
HAL Id: hal-04242051
https://hal.science/hal-04242051

Submitted on 14 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sensitivity Analysis of RF+clust for
Leave-One-Problem-Out Performance Prediction

Ana Nikolikj, Michal Pluháček, Carola Doerr, Peter Korošec, Tome Eftimov

To cite this version:
Ana Nikolikj, Michal Pluháček, Carola Doerr, Peter Korošec, Tome Eftimov. Sensitiv-
ity Analysis of RF+clust for Leave-One-Problem-Out Performance Prediction. 2023 IEEE
Congress on Evolutionary Computation (CEC), Jul 2023, Chicago, IL, United States. pp.1-8,
�10.1109/CEC53210.2023.10254146�. �hal-04242051�

https://hal.science/hal-04242051
https://hal.archives-ouvertes.fr


Sensitivity Analysis of RF+clust for
Leave-one-problem-out Performance Prediction

Ana Nikolikj, Michal Pluháček, Carola Doerr, Peter Korošec, and Tome Eftimov

Abstract—Leave-one-problem-out (LOPO) performance pre-
diction requires machine learning (ML) models to extrapolate
algorithms’ performance from a set of training problems to a
previously unseen problem. LOPO is a very challenging task
even for state-of-the-art approaches. Models that work well in
the easier leave-one-instance-out scenario often fail to generalize
well to the LOPO setting. To address the LOPO problem, recent
work suggested enriching standard random forest (RF) perfor-
mance regression models with a weighted average of algorithms’
performance on training problems that are considered similar
to a test problem. More precisely, in this RF+clust approach,
the weights are chosen proportionally to the distances of the
problems in some feature space. Here in this work, we extend the
RF+clust approach by adjusting the distance-based weights with
the importance of the features for performance regression. That
is, instead of considering cosine distance in the feature space, we
consider a weighted distance measure, with weights depending
on the relevance of the feature for the regression model. Our
empirical evaluation of the modified RF+clust approach on the
CEC 2014 benchmark suite confirms its advantages over the
naive distance measure. However, we also observe room for
improvement, in particular with respect to more expressive
feature portfolios.

Index Terms—Automated Performance Prediction, AutoML,
Single-Objective Black-Box Optimization, Zero-Shot Learning

I. INTRODUCTION

In black-box optimization, supervised machine learning
(ML) models are commonly used for automated algorithm
selection [1]. The models use representations of the opti-
mization problems in terms of exploratory landscape analysis
(ELA) features [2] to predict the algorithm performance on the
problems. Typically, regression models are used [3]. While
promising results have been achieved, the models may not
make accurate predictions when they are trained on problems
that are not representative of the new problems, for which the
best-performing algorithm shall be selected.

In the majority of previous works, the predictive power of
the ML models is evaluated in leave-one-instance-out (LOIO)

Ana Nikolikj (Email: ana.nikolikj@ijs.si), Peter Korošec (Email: pe-
ter.korosec@ijs.si) and Tome Eftimov (Email: tome.eftimov@ijs.si) are with
Computer Systems Department, Jožef Stefan Institute, 1000 Ljubljana, Slove-
nia. Ana Nikolikj is also with the Jožef Stefan International Postgraduate
School, 1000 Ljubljana, Slovenia

Michal Pluháček (Email:pluhacek@utb.cz) is with the Faculty of Applied
Informatics, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic.

Carola Doerr (Email: carola.doerr@lip6.fr) is with the Sorbonne Université,
CNRS, LIP 1000 Paris, France.

The authors acknowledge the support of the Slovenian Research Agency
through program grant No. P2-0098, project grants N2-0239 and J2-4460,
and a bilateral project between Slovenia and France grant No. BI-FR/23-24-
PROTEUS-001 (PR-12040). Our work is also supported by ANR-22-ERCS-
0003-01 project VARIATION.

scenarios [4]–[6], where different instances from the same
problem are present in both, training and test data. The
problem instances are obtained with transformations of the
same base problem class by using shifting, scaling, and/or
rotation [7]. In such an evaluation scenario there is a guarantee
that the training data covers the feature space also of the
unseen test instances. As a result, the learned predictive model
performs well on new problems.

The main challenge arises when the evaluation of the predic-
tive model is performed in a leave-one-problem-out (LOPO)
manner. That is, all the instances of the same base problem
are left out for testing, and no instances of the problem are
present during the training of the model. Recent studies [8],
[9] show that it is difficult to generalize a predictive model
for automated algorithm performance prediction trained on
problems from one benchmark suite to problems from another
benchmark suite.

The LOPO performance prediction can be stated as an ML
task known as zero-shot learning [10]–[12]. Nikolikj et al.
introduced RF+clust for LOPO algorithm performance predic-
tion [13]. The approach calibrates the prediction obtained by a
Random Forest (RF) model [14] for a given test problem with
a weighted mean of the algorithm performance on problems
from the training data that are the most similar to the test
problem, based on their feature representation. The similarity
between problems is measured using cosine similarity [15].
While RF+clust produces promising results, it struggles when
problems have very similar feature representations but there
is a large difference in algorithm performance on them. In
addition, treating all features equally when calculating the
similarity between the problem representations can be a weak
point of the approach, resulting in similar problems from
the training data which are not similar in reality to the test
problem.

Our contribution: In this study, we analyze how using a
weighted similarity measure to find similar problem instances
affects the performance of RF+clust. We evaluate the per-
formance of two weighted RF+clust variants that incorporate
feature importance in the similarity measure as weights. We
tested two methods for determining the feature importance: an
unsupervised method, based on clustering, and a supervised
method based on feature permutation. The results obtained on
the CEC 2014 benchmark suite show that using a weighted
cosine similarity measure with feature importance as weights
can improve the performance of the RF+clust approach. Most
of the problems for which new similar problems have been
found with a weighted similarity measure and the algorithm



performance on them is similar yield better results. Previously
for several problems for which similar problems are not
found, we can now identify them through the weighted similar
measure and improve the prediction. For some problems the
approach leads to worse predictions, indicating that the most
important features are not expressive enough to distinguish
between these problems, with significantly different algorithm
behavior. Comparing both weighted variants, it follows that
the one that uses the permutation feature importance provides
close to the uniform contribution of the features. This is the
reason it has more similar prediction results to the standard
RF+clust approach.

Outline: The rest of the paper is organized as follows: Sec-
tion II presents the overview of the related work, Section III
introduce the two variants of RF+clust approach, the experi-
mental design is explained in Section IV. Section V presents
the results with discussion, and finally, the conclusions are
presented in Section VI.

II. RELATED WORK
A. Common ML approaches for automated algorithm perfor-
mance prediction

In the black-box optimization context, most of the studies
performed in the direction of supervised automated algorithm
performance prediction use Exploratory Landscape Analysis
(ELA) [2] for calculation of the feature representation of
problems. The ELA features are used as input data for
the ML models. The ELA features are calculated by using
mathematical and statistical techniques on a set of candidate
solutions sampled from the problem decision space. Further,
they are combined with different supervised ML models (e.g.,
Random Forest, XGBoost, Neural Networks, etc.) to predict
the performance of an algorithm [3], [5], [16]. However, the
evaluation of the predictive models in almost all studies on
this topic is evaluated in the LOIO scenario.

Few studies that have been published in 2022, analyze
models’ generalization power in the LOPO scenario. Škvorc et
al. [8] showed that a predictive model has lower generalization
in such evaluation scenario. They have analyzed this on the
real-parameter black-box optimization benchmarking (BBOB)
benchmark suite [17]. In addition, they have shown that a
model trained on the BBOB benchmark suite provides poor
predictive results when it is used to predict the performance
of a benchmark suite of artificially generated problems. Kos-
tovska et al. have analyzed a “per-run” algorithm selection
scheme [9] by using trajectory-calculated ELA features (i.e.,
the samples for calculating them are the samples observed
by the algorithm during its run) as input data to predict the
performance. They have shown that a model learned on the
BBOB benchmark suite has poor predictive results for the
Nevergad benchmark suite [18] and vice versa.

B. RF+clust for leave-one-problem-out (LOPO) performance
prediction

RF+clust is a recently proposed approach for LOPO algo-
rithm performance prediction. The idea behind the approach

is to improve the predictions of a standard supervised model
when the test problem landscape representation is not present
in the training set. The approach consists of the following three
steps:

• Training a regression model on a set of training problems
represented by their landscape features. As the name
suggests, the RF+clust approach uses random forest (RF)
regression models to obtain the predicted algorithm per-
formance ŷq for the test problem.

• The second step consists of setting a predefined similarity
threshold for problem similarity. Based on the feature
representation of the problems, the k-nearest problems
from the training set whose similarity s with the test
problem is greater or equal to the predefined threshold
are selected. The number k can be different for different
problems and it depends on the predefined threshold. The
approach uses cosine similarity as a similarity measure.
For the selected problems, the actual performance of the
algorithm on them is retrieved, y1, y2, . . . , yk.

• The last step is calibrating the RF prediction ŷq
with the performance of the algorithm on the selected
training problems from the previous step and obtain-
ing the final prediction for the test problem. This
is performed by the following aggregation: ŷq,final =(
ŷiq + F (y1, y2, . . . , yk)

)
/2, where F (. . . ) =

∑k
i=1 wiyi.

The weight indicates how much each of the selected
problems contributes to the calibration and it is calcu-
lated based on its similarity to the test problem, wi =
si/

∑k
i=1 si. In cases where there are no similar problems

for the predefined threshold from the training set, the
prediction is only based on the RF prediction ŷq,final =
ŷq .

III. SENSITIVITY ANALYSIS OF RF+CLUST FOR LOPO
PERFORMANCE PREDICTION

In this paper, we perform a sensitivity analysis of RF+clust,
where the main difference with the original RF+clust, is to
learn the importance of each feature and further incorporate it
in the procedure for finding the k-nearest problems from the
training set, that are used to calibrate the prediction obtained
by the RF model on the test set. The main motivation behind
this is, the more important features to have more influence in
the similarity score. Let us assume that we have p features.

Here, we use and compare two different methods for learn-
ing feature importance, one unsupervised (proposed by us) and
one supervised (that is a well-established approach). Details
about the approaches are provided below:

• Unsupervised learning - the problems from the training
set are clustered with the full feature portfolio into m
clusters. Further, the same clustering is performed p
times, each time removing one feature and clustering the
problems using the p− 1 features into the same number
of previous estimated m clusters. At the same time, we
are counting on how many problems the obtained clusters
with the full portfolio differ from the new clusters. The
cumulative number of problems in which the clustering



differs (ndiff) is used to calculate the weight of the omitted
feature. A larger number of problems indicates higher
importance since omitting the feature places the problems
all around the problem landscape space, while a smaller
number indicates that this feature is not important in
distributing the problems. After we obtain the number
of problems that change their placement in the problem
landscape space for each feature, we calculate their
weight by using wi = ndiffi/

∑p
i=1 ndiffi.

• Permutation feature importance - The permutation feature
importance, perm, is defined to be the amount by which
a model’s performance drops when single feature values
are randomly shuffled [19]. The main notion behind
this procedure is that it breaks the relationship between
the feature and the target, thus the drop in the model
performance is an indication of how much the model de-
pends on the feature. This technique benefits from being
model agnostic and usually, the final feature importance
is calculated by shuffling the feature multiple times with
different permutations of the feature. The weights are then
calculated as wi = permi/

∑p
i=1 permi.

After obtaining the weights for each feature, the similarity
of the test problem with the training problems is calculated
using a weighted cosine similarity

cosine(u, v) =
∑p

i=1 w
2
i uivi√∑p

i=1(wiui)2
√∑p

i=1(wivi)2
, (1)

where u = (u1, . . . , up) and v = (v1, . . . , vp) are the feature
representations of the problems with p ELA features.

The k-nearest problems that are selected by applying the
similarity threshold to the weighted cosine similarity measure,
are the ones used to calibrate the RF prediction.

IV. EXPERIMENTAL DESIGN

For better comparison, we build our experiments on the
same data as [13].

Problem portfolio. The proposed approach is evaluated on
the 2014 CEC Special Sessions & Competitions (CEC 2014)
benchmark suite [20]. It consists of 30 benchmark problems.
The problem dimension D is set to 10.

Algorithm portfolio. Three randomly selected Differential
Evolution (DE) configurations are included in the analysis.
Their hyper-parameters are set as presented in [13]. The
population size of the algorithm is set equal to the problem
dimension (10). Each configuration is run 30 times on each
CEC problem and the precision after a budget of 500D = 5000
function evaluations has been stored. Finally, we report the
median precision over all 30 runs for each pair of an algorithm
configuration and a CEC problem. In the ML task, we consider
the logarithm (log10) of the median precision as a target
for prediction. Figure 1 presents DE1 performance (log-
scale) obtained per benchmark problem on the CEC 2014
benchmark suite. The random selection of the DE configu-
rations is because we focus on presenting the utility of the
methodology, which is a method that can be used for any
choice of algorithms and their hyperparameters.

Fig. 1: Best solution precision (log-scale) obtained by DE1, for
a budget of 5000 function evaluations, per problem instance
in the CEC 2014 benchmark suite.

Exploratory Landscape Analysis (ELA). To extract fea-
tures that describe the properties of each CEC problem, we
utilize the ELA technique which is the most commonly used
meta-representation for continuous single-objective optimiza-
tion problems [2]. 64 ELA features are taken from a previous
study [21], where they are calculated using Improved Latin
Hypercube Sampling (ILHS) [22] with a sample size of 800D
(8000) and 30 runs. The large sample size can be at a high
cost, however, this was performed to reduce the randomness
in the feature extraction process.

For the final analysis, as a feature portfolio, we have
selected only the uncorrelated features. Pearson correlation
coefficient [23] of 0.9 is used as a threshold to retrieve the
highly correlated feature pairs. Next, the correlated features
are divided into groups of correlated features, where all the
features in the group have been highly correlated with each
other. This problem can be translated into a graph problem
where all the features are nodes and pairs of features satisfying
correlation > 0.9 are edges. The task of finding all “correlated
groups” translates into finding all complete sub-graphs in the
graph with more than 2 nodes. The implementation is done
with the Python package NetworkX v.2.8.4 [24]. Then the RF
model with default parameters was evaluated against every
single feature from the group, the feature that resulted with the
lowest mean absolute error (MAE) was chosen to be kept and
the others were discarded. We need to point out here that the
selected feature portfolio is different for different algorithms
and even for different folds of the same algorithm.

Table I shows the ML model performance aggregated over
all folds, when all features available have been used and when
only the uncorrelated features (around 30 depending on the
fold) have been used. Comparing the train and test errors for
the different feature portfolios, we can see that the perfor-
mance is only slightly degraded for the uncorrelated feature
portfolio, for all the algorithms. For further experiments, we
have selected the uncorrelated feature set. Performing this
selection we have reduced the risk of overfitting the prediction
models.

Feature importance. To learn the weights of the features
required to perform the sensitivity analysis of the RF+clust
approach, we use i) hierarchical clustering and ii) permutation
feature importance. Both methods have been selected to test
different variants of RF+clust methodology. In the case of
the hierarchical clustering, the number of clusters together



TABLE I: Mean absolute error (MAE) obtained by the RF
models when predicting the performance of the three DE
configurations, using all and the uncorrelated features. The
values in the table represent the MAE over 30 folds.

features algorithm MAE train MAE test
uncorrelated DE1 0.448384 1.267805

all DE1 0.453909 1.208038
uncorrelated DE2 0.384077 1.077129

all DE2 0.392174 1.054833
uncorrelated DE3 0.375334 1.023077

all DE3 0.376666 1.018123

with the selected hyper-parameters has been estimated using
hierarchical clustering [25] which is often the first option
for very small data sets such as the 29 training problems
used in this case. Sub-figures in Figure 2 show clustering
performance (y-axis) with standard deviation over folds, for
different numbers of clusters (x-axis), when using different
parameters for the clustering algorithm. The implementation
has been done using the scipy v.1.9.3 Python package with
metric set to cosine similarity as a distance measure, method
set to “average” and the number of clusters m set to 4. For
the permutation feature importance, the implementation has
been done using the scikit-learn v.1.0.2 package in Python
by setting the number of permutations, n repeats, to 15 and
random state to one for reproducibility of the results.

Fig. 2: Estimating the number of clusters and tuning of
clustering hyper-parameters for algorithm DE1.

RF+clust model training and evaluation. We follow the
previously introduced RF+clust variant, where the RF model
(from the scikit-learn package in Python) is trained in an STR
learning scenario for each algorithm configuration separately.
The evaluation is performed in the LOPO scenario (i.e., 29
problems are used for training and one for testing), where the
prediction errors are the absolute distances of the prediction
of the precision to the true precision value of the algorithm.
Since we have 30 problems, the learning process is repeated 30
times, each time one problem is out, so all steps are repeated
including feature importance learning and training a regression
model only on the training set.

V. RESULTS AND DISCUSSION

We apply the approach to three random DE configurations
on the CEC 2014 benchmark suite. Due to space limitations,
we present here some selected results for algorithm DE1 in
more detail, while for the other results, similar findings were
noticed and are available at [26].

A. Sensitivity analysis
Figure 3 presents the box plots of the distribution of the

weights for each of the features obtained for DE1 across all 30
folds. The weights are calculated with the unsupervised feature
importance approach. On the x-axis, we have all the selected
features and for each one in brackets, we present in how many
folds it has been selected as an uncorrelated feature. The y-
axis (i.e., value) represents the calculated weight. The figure
shows that half of the features selected in the uncorrelated
feature portfolio for each fold are not important since they
have weights equal to zero in almost all of the folds, which
means that they are not used to find similar problems used for
the calibration.

Fig. 3: Feature weights box-plot over all folds for algorithm
DE1 obtained with the unsupervised feature importance. The
numbers in brackets indicate in how many folds the feature
was selected in the feature selection process.

Figure 4 presents the comparison of prediction errors be-
tween RF and the initial RF+clust approach for similarity
thresholds of 0.5, 0.7, and 0.9 in a LOPO scenario. The first
row shows the errors obtained by a standard RF model trained
in the LOPO scenario. Each cell of the heatmap represents the
mean absolute error obtained by the models on the test set.
The numbers under the model error indicate the number of
similar problems above the corresponding threshold that have
been selected from the training set for the calibration of the
prediction. The blank cells in the heatmap are problems for
which RF+clust provides the same result as the standard RF
model because for those problems we could not find similar
problems from the training data to calibrate the prediction.
The column names in the heatmap presented below are the
problems from the CEC 2014 suite (i.e., f id).

Figures 5 and 6 demonstrate the results obtained with the
weighted RF+clust approach which uses the unsupervised
feature importance or permutation feature importance respec-
tively as feature weights to find similar problems used for
calibration. The weighted approach calculates the weighted
cosine similarity of the problem representations. We can notice



in both figures that the similarity between the problems can be
influenced by the weighting, as the number of similar problems
changes in many cases as compared to Figure 4.

Fig. 4: Error comparison between RF and RF+clust (with
cosine similarity and similarity threshold of 0.5, 0.7, and
0.9) in predicting the performance of DE1 for each problem
instance in the CEC 2014 suite.

Fig. 5: Error comparison between RF and RF+clust (with
weighted cosine similarity with weights calculated by
the unsupervised approach for feature importance and
similarity threshold of 0.5, 0.7, and 0.9) in predicting the
performance of DE1 for each problem instance in the CEC
2014 suite

B. In-depth analysis

The heatmap of the weighted RF+clust approach with
weights learned by the unsupervised feature importance (see
Figure 5), shows lower errors for the following problems: 2,

Fig. 6: Error comparison between RF and RF+clust (with
weighted cosine similarity with weights calculated by
the with weights calculated by the permutation feature
importance and similarity threshold of 0.5, 0.7, and 0.9) in
predicting the performance of DE1 for each problem instance
in the CEC 2014 suite.

5, 9, 10, 12, 19, and 24, for all similarity thresholds compared
to the initial RF+clust approach. To provide an explanation of
why this happens, the 19th problem is analyzed in more detail.
With the initial RF+clust, there are no similar problems found
above similarity thresholds of 0.7 and 0.9 (see Figure 4). With
the weighted RF+clust, we can detect three similar problems
from the training data above > 0.9. The result is visible in
more detail in Figures 7a and 7b, which show the relationship
between the pairwise similarity of the ELA features repre-
sentation (x-axis) and the absolute pairwise difference in the
(ground truth) performance of the optimization algorithm (y-
axis) of the 19th problem (as indicated in the plot’s title)
with the other problems. Figure 7a presents results of using
the cosine similarity between the ELA representations, while
Figure 7b uses the weighted cosine similarity. Comparing
the two plots, the left one shows the initial RF+clust results
where it is visible that there are no similar problems with
similarity above 0.9, and the right one shows the weighted
RF+clust results from which it is visible that three problems
have been found as similar with a weighted cosine similarity
of above 0.9. In addition, we can see that the difference in
ground truth performance of the algorithm on the 19th problem
and the three selected similar problems is low. The algorithm
has similar behavior on these problems in reality (see also
Figure 1), and using them for the calibration helps to obtain
lower predictive errors. The same conclusion can be drawn
for the 24th problem presented in Figures 7c and 7d with a
similarity threshold of 0.7. This result indicates that using the
weighted approach can help us to identify and use problems
that are more effective in the calibration step.

There are also problems such as the 18th and 25th for which



(a) cosine similarity (b) weighted

(c) cosine similarity (d) weighted

Fig. 7: The relationship between the pairwise cosine and
weighted cosine similarity by unsupervised feature importance
of the feature representations (x-axis) and the difference in
DE1 performance (y-axis), for the 19th and 24th problem
accordingly, with other problems in the CEC 2014 suite.

there are no similar problems found using cosine similarity
(see Figure 8a and 8c accordingly). In this case, the initial
RF+clust has the same prediction error as the standard RF
model for all similarity thresholds (0.5, 0.7, 0.9). By applying
the weighted RF+clust with the unsupervised feature impor-
tance, the 18th and 25th problems are brought closer to some
similar problems from the training data in the feature space as
demonstrated in Figures 8b and 8d. This helps to reduce the
model error for these problems as visible in Figure 5.

For the 20th problem and similarity threshold 0.5 we seem
to detect five similar problems (see Figure 5) with weighted
cosine similarity and improve the model performance predic-
tion quite a lot, compared to the case when weights are not
used and only two problems are there (see Figure 4). From
the figures, it is visible that with the weighted approach, three
problems (the 15th, 18th, and 22nd) enriched the previous
two (the 3rd and 17th) which helped the calibration process.
The algorithm has very similar behavior on three problems
that are brought closer with the weighted approach, as on the
20th problem. However, on the remaining two problems (3rd
and 17th), we can see that even with high similarity in the
landscape space, the difference in algorithm performance is
larger in reality, so using their performance to calibrate the
prediction yields a larger error. This indicates that there are
problems for which even the most important ELA features
are not expressive enough (i.e., very similar ELA landscape
representation but different algorithm performance).

Figures 9a and 9b show another downside of using feature

(a) cosine similarity (b) weighted

(c) cosine similarity (d) weighted

Fig. 8: The relationship between the pairwise cosine and
weighted cosine similarity by unsupervised feature importance
of the feature representations (x-axis) and the difference in
DE1 performance (y-axis), for the 18th and 25th problem
accordingly, with other problems in the CEC 2014 suite.

(a) cosine similarity (b) weighted

(c) cosine similarity (d) weighted

Fig. 9: The relationship between the pairwise a) cosine and b)
weighted cosine similarity by unsupervised feature importance
of the feature representations (x-axis) and the difference in
DE1 performance (y-axis), for the 7th and 20th problem
accordingly, with other problems in the CEC 2014 suite.



importance as weights for finding similar problems. In cases
when all the features have an equal contribution to the cosine
similarity, RF+clust provides better prediction than a standard
RF model. Here, it is visible that two problems (the 4th and the
13th) help the calibration for a similarity threshold over 0.7,
for which the performance of the algorithm is similar to the
performance achieved on the 7th problem (see Figure 4). In
the case of the weighted variant of RF+clust, the prediction is
worse even than a standard RF prediction. This happens since
the learned weights by the unsupervised approach for feature
importance brought a lot of similar problems (the 1st, 2nd,
8th, 30th) with similarity over 0.7, however, the difference in
the performance of the algorithm on those problems with the
performance achieved on the 7th problem is higher. This result
again points out that similar landscape representation may not
always be a guarantee of similar performance, which opens a
new research direction of inventing new more robust problem
representations that will catch the relation between the feature
landscape space and the performance space of the algorithm.

Figure 6 presents the results of the RF+clust variant which
uses the permutation importance as weights. We can see
that using these weights also changes the number of similar
problems retrieved, however the results are similar with the
initial RF+clust, with slight changes. Analyzing the weights
that were obtained by this approach it seems that they are
close to uniform for most of the features, with only a few
features showing bigger importance as shown in Figure 10.
However, those features are selected as uncorrelated in the
feature portfolio only for around half of the folds.

Fig. 10: Feature weights box-plot over all folds for algorithm
DE1 obtained with permutation feature importance. The num-
bers in brackets indicate in how many folds the feature was
selected in the feature selection process.

Table II provides the mean absolute prediction error across
all 30 problems for a standard RF model and all variants of the
RF+clust model for different similarity threshold values (0.5,
0.7, and 0.9) when they are used to predict the performance of
three different DE configurations. The RF+clust approach pro-

vides better errors (i.e., bold values in Table II) than a standard
RF model. Even if there are small improvements on average,
from Figures 4, 5, 6, it is obvious that for some problems big
improvements are obtained. For DE1, all variants of RF+clust
provide a better result than the standard RF model for all
similarity thresholds. For DE2, all variants with a similarity of
0.9 provide better prediction results than a standard RF model
with the best result achieved when the weights are learned
by permutation feature importance. In the case of DE3, the
best result has been achieved for the variant when all features
have the same contribution. Here, it is obvious that the result
is similar to the result achieved by a standard RF model and
all RF+clust variants and thresholds. To investigate why this
happens, Figure 11 presents the distribution of weights for
each feature in the case of DE3. From it, we can see that most
of the features have weight zero, so when similar problems are
searched for we are deciding only based on a few features.
From the results, it follows using a 0.9 similarity threshold
can provide better results for all DE configurations. The red
values reported in Table II are the models with the smallest
MAE for predicting each DE configuration.

TABLE II: MAE for the three DE configurations, where the
bold values represent cases when the RF+clust is better than
the RF model and the values in red represent the best model.

s DE1 DE2 DE3

RF 1.267805 1.077129 1.023077

RF + clust
0.9 1.199533 1.042411 1.004657
0.7 1.245611 1.106662 1.063595
0.5 1.209003 1.128300 1.059814

RF + clust (unsup.)
0.9 1.223082 1.072002 1.025545
0.7 1.217473 1.120936 1.078338
0.5 1.221436 1.078583 1.078182

RF + clust (perm.)
0.9 1.194667 0.971472 1.023077
0.7 1.218578 1.099617 1.048660
0.5 1.180002 1.052838 1.106005

Fig. 11: Feature weights box-plot over all folds for algorithm
DE3 obtained by the unsupervised feature importance.



VI. CONCLUSION

In this study, we performed a sensitivity analysis of
RF+clust, a method for leave-one-problem-out (LOPO) per-
formance prediction for black-box optimization algorithms.
The main idea behind the RF+clust approach is to calibrate
the prediction of a standard RF model with the performance
achieved by the algorithm on similar problems in the training
data. In the original RF+clust approach, the similarity between
problems is measured by the cosine similarity of the problem
landscape features, with all features contributing equally to
the similarity measure. For our sensitivity analysis, we tested
two new weighted RF+clust variants that use a weighted
contribution of each feature to the distance measure. The
weights are calculated using a feature importance method. We
evaluated two feature-importance approaches: an unsupervised
one, based on clustering, and a supervised one, based on
permutation. In the future, other feature importance measures
can be included in the analysis.

The results performed on the CEC 2014 benchmark suite
indicate that RF+clust performance can be further improved
by using feature importance as weights. Better results are
achieved for problems for which more or new problems
(compared to the original RF+clust) were found similar based
on the most important features for which also the algorithm
behaves similarly. For problems for which there were no
similar problems, we could now successfully find problems
with similar feature representations. However, there are also
problems for which the proposed approach led to worse
prediction results. Such results indicate that even the most
important features were not expressive enough to discriminate
between these problems on which the algorithm the behavior
of the algorithm significantly differs.

Our results open several directions for future research.
First, we are going to focus on selecting different feature
portfolios for different sets of problems that can lead to robust
landscape representation. Next, we are going to test problem
representations that are learned by the algorithm behavior and
capture the relation between the problem and the performance
space. Last, but not least, we are going to test the approach
using different ML models. That is, we plan to evaluate the
advantage of the RF+clust approach when combined with
different regression models (as opposed to the random forest
models considered so far).

REFERENCES

[1] P. Kerschke, H. H. Hoos, F. Neumann, and H. Trautmann,
“Automated algorithm selection: Survey and perspectives,” Evolutionary
Computation, vol. 27, no. 1, pp. 3–45, 2019. [Online]. Available:
https://doi.org/10.1162/evco a 00242

[2] O. Mersmann, B. Bischl, H. Trautmann, M. Preuss, C. Weihs, and
G. Rudolph, “Exploratory landscape analysis,” in GECCO, 2011, pp.
829–836.

[3] P. Kerschke and H. Trautmann, “Automated algorithm selection on
continuous black-box problems by combining exploratory landscape
analysis and machine learning,” Evolutionary computation, vol. 27,
no. 1, pp. 99–127, 2019.

[4] A. Jankovic and C. Doerr, “Landscape-aware fixed-budget performance
regression and algorithm selection for modular CMA-ES variants,” in
GECCO. ACM, 2020, pp. 841–849.

[5] A. Jankovic, G. Popovski, T. Eftimov, and C. Doerr, “The impact of
hyper-parameter tuning for landscape-aware performance regression and
algorithm selection,” in Proceedings of the Genetic and Evolutionary
Computation Conference, 2021, pp. 687–696.

[6] A. Jankovic, T. Eftimov, and C. Doerr, “Towards feature-based perfor-
mance regression using trajectory data,” in EvoApplications. Springer,
2021, pp. 601–617.

[7] U. Škvorc, T. Eftimov, and P. Korošec, “Understanding the problem
space in single-objective numerical optimization using exploratory land-
scape analysis,” Applied Soft Computing, vol. 90, p. 106138, 2020.

[8] U. Skvorc, T. Eftimov, and P. Korosec, “Transfer learning analysis
of multi-class classification for landscape-aware algorithm selection,”
Mathematics, vol. 10, no. 3, p. 432, 2022.

[9] A. Kostovska, A. Jankovic, D. Vermetten, J. de Nobel, H. Wang,
T. Eftimov, and C. Doerr, “Per-run algorithm selection with warm-
starting using trajectory-based features,” in Parallel Problem Solving
from Nature–PPSN XVII: 17th International Conference, PPSN 2022,
Dortmund, Germany, September 10–14, 2022, Proceedings, Part I.
Springer, 2022, pp. 46–60.

[10] J. Reis and G. Gonçalves, “Hyper-process model: a zero-shot learning
algorithm for regression problems based on shape analysis,” arXiv
preprint arXiv:1810.10330, 2018.

[11] H. Larochelle, D. Erhan, and Y. Bengio, “Zero-data learning of new
tasks.” in AAAI, vol. 1, no. 2, 2008, p. 3.

[12] W. Wang, V. W. Zheng, H. Yu, and C. Miao, “A survey of zero-shot
learning: Settings, methods, and applications,” ACM Transactions on
Intelligent Systems and Technology (TIST), vol. 10, no. 2, pp. 1–37,
2019.

[13] A. Nikolikj, C. Doerr, and T. Eftimov, “Rf+clust for leave-one-problem-
out performance prediction,” https://arxiv.org/abs/2301.09524, 2023.

[14] G. Biau and E. Scornet, “A random forest guided tour,” Test, vol. 25,
no. 2, pp. 197–227, 2016.

[15] A. Singhal et al., “Modern information retrieval: A brief overview,”
IEEE Data Eng. Bull., vol. 24, no. 4, pp. 35–43, 2001.

[16] R. Trajanov, S. Dimeski, M. Popovski, P. Korošec, and T. Eftimov,
“Explainable landscape analysis in automated algorithm performance
prediction,” in International Conference on the Applications of Evolu-
tionary Computation (Part of EvoStar). Springer, 2022, pp. 207–222.

[17] N. Hansen, A. Auger, S. Finck, and R. Ros, “Real-parameter black-box
optimization benchmarking 2010: Experimental setup,” Ph.D. disserta-
tion, INRIA, 2010.

[18] J. Rapin and O. Teytaud, “Nevergrad - A gradient-free optimization
platform,” https://GitHub.com/FacebookResearch/Nevergrad, 2018.

[19] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[20] J. J. Liang, B. Y. Qu, and P. N. Suganthan, “Problem definitions and
evaluation criteria for the cec 2014 special session and competition on
single objective real-parameter numerical optimization,” Technical report
Zhengzhou, China, vol. 635, p. 490, 2013.

[21] R. D. Lang and A. P. Engelbrecht, “An exploratory landscape analysis-
based benchmark suite,” Algorithms, vol. 14, no. 3, p. 78, 2021.

[22] Q. Xu, Y. Yang, Y. Liu, and X. Wang, “An improved latin hypercube
sampling method to enhance numerical stability considering the corre-
lation of input variables,” IEEE Access, vol. 5, pp. 15 197–15 205, 2017.

[23] I. Cohen, Y. Huang, J. Chen, J. Benesty, J. Benesty, J. Chen, Y. Huang,
and I. Cohen, “Pearson correlation coefficient,” Noise reduction in
speech processing, pp. 1–4, 2009.

[24] A. Hagberg, P. Swart, and D. S Chult, “Exploring network struc-
ture, dynamics, and function using networkx,” Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.

[25] F. Murtagh and P. Contreras, “Algorithms for hierarchical clustering: an
overview,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, vol. 2, no. 1, pp. 86–97, 2012.

[26] A. Nikolikj. (2023) Rf+clust sensitivity analysis. [Online]. Available:
https://github.com/anikolik/RFclust-sensitivity-analysis


