2017)) in an online manner. They do not include PI as they

observe it exhibits inferior performance compared to other single static AFs. In addition, robust

versions of EI, PI, and UCB can be combined to a multi-objective AF combining the strengths of the

individual ones (Cowen-Rivers et al., 2021). In this work, we take a step back and ask ourselves what

we could achieve by employing a simplistic approach of self-adjusting the exploration-exploitation

trade-off of WEI.

It has also been shown in other optimization-related areas that dynamic choices are beneficial

in terms of performance, e.g., in evolutionary computation (Karafotias et al., 2015; Doerr and

Doerr, 2020), planning (Speck et al., 2021) and deep learning (Adriaensen et al., 2022). Recently, the

introduction of Dynamic Algorithm Configuration (DAC) (Biedenkapp et al., 2020) underlines the

potential of employing dynamic schedules (as opposed to selecting algorithm components on the
fly, as is usually done in evolutionary computation (Hansen et al., 2003)).

Related to that, also setting the weight 𝛼 of WEI has been investigated. Sobester et al. (2005)

propose to cycle through 𝛼 ∈ {0.1, 0.3, 0.5, 0.7, 0.9} to pulse from exploring to exploiting. This idea

is based on the suggestion to cycle through global-local balances during the search (Gutmann,

2001). However, this heuristic is oblivious to the current state of the search. Another line of work

proposes to simply query WEI 𝑛 times with 𝑛 different values of 𝛼 in parallel (Liu et al., 2018) with

the drawback of potentially uninformative function evaluations. The weights for the exploration

and exploration terms in WEI can also be set via rewards obtained by calculating the accuracy of

the surrogate model (Xiao et al., 2012, 2013). However, the definition of the rewards is lacking and

their method needs to be reset from time to time for the case when the exploration term causes to

repeatedly propose the same configuration.

3 Self-Adjusting Weighted EI

In our method, the Self-Adjusting Weighted Expected Improvement (SAWEI), we adaptively set the

weight 𝛼 ∈ [0, 1] of theWeighted Expected Improvement (WEI) to steer the exploration-exploitation
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trade-off. WEI (Sobester et al., 2005) is defined as:

𝑊𝐸𝐼 (x;𝛼) = 𝛼 𝑧 (x)𝑠 (x)Φ [𝑧 (x)]︸                ︷︷                ︸
exploitation-driven

+ (1 − 𝛼) 𝑠 (x)𝜙 [𝑧 (x)]︸         ︷︷         ︸
exploration-driven

(1)

with 𝑧 (x) = (𝑓min − 𝑦 (x))/𝑠 (x), 𝑓min being the lowest observed function value, 𝑦 (x) and 𝑠 (x) the
predicted mean and standard deviation from the surrogate model, and 𝜙 and Φ being the PDF

and CDF of a Gaussian distribution, respectively. The 𝛼 coefficient weighs the exploration and

exploitation terms. For example, 𝛼 = 0.5 recovers standard EI (Mockus et al., 1978) and 𝛼 = 1 has a

similar behavior as 𝑃𝐼 (x) = Φ [𝑧 (x)] (Kushner, 1964). With 𝛼 = 0 we only utilize the exploration

term, but this does not equal pure exploration or complete randomness.

When To Adjust. In order to be able to set 𝛼 adaptively, we need an indicator of the progress of

the optimization. Recently, Makarova et al. (2022) proposed a termination criterion to stop BO for

hyperparameter optimization. If the Upper Bound Regret (UBR) falls under a certain threshold,

they terminate. UBR estimates the true regret at iteration 𝑘 by:

UBR(𝐺𝑘 ;X ) = 𝑟𝑘 := min

x∈𝐺𝑘

UCB𝑘 (x) −min

x∈X
LCB𝑘 (x) (2)

with 𝐺𝑘 being the history of all evaluated points, X being the entire search space, and LCB

and UCB being the lower and upper confidence bound, e.g., 𝑈𝐶𝐵(𝑥) = `𝑡 (𝑥) + 𝛽𝑡𝜎𝑡 (𝑥) and
𝐿𝐶𝐵(𝑥) = `𝑡 (𝑥) − 𝛽𝑡𝜎𝑡 (𝑥), respectively. The first term of UBR estimates the worst-case function

value of the best-observed point, a.k.a. the incumbent, and the second term is the lowest function

value across the whole search space. This means the smaller the gap between both terms becomes,

the closer we are to the asymptotic function value under the current settings of the optimizer. We

empirically show that the UBR indeed changes after we change the acquisition function during

the optimization in Appendix C, supporting our intuition. The UBR does not directly operate on

function values, but UCB and LCB are computed on the surrogate model instead. Instead of using

UBR to stop the optimization process, it serves as an indicator for us when to adjust components,

i.e., update the value of 𝛼 .

Our rule is: When the gradient of UBR over the last 𝑛 steps becomes close to 0, we adjust the

exploration-exploitation attitude with 𝛼 . The sensitivity to the gradient is controlled by our

hyperparameter 𝜖 .

How to Adjust. The remaining question is how to adjust 𝛼 , by how much and into which direction.

We propose a rather simple, yet effective additive change by Δ𝛼 . Our intuition is to set 𝛼 opposite to

the current search attitude, since the current search attitude led to convergence of the optimization.

The term search attitude describes the current search behavior, whether the acquisition function is

more explorative or more exploitative. We set Δ𝛼 = 0.1 to allow for gradual changes. We determine

the sign of Δ𝛼 by the recent search attitude: depending on whether the exploration-term 𝑎explore
or exploitation-term 𝑎explore of Equation (1) is larger for the last selected point xnext, the current
search attitude was either steered more for exploring or exploiting, respectively. The terms are the

summands of WEI and defined as follows:

𝑎explore(xnext) = 𝑠 (xnext)𝜙 [𝑧 (xnext)] (3)

𝑎exploit(xnext) = 𝑧 (xnext)𝑠 (xnext)Φ [𝑧 (xnext)] (4)

We use 𝑎exploit = Φ [𝑧 (xnext)], omitting 𝑧 (xnext)𝑠 (xnext), which is equal to PI.
1
Please note that we

only do this for determining the search attitude. Now if the exploration term is bigger than the

1
Empirically, both methods perform almost equivalent for BBOB but not for HPOBench, see Appendix B. We

conjecture that original 𝑎
exploit

is less exploitative than the original PI. Since we look for a strong (global) signal on how

exploitative a point was, we opted for PI instead of the WEI term.
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exploitation term, i.e., 𝑎explore > 𝑎exploit, the current search attitude is exploration. We inspect

the attitude and adjust 𝛼 in the opposite direction, to provide a chance for more exploration or

exploitation in contrast to the currently dominating attitude.

SAWEI in a Nutshell. We illustrate and summarize our method SAWEI in Figure 1 and in Algo-

rithm 1. Our goal is to adjust the exploration-exploitation trade-off based on the current search

attitude whenever the Upper Bound Regret (UBR) converges. SAWEI enhances the standard BO

pipeline by calculating the UBR in each iteration and by tracking the search attitude via the explo-

ration term and the exploitation term of WEI. First, we define and evaluate the initial design and

train our surrogate model (Line 1). Then, as long as we have function evaluations left (Line 2), we

query the acquisition function (here Weighted Expected Improvement (WEI)) for the next point to

be evaluated (Line 3). Meanwhile, we track the search attitude with the exploration and exploitation

terms of WEI (Line 4, see Equation (3)). The function is evaluated as usual with the proposed

point and we update our history and our surrogate model (Lines 5-7). Now we calculate the UBR

estimating the gap to the true regret based on the history of evaluated points and the search space

(Line 8). We smooth the history of UBR with moving interquartile mean (IQM) (25 %-75 % quartiles)

with a window size of 7 (Lines 9-10, smooth_with_iqm). Based on this smoothed version, we check

whether UBR has converged, i.e., the gradient of UBR is close to 0 (Line 11). In more detail, we

signal time to adjust when the last absolute gradient is close to 0 with an absolute tolerance of 𝜖

times the last observed maximum of the absolute gradient. If it is the case, we adjust the weight 𝛼

of WEI based on the search attitude (Line 12). The search attitude is calculated with the exploration

and exploitation terms of WEI.

Algorithm 1 Bayesian Optimization with Self-Adjusting Weighted Expected Improvement (SAWEI)

Require: Initial weight of WEI 𝛼 = 0.5, history of evaluated points 𝐺 = ∅, history of regret

estimates/UBR 𝑅, surrogate modelM, function to optimize 𝑓

1: Evaluate initial design and train surrogate modelM
2: while Optimization Budget Not Exhausted do
3: 𝑥next ←WEI(M) ⊲ Propose next configuration to evaluate

4: 𝑎explore, 𝑎exploit ←WEI(𝑥next) ⊲ Get summands of WEI(𝑥next) beforeM is trained

5: 𝑦 ← 𝑓 (𝑥next) ⊲ Evaluate function

6: 𝐺 ← 𝐺 ∪ {𝑥next} ⊲ Update history

7: Train surrogate modelM
8: 𝑟 ← UBR(𝐺,X ) ⊲ Upper Bound Regret (UBR) estimate, Equation (2)

9: 𝑅 ← 𝑅.append(𝑟 )
10: 𝑅 ← smooth_with_iqm(𝑅) ⊲ Smooth rugged signal with moving IQM

11: if ∇𝑅 ≈ 0 then ⊲ Check if UBR converged

12: 𝛼 ← adjust(𝛼, 𝑎explore, 𝑎exploit) ⊲ Adjust exploration-exploitation based on attitude

13: end if
14: end while

4 Experiments
In our experiments, we empirically evaluate our method SAWEI on different benchmarks and

compare it to baselines from the literature and handcrafted ones. We benchmark the algo-

rithms on the BBOB functions from the COCO problem suite (Hansen et al., 2020) and on

HPOBench (Eggensperger et al., 2021). Our implementations are built upon the BO tool SMAC3

(v2.0.0b1) (Lindauer et al., 2022). We use a standard GP as configured in SMAC’s BlackBoxFacade and

SMAC optimizes the acquisition function with a combination of local and random search which also

applies to minimizing LCB in Equation (2) for calculating the UBR. We set 𝛽𝑡 = 2 log(𝑑𝑡2/𝛽), 𝛽 = 1
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WEI(𝛼 = 0) (Explore) 𝛼 = 0.0

WEI(𝛼 = 0.5) (EI) 𝛼 = 0.5

WEI(𝛼 = 1) (modulated PI) 𝛼 = 1.0

WEI(𝛼 = 0.5) →WEI(𝛼 = 1) (Steps) 5 steps

WEI(𝛼 = 1) →WEI(𝛼 = 0.5) (Steps) 5 steps

EI→ PI switch after 25 %

EI→ PI switch after 50 %

EI→ PI switch after 75 %

Gutmann-Sobester Pulse (Gutmann, 2001; Sobester et al., 2005) Cycle 𝛼 ∈ [0.1, 0.3, 0.5, 0.7, 0.9]

Portfolio Allocation (Hoffman et al., 2011) -

Table 1: Baselines.

for UCB/LCB as done in SMAC following the original UCB (Srinivas et al., 2010). The code is

available at https://github.com/automl/SAWEI. The exact setting for our method is 𝜖 = 0.1 and

adding or subtracting Δ𝛼 = 0.1. We set our convergence check horizon to 𝑛 = 1, i.e., we check

whether the last gradient is close to 0. We validate our hand-crafted settings through an ablation

study in Section 4.1.

Our evaluation protocol repeats the optimization 10 times with different random seeds and

calculates the interquartile mean (IQM) across seeds to robustly estimate the regret per function.

For each schedule, we then determine the rank for each of the 24 BBOB functions and compute the

global rank across functions. For the rank table, we aggregate the ranks across the single tasks per

schedule with the IQM. In the plots over optimization steps, we show the mean and 95 % confidence

interval across all the functions.

BBOB. For the 24 noiseless, synthetic BBOB functions (Hansen et al., 2020) we set the dimensionality

to 8, the budget of the initial design to 24 function evaluations (FEs), and the budget for the surrogate-

based optimization to 256 FEs. We optimize the first three instances of each function. In BBOB, the

instances are obtained by scaling, shifting, and rotating the base function (hence preserving the

problem structure but changing the embedding).

HPOBench. We evaluate all methods on the tabular machine learning benchmarks from

HPOBench (Eggensperger et al., 2021). To this end, we randomly selected eight tasks from the

OpenML dataset (Casalicchio et al., 2017; Feurer et al., 2021) and optimize a Random Forest, MLP,

SVM, Logistic Regression, and XGBoost. We allow an initial design of 15 FEs and a BO-based

optimization budget of 100 FEs. For each FE, we average the metric over the five available seeds.

Baselines. We compare our data-driven, self-adjusting method SAWEI to (i) the well-established

best practice of simply using a single AF (EI, PI, and LCB) and (ii) hand-designed schedules of 𝛼 ,

see Table 1. We start with static schedules of 𝛼 ∈ {0, 0.5, 1}, either more exploring, EI, or more

exploiting. Further, we define a schedule from EI (WEI(𝛼 = 0.5)) to modulated PI (WEI(𝛼 = 1)),
and vice versa, as a step function with 5 steps. In addition, we compare to hard switches from EI to

PI (Benjamins et al., 2022a) as well as the Gutmann-Sobester pulse cycling through 𝛼 (Gutmann,

2001; Sobester et al., 2005). We also include Portfolio Allocation (Hoffman et al., 2011) and use their

portfolio of nine acquisition functions consisting of different parametrizations of UCB, PI, and EI.

4.1 Results

BBOB. Our method SAWEI ranks among the first based on final performance (cf. Figure 5a), which

is very similar to dynamic baselines going from EI (𝛼 = 0.5) to the modulated PI (𝛼 = 1). One

drawback of the hand-designed schedules is that the optimization budget needs to be defined

6
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Figure 2: Ranks per Step on BBOB

beforehand, whereas our method is self-adjusting and is oblivious of the total budget. Surprisingly,

PI is comparatively strong and performs better than EI, suggesting that the BBOB landscapes require

a higher percentage of exploitation. SAWEI also exhibits a favorable anytime performance, making

it a consistent and robust default choice, see Figure 2. Schedules dominating SAWEI only do so for

a portion of the optimization, hence they are not consistent. Confirming results from Benjamins

et al. (2022b), the effect of switching from EI to PI can be clearly seen as a boost in the ranks. On

BBOB, the generally well-performing schedules involve PI, which our method can easily mimic.

SAWEI finds a suitable transition from exploring to exploiting per-run.

In general, the tendency of the 𝛼-schedules traversed by SAWEI is moving from exploration to

exploitation. Often, we can observe a decrease, a change to more exploration again, after some

iterations. On one BBOB function, the multi-modal Schwefel function (F20) with weak global

structure (Figure 3a), SAWEI manages to efficiently transform from EI (𝛼 = 0.5, higher explorative

attitude) to modulated PI (𝛼 = 1) with an exploitative attitude. At the end of the optimization,

when the basin was already discovered, SAWEI decreases 𝛼 to more exploration to explore the

surroundings. We can also clearly observe the effect of the hand-designed switching (EI→ PI (x %))

in the sharp bends downwards in the log regret and upwards in the UBR, although SAWEI discovers

a more suitable point and can change its attitude again. On Katsuura, which is highly multi-

modal and has weak global structure (Figure 3c), SAWEI increases 𝛼 more slowly to exploitation,

presumably because of the highly rugged landscape, see Figure 3d. Also here, SAWEI discovers the

boost from changing from exploration to exploitation. If we look closely we can see that the Upper

Bound Regret jumps up after the switch happened for the switching schedules (EI to PI), which

is an indication of the adequacy of UBR as a state descriptor. All schedule plots for each BBOB

function, as well as the box plots of the final log regrets can be found in Appendix D.

HPOBench. On HPOBench we see that SAWEI also has a favorable anytime performance, see Fig-

ure 4, and ranks among the first for the final log regret (Figure 5a). It is on par with Explore (𝛼 = 0),

and they are directly followed by Portfolio Allocation and EI. The supremacy of the exploratory

schedules is quite surprising, given the simplicity commonly attributed to response landscapes in

HPO (Pushak and Hoos, 2018). We will investigate this further in our future work. With a closer

look at the schedules, we see the general trend to start from EI (𝛼 = 0.5) and go to Explore (𝛼 = 0)

which is the complete opposite of the BBOB behavior. Boxplots of the final log regret and all plots

with log regret, UBR and 𝛼 over time can be found in Appendix E.

Comparison of BBOB and HPOBench. In summary, we observe that the optimal schedule and

search behavior vary on two levels. First, for a given problem type, the optimal schedule varies

across the single tasks. Second, the search behavior depends on the type of problem, whether

we optimize synthetic functions in BBOB or find optimal hyperparameters for machine learning

models in HPOBench. SAWEI mimics the strategy fitting best to the problem at hand and exhibits
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(a) BBOB F20: Schwefel Func-

tion (Hansen et al., 2020)

(Image source (Finck et al.,

2009))
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Figure 3: BBOB Functions F20 and F23 with different performance and behavior indicators

the most favorable rank distribution across domains, see Figure 5a. BBOB in general requires more

exploitation and HPOBench more exploration which is visible prominently in two ways. First, PI

performs better on BBOB than on HPOBench and EI vice versa. Second, SAWEI’s trajectories of

𝛼 are contrary on BBOB and HPOBench (see Figure 5b) and thus adjust to the required search

attitude.

Ablation on BBOB. We perform an ablation study to assess the sensitivitiy of our method to its

hyperparameters. In particular, we vary Δ𝛼 ∈ {0.05, 0.1, 0.25}, i.e., the amount to add or subtract to

our current weight 𝛼 . In addition, we can track the attitude in different ways: either just considering

the last step (last), or accumulating the terms until the last point where the best configuration (the

incumbent) changed (inc. change) or until the last adjustment happened (last adjust). In the

latter cases, 𝑎explore and 𝑎exploit become sums. This hyperparameter defines the convergence check

horizon 𝑛, which is varied during the run for the latter two options. Finally, we vary the sensitivity

to the gradient of UBR by the width of the tolerance band when compared to 0: 𝜖 ∈ {0.05, 0.1, 0.5, 1}.
The bigger 𝜖 , the more often we switch. We evaluate all 36 combinations on all 24 BBOB functions

with 10 seeds and 1 instance on 8 dimensions and assess the hyperparameter importance with

fANOVA (Hutter et al., 2014). We normalize the log regret for each BBOB function and use this as

the performance metric.
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Figure 5: Comparison of BBOB and HPOBench

We show the marginals of each hyperparameter in Figure 6. The sensitivity 𝜖 to the gradient

has a slight tendency to 0.05 but the overall differences are small. Hence we argue that the exact

timing of the signal to adjust is less important. In addition, setting the granularity of Δ𝛼 is quite

robust to the exact setting. In contrast, tracking the attitude has a tendency to favor checking

the exploration/exploitation terms until the last adjust. It is likely that on other benchmarks the

importances might change and our default of 𝜖 = 0.1, track_attitude = last,Δ𝛼 = 0.1 proves to

be a robust one.

5 Limitations and Future Work
Our method SAWEI introduces a slight overhead due to the need to optimize Lower Confidence

Bound (LCB) for computing UBR in each iteration. Everything that follows, namely deciding

whether and how to adjust 𝛼 , is negligible in terms of computational cost.

In our analysis, we did not experiment with the initial value of 𝛼 , which may not be optimal

for every tested function. Also, our method does not allow jumps or resetting 𝛼 , which could also

be beneficial. In this context, defining 𝛼 directly as a function of the exploration/exploitation terms

of WEI could be a way to allow more flexibility.

One limitation is that so far we have only combined EI and PI. Our approach can easily be

extended to any linear combination of two acquisition functions. Moreover, we can combine SAWEI

with Dynamic Algorithm Configuration (DAC) (Biedenkapp et al., 2020) to learn policies of 𝛼 across

instances and tasks. More generally, we strongly believe that meta-learning and self-adjustment

should go hand in hand, another topic to be explored in future work. Building on the work
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by Benjamins et al. (2022a), one could consider to warmstart SAWEI using meta-models utilizing

ELA features (Mersmann et al., 2011). Future work, and a current limitation, is the investigation of

more domains as the domains show large variations. Finally, we believe that also other components

of BO like the surrogate model could benefit from self-adjusting choices.

6 Conclusions

Through a self-adjusting choice of the acquisition function in Bayesian Optimization, we aim

to benefit from two main levers: (1) an automated identification of the AF best suitable for the

unknown task at hand (e.g., while PI performs better than EI on BBOB, it is the other way around

for HPO problems), and (2) an adjustment to the different needs during the optimization process.

Our method SAWEI uses the convergence of Upper Bound Regret (UBR) as a criterion for when
to adjust its parametrized acquisition function. SAWEI proves to achieve promising performance

on two classic benchmark suites, BBOB and HPOBench, outperforming the static EI and PI AFs. It

is hence able to achieve both goals, (1) and (2), listed above. It furthermore does not only achieve

good final ranks, but also exhibits a favorable anytime performance on both suites.

As a side result of our study, we observe that the general trends in BBOB and HPOBench are

orthogonal to each other: while SAWEI generally traverses from EI (higher exploration tendency) to

a modulated PI (higher exploitation tendency) for BBOB, it moves from EI to even more exploration

on HPOBench. This demonstrates the need for flexible, on-the-fly-adjustment of BO components.
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Figure 7: Search Attitude Variation

A Hardware and Runtime
Acknowledgements. All experiments are conducted on a CPU cluster with 990 nodes with AMD

Milan 7763 CPUs. The compute time for the BBOB 8d functions was 45 min each so 14 040 h = 585 d

in total on CPU (including ablation). The compute time for the HPOBench was 90 sec each so

288 h = 12 d in total on CPU.

B Search Attitude

We determine the search attitude based on the exploration-term of WEI and PI (Φ [𝑧 (xnext)],
Section 3). Originally we compared the exploration-term with the exploitation-term of WEI, the

latter being a modified version of PI (𝑧 (xnext)𝑠 (xnext)Φ [𝑧 (xnext)]). We evaluate both versions on

BBOB (all 24 functions, 8d, 3 instances, 10 seeds, like in main) and HPOBench (5 models on 8 tasks,

10 seeds, like in main). In Figure 7a on BBOB, we see that the current version (SAWEI (ours))

achieves slightly lower log regret than the one using the modified PI term (SAWEI (modPI)) but

otherwise the distributions seem very similar. On HPOBench, the log regret of SAWEI (modPI) is

drastically worse than for SAWEI (ours). Please note that we denote the optimum log regret of

log(0) by −10 000. This can be explained by the traversed 𝛼 , see Figure 7b. SAWEI (modPI) adjusts

𝛼 to exploitation where exploration is required. In addition, SAWEI (modPI) is not able to reduce 𝛼

again for BBOB.
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C UBR Intuition

The Upper Bound Regret (UBR) can be used to stop BO (Makarova et al., 2022). This means the UBR

signalizes whether it is worth to continue optimization. We add our intuition that this holds for the

current optimizer settings. This is empirically supported by observing the UBR for the switching

policies (EI to PI) where we see sharp bends in the UBR after switching, see Figure 8. In our case

"current setting" implicitly describes the search attitude whether it is more exploring or more

exploiting. Therefore we can use the UBR to signal when we should change our search attitude.
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the acquisition function from EI to PI. BBOB functions, 8d, 10 seeds, 3 instances.
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D BBOB Results
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Figure 9: Final log regret on BBOB (8d, 10 seeds, 3 instances)
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Figure 13: BBOB Function 4
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Figure 15: BBOB Function 6
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Figure 17: BBOB Function 8
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Figure 18: BBOB Function 9
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Figure 19: BBOB Function 10
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Figure 20: BBOB Function 11
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Figure 21: BBOB Function 12
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Figure 23: BBOB Function 14
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Figure 25: BBOB Function 16
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Figure 26: BBOB Function 17
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Figure 27: BBOB Function 18
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0 200
step

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

lo
g 

re
gr

et

0 200
step

40000

60000

80000

100000

120000

140000

160000

180000

U
BR

EI ( = 0.5)
PI
Explore ( = 0)

LCB
= 0.5  = 1 (Steps)
= 1  = 0.5 (Steps)

EI  PI (25%)
EI  PI (50%)
EI  PI (75%)

Gutmann-Sobester Pulse
Portfolio Allocation (n=9)
SAWEI (ours)

0 200
step

0.0

0.2

0.4

0.6

0.8

1.0

Figure 29: BBOB Function 20
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E HPOBench Results
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Figure 34: Final log regret on HPOBench (10 seeds). Please note that on this tabular benchmark a log

regret of 0 can be achieved which is not plotted.
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Figure 35: HPOBench ML: (model, task_id) = (lr, 10101)
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Figure 36: HPOBench ML: (model, task_id) = (lr, 146818)
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Figure 37: HPOBench ML: (model, task_id) = (lr, 146821)
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Figure 38: HPOBench ML: (model, task_id) = (lr, 146822)

32



0 100
step

10000

8000

6000

4000

2000

0
lo

g 
re

gr
et

0 100
step

0.065

0.070

0.075

0.080

0.085

0.090

0.095

U
BR

EI ( = 0.5)
PI
Explore ( = 0)

LCB
= 0.5  = 1 (Steps)
= 1  = 0.5 (Steps)

EI  PI (25%)
EI  PI (50%)
EI  PI (75%)

Gutmann-Sobester Pulse
Portfolio Allocation (n=9)
SAWEI (ours)

0 100
step

0.0

0.2

0.4

0.6

0.8

1.0

Figure 39: HPOBench ML: (model, task_id) = (lr, 31)
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Figure 40: HPOBench ML: (model, task_id) = (lr, 3917)

33



0 100
step

10000

8000

6000

4000

2000

0
lo

g 
re

gr
et

0 100
step

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

U
BR

EI ( = 0.5)
PI
Explore ( = 0)

LCB
= 0.5  = 1 (Steps)
= 1  = 0.5 (Steps)

EI  PI (25%)
EI  PI (50%)
EI  PI (75%)

Gutmann-Sobester Pulse
Portfolio Allocation (n=9)
SAWEI (ours)

0 100
step

0.0

0.2

0.4

0.6

0.8

1.0

Figure 41: HPOBench ML: (model, task_id) = (lr, 53)
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Figure 42: HPOBench ML: (model, task_id) = (lr, 9952)
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Figure 43: HPOBench ML: (model, task_id) = (nn, 10101)
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Figure 44: HPOBench ML: (model, task_id) = (nn, 146818)
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Figure 45: HPOBench ML: (model, task_id) = (nn, 146821)
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Figure 46: HPOBench ML: (model, task_id) = (nn, 146822)
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Figure 47: HPOBench ML: (model, task_id) = (nn, 31)
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Figure 48: HPOBench ML: (model, task_id) = (nn, 3917)
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Figure 49: HPOBench ML: (model, task_id) = (nn, 53)
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Figure 50: HPOBench ML: (model, task_id) = (nn, 9952)
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Figure 51: HPOBench ML: (model, task_id) = (rf, 10101)
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Figure 52: HPOBench ML: (model, task_id) = (rf, 146818)
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Figure 53: HPOBench ML: (model, task_id) = (rf, 146821)
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Figure 54: HPOBench ML: (model, task_id) = (rf, 146822)
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Figure 55: HPOBench ML: (model, task_id) = (rf, 31)
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Figure 56: HPOBench ML: (model, task_id) = (rf, 3917)

41



0 100
step

10000

8000

6000

4000

2000

0
lo

g 
re

gr
et

0 100
step

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

U
BR

EI ( = 0.5)
PI
Explore ( = 0)

LCB
= 0.5  = 1 (Steps)
= 1  = 0.5 (Steps)

EI  PI (25%)
EI  PI (50%)
EI  PI (75%)

Gutmann-Sobester Pulse
Portfolio Allocation (n=9)
SAWEI (ours)

0 100
step

0.0

0.2

0.4

0.6

0.8

1.0

Figure 57: HPOBench ML: (model, task_id) = (rf, 53)
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Figure 58: HPOBench ML: (model, task_id) = (rf, 9952)
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Figure 59: HPOBench ML: (model, task_id) = (svm, 10101)
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Figure 60: HPOBench ML: (model, task_id) = (svm, 146818)
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Figure 61: HPOBench ML: (model, task_id) = (svm, 146821)
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Figure 62: HPOBench ML: (model, task_id) = (svm, 146822)
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Figure 63: HPOBench ML: (model, task_id) = (svm, 31)
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Figure 64: HPOBench ML: (model, task_id) = (svm, 3917)
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Figure 65: HPOBench ML: (model, task_id) = (svm, 53)
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Figure 66: HPOBench ML: (model, task_id) = (svm, 9952)
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Figure 67: HPOBench ML: (model, task_id) = (xgb, 10101)
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Figure 68: HPOBench ML: (model, task_id) = (xgb, 146818)
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Figure 69: HPOBench ML: (model, task_id) = (xgb, 146821)
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Figure 70: HPOBench ML: (model, task_id) = (xgb, 146822)
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Figure 71: HPOBench ML: (model, task_id) = (xgb, 31)
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Figure 72: HPOBench ML: (model, task_id) = (xgb, 3917)
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Figure 73: HPOBench ML: (model, task_id) = (xgb, 53)
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Figure 74: HPOBench ML: (model, task_id) = (xgb, 9952)
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