
HAL Id: hal-04242054
https://hal.science/hal-04242054v1

Submitted on 14 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MA-BBOB: Many-Affine Combinations of BBOB
Functions for Evaluating AutoML Approaches in

Noiseless Numerical Black-Box Optimization Contexts
Diederick Vermetten, Furong Ye, Thomas Bäck, Carola Doerr

To cite this version:
Diederick Vermetten, Furong Ye, Thomas Bäck, Carola Doerr. MA-BBOB: Many-Affine Combinations
of BBOB Functions for Evaluating AutoML Approaches in Noiseless Numerical Black-Box Optimiza-
tion Contexts. International Conference on Automated Machine Learning (AutoML 2023), Sep 2023,
Potsdam, Germany. �hal-04242054�

https://hal.science/hal-04242054v1
https://hal.archives-ouvertes.fr


MA-BBOB: Many-Affine Combinations of BBOB Functions
for Evaluating AutoML Approaches in Noiseless Numerical

Black-Box Optimization Contexts

Diederick Vermetten1 Furong Ye1 Thomas Bäck1 Carola Doerr2

1Leiden Institute for Advanced Computer Science (LIACS), Leiden University, The Netherlands
2Sorbonne Université, CNRS, LIP6, Paris, France

Abstract Extending a recent suggestion to generate new instances for numerical black-box optimiza-
tion benchmarking by interpolating pairs of the well-established BBOB functions from
the COmparing COntinuous Optimizers (COCO) platform, we propose in this work a fur-
ther generalization that allows multiple affine combinations of the original instances and
arbitrarily chosen locations of the global optima.
We demonstrate that the MA-BBOB generator can help fill the instance space, while overall
patterns in algorithm performance are preserved. By combining the landscape features of
the problems with the performance data, we pose the question of whether these features are
as useful for algorithm selection as previous studies suggested.
MA-BBOB is built on the publicly available IOHprofiler platform, which facilitates standard-
ized experimentation routines, provides access to the interactive IOHanalyzer module for
performance analysis and visualization, and enables comparisons with the rich and growing
data collection available for the (MA-)BBOB functions.

1 Introduction
Black-box optimization deals with algorithms that are capable of finding high-quality solutions for
problems that are not necessarily explicitly given, but for which the quality of solution candidates
can be obtained through some process such as numerical simulations, physical experiments, or
user studies. Black-box optimization algorithms work in an iterative fashion, alternating between
creating new solution candidates and using the obtained quality information to update the procedure
to generate the next set of candidates. Black-box optimization algorithms are the method of choice
whenever the problem is truly black-box or when no problem-tailored solvers are available. Among
the most prominent application domains of black-box optimization algorithms are engineering
problems, biomedical problems, and computer science itself, represented via problems such as
hyperparameter optimization.

Many different black-box optimization methods exist. In addition, they typically have hyperpa-
rameters to help customize the behavior of the algorithm to the problem at hand. From the user
perspective, these design choices create the very critical meta-optimization problem of selecting
which algorithm to use for a problem at hand, and how to configure it. This is where automated
Machine Learning (AutoML [12]) comes into play. However, despite a long tradition of developing
automated Machine Learning (AutoML) approaches for numerical black-box optimization con-
texts [3, 14, 30], empirical evaluations are heavily centered around very few benchmark collections.
One of the most popular collections is the BBOB suite [11] of the COmparing COntinuous Optimiz-
ers (COCO) platform [10]. The BBOB suite was originally designed to help researchers analyze the
behavior of black-numerical black-box algorithms in different optimization contexts. Over time,
however, BBOB has been used for many other purposes, including evaluating AutoML methods,
even though the problems were never designed to be suitable for this task.

AutoML 2023 Apps, Benchmarks, Challenges, and Datasets Track © 2023 the authors, released under CC BY 4.0

mailto:d.l.vermetten@liacs.leidenuniv.nl
mailto:f.ye@liacs.leidenuniv.nl
mailto:t.h.w.baeck@liacs.leidenuniv.nl
mailto:carola.doerr@lip6.fr
https://creativecommons.org/licenses/by/4.0/


With the increasing popularity of the BBOB benchmarks, wide availability of shared perfor-
mance data enabled the application of, e.g., per-instance algorithm selection [14] and configura-
tion [3] methods. A common class of state-of-the-art meta-optimization techniques is feature-based,
and relies on suitable representations of the problem spaces to predict which algorithm (con-
figuration) performs best on a given problem. In the case of BBOB, the most commonly used
representation makes use of Exploratory Landscape Analysis (ELA [22]), which has been shown to
be able to accurately distinguish between BBOB problems [29].

A key problem of algorithm selection based on BBOB problems lies in the ability to test how
well the results generalize. One approach is to use a leave-one-function-out method [25], where
the selector is trained on 23 functions and tested on the remaining one. This generally leads to
poor performance, as each problem has been specifically designed to have different global function
properties. As such, another common method is to leave out a set of problem instances for testing.
This way, the selector is trained on all types of problems. However, this has a high potential to
overfit the particular biases of the BBOB problems [15], an often overlooked risk.

To remedy these potential issues, the ability to construct new functions which fill the spaces
between existing BBOB functions could be critical. If the instance space can be filled with new
problems, these could be used to not only test the generalizability of algorithm selection methods,
but also more generally to gain insights into the relation between the ELA representation of a
problem and the behavior of optimization algorithms.

Filling the instance space is a topic of rising interest within the optimization community [1,
21, 24, 36]. While some work has been conducted to create problem instances that reflect the
properties of real-world applications or obtain similar characteristics of the existing problems, other
work is trying to generate diverse instances. For example, symbolic regression and simulation
of Gaussian processes have been applied to generate benchmarks reflecting real-world problem
behaviours in [37] and [19, 31]. On the other hand, research in generating diverse instances of
combinatorial optimization has been conducted in [4, 5, 18, 21]. Regarding black-box numerical
optimization, approaches based on Genetic Programming (GP) have succeeded in generating novel
problem instances with controllable characteristics defined by their ELA features in [23], in which
the authors used ELA features of BBOB instances as a baseline to regenerate similar instances and
design diverse instances. However, to obtain problems with desired characteristics, the GP needs
to be executed for each dimension. In recent work, Dietrich and Mersmann [8] propose a different
perspective on generating new problem instances for numerical optimization through weighted
combinations of BBOB problems. By creating these affine combinations of existing problems,
it seems that the ELA features can transition smoothly between the two component functions.
Moreover, in our recent work [34] we observed that algorithms’ performance can alter substantially
along the weights of two combined problems.

In this paper, we extend upon the modified version of the affine BBOB combinations proposed
in [34] by generalizing it to combinations between an arbitrary number of BBOB functions. Through
doing this, we address the concerns regarding the scaling of the component functions and the
impact of the location of the global optimum. We also propose a modified mechanism to sample
weights to avoid potential biases resulting from including too many problems.

From the proposed many-affine problem generation method, we sample 1 000 instances, for
which we perform both an ELA-based analysis as well as an analysis of the performance of a set
of algorithms. By combining these results in a simple algorithm selection model, we raise the
question of whether or not the ELA features are sufficiently representative to create a generalizable
algorithm selection model.

In summary, our key contributions and findings are:

1. We introduce MA-BBOB, a generator of arbitrary affine combinations of the 24 BBOB functions.
We explain the rationales behind the various design choices, which include the location of the

2



optimum, the scaling used for interpolating the different functions, and the way of sampling in
functions from this space. The resulting generator is build on the IOHprofiler platform, which
enables equivalent benchmarking setups to the original BBOB problems.

2. We analyze 1 000 randomly sampled instances in 2𝑑 and in 5𝑑 via Exploratory Landscape Analysis
(ELA [22]) and show that the combinedMA-BBOB functions cover the space between the original
‘pure’ BBOB functions quite well, with the exception of some of problems like the linear slope
and ellipsoid problem, which are essentially only available in the ‘pure’ BBOB functions, but
disappear in the MA-BBOB instances with non-trivial weights.

3. We compare the performance of five black-box optimization algorithms on the original BBOB and
the 1 000 randomly sampled MA-BBOB instances and show that the rank distribution changes
slightly in favour of the CMA-ES algorithms and to the disadvantage of RCobyla.

4. Finally, we also perform per-instance algorithm performance prediction studies on MA-BBOB.
The results confirm that the regression accuracy is better when the training set includes gen-
eralized BBOB functions. However, we also observe a considerable performance gap between
ELA-based regression models and those trained with full knowledge of the weights that are used
to construct the test instances. These results indicate that the current set of ELA features fail
to capture some instance properties that are crucial for algorithm performance, a shortcoming
that we expect to motivate future research on the design of features for numerical black-box
optimization.

2 Background
The BBOB Problem Suite. The BBOB collection [11] is one of the main components of the COCO
benchmarking framework [10]. The BBOB suite is heavily used in the black-box optimization
community for evaluating derivative-free numerical optimization techniques. To date, hundreds of
different optimization algorithms have been tested on the original BBOB suite of 24 single-objective,
noiseless optimization problems [2].

One key reason for the popularity of the BBOB suite is the ability to create independent instances
of the same problem, which are generated by applying transformations in the domain and the
objective space. These transformations include rotation, scaling of objective value, and moving the
location of the global optimum. They allow researchers to evaluate possible bias in their algorithms,
and are hence an important component of algorithm benchmarking.

The availability of many instances are also a key enabler for the evaluation of AutoML ap-
proaches in black-box optimization contexts. Since not all instances are easily accessible via the
original COCO implementation, we have made direct access to the instances available in our
IOHprofiler benchmarking environment [9, 7, 35].
Affine Function Combinations. While the availability of numerous instances per each BBOB
function facilitates AutoML studies, it has been observed that the generalization ability of models
trained on BBOB and tested on independent problems is disappointing [15, 17]. This motivated
the design of new problems to extend the existing BBOB suite. One such approach was proposed
in [8]. It suggests to consider affine combinations of two different problem instances. The resulting
problems were analyzed with respect to their fitness landscapes, as seen via exploratory landscape
analysis (ELA [22]). They have been shown to smoothly connect their component functions in a
reduced-dimensionality ELA space. This seems to imply that we can use these problems to connect
any pair of existing problems, which would significantly add to the instance space.

In our follow-up study [34] we recently proposed a modified version of creating these affine
function combinations, see Section 3.1 for details. We used these functions to compare the perfor-
mance of five selected black-box optimization algorithms and showed that the behavior differences
are not as smooth as the differences in ELA space. In several cases, combinations of two functions
are best solved by a different algorithm than the one which solved the component problems.

3



Function ID 1 2 3 4 5 6 7 8 9 10 11 12
Scale Factor 11.0 17.5 12.3 12.6 11.5 15.3 12.1 15.3 15.2 17.4 13.4 20.4
Function ID 13 14 15 16 17 18 19 20 21 22 23 24
Scale Factor 12.9 10.4 12.3 10.3 9.8 10.6 10.0 14.7 10.7 10.8 9.0 12.1

Table 1: Final scale factors used to generate MA-BBOB problems.

3 The MA-BBOB Benchmark Suite

3.1 Scaling of Function Values

When combining multiple functions to create a new benchmark problem, one key factor which
impacts the landscape is the scaling of the combined functions. Since we are interested in taking
affine combinations of existing functions, a difference in scale might lead one function to dominate
all others, leading to limited coverage of the feature space.

The original affine BBOB functions proposed in [8] make use of a tuning procedure for finding
useable weights. While this allows for selecting suitable problems, it makes it more challenging
to just randomly sample a set of new problems. We therefore suggested an alternative way to
generate the affine combinations in [34]. This change is two-fold: each component problem 𝑓 is
first transformed by subtracting the global optimum value min 𝑓 . This way, we know that each
component functions optimum function value is set to 0. Then, instead of arithmetic weighting, a
logarithmic combination is used to limit the impact of scale differences. While this simplifies the
procedure of generating random function combinations, BBOB functions can sometimes differ by
multiple orders of magnitude, which still produces some bias in this procedure.

To address this shortcoming inMA-BBOB, we have investigated different scaling procedures. We
still scale the global optima and perform a logarithmic transform, but we now add a normalization
step. This transforms the log-precision values into an approximation of [0, 1], and then maps
this back to the commonly used BBOB domain [10−8, 102]. This is achieved by taking the log-
transformed precision (capped at −8), adding 8 so the minimum is at 0 and dividing by a scale
factor. The aim of this procedure is to make sure that the target precision of 102 is similarly easy to
achieve on all problems.

In order to select appropriate scale factors, we need to determine practical limits of the function
value for each BBOB function. We do this by considering a set of 50 000 random samples and
aggregating the corresponding function values. We consider the following aggregation methods
(based on the log-scaled precision): min, mean, max, (max+min)/2. Figure 1 illustrates the
differences between these methods, for a 2𝑑 problem. Note that because we use log-scaled precision,
the differences between instances are rather small, so we opted to only do the sampling for one
instance of each BBOB problem. Based on visual interpretation of the contour plots in Figure 1, we
(somewhat subjectively) select the (max+min)/2 scaling as the most promising method.

To avoid having to constantly repeat this random sampling procedure, we also investigate the
way in which the scales of the random factors, and thus the scale factors, differ across dimensions.
The results are shown in Figure 2. With exception of the smallest dimensions, the values remain
quite stable. As such, we decide to implement them as hard-coded values based on the median of
the shown values, rounded to the nearest decimal. The resulting factors are shown in Table 1.

3.2 Instance Creation

A second aspect to consider when combining multiple functions is the placement of the global
optimum. In the previous two papers [8, 34] on affine BBOB functions, this was done based
on the instance of one of the two component functions. However, the original BBOB instance
creation process can be considered somewhat biased, as not all functions make use of the same

4



−4 −2 0 2 4
mean

−4

−2

0

2

4

−4 −2 0 2 4
max

−4 −2 0 2 4
minmax

−4 −2 0 2 4
min

−4 −2 0 2 4
equal

−1.2

−0.6

0.0

0.6

1.2

1.8

2.4

3.0

3.6

Figure 1: Log-scaled fitness values of an example of a single many-affine function with 5 different ways
of scaling. The first 4 are taking the mean, max, (max+min)/2 and min of 50 000 random
samples to create the scale factor, while the fifth (‘equal’) option does not make use of this
scaling.

2 5 10 15 20 25 30 35 40
Dimension

0

5

10

15

20

(L
og

(m
ax

)+
Lo
g(
m
in
))/
2

Figure 2: Evolution of the log-scaled (max+min)/2 scaling factor, rel-
ative to the problem dimension. The values are based on
50 000 samples. Each line corresponds to one of the 24 BBOB
functions.

−5 −4 −2 0 2 4 5

−5

−4

−2

0

2

4

5

Figure 3: Location of optima of
the 24 2d BBOB func-
tions. The red lines
mark the commonly
used box-constraints
of [−5, 5]𝐷 .

transformations [11, 20]. As such, if we extend the process of using the optimum of one of the
used component functions, the optimum would be distributed as in Figure 3. To avoid this issue,
we decided to generate the optimum location separately, uniformly at random in the full domain
[−5, 5]𝑑 . Figure 4 shows how a 2𝑑-function changes when moving the optimum location.

3.3 Sampling random functions

As a final factor impacting the types of problems generated, we consider the way in which weights
are sampled. While this can indeed be done uniformly at random (with a normalization afterwards),
this might not lead to the most useful set of benchmark problems. When the weights for each
function are generated this way, the probability of having a weight of 0 for any component is 0.
This means that every function will contribute to some extent to the newly generated problem. As
such, it would be almost impossible for this procedure to result in a unimodal problem.

One way to address this bias in function generation is to adapt how many functions are part of
the newly created problem. Indeed, the combinations of two problems already lead to a vast space
of interesting landscapes. We opt for a different approach: we make use of a threshold value which
determines which functions contribute to the problem. The procedure for generating weights is

5



−4 −2 0 2 4

−4

−2

0

2

4

−4 −2 0 2 4 −4 −2 0 2 4 −4 −2 0 2 4 −4 −2 0 2 4
−1.6

−1.2

−0.8

−0.4

0.0

0.4

0.8

1.2

Figure 4: Log-scaled fitness values of an example of a single many-affine function with changed
location of optimum.

−4 −2 0 2 4
T=0

−4

−2

0

2

4

−4 −2 0 2 4
T=0.4

−4 −2 0 2 4
T=0.55

−4 −2 0 2 4
T=0.7

−4 −2 0 2 4
T=0.85

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

Figure 5: Log-scaled fitness values of an example of a ’single’ many-affine function with 5 different
sampling thresholds.

thus as follows: (1) Generate initial weight uniformly at random, (2) adapt the threshold to be
the minimum of the user-specified threshold and the third-highest weight, (3) this threshold is
subtracted from the weights, all negative values are set to 0. The second step is to ensure that
at least two problems always contribute to the new problem. Figure 5 provides an example of a
problem generated with different threshold values. We decide to set the default value at 𝑇 = 0.85,
such that on average 3.6 problems will have a non-zero weight.

4 Experimental Setup

In the remainder of this paper, we will make use of 1 000 functions, with weights sampled according
to Section 3.3 with𝑇 = 0.85. Each problem uses instances uniformly selected between 1 and 100 for
each of the component functions, and uniformly sampled locations of the global optimum. We use
the same set of weights, instances and optima locations in both 5 and 2 dimensions.

Comparing this set of generated problems with the pure BBOB functions is a key aspect of this
work. To remove biases in terms of scaling, we apply the same scale factors to the BBOB functions.
Practically, this means we use the all-zero weights with a 1 for the selected function to collect
the BBOB data (with the location of the optima set as original). We use 5 instances of each BBOB
function for our comparisons. We refer to these ‘pure’ BBOB functions as ‘BBOB’, while we refer
to the MA-BBOB instances as ‘affine’.

Reproducibility: The code used during this project, as well as all resulting data, is available
at [33]. The repository also contains additional versions of the figures which could not be included
here because of the page limit. We are actively working towards a data repository for MA-BBOB
performance data which will also allow automated annotation via the OPTION ontology [16], for
FAIR data sharing [13].

6



−2 0 2 4 6 8 10 12
x0

−1

0

1

2

3

4

5

6

x1

W6
0.0
0.2
0.4
0.6
0.8
1.0

kind
Affine
BBOB

(a) Points are colored according to theweights used
for BBOB function F7.

4 6 8 10 12 14 16
x0

0

2

4

6

8

x1

kind
Affine
BBOB

(b) Points are colored according to the function
type: BBOB of affine combination.

Figure 6: UMAP-reduction of the 24 BBOB functions (5 instances each) and 1000 affine combinations
for 5𝑑 (a) and 2𝑑 (b). The projection is created based on the BBOB only.

5 Landscape Analysis

To analyze the landscapes of the created affine problems, we make use of the pflacco package [26]
to compute ELA features. We use 5 sets of 1 000𝑑 points from a scrambled Sobol’ sequence. We
then evaluate these points and follow the advice of [27] and use min-max normalization on these
function values. We finally remove all features which are constant across all problems or contain
NAN values, resulting in a total of 44 remaining ELA features. For each of these features, we then
take the mean value among the 5 samples.

To gain insight into the differences between the BBOB and affine functions, we reduce the
original 44-dimensional space into 2𝑑 . To achieve this, we make use of the Uniform Manifold
Approximation Projection (UMAP). To focus on the parts of the instance space covered by the
newly generated problems, we create the mapping based only on the BBOB problems. The result of
applying this mapping to all 2𝑑 problems is visualized in Figure 6b.

From Figure 6b, we observe that many of the affine problems are clustered together. While
some regions between existing BBOB problems are filled, it seems that the function generation
process is not able to find solutions close to every BBOB problem. This might be caused by the fact
that by combining an average of 3.6 functions, it is highly unlikely that we find functions similar to
e.g., a linear slope or a function with low global structure.

In addition to the dimensionality reduction, we can also investigate the distributions of individ-
ual ELA feature values. By comparing the distributions on the BBOB functions with the ones on
the affine problems, we can gain some insight into the most common types of problems generated.
In Figure 7, we show these distributions for the min-max normalized ELA features. From this
figure, we can see that for many features, the feature values of the affine problems are much more
concentrated than the BBOB ones.

6 Algorithm Performance

While the ELA-based analysis gives us some insight into the low-level characteristics of the
generated problems, it does not directly give insight into the power of these problems to differentiate
between algorithms. We therefore complement the ELA-centered analyses from he previous section
by investigating algorithm performance. To this end, we run a set of 5 different algorithms on each
problem instance:
(1) Diagonal CMA-ES from the Nevergrad platform [28] (dCMA),
(2) RCobyla from the Nevergrad platform (Cobyla),
(3) Differential Evolution from the Nevergrad platform (DE),

7



el
a_
m
et
a.
lin
_s
im

pl
e.
ad

j_r
2

el
a_
m
et
a.
lin
_s
im

pl
e.
in
te
rc
ep

t

el
a_
m
et
a.
lin
_s
im

pl
e.
co
ef
.m

in

el
a_
m
et
a.
lin
_s
im

pl
e.
co
ef
.m

ax

el
a_
m
et
a.
lin
_s
im

pl
e.
co
ef
.m

ax
_b
y_
m
in

el
a_
m
et
a.
lin
_w

_in
te
ra
ct
.a
dj
_r
2

el
a_
m
et
a.
qu

ad
_s
im

pl
e.
ad

j_r
2

el
a_
m
et
a.
qu

ad
_s
im

pl
e.
co
nd

el
a_
m
et
a.
qu

ad
_w

_in
te
ra
ct
.a
dj
_r
2

el
a_
di
st
r.s
ke
wn

es
s

el
a_
di
st
r.k
ur
to
sis

el
a_
di
st
r.n

um
be

r_
of
_p
ea

ks

el
a_
le
ve

l.m
m
ce
_ld

a_
10

el
a_
le
ve

l.m
m
ce
_q
da

_1
0

el
a_
le
ve

l.l
da

_q
da

_1
0

el
a_
le
ve

l.m
m
ce
_ld

a_
25

el
a_
le
ve

l.m
m
ce
_q
da

_2
5

el
a_
le
ve

l.m
m
ce
_ld

a_
50

el
a_
le
ve

l.m
m
ce
_q
da

_5
0

el
a_
le
ve

l.l
da

_q
da

_5
0

nb
c.
nn

_n
b.
sd
_r
at
io

nb
c.
nn

_n
b.
m
ea

n_
ra
tio

nb
c.
nn

_n
b.
co
r

nb
c.
di
st
_r
at
io
.c
oe

ff_
va

r

nb
c.
nb

_f
itn

es
s.c

or

di
sp
.ra

tio
_m

ea
n_
02

di
sp
.ra

tio
_m

ea
n_
05

di
sp
.ra

tio
_m

ea
n_
10

di
sp
.ra

tio
_m

ea
n_
25

di
sp
.ra

tio
_m

ed
ia
n_
02

di
sp
.ra

tio
_m

ed
ia
n_
05

di
sp
.ra

tio
_m

ed
ia
n_
10

di
sp
.ra

tio
_m

ed
ia
n_
25

di
sp
.d
iff
_m

ea
n_
02

di
sp
.d
iff
_m

ea
n_
05

di
sp
.d
iff
_m

ea
n_
10

di
sp
.d
iff
_m

ea
n_
25

di
sp
.d
iff
_m

ed
ia
n_
02

di
sp
.d
iff
_m

ed
ia
n_
05

di
sp
.d
iff
_m

ed
ia
n_
10

di
sp
.d
iff
_m

ed
ia
n_
25

ic.
h_
m
ax

ic.
ep

s_
s

ic.
m
0

0.0

0.2

0.4

0.6

0.8

1.0

Affine
BBOB

Figure 7: Distribution of (normalized) ELA feature values on the 5𝑑 version of the problems.

1 2 3 4 5
Rank (BBOB)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
op

or
tio

n

1 2 3 4 5
Rank (Affine)

ID
DiagonalCMA
DifferentialEvolution
RCobyla
modcma
modde

(a) Distribution of ranks based on per-function
AUC after 10 000 evaluations.

0 2 4 6 8 10 12
x0

−1

0

1

2

3

4

5

6

7

x1

best
DiagonalCMA
modcma
modde
RCobyla

kind
Affine
BBOB

(b) UMAP-reduction of BBOB functions (5 in-
stances) and 1000 affine combinations. Projec-
tion created based on BBOB only. Color based
on the algorithm with the largest AUC.

Figure 8: Results of ranking the 5 algorithms on the 5𝑑 problems, based onAUC after 10 000 evaluations.

(4) CMA-ES from the modular CMA-ES package [6] (modCMA), and
(5) L-SHADE, implemented using the modular DE package [32] (modDE).

For each of these algorithms, we perform 50 independent runs on each of the 1 000 affine
functions as well as on the 5 instances from each of the 24 BBOB problems. It is important to note
that the BBOB functions make use of the same scale factors as used to generate the affine functions
in order to further reduce the impact of scale differences. These experiments are performed on
both the 2𝑑 and 5𝑑 versions of these problems.

To analyze the differences in algorithm performance between the two sets of problems, we
consider the normalized area under the curve (AUC) of the empirical cumulative distribution
function (ECDF) as the performance metric. For the ECDF, we follow the default setting suggested
in COCO [10] and use a set of 51 logarithmically spaced targets from 10−8 to 102. Based on the
AUC values, we then rank the set of 5 algorithms on each problem. The distribution of these ranks
is shown in Figure 8a. We observe that the overall patterns between the BBOB and affine problems
are preserved. There are some notable differences, particularly with regard to the performance
of Cobyla. Even though this algorithm often performs poorly on BBOB, for the affine problems
it is ranked worst in more than 80% of cases. This suggests that problems where this algorithm
performs well (mostly unimodal problems) are not as well-represented in the MA-BBOB functions.

In addition to this ranking, we can also link the ELA features to the algorithm performance. To
explore whether the used features might correlate with the problem’s difficulty from the algorithm’s
perspective, we link the dimensionality reduction with the best algorithm from the portfolio. This
is visualized for the 5𝑑 problems in Figure 8b.

8



dCMA
DE modCMA

modDE
Cobyla

dCMA
DE modCMA

modDE
Cobyla

ELA

Weights

ELA

Weights

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(a) Mean average error obtained when predicting
the AUC of each of the 5 algorithms based on
either the ELA features or the used weights.
Top: model trained on mixture of BBOB and
Affine functions using 10-fold cross-validation.
Bottom: model trained on BBOB only and pre-
dicting performance on affine problems. Left:
2𝑑 problems, right: 5𝑑 problems.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
loss

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
op

or
tio

n

('ela', 'generalize')
('ela', 'cv')
('weights', 'generalize')
('weights', 'cv')

(b) Cumulative distribution of loss (AUC) of the
random forest models predicting the best
algorithm (2𝑑 and 5𝑑 problems combined),
based on either the ELA features or weights-
representation of the problems.

Figure 9: Performance of the random forest model predicting algorithm performance (a) or the best
algorithm for each problem (b).

7 Algorithm Selection

As a final experiment, we now use the generated problems in an algorithm selection context. For
each of the 5 algorithms, we train a random forest regression model to predict the AUC on each
problem. The input variables for this model are either the ELA features, as is commonly done, or
the weights used to generate the functions. By contrasting these approaches, we obtain an intuition
for how well the ELA features capture the algorithm-relevant properties of the function.

While we can train our models in a common cross-validation manner, we can also use the
same setup to test the generalizability of models trained on the original BBOB problems only. The
resulting mean absolute errors MAE of these models are plotted in Figure 9a.

We observe that the ELA representation is often worse than the weights-based one. This
suggests that the used ELA features might not be sufficient to achieve generalization of an AS
model. This is especially clear for the generalizability scenario, where we would have expected
ELA to perform better. This poor performance seems to suggest that the ELA features might not
fully capture all instance properties that determine the behavior of the algorithms.

When training a very basic AS model (predicting the best algorithm) in the same manner
(training on BBOB and evaluating on Affine), we achieve similar performance differences as
suggested by Figure 9a: the weighted F1-score based on ELA is 0.67, while the score based on
weights is 0.70. The corresponding loss in terms of AUC values is plotted in Figure 9b. This figure
confirms the previous observation that the ELA features are not sufficiently representative to
accurately represent the problems in a way which is relevant for ranking optimization algorithms.

8 Conclusions and Future Work

The proposed procedure for generating new problems as an affine combination of the 24 BBOB
problems can serve as a function generator to help fill the instance space spanned by the BBOB
functions. By applying a scaling step before combining the problems, we make sure that the
resulting problems all have an equivalent range of objective values, regardless of the used weights.
In addition, the uniform location of the global optima in the full domain avoids some of the bias of
the original BBOB problems.

9



By analyzing the ELA features of 1 000 of these many-affine MA-BBOB problems, we observed
that they do indeed fill a part of the instance space. There are still some inherent limitations arising
from the fact that the building blocks are fixed. For example, it is impossible to generate a problem
similar to the linear slope. Similarly, it is highly unlikely that new problems have specific properties
such as low global structure. Nevertheless, the overall ranking of optimization algorithms on these
problems remains similar to that on the original BBOB problems, suggesting that the algorithmic
challenges might be similar.

The results presented above had as primary focus a first analysis of the generated MA-BBOB
instances, and how they compare to the BBOB functions. For this purpose, we have considered
randomly sampled instances. The selection of ‘representative’ instance collections still remains to
be done. Another important step for future work is to test the generalization ability of AutoML
systems that are trained on MA-BBOB functions and tested on numerical black-box optimization
problems that do not originate from the BBOB family. In this context, our basic Random Forest-based
algorithm selector indicates that the ELA features might not be as suitable for this generalization
task as expected, motivating further research on feature engineering for numerical black-box
optimization.

Acknowledgements. Our work is financially supported by ANR-22-ERCS-0003-01 project VARIA-
TION, by the CNRS INS2I project IOHprofiler, and by the NWO DACCOMPLI project (628.011.002).
This work was performed using the ALICE compute resources provided by Leiden University.

References
[1] Hossein Alipour, Mario Andrés Muñoz, and Kate Smith-Miles. 2023. Enhanced instance

space analysis for the maximum flow problem. Eur. J. Oper. Res. 304, 2 (2023), 411–428.
https://doi.org/10.1016/j.ejor.2022.04.012

[2] Anne Auger and Nikolaus Hansen. 2020. A SIGEVO Impact Award for a Paper Arising from
the COCO Platform: A Summary and Beyond. https://evolution.sigevo.org/issues/
HTML/sigevolution-13-4/home.html. Issue 3.

[3] Nacim Belkhir, Johann Dréo, Pierre Savéant, and Marc Schoenauer. 2017. Per instance al-
gorithm configuration of CMA-ES with limited budget. In Proc. of Genetic and Evolutionary
Computation (GECCO’17). ACM, 681–688. https://doi.org/10.1145/3071178.3071343

[4] Jakob Bossek, Pascal Kerschke, Aneta Neumann, Markus Wagner, Frank Neumann, and Heike
Trautmann. 2019. Evolving diverse TSP instances by means of novel and creative mutation
operators. In Proc. of Conference on Foundations of Genetic Algorithms (FOGA’19), Tobias
Friedrich, Carola Doerr, and Dirk V. Arnold (Eds.). ACM, 58–71. https://doi.org/10.1145/
3299904.3340307

[5] Jakob Bossek and Markus Wagner. 2021. Generating instances with performance differences
for more than just two algorithms. In Proc. of Genetic and Evolutionary Computation Conference
(GECCO’21, Companion material), Krzysztof Krawiec (Ed.). ACM, 1423–1432. https://doi.
org/10.1145/3449726.3463165

[6] Jacob de Nobel, Diederick Vermetten, Hao Wang, Carola Doerr, and Thomas Bäck. 2021.
Tuning as a means of assessing the benefits of new ideas in interplay with existing algorithmic
modules. In Proc. of Genetic and Evolutionary Computation Conference (GECCO’21, Companion
material). ACM, 1375–1384. https://doi.org/10.1145/3449726.3463167

[7] Jacob de Nobel, Furong Ye, Diederick Vermetten, Hao Wang, Carola Doerr, and Thomas Bäck.
2021. IOHexperimenter: Benchmarking Platform for Iterative Optimization Heuristics. CoRR
abs/2111.04077 (2021). arXiv:2111.04077 https://arxiv.org/abs/2111.04077

10

https://doi.org/10.1016/j.ejor.2022.04.012
https://evolution.sigevo.org/issues/HTML/sigevolution-13-4/home.html
https://evolution.sigevo.org/issues/HTML/sigevolution-13-4/home.html
https://doi.org/10.1145/3071178.3071343
https://doi.org/10.1145/3299904.3340307
https://doi.org/10.1145/3299904.3340307
https://doi.org/10.1145/3449726.3463165
https://doi.org/10.1145/3449726.3463165
https://doi.org/10.1145/3449726.3463167
https://arxiv.org/abs/2111.04077


[8] Konstantin Dietrich and Olaf Mersmann. 2022. Increasing the Diversity of Benchmark Func-
tion Sets Through Affine Recombination. In Proc. of Parallel Problem Solving from Nature
(PPSN’22) (LNCS, Vol. 13398), Günter Rudolph, Anna V. Kononova, Hernán E. Aguirre, Pascal
Kerschke, Gabriela Ochoa, and Tea Tusar (Eds.). Springer, 590–602. https://doi.org/10.
1007/978-3-031-14714-2_41

[9] Carola Doerr, Hao Wang, Furong Ye, Sander van Rijn, and Thomas Bäck. 2018. IOHprofiler: A
Benchmarking and Profiling Tool for Iterative Optimization Heuristics. CoRR abs/1810.05281
(2018). arXiv:1810.05281 http://arxiv.org/abs/1810.05281

[10] Nikolaus Hansen, Anne Auger, Raymond Ros, Olaf Mersmann, Tea Tušar, and Dimo Brockhoff.
2021. COCO: A platform for comparing continuous optimizers in a black-box setting. Optim.
Methods Softw. 36, 1 (2021), 114–144.

[11] Nikolaus Hansen, Steffen Finck, Raymond Ros, and Anne Auger. 2009. Real-Parameter Black-
Box Optimization Benchmarking 2009: Noiseless Functions Definitions. Technical Report RR-6829.
INRIA. https://hal.inria.fr/inria-00362633/document

[12] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren (Eds.). 2019. Automated Machine Learning
- Methods, Systems, Challenges. Springer. https://doi.org/10.1007/978-3-030-05318-5

[13] Annika Jacobsen, Ricardo de Miranda Azevedo, Nick S. Juty, Dominique Batista, Simon J.
Coles, Ronald Cornet, Mélanie Courtot, Mercè Crosas, Michel Dumontier, Chris T. A. Evelo,
Carole A. Goble, Giancarlo Guizzardi, Karsten Kryger Hansen, Ali Hasnain, Kristina M. Hettne,
Jaap Heringa, Rob W. W. Hooft, Melanie Imming, Keith G. Jeffery, Rajaram Kaliyaperumal,
Martijn G. Kersloot, Christine R. Kirkpatrick, Tobias Kuhn, Ignasi Labastida, Barbara Magagna,
Peter McQuilton, Natalie Meyers, Annalisa Montesanti, Mirjam van Reisen, Philippe Rocca-
Serra, Robert Pergl, Susanna-Assunta Sansone, Luiz Olavo Bonino da Silva Santos, Juliane
Schneider, George O. Strawn, Mark Thompson, Andra Waagmeester, Tobias Weigel, Mark D.
Wilkinson, Egon L. Willighagen, Peter Wittenburg, Marco Roos, Barend Mons, and Erik
Schultes. 2020. FAIR Principles: Interpretations and Implementation Considerations. Data
Intell. 2, 1-2 (2020), 10–29. https://doi.org/10.1162/dint_r_00024

[14] Pascal Kerschke, Holger H. Hoos, Frank Neumann, and Heike Trautmann. 2019. Automated
Algorithm Selection: Survey and Perspectives. Evol. Comput. 27, 1 (2019), 3–45. https:
//doi.org/10.1162/evco_a_00242

[15] Ana Kostovska, Anja Jankovic, Diederick Vermetten, Jacob de Nobel, HaoWang, Tome Eftimov,
and Carola Doerr. 2022. Per-run Algorithm Selection with Warm-starting using Trajectory-
based Features. In Proc. of Parallel Problem Solving from Nature (PPSN’22) (LNCS, Vol. 13398).
Springer, 46–60. https://doi.org/10.1007/978-3-031-14714-2_4 Free version available
at https://arxiv.org/abs/2204.09483.

[16] Ana Kostovska, Diederick Vermetten, Carola Doerr, Sašo Džeroski, Panče Panov, and Tome
Eftimov. 2022. OPTION: OPTImization Algorithm Benchmarking ONtology. IEEE Trans. Evol.
Comput. (2022). https://doi.org/10.1109/TEVC.2022.3232844 To appear. Free version
available at https://arxiv.org/abs/2211.11332.

[17] Benjamin Lacroix and John McCall. 2019. Limitations of Benchmark Sets and Landscape
Features for Algorithm Selection and Performance Prediction. In Proc. of Genetic and Evolution-
ary Computation (GECCO’19) (Prague, Czech Republic). ACM, New York, NY, USA, 261–262.
https://doi.org/10.1145/3319619.3322051

11

https://doi.org/10.1007/978-3-031-14714-2_41
https://doi.org/10.1007/978-3-031-14714-2_41
http://arxiv.org/abs/1810.05281
https://hal.inria.fr/inria-00362633/document
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1162/dint_r_00024
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.1007/978-3-031-14714-2_4
https://arxiv.org/abs/2204.09483
https://doi.org/10.1109/TEVC.2022.3232844
https://arxiv.org/abs/2211.11332
https://doi.org/10.1145/3319619.3322051


[18] Thibault Lechien, Jorik Jooken, and Patrick De Causmaecker. 2023. Evolving test instances
of the Hamiltonian completion problem. Comput. Oper. Res. 149 (2023), 106019. https:
//doi.org/10.1016/j.cor.2022.106019

[19] Fu Xing Long, Bas van Stein, Moritz Frenzel, Peter Krause, Markus Gitterle, and Thomas Bäck.
2022. Learning the characteristics of engineering optimization problems with applications in
automotive crash. In Proc. of Genetic and Evolutionary Computation (GECCO’22), Jonathan E.
Fieldsend and Markus Wagner (Eds.). ACM, 1227–1236. https://doi.org/10.1145/3512290.
3528712

[20] Fu Xing Long, Diederick Vermetten, Bas van Stein, and Anna V. Kononova. 2022. BBOB
Instance Analysis: Landscape Properties and Algorithm Performance across Problem In-
stances. CoRR abs/2211.16318 (2022). https://doi.org/10.48550/arXiv.2211.16318
arXiv:2211.16318

[21] Alejandro Marrero, Eduardo Segredo, Coromoto León, and Emma Hart. 2022. A Novelty-
Search Approach to Filling an Instance-Space with Diverse and Discriminatory Instances
for the Knapsack Problem. In Proc. of Parallel Problem Solving from Nature (PPSN’22) (LNCS,
Vol. 13398). Springer, 223–236. https://doi.org/10.1007/978-3-031-14714-2_16

[22] Olaf Mersmann, Bernd Bischl, Heike Trautmann, Mike Preuss, Claus Weihs, and Günter
Rudolph. 2011. Exploratory landscape analysis. In Proc. of Genetic and Evolutionary Computa-
tion (GECCO’11). ACM, 829–836.

[23] Mario A. Muñoz and Kate Smith-Miles. 2020. Generating New Space-Filling Test Instances for
Continuous Black-Box Optimization. Evol. Comput. 28, 3 (2020), 379–404. https://doi.org/
10.1162/evco_a_00262

[24] Mario Andrés Muñoz, Tao Yan, Matheus R. Leal, Kate Smith-Miles, Ana Carolina Lorena,
Gisele L. Pappa, and Rômulo Madureira Rodrigues. 2021. An Instance Space Analysis of
Regression Problems. ACM Trans. Knowl. Discov. Data 15, 2 (2021), 28:1–28:25. https:
//doi.org/10.1145/3436893

[25] Ana Nikolikj, Carola Doerr, and Tome Eftimov. 2023. RF+ clust for Leave-One-Problem-Out
Performance Prediction. In Proc. of Applications of Evolutionary Computation (Evo Applica-
tions’23). Springer, 285–301.

[26] Raphael Patrick Prager. 2022. pFlacco. https://pypi.org/project/pflacco/.

[27] Raphael Patrick Prager and Heike Trautmann. 2023. Nullifying the Inherent Bias of Non-
invariant Exploratory Landscape Analysis Features. In Proc. of Applications of Evolutionary
Computation (Evo Applications’23). Springer, 411–425.

[28] Jérémy Rapin and Olivier Teytaud. 2018. Nevergrad - A gradient-free optimization platform.
https://GitHub.com/FacebookResearch/Nevergrad.

[29] Quentin Renau, Johann Dreo, Carola Doerr, and Benjamin Doerr. 2019. Expressiveness and Ro-
bustness of Landscape Features. In Proc. of Genetic and Evolutionary Computation (GECCO’19)
(Prague, Czech Republic). ACM, 2048–2051. https://doi.org/10.1145/3319619.3326913

[30] Gresa Shala, André Biedenkapp, Noor H. Awad, Steven Adriaensen, Marius Lindauer, and
Frank Hutter. 2020. Learning Step-Size Adaptation in CMA-ES. In Proc. of Parallel Problem
Solving from Nature (PPSN’20) (LNCS, Vol. 12269). Springer, 691–706. https://doi.org/10.
1007/978-3-030-58112-1_48

12

https://doi.org/10.1016/j.cor.2022.106019
https://doi.org/10.1016/j.cor.2022.106019
https://doi.org/10.1145/3512290.3528712
https://doi.org/10.1145/3512290.3528712
https://doi.org/10.48550/arXiv.2211.16318
https://doi.org/10.1007/978-3-031-14714-2_16
https://doi.org/10.1162/evco_a_00262
https://doi.org/10.1162/evco_a_00262
https://doi.org/10.1145/3436893
https://doi.org/10.1145/3436893
https://pypi.org/project/pflacco/
https://GitHub.com/FacebookResearch/Nevergrad
https://doi.org/10.1145/3319619.3326913
https://doi.org/10.1007/978-3-030-58112-1_48
https://doi.org/10.1007/978-3-030-58112-1_48


[31] Ye Tian, Shichen Peng, Xingyi Zhang, Tobias Rodemann, Kay Chen Tan, and Yaochu Jin.
2020. A Recommender System for Metaheuristic Algorithms for Continuous Optimization
Based on Deep Recurrent Neural Networks. IEEE Trans. Artif. Intell. 1, 1 (2020), 5–18. https:
//doi.org/10.1109/TAI.2020.3022339

[32] Diederick Vermetten, Fabio Caraffini, Anna V Kononova, and Thomas Bäck. 2023. Modular
Differential Evolution. In Proc. of Genetic and Evolutionary Computation (GECCO’23). ACM.
https://doi.org/10.1145/3583131.3590417 To appear. Code available at https://github.
com/Dvermetten/ModDE.

[33] Diederick Vermetten, Furong Ye, Thomas Bäck, and Carola Doerr. 2023. Reproducibil-
ity files and additional figures. Code repository: https://github.com/Dvermetten/
Many-affine-BBOB Data and figure repository: https://doi.org/10.5281/zenodo.7826036.

[34] Diederick Vermetten, Furong Ye, and Carola Doerr. 2023. Using Affine Combinations of BBOB
Problems for Performance Assessment. In Proc. of Genetic and Evolutionary Computation
Conference (GECCO’23), Vol. abs/2303.04573. ACM. https://doi.org/10.1145/3583131.
3590412

[35] Hao Wang, Diederick Vermetten, Furong Ye, Carola Doerr, and Thomas Bäck. 2022. IOH-
analyzer: Detailed Performance Analysis for Iterative Optimization Heuristic. ACM Trans.
Evol. Learn. Optim. 2, 1 (2022), 3:1–3:29. https://doi.org/10.1145/3510426 IOHanalyzer
is available at CRAN, on GitHub, and as web-based GUI, see https://iohprofiler.github.
io/IOHanalyzer/ for links.

[36] Estefania Yap, Mario Andrés Muñoz, and Kate Smith-Miles. 2022. Informing Multiobjective
Optimization Benchmark Construction Through Instance Space Analysis. IEEE Trans. Evol.
Comput. 26, 6 (2022), 1246–1260. https://doi.org/10.1109/TEVC.2022.3205165

[37] Martin Zaefferer and Frederik Rehbach. 2020. Continuous Optimization Benchmarks by Simula-
tion. In Proc. of Parallel Problem Solving from Nature (PPSN’20) (LNCS, Vol. 12269), Thomas Bäck,
Mike Preuss, André H. Deutz, Hao Wang, Carola Doerr, Michael T. M. Emmerich, and Heike
Trautmann (Eds.). Springer, 273–286. https://doi.org/10.1007/978-3-030-58112-1_19

13

https://doi.org/10.1109/TAI.2020.3022339
https://doi.org/10.1109/TAI.2020.3022339
https://doi.org/10.1145/3583131.3590417
https://github.com/Dvermetten/ModDE
https://github.com/Dvermetten/ModDE
https://github.com/Dvermetten/Many-affine-BBOB
https://github.com/Dvermetten/Many-affine-BBOB
https://doi.org/10.5281/zenodo.7826036
https://doi.org/10.1145/3583131.3590412
https://doi.org/10.1145/3583131.3590412
https://doi.org/10.1145/3510426
https://iohprofiler.github.io/IOHanalyzer/
https://iohprofiler.github.io/IOHanalyzer/
https://doi.org/10.1109/TEVC.2022.3205165
https://doi.org/10.1007/978-3-030-58112-1_19

	Introduction
	Background
	The MA-BBOB Benchmark Suite
	Scaling of Function Values
	Instance Creation
	Sampling random functions

	Experimental Setup
	Landscape Analysis
	Algorithm Performance
	Algorithm Selection
	Conclusions and Future Work

