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Abstract

In this paper, we develop an active learning framework for the bipartite ranking
problem. Motivated by numerous applications, ranging from supervised anomaly
detection to credit-scoring through the design of medical diagnosis support systems,
and usually formulated as the problem of optimizing (a scalar summary of) the
ROC curve, bipartite ranking has been the subject of much attention in the passive
context. Various dedicated algorithms have been recently proposed and studied
by the machine-learning community. In contrast, active bipartite ranking rule
is poorly documented in the literature. Due to its global nature, a strategy for
labeling sequentially data points that are difficult to rank w.r.t. to the others is
required. This learning task is much more complex than binary classification, for
which many active algorithms have been designed. It is the goal of this article to
provide a rigorous formulation of such a selective sampling approach. We propose
a dedicated algorithm, referred to as active-rank, which aims to minimise the
distance between the ROC curve of the ranking function built and the optimal one,
w.r.t. the sup norm. We show that, for a fixed confidence level ε and probability δ,
active-rank is PAC(ε, δ). In addition, we provide a problem dependent upper
bound on the expected sampling time of active-rank and also demonstrate a
problem dependent lower bound on the expected sampling time of any PAC(ε, δ)
algorithm. Beyond the theoretical analysis carried out, numerical results are
presented, providing strong empirical evidence of the performance of the algorithm
proposed, which compares favorably with more naive approaches.

1 Introduction

In bipartite ranking, the statistical framework is exactly the same as that in standard binary classifi-
cation, the flagship problem in statistical learning theory. One observes n ≥ 1 independent copies
Dn = {(X1, Y1), . . . , (Xn, Yn)} of a generic random pair (X,Y ) with (unknown) distribution P ,
where Y is a binary random label, valued in {−1, +1} say, and X is a high dimensional random
vector, taking its values in X ⊂ Rd with d ≥ 1, that models some information hopefully useful to
predict Y . In contrast to binary classification, the goal pursued is of global (and not local) nature. It
is not to assign a label, positive or negative, to any new input observation X but to rank any new set
of (temporarily unlabeled) observations X ′

1, . . . , X
′
n′ by means of a (measurable) scoring function

s : X → R, so that those with positive label appear on top of the list (i.e. are those with the highest
scores) with high probability. More formally, the accuracy of any scoring rule can be evaluated
through the ROC curve criterion or its popular scalar summary, the AUC (standing for the Area Un-
der the ROC Curve), and, as expected, optimal scoring functions w.r.t. these performance measures
can be shown to be increasing transforms of the posterior probability η(x) = P{Y = +1 | X = x},
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x ∈ X . Though easy to formulate, this problem encompasses many applications, ranging from credit
risk screening to the design of decision support tools for medical diagnosis through (supervised)
anomaly detection. Hence, motivated by a wide variety of applications, bipartite ranking has received
much attention these last few years. Many approaches to this global learning problem (i.e. the
problem of learning a preorder on the input space X based on a binary feedback) have been proposed
and investigated. In Clémençon and Vayatis (2009), optimization of the (empirical) ROC curve in
sup norm is considered via nonlinear approximation techniques, while this functional optimization
problem is viewed as a superposition of cost-sensitive binary classification problems in Clémençon
and Vayatis (2008) so as to propose an alternative method. In Clémençon et al. (2008) (see also
Agarwal et al. (2005)), empirical maximization of the empirical AUC criterion is considered, bipartite
ranking being viewed as a pairwise classification problem, a plug-in approach to bipartite ranking
is developed in Clémençon and Robbiano (2011) and scalar performance criteria other than the
AUC have been recently reviewed in Menon and Williamsson (2016). Whereas the vast majority of
dedicated articles consider the batch situation solely, where the learning procedure fully relies on a
set Dn of training examples given in advance, the goal of this paper is to develop an active learning
framework for bipartite ranking, in other words to investigate this problem in an iterative context,
where the learning procedure can formulate queries in a sequential manner, so as to observe the labels
at new data points in order to refine progressively the scoring/ranking model. Precisely, the challenge
consists in determining an incremental experimental design to label the data points in X that would
permit to improve the ROC curve progressively, with statistical guarantees.

Our contributions We describe an algorithm, active-rank, which sequentially queries points of
the feature space X . Given a confidence level ε > 0 and probability δ > 0, the goal of active-rank
is, in a few queries as possible, to output a ranking of X , such that the induced ROC curve of said
ranking is within ε of the optimal ROC curve, in terms of the sup norm, with probability greater than
1− δ. We restrict our selves to dimension 1, i.e. X = [0, 1] and make a single key assumption that the
posterior η is piecewise constant on a grid of size K. Theorem 3.2 then shows that active-rank
satisfies the above statistical guarantee and furthermore, provides an upper bound on it’s expected
total number of queries. In Theorem 3.3 we provide a lower bound on the expected number of queries
for any possible policy, which satisfies a confidence level ε with probability greater than 1− δ. The
aforementioned bounds are problem dependent, in the sense that they depend on features of the
posterior η. Finally we conduct a practical analysis of active-rank on synthetic data, comparing it
to several naive approaches.

The article is structured as follows. In Section 2 we formally define our setting as well recalling
some key notions related to bipartite ranking and ROC analysis. In Section 2 we also cover some
of the existing literature in active learning, of relevance to bipartite ranking. We then describe
the active-rank algorithm in Section 3.1. Following this our theoretical results are presented
in Section 3.2. Lastly, the experiments are displayed in Section 4. We then conclude and discuss
some perspectives for future research in Section 5. Technical details and proofs are deferred to the
Supplementary Material.

2 Background and preliminaries

2.1 Notation

Here we introduce several dedicated notions that will be extensively used in the subsequent analysis.
For any integer n ≥ 1, we set [n] := {1, . . . , n}, denote by Sn the symmetric group of permutations
on {1, . . . , n}, by In the identity map of Sn. By λ is meant the Lebesgue measure on [0, 1]. Given
two probability distributions P and Q on a measurable space (Ω,F), we write P ≪ Q when P is
absolutely continuous w.r.t. Q. For any a, b in [0, 1], Ber(a) refers to the Bernoulli distribution with
mean a and kl(a, b) to the Kullback Leibler divergence between the Bernoulli distributions Ber(a)
and Ber(b). For any a, b ∈ [0, 1], the Chernoff Information between the distributions Ber(a) and
Ber(b) is defined as, kl∗(a, b) = kl(x∗, a) = kl(x∗, b), where x∗ is the unique x ∈ [0, 1] such that
kl(x, a) = kl(x, b). The indicator function of any event E is denoted by I{E}, the Dirac mass at any
point x by δx, and the pseudo-inverse of any cdf κ(u) on R by κ−1(t) = inf{v ∈ R : κ(v) ≥ t}.
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2.2 Setting
The bipartite ranking problem A rigorous formulation of bipartite ranking involves functional
performance measures. Let S be the set of all scoring functions, any s ∈ S defines a preorder
⪯s on X : for all (x, x′) ∈ X 2, x ⪯s x′ ⇔ s(x) ≤ s(x′). From a quantitative perspective, the
accuracy of any scoring rule can be evaluated through the ROC curve criterion, namely the PP-
plot t ∈ R 7→ (1 − Hs(t), 1 − Gs(t)), where Hs(t) = P{s(X) ≤ t | Y = −1} and Gs(t) =
P{s(X) ≤ t | Y = +1}, for all t ∈ R. The curve can also be viewed as the graph of the càd-làg
function α ∈ (0, 1) 7→ ROC(s, α) = 1 − Gs ◦H−1

s (1 − α). The notion of ROC curve defines a
partial order on the set of all scoring functions (respectively, the set of all preorders on X ): s1 is
more accurate than s2 when ROC(s2, α) ≤ ROC(s1, α) for all α ∈ (0, 1). As can be proved by a
straightforward Neyman-Pearson argument, the set S∗ of optimal scoring functions is composed of
increasing transforms of the posterior probability η(x) = P{Y = +1 | X = x}, x ∈ X . We have
S∗ = {s ∈ S : ∀(x, x′) ∈ X 2, η(x) < η(x′) ⇒ s∗(x) < s∗(x′)} and

∀(s, s∗) ∈ S × S∗, ∀α ∈ (0, 1), ROC(s, α) ≤ ROC∗(α) := ROC(s∗, α).

The ranking performance of a candidate s ∈ S can be thus measured by the distance in sup-norm
between its ROC curve and ROC∗, namely d∞(s, s∗) := supα∈(0,1){ROC∗(α) − ROC(s, α)} .
An alternative convention to represent the ROC of a scoring function s, which we will use for the
remainder of this paper, is to consider the broken line R̃OC(s, .), which arises from connecting the
PP-plot by line segments at each possible jump of the cdf Hs. From here on out when referring to
the ROC of a scoring function s, we refer to the broken line R̃OC(s, .).

The active learning setting Whereas in the batch mode, the construction of a nearly optimal
scoring function (i.e. a function s ∈ S such that d∞(s, s∗) is ’small’ with high probability) is based
on a collection of independent training examples given in advance, the objective of an active learner
is to formulate queries in order to recover sequentially the optimal preorder on the feature space X
defined by the supposedly unknown function η. That is, the active learner plays a game with multiple
time steps, where, at time each step n, they must choose a point an ∈ X to query, so as to observe
the random label Yn ∼ Ber(η(an)) and refine the scoring model incrementally. After a sufficient
number of rounds has elapsed, chosen at the learner’s discretion, a final scoring function ŝ, is output.

Piecewise constant scoring functions. Here we consider the simplest scoring functions, measurable
functions that are constant on pieces of the input space X forming a partition. As shown in Clemencon
and Vayatis (2009) (see subsection 2.3 therein), when smooth enough, ROC∗ can be accurately
approximated by the (stepwise) ROC curve of a piecewise constant scoring function. Because the
goal of this paper is to highlight the nature of active bipartite ranking rather than treating the problem
in full generality, various simplifying assumptions are made in the subsequent analysis. We first
suppose that X = [0, 1) and introduce the grid points {G1, ..., GK} = {i/K : i = 1, . . . , K − 1},
where K ≥ 1. A preorder on X can be then naturally defined by means of a permutation σ ∈ SK .
Consider indeed the scoring function

sσ(x) :=

K∑
i=1

i · I{x ∈ [Gσ(i), Gσ(i+1))}. (1)

We denote by SK the set of all functions of type (1). To avoid dealing with model bias here, we
assume that the optimal preorder, that induced by η(x) namely, can be defined by a scoring function
in SK .
Assumption 2.1. There exist a permutation σ ∈ SK and distinct constants µ1, . . . , µK in (0, 1)
such that

η(x) =

K∑
i=1

µi · I{x ∈ [Gσ(i), Gσ(i+1))} for all x ∈ [0, 1) .

We write p = 1
K

∑
i∈[K] µi. We point out that, as η may remain constant over multiple sections of

the grid, the permutation σ satisfying assumption 2.1, is not necessarily unique. In the subsequent
analysis, the parameter K is supposed to be known, in contrast with the µi’s, which have to be learned
by means of an active strategy.

Policies and fixed confidence regime. We denote the outputted scoring function of the learner
ŝ ∈ SK . The way the learner interacts with the environment - i.e. their choice of points to query, how
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many samples to draw in total and their choice of ŝ ∈ SK , we term the policy of the learner. We
write C for the set of all possible policies of the learner. For a policy π ∈ C and problem ν ∈ B we
denote random variable τπν as the stopping time of policy π. We write ŝπν for the scoring function
outputted by policy π on problem ν. Where obvious we may drop the dependency on π, ν in the
notation, referring to the scoring function outputted by the learner as simply ŝ. We write Pν,π as the
distribution on all samples gathered by a policy π on problem ν. We similarly define Eν,π .

For the duration of this paper we will work in the fixed confidence regime. For a confidence level ε,
define, Sε

K := {s ∈ Sk : d∞(s, η) ≤ ε}. A policy π is said to be PAC(δ, ε) (probably approximately
correct), on the class of problems B, if, ∀ν ∈ B,Pν,π[ŝ ∈ Sε

K ] ≥ 1 − δ. The goal of the learner
is to then obtain a PAC(δ, ε) policy π, such that the expected stopping time in the worst case,
supν∈B Eν,π[τ

π
ν ], is minimised.

Defining problem complexity The expected minimum number of samples a policy must draw
on a certain problem, ν ∈ B, to be PAC(δ, ε) is a quantity which depends upon the features of ν,
specifically, the shape of the posterior η. When defining our measure of problem complexity we
must capture this dependence as succinctly as possible. To build intuition for our definition we
first explore a naive strategy and introduce some informative Lemmas. A naive approach to the
active bipartite ranking problem, is to treat each pair of points on the grid, i, j ∈ [K] as a separate
classification problem. To correctly distinguish the situations, Hi,j

0 := µi > µj , Hi,j
1 := µi < µj ,

with probability greater than 1− δ, it is well known, see e.g. Kaufmann et al. (2014), that for small
δ, the minimum number of samples required is of the order log(1/δ)

kl∗(µj ,µi)
, where we remind the reader

kl∗ is the the Chernoff Information, closely related to the kl divergence, see Section 2.1. Thus, if
the learner wished to output a scoring function in S∗, the sample complexity would be of the order,∑

i∈[K]
log(1/δ)

minj∈[K](kl
∗(µj ,µi))

. Of course, distinguishing between Hi,j
0 and Hi,j

1 is impractical when µi

and µj are very close, or even equal. However, in our regime, the learner is not required to correctly
rank every pair of points i, j ∈ [K], only to output a scoring function existing in Sε

K . Intuition
indicates that the learner may be irreverent to the ranking within certain groups of points on the gird,
as long as there posterior values are sufficiently close. For instance, consider a partition of [0, 1],
P = {C1, C2, C3}, and increasing sequence (β1, β2, β3) ∈ [0, 1]3 with

η(x) =

3∑
i=1

I(x ∈ Ci)βi, s̃(x) = I(x ∈ C1) + 2I(x ∈ {C2 ∪ C3}) , (2)

Where the scoring function function s̃ essentially, treats all points of C2, C3 of the same rank.
See Figure 1 for the ROC curves of η and ŝ. Via simple calculation, we have the following,
d∞(η, s̃) = λ(C3)

p
(β3−β2)/2

1−(β3+β2)/2
, which suggests that, whether or not there exists a scoring function

in Sε
K , which treats the groups C2, C3 of the same rank, depends upon two things, the size of the

groups and also their position on the ROC curve. Specifically, if β3 − β2 ≥ 2εp(1−(β3+β2)/2)
λ(C3)

, then
s̃ /∈ Sε

K . The following lemma formalises this intuition, the proof follows via a direct generalisation
of the above example.

Lemma 2.2. Let ∆ > 0, i ∈ [K] and define S
(i,∆)
K as the set of scoring functions such that, for all

s ∈ S
(i,∆)
K , one has that ∀j : |µj − µi| ≥ ∆, sign(s(i) − s(j)) = sign(µi − µj). There exist a

s̃ ∈ S
(i,∆)
K , ν ∈ B, such that on problem ν, d∞(η, s̃) ≥ ∆|{j:|µi−µj |≤∆}|

p(1−µi)
.

Lemma 2.2 suggests that the for i ∈ [K] the learner must be at least able to distinguish Hi,j
0 vs Hi,j

1 ,

for all j : |µi − µk| ≤ ∆i, where, ∆i := min

{
x > 0 :

∑
i ̸=j xI

(
|µi − µj | ≤ x

)
≥ Kεp(1− µi)

}
.

The following Lemma shows that ∆i is not only an upper bound on the necessary order of the
confidence level around µi but also a lower bound, the proof of which can be found in the proof of
Theorem 3.2.

Lemma 2.3. For a problem ν ∈ B, let s ∈ SK be a scoring function such that the following holds,
∀i ∈ [K],

∀j : |µj − µi| ≥ ∆i/4, sign(s(i)− s(j)) = sign(µi − µj)

then s ∈ Sε
K .
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Figure 1: The ROC curves of η and s̃, as
defined in Equations (2), with (β1, β2, β3) =
(0.1, 0.2, 0.6) and C1, C2, C3 equally sized.

Figure 2: The complexity of points i ∈ [K],
for η as defined in Scenario 1 of the experi-
ments, see Section 4.

In the case where min(µi, 1 − µi) ≥ ∆i, we thus define the complexity at a point i ∈ [K] as
H

(1)
i = 1

kl(µi,µi+∆i)∧kl(µi,µi−∆i)
. If µi ≤ ∆i, H

(1)
i = 1

kl(µi,µi+∆i)
with a symmetric definition if

1− µi ≤ ∆i. For a problem ν ∈ B, the total problem complexity is then given as
∑

i∈[K] H
(1)
i . As

an illustrative example, see Figure 2 for the complexity of i ∈ [K] with η defined as in Scenario 1
of the experiments, see section 4. There is a natural comparison to multi armed bandits, where the
problem complexity is typically given as the summation across the individual complexity of each
arm. However, in most multi armed settings the complexity of a single arm is dependent upon its
distance to a single other arm, e.g. the optimal arm, whereas in our setting the complexity of a single
grid point i ∈ [K] has a more complex dependency on the shape of the posterior around Gi.

2.3 Related literature in active learning
While, to the best of our knowledge, Bipartite Ranking has not yet been considered under active
learning, there are several related settings. Firstly, it is important to note, that as we assume the
posterior η is piecewise constant on the grid of size K, we can view our problems as a K armed
bandit. In the case where K = 2 the bipartite ranking problem becomes akin to best arm identification
(BAI) for the two armed bandit, also known as A/B-Testing. In BAI for the two armed bandit, the
learner sequentially draws samples from two distributions νA, νB with respective means µA, µB .
Their objective is then carry out the hypothesis test, H0 := (µA ≤ µB), H1 := (µa > µB) in as few
samples as possible. A/B Testing is considered in an active, fix confidence regime, in Kaufmann and
Kalyanakrishnan (2013), wherein they prove a lower bound on the expected sampling time of any
PAC(ε, δ) as of the order log(1/δ)

kl(µA,µB) . Note that, in the case where K = 2 active-rank matches said
lower bound up to logarithmic terms. In the fixed confidence regime, the BAI problem has also been
generalised for larger K > 2 - see Garivier and Kaufmann (2016),Jamieson and Talwalkar (2016)
along with the TopM problem, where the learner must output the M best arms - see Kaufmann et al.
(2014), Kalyanakrishnan et al. (2012), however, for K > 2 both BAI and TopM problems are no
longer comparable to our setting.

Aside from BAI and the TopM problem, there are several other settings in active learning that, while
not directly comparable to our own, are worth mentioning. The first is active clustering. Several
works have considered clustering in an online framework, see Choromanska and Monteleoni (2012),
Liberty et al. (2016), Cohen-Addad et al. (2021) and Khaleghi et al. (2012). In the above works new
observations from certain arms become available to the learner at each time step, however the learner
does not actively choose which arms to pull and therefore the flavour of the above literature is very
different to our setting. Much closer is the work of Yang et al. (2022) in which the authors consider a
active clustering problem, represented as K armed d dimensional bandit, where the arms are split
into M clusters. They work in a PAC(δ) setup where their goal is to recover the entire clustering of
the arms, with probability greater than 1− δ in as few samples as possible. Comparing to our setting,
if one is to view a section of the grid on which η is constant as a single cluster, by retrieving the
clustering of the arms one can then easily do ranking. Their results differ to our own in several key
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ways though. Firstly their algorithm takes the number of clusters M as a parameter, this highlights
the main difference between their setting and our own. In the Bipartite ranking problem, assuming
ε is not very small, one does not have to recover exactly all the clusters to ensure regret under the
d∞ norm is less than ε. Therefore we do not need to know the number of clusters and our algorithm
must be able to exploit larger ε to achieve smaller stopping times. The second key difference is that
the results of Yang et al. (2022) are hold only in the asymptotics, that is as δ → 0. Their algorithm
employs a forced exploration phase, which ensures each arm is pulled at at least a sub linear rate.
Essentially, this means that in such an asymptotic setting, the means of the arms are known to the
learner, which naturally drastically changes the nature of their results. Extension to bounds for fixed
δ > 0 would be none trivial, noted as potential future work in Yang et al. (2022), and essential if one
were to compare to our confidence setting.

Also of note is active multi class classification. In Krishnamurthy et al. (2017) they consider a cost
sensitive classification problem, where the learner receives input examples x ∈ X and cost vectors
c ∈ RK , where c(y) is the cost of predicting label y on x. For each input example received the
learner is able to query a subset of labels. The objective is to then train a classifier with minimal
expected loss in as few queries as possible. The results of Krishnamurthy et al. (2017) cannot be
directly compared to our own, as in our setting there is no such thing as the cost of a classifier at a
given point x ∈ X , as the cost miss ranking a section of [0, 1] is dependent on our ranking of the
entire feature space.

3 Our results

3.1 The active-rank Algorithm
Our algorithm active-rank maintains an active set of grid points across several rounds. At the
beginning of each round active-rank draws a sample, uniformly, from all points of the grid in
the active set and at the end of each round, eliminates points from the active set based on a specific
criterion. We track the number of samples, drawn from the ith point of the grid, [Gi, Gi+1) up to
round t as Nt(i) and the empirical mean of these samples as µ̂t

i. At the beginning of each round t,
for each grid point i ∈ [K], we will maintain an upper and lower confidence bound, on µi, which we
term the UCB and LCB index respectively. At time t, for each grid point i ∈ [K] and exploration
parameter β(t, δ) : N× [0, 1] → R+, remaining in the active set, we then define the LCB index,

LCB(t, i) := min

{
q ∈

[
0, µ̂t

i

]
: kl
(
µ̂t
i, q
)
≤ β(t, δ)

Nt(i)

}
, (3)

and the UCB index,
UCB(t, i) := max

{
q ∈

[
µ̂t
i, 1
]
: kl
(
µ̂t
i, q
)
≤ β(t, δ)

Nt(i)

}
. (4)

Let St denote the active set at the beginning of round t, via careful choice of exploration parameter
the following Lemma holds, the proof of which can be found in Section A of the supplementary
material.
Lemma 3.1. We have that, the event

E =
⋂
t∈N

⋂
i∈[St]

{µk ∈ [LCB(t, i),UCB(t, i)]} ,

occurs with probability greater than 1− δ.

For i ∈ [K], time t and z ∈ R define, Ui,t(z) :=
{
j ∈ St : j ̸= i, |µ̂t

i − µ̂t
j | ≤ z

}
. Fol-

lowing Lemma 2.2, our intuition would be to then remove a point i from the active set if,∣∣Ui,t

(
UCB(i, t)− LCB(i, t)

)∣∣ ≤ cKεp(1−µ̂i,t)
|UCB(i,t)−LCB(i,t)| , for some well chosen constant c > 0. How-

ever, due to the technical difficulty of the proof, we make the following concession. For t > 0, let St

be the list S at time t. At time t let ∆(t) = maxi∈St(UCB(t, i)− LCB(t, i)). Furthermore, at time
t define the set of grid points,

Qt :=

{
i ∈ [K] : ∆(t) ≤

3Kεp̂t(1− µ̂t
i)

40|Ui,t(6∆(t))|

}
. (5)

If a point exists in Qt, we remove it from the active set. Note that active-rank does not take the
average of the posterior p as a parameter. Instead we show it is possible to use an estimate p̂t which
updates round by round.
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Algorithm 1 active-rank
Initialise: S = [K], t = 1
repeat

for i ∈ S do
Sample a point drawn uniformly from
[Gi, Gi+1)

end for
Let pt be a point drawn uniformly from [0, 1]
and update p̂t = ((t− 1)p̂t−1 + pt)/t
for i ∈ S do

if i ∈ Qt,∆(t) ≤ p̂t/4 then
S = S \ {i}

end if
end for
t = t+ 1

until S = ∅
Let σ̂t ∈ GK be the permutation sorting the list
(µ̂t

i)i∈[K] into ascending order.
Output: ŝ =

∑
i∈K i · I{x ∈ [Gσ̂(i), Gσ̂(i+1))}

Elimination algorithms such as active-rank
have seen wide usage in the literature for BAI,
see In Paulson (1964),Mannor and Tsitsiklis
(2004), Even-Dar et al. (2002) and Even-Dar
et al. (2006). However, closer to our work is
the Racing algorithm Kaufmann and Kalyanakr-
ishnan (2013), designed for the TopM prob-
lem, where, as in our approach, the confidence
bounds used are based on the kl divergence as
opposed to Hoeffdings. Their elimination crite-
rion, however, differs considerably to our own.
For simplicity let us consider the Top1 problem,
that is BAI - the following arguments can be
extended in the case of TopM. The racing algo-
rithm of Kaufmann and Kalyanakrishnan (2013)
eliminates an arm i ∈ [K] from the active set,
at time t, when, the positive gap the lower confi-
dence bound around the highest empirical mean
and the upper confidence bound at point i is
greater than ε. However, due to the global na-
ture of the ranking problem, in our setting, the
decision to remove a point from the active set is
not made based on the distance to another single

point. We rather consider a condition on the local smoothness of the posterior around the point i. An
additional difficulty that arises here is that the local smoothness around a point can potentially depend
upon points no longer in the active set and once a point is no longer in the active set, we essentially
have no control of the width of its confidence interval.

3.2 Theoretical bounds

Proving active-rank is PAC(ε, δ) and upper bounding the expected sampling time The-
orem 3.2 demonstrates that our algorithm active-rank is PAC(ε, δ) and provides a problem
dependent upper bound on it’s expected sampling time. The proof can be found in Section A
of the supplementary material. Theorem 3.2 makes no assumption on the posterior η, aside
from it being piecewise constant on the grid of size K, i.e. Assumption 2.1. For i ∈ [K], set
H

(2)
i = maxj∈[K]

(
1

kl(µj ,µj+∆i/8)
∨ 1

kl(µj ,µj−∆i/8)

)
.

Theorem 3.2. For ε, δ > 0, γ > 480/ log(K), 1/K ≥ pε, with β(t, δ) = cγ log(t
2K2/δ) where

cγ is a constant depending only on γ, on all problems ν ∈ B, on execution of active-rank, with
output ŝ, we have that,

d∞(ŝ, η) ≤ ε ,

with probability greater than 1− δ. Furthermore, the expected stopping time of active-rank is
upper bounded by the following,

c′γ
∑
i∈[K]

H
(2)
i log

(
c′′γH

(2)
i K2/δ

)
,

where c′γ , c′′γ are constants depending only on γ.

Lower bound Theorem 3.3 provides a problem dependent lower bound on the expected sam-
pling time of any PAC(ε, δ) policy. The proof of Theorem 3.3 can be found in Section B of the
supplementary material.
Theorem 3.3. Let ε ∈ [0, 1/4), 0 < δ < 1− exp(−1/8) and ν ∈ B be such that maxx∈[0,1) η(x)−
minx∈[0,1) η(x) ≤ 1/12. For any PAC(ε, δ) policy π, there exists a problem ν̃ ∈ B such that, for
all i ∈ [K], ∆̃i ≥ ∆i/2 where ∆̃i is the gap of the ith grid point on problem ν̃, where the expected
stopping time of policy π on problem ν̃ is bounded as follows,

Eν,π

[
τ ν̃π
]
≥ c′

∑
i∈[K]

H̃
(1)
i ,
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where c′ > 0 is an absolute constant and H̃
(1)
i is the complexity of point i on problem ν̃. Furthermore,

in the case where p ≥ ζ, for some ζ > 0, we have
∑

i∈[K] H̃
(1)
i ≥ cζ

∑
i∈[K] H

(1)
i , where cζ > 0 is

a constant depending only on ζ.

The proof of Theorem 3.3 follows from a novel application of a Fano type inequality on a well chosen
set of problems. The assumptions maxx∈[0,1] η(x)−minx∈[0,1] η(x) ≤ 1/12 and p ≥ ζ are made so
there is not so much variance in the posterior η, and we have "enough space" to construct our sets of
alternate problems. The constant 1/12 is admittedly small and our lower bound of Theorem 3.3 is
more of a theoretical proof of concept, than a practically applicable result.

Gap between upper and lower bound There are essentially two components in the gap between
the bounds of Theorems, 3.3 and 3.2. The first is the additional logarithmic dependency upon K
present in our upper bound. Despite being logarithmic this dependence is potentially significant, as
in practical situations, the size of grid needed, for the assumption that the posterior η is piecewise
constant, may be very large. The second component, in the gap between upper and lower bounds is the
difference in the H

(1)
i and H

(2)
i terms. The reason H

(2)
i appears in Theorem 3.2 is that, the decision

to remove a point i ∈ [K] from our active set is made based on the minimum width of confidence
interval across the entire grid, ∆(t) as opposed to the local width at i, UCB(i, t) − LCB(i, t), see
Equation (5). As we are dealing with Bernoulli distributions and kl divergence based confidence
bounds, for a fixed number of samples, points close to zero or one will have tighter confidence bounds
and thus may be sampled more than is necessary. If one were to assume that the posterior η exists
solely in the interval [γ, 1− γ] for some γ > 0, then for all i ∈ [K], H(2)

i and H
(1)
i will be with a

constant factor of each other, with that constant depending on γ.

In authors opinion, both the logarithmic dependency on K and usage of ∆(t) may be removed.
However, this would require several non trivial modifications to the proof of Theorem 3.2, see the
discussion in Section A of the supplementary material for details. As, to the best of our knowledge,
this is the first work to consider the bipartite ranking problem in an active learning setting, we present
Theorem 3.2 as it stands and leave the aforementioned improvements for future works.

4 Experiments
In this section we discuss practical cases based on synthetic data. For all experiments δ is fixed
at 0.01 and the constants used are smaller than their theoretical counterparts, which are typically
overestimated, furthermore p̂ is calculated with all previous samples. As represented in Figure 3, each
cell i is assigned a level value µi so that η follows the Assumption 2.1. Without loss of generality, we
assume that η can be described as an increasing family (µi)i∈[K]. Our study scenarios are then as
follows:

• Scenario 1: (µi)i∈[K] = (0, 0.28, 0.3, 0.38) and K = 16;

• Scenario 2: (µi)i∈[K] = (0.8((i− 1)/K)4 + 0.1)i∈[K] and K = 64;

• Scenario 3: (µi)i∈[K] is sub-sampled (with replacement) of ((i − 1)/K)4)i∈[100] and
K = 64

• Scenario 4: µi = 0.8((i − 1)/K) + 0.1 ∀i ∈ [K]\{7, 8} with µ7 = 0.8(6/K) + 0.3,
µ8 = 0.8(7/K)− 0.1 and K = 16

The objective of these scenarios is to evaluate the capacity of the algorithm on different cases. As
shown in Figure 3, scenarios 1 and 3 will have variable jumps and cell sizes.

Competing algorithms To our knowledge there is no algorithm dealing with the active learning
for bipartite ranking problem, we thus compare to the following naive approaches. Passive rank:
each new point at is drawn uniformly on [0, 1]. Naive rank: each new point at is sampled in Pit s.t.
it := argmaxi∈[K] UCB(t, i)−LCB(t, i), this algorithm reduces the bias in an undifferentiated way
without considering the problem as global (requiring peer-to-peer comparison). Active classification:
for this algorithm we consider binary classification with threshold 0.5. The set of active cells
S, as defined in Algorithm 1 is then St = {i ∈ [K]; 0.5 ∈ [µ̂t

i − LCB(t, i); µ̂t
i +UCB(t, i)]} ∪{

i; argmin
i∈[K]

(|0.5− µ̂t
i|)

}
. As the competing algorithms do not output a stopping time, for a single

η, algorithm active-rank is run across several values of ε, following a geometric sequence of
common ratio 0.99 and initial value 1. The values of ε then plotted against the respective stopping
times of active-rank.
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Figure 3: Different scenarios chosen for the experiments

Figure 4: Regret estimated by Monte Carlo for 100 realizations of each algorithm, corresponding to
the scenarios of the figure 3 respectively .

Interpretation of results On scenario 1, the simplest case, active-rank and passive suffer near
identical regret for larger sample sizes. On all other scenarios active-rank all competitors. The
fact that active-rank does not reach extremely small values of regret suggests that analysis for
much higher sample size may be interesting, however this creates issues in computation time, the
same goes for larger K. Also, the uniform approach still performs relatively well, and appears
difficult to fool. Some more work may be needed to find a setting in which uniform sampling suffers
considerably.

5 Conclusion
To the best of our knowledge we have developed the first rigorous framework for the active bipartite
ranking problem and our algorithm, active-rank, is the first to tackle said problem. Our upper
bound on performance of active-rank matches our lower bound up to logarithmic terms, in the
case where the posterior η is not very close to 0 or 1 at any point. As well as theoretical guarantees
we have demonstrated good practical performance of active-rank, on synthetic data, in various
settings. We conclude with some perspectives for future research.

An obvious path for future research, is to replace the Assumption 2.1 with a smoothness assumption
on the posterior η, e.g. a Hölder condition. The setting would then be equivalent to a continuous
armed bandit as opposed to a finite armed bandit. Assuming the learner has knowledge of the Hölder
coefficient, a standard approach in continuous armed bandits is to first discretise and then apply
classic techniques from finite armed bandits, carefully choosing the discretisation level to balance
the discretisation error and classical regret. It is of our opinion that such an approach would not be
sufficient in our case. We conjecture that to achieve optimal or near optimal performance the learner
must vary the level of discretisation across the feature space, based on the flatness of the posterior
function η and placement on the ROC curve.

There is also the question of extension to higher dimensions. However, while we assume, for clarity,
that X = [0, 1], Theorem 3.2, although not Theorem 3.3, is immediately applicable in dimension
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d, assuming one has an equivalent to Assumption 2.1, that the posterior η is piecewise constant on
some d- dimensional grid. The problem would become more interesting in higher dimensions with
smoothness or sparsity assumptions.
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A Proof of theorem 3.2

Before the proof of Theorem 3.2 we prove some initial lemmas, the first of which is Lemma 3.1,
which lower bounds the probability of our favourable event E by 1− δ. We prove a slightly extended
version of Lemma 3.1. At time t, define the LCB index of p̂ as,

LCB(t, 0) := min

{
q ∈ [0, p̂t] : kl(p̂t, q) ≤

β(t, δ)

t

}
, (6)

and the UCB index,

UCB(t, 0) := max

{
q ∈ [p̂t, 1] : kl(p̂t, q) ≤

β(t, δ)

t

}
. (7)

Note that as p̂t ∈ [min(µt
i),max(µt

i)], we have that,

UCB(0, t)− LCB(0, t) ≤ ∆(t) .

The extended version of Lemma 3.1 is then as follows,

Lemma A.1. We have that, the event

E =
⋂
t∈N

⋂
i∈[St]∪{0}

{µk ∈ [LCB(t, i),UCB(t, i)]} ,

occurs with probability greater than 1− δ.

Proof. Via Chernoff’s inequality, for i ∈ [K] ∪ {0}, at time t we have that,

P(LCB(t, k) ≥ µk) ≤ exp(−β(t, δ)) ,

and,
P(UCB(t, k) ≤ µk) ≤ exp(−β(t, δ)) .

It then remains to note that via our choice of exploration parameter and a union bound,

2
∑
t∈N

∑
k∈[K]∪{0}

exp(−β(t, δ)) ≤ δ ,

and the result follows.

The following Lemma shows that, on rounds in which a point is removed from the active set, our
estimate p̂ remains within a constant factor of the true p .

Proposition A.2. On event E we have that, for all rounds t such that a point is removed from the
active set, 2p/3 ≤ p̂t ≤ 4p/3.

Proof. Let t be a round in which a point is removed from the active set. On event E , for all i ∈ [K],

|µi − µ̂t
i| ≤ ∆(t) ,

we thus have |p − p̂| ≤ ∆(t) which, in combination with the fact ∆(t) ≤ p̂/4, implies ∆(t) ≤
(p̂+∆(t))/3 and thus ∆(t) ≤ p/3.

For the purposes of the proof we split Theorem 3.2 into two parts. The first part is covered by the
following lemma, which states that active-rank is PAC(ε, δ).

Lemma A.3. For ε, δ > 0, 1/K ≥ εp on all problems ν ∈ B, on execution of active-rank, with
output ŝ, we have that,

d∞(ŝ, η) ≤ ε ,

with probability greater than 1− δ.

12



Proof. For the remainder of this proof we will work under the following event,

E =
⋂
t∈N

⋂
k∈[K]

{µk ∈ [LCB(t, i),UCB(t, i)]} .

Proposition A.4. Let i ∈ [K] be removed from S at time t. For all j ∈ Ui,t(4∆(t)), we have that,
∀k ∈ St : |µk − µj | ≥ ∆j ,

sign(µ̂τ
j − µ̂τ

k) = sign(µj − µk) .

Proof. If i is removed from S at time t, we have that,

∆(t) ≤
3Kεp̂t(1− µ̂t

i)

40|Ui,t(12∆(t))|
,

and as we assume, εp ≤ 1/K, via Proposition A.2,

∆(t) ≤
1

10
(1− µ̂t

i) . (8)

Now let j ∈ Ui,t(4∆(t)), from Equation (8), and the fact that under event E , |µj − µ̂t
i| ≤ 5∆(t),

∆(t) ≤
1

5
(1− µj) . (9)

We then have Uj,t(2∆(t)) ⊂ Ui,t(6∆(t)), therefore, via proposition A.2 and the fact, ∀j ∈ |µt
j−µj | ≤

∆(t),

|Ut,j(2∆(t))| ≤
3Kεp̂t(1− µ̂t

i)

40∆(t)
≤ Kεp(1− µ̂t

i)

10∆(t)
≤ Kεp(1− µj)

2∆(t)
+

Kεp

2
≤ Kεp(1− µj)

∆(t)
,

and as a result ∆j ≥ 2∆(t). Now take i : |µi − µj | ≥ ∆j and w.l.o.g assume µi > µj , we have that
µ̂t
i ≥ µi −∆t and thus µ̂τ

i ≥ µi −∆t. Similarly, µ̂τ
j ≤ µj +∆t and the result follows.

Proposition A.5. At time t, let i ∈ St, we have that, ∀j ∈ [K] \ St : |µi − µj | ≥ ∆i,

sign(µ̂τ
j − µ̂τ

i ) = sign(µj − µi) .

Proof. The proof will follow by induction. Assume at time t that ∀i ∈ St−1 we have that, ∀j ∈
[K] \ St−1 : |µi − µj | ≥ ∆i,

sign(µ̂τ
j − µ̂τ

i ) = sign(µj − µi) .

Now let ĩ ∈ St, and j ∈ [K] \ St : |µĩ − µj | ≥ ∆ĩ, we must show that, .

sign(µ̂τ
j − µ̂τ

ĩ
) = sign(µj − µĩ) .

If j /∈ St−1 we are done, via the inductive assumption, thus assume j ∈ St−1. If ĩ ∈ Uj,t−1(4∆(t))

the proof then follows via Proposition A.4, thus assume ĩ /∈ Uj,t−1(4∆(t)). We then have that,
|µ̂t

ĩ
− µ̂t

j | ≥ 4∆(t) and the proof follows.

Let α ∈ [0, 1], define the subset Zα ⊂ [0, 1] such that, P(X ∈ Zα|Y = −1) = α , that is,

λ(Zα)(1− κ(Zα))

1− p
= α ,

and such that, for some iα ∈ [K],

∀j : µj > µiα , Pj ⊂ Zα , ∀j : µj < µiα , Pj ∩ Zα = ∅ . (10)
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We then have ROC∗(α) = P(X ∈ Zα|Y = +1) = λ(Zα)(κ(Zα))
p . The choice of Zα is not

necessarily unique, and as η me be constant across multiple sections of the grid iα is also not
necessarily unique, in this case we take arbitrary Zα, iα. Now define the subset Ẑα ∈ [0, 1] such that,

λ(Ẑα)(1− κ(Ẑα))

1− p
= α ,

and,
∀x ∈ Ẑα, y /∈ Ẑα, sP̂(x) ≥ sP̂(y) ,

so ROC(s, α) = λ(Ẑα)(κ(Ẑα))
p . Again Ẑα is not necessarily unique, in which case we choose

arbitrarily. Via Propositions A.4 and A.5, we have that, ∀j ∈ [K] : |µj − µiα | ≤ ∆iα ,

sign(µ̂τ
j − µ̂τ

iα) = sign(µj − µiα) . (11)

Let

Z ′
α = {x ∈ Zα : |η(x)− µiα | ≤ ∆iα} , Ẑ ′

α = {x ∈ Ẑα : |η(x)− µiα | ≤ ∆iα} .

Via Equation 11, we have that,

ROC(α, η)− ROC(α, sP̂) =
λ(Z ′

α)κ(Z
′
α)

p
− λ(Ẑ ′

α)κ(Ẑ
′
α)

p
.

Before finalising the proof we must lower bound λ(Ẑ ′
α) and κ(Ẑ ′

α). We first lower bound κ(Ẑ ′
α).

κ(Ẑ ′
α) ≥ µiα −∆iα , κ(Z ′

α),≤ µiα +∆iα . (12)

We will now lower bound λ(Ẑ ′
α)

λ(Ẑ ′
α)

λ(Z ′
α)

=
1− κ(Z ′

α)

1− κ(Ẑ ′
α)

≤ 1− µiα +∆iα

1− µiα −∆iα

. (13)

Via combinations of Equations (12) and (13), we have,

λ(Z ′
α)κ(Z

′
α)

p
− λ(Ẑ ′

α)κ(Ẑ
′
α)

p
≤ 1

p

(
λ(Z ′

α)(µiα +∆iα)− λ(Ẑ ′
α)(µiα −∆iα)

)
(14)

≤ 1

p

(
λ(Z ′

α)(µiα +∆iα)− λ(Z ′
α)

(µiα −∆iα)(1− µiα +∆iα))

1− µiα −∆iα

)
(15)

≤ 2λ(Z ′
α)∆iα

p(1− µiα −∆iα)
≤ 2λ(Z ′

α)∆iα

p(1− µiα)
(16)

It remains to remark that, ∆iα ≤ εp
λ(Z′

α) , by definition, and thus,

ROC(α, η)− ROC
(
α, sP̂

)
≤ ε .

As we chose α w.l.o.g the proof then follows.

A.1 Proof of stopping time for active-rank

We will now prove the second part of Theorem 3.2, the upper bound on the expected sampling time
of active-rank.
Lemma A.6. For ε, δ > 0, γ > 480/ log(K), 1/K ≥ pε, with β(t, δ) = cγ log(t

2K2/δ) where cγ
is a constant depending only on γ, on all problems ν ∈ B such that ∀i ∈ [K],∆i ≤ 1− µi, we have
that, for γ > 1, the expected stopping time of active-rank is upper bounded by the following,

c′γ
∑
i∈[K]

H
(2)
i log

(
c′′γH

(2)
i K2/δ

)
,

where c′γ , c′′γ are constants depending only on γ.
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Proof. We upper bound E[τ ] as follows. Let τi = Ni(τ).

E[τi] ≤
∞∑
t=1

P(τi ≥ t) (17)

≤
∞∑
t=1

P(i /∈ Qt) . (18)

Define the event,

ξi,t := {∀j ∈ St, (UCB(t, j) ≤ µj +∆i/120} ∪ {∀j ∈ St,LCB(t, j) ≥ µj −∆i/120)}
∪{p−∆(t) ≤ p̂t ≤ p+∆(t)} .

Proposition A.7. For i ∈ [K], t > 0, we have that, on ξi,t, i ∈ Qt.

Proof. First note that, under event ξi,t, ∆(t) ≤ ∆i/120 and thus for a j ∈ Ui,t(6∆(t)), we have,

|µi − µj | ≤ ∆i/120 + ∆i/120 ≤ ∆i/60 ,

and thus,
|Ui,t(6∆(t))| ≤ |{j : |µi − µj | ≤ ∆i}| (19)

and furthermore, ∆(t) ≤ p/8 which implies p̂ ≤ 2p. Now, via definition of ∆i,

|{j : |µi − µj | ≤ ∆i}| ≤
pε(1− µi)

∆i
, (20)

and so, via the fact that ∆(t) ≤ ∆i/120 and combination of Equations (19) and (20),

∆(t) ≤ 3∆i/160 ≤ 3Kεp(1− µi)

160|Ui,t(6∆(t))|
≤

3Kεp((1− µ̂t
i) + ∆(t))

80|Ui,t(6∆(t))|
≤ 3Kεp̂(1− µ̂t

i)

40|Ui,t(6∆(t))|
,

where the third inequality comes from the assumption Kε ≤ 1 and that ∆(t) ≤ p/8 which implies
p̂ ≤ 2p.

Via combination Proposition A.7 and Equation (18), we have that,

E[τi] ≤
∞∑
t=1

P
(
ξci,t
)
.

We will now upper bound
∑∞

t=1 P(ξi,t). For γ > 1 let,

T i
0 = min

(
t :

β(t, δ)

t
≤ min

i∈[K]

(
kl(µi, µi +∆i/120)

log(K)γ
∧ kl(µi, µi −∆i/120)

log(K)γ

))
.

We have that, for all t > T i
0, j ∈ St,

P(UCB(t, j) ≥ µj +∆i/120) ≤ P
(
kl(µ̂t

j , µj +∆i/120) ≤
kl(µj , µj +∆i/120)

log(K)γ

)
. (21)

Let,

r(γ) = {x ∈ (µj , µj +∆i/120) : kl(x, µj +∆i/120) = kl(µj , µj +∆i/120)/(log(K)γ)} .

Consider the function ϕ(x) = kl(µj+x, µj+∆i/120), on the interval [0,∆i/120]. Via the properties
of the KL divergence, ϕ is convex and ϕ(∆i/120) = 0. As a result, ϕ(x) ≤ (1 − x) kl(µj , µj +
∆i/120)/(2∆i), which implies,

r(γ) ≥ µj +∆i

(
1

120
− 2

log(K)γ

)
≥ µj +

∆i

240
,
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for log(K)γ > 480. We now have, for all t > T i
0,

P
(
kl(µ̂t

j , µj +∆i/120) ≤
kl(µj , µj +∆i/120)

log(K)γ

)
= P

(
kl(µ̂t

j , µj +∆i/120) ≤ kl(r(γ), µj +∆i/120)
)

= P(µ̂t
j ≥ r(γ))

≤ exp(−t kl(µj , r(γ)))

≤ exp

(
− log(K)γ kl(µj , r(γ))

kl(µj , µj +∆i/120)
β(t, δ)

)
≤ exp

(
−

γ kl
(
µj , µj +

∆i

240

)
kl(µj , µj +∆i/120)

β(t, δ)

)
≤ exp(− log(K)β(t, δ)cγ)

where cγ is a constant depending only on γ. Thus, via Equation (21), for t ≥ T i
0

P(UCB(t, j) ≥ µj +∆i/2) ≤ exp(− log(K)β(t, δ)cγ) ,

via similar reasoning we have also that,
P(LCB(t, j) ≤ µj −∆i/2) ≤ exp(− log(K)β(t, δ)cγ) ,

and furthermore, P(p̂t /∈ [p−∆(t), p+∆(t)]) ≤ exp(−β(t, δ)), and now via a union bound,

∞∑
t=T i

0+1

P(ξct,i) ≤ c exp(−cγ) . (22)

where c > 0 is an absolute constant. What remains is to upper bound T i
0. Via definition of the

exploration parameter, we have that

T i
0 ≤ H

(2)
i log(cH

(2)
i K/δ)

Finally, we note that,
E[τ ] ≤

∑
i∈[K]

E[τi]

To summarise we have that,

E[τ ] ≤
∑
i∈[K]

T i
0 + c′γK exp(−cγ) ,

where c′γ > 0 is an absolute constant depending only on γ, and the result follows.

B Proof of Theorem 3.3

Proof. The proof will follow by application of a Fano type inequality on a well chosen set of
problems.

Step 1: Constructing our well chosen set of problems We define a set of grid points U0, U1, ...
recursively as follows, U0 = argmin(∆i), for k ≥ 0 we then define Uk+1 = argmin{∆i : ∀j ≤
k, |µUj −µi| ≥ ∆i +∆j}. Let M be the largest integer for which UM exists. Note that the sequence
(∆k)k>M is monotonically increasing and furthermore, for all i ∈ [K],

|{k : |µUk
− µi| ≥ ∆k +∆i}| ≤ 2 . (23)

We then define the corresponding set of groups, D0, D1, ..., DM as follows. For i ∈ [K] let i1, i2 ∈
[K] be such that, µUi1

≤ i ≤ µUi2
then set i+ = i1 ∨ i2 and i− = i1 ∧ i2. If |µi − µi∗ | ≤ ∆i +∆i+

then i ∈ Di+ , otherwise i ∈ Di− .

Proposition B.1. For all k ∈ [M ] we have that, ∀i ∈ Dk,∆i ≥ ∆Uk
.

Proof. W.l.o.g assume µi ≥ µUk
.
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Case 1: ∄j ̸= k : |µi − µUj | ≤ 6∆Uj + 6∆i. In this case we have that, if ∆i < ∆j , argmin{∆i :
∀j ≤ k − 1, |µUj

− µi| ≥ 6∆k + 6∆j} which is a contradiction via the definition of Uk.

Case 2: ∃j ̸= k : |µi − µUj | ≤ 6∆Uj + 6∆i. In this case we have, via Equation (23), that k > j.
Thus if ∆i < ∆j we have that argmin{∆i : ∀j ≤ k − 1, |µUj

− µi| ≥ 6∆k + 6∆j} which is a
again contradiction via the definition of Uk.

Proposition B.2. For all k ∈ [M ],

|{i ∈ Ck : |µi − µUk
| ≥ ∆Uk

}| ≤ 4|Ck|

Proof. Assume that

|{i ∈ Dk : |µi − µUk
| ≥ ∆Uk

}| > 2|{i ∈ Dk : |µi − µUk
| ≤ ∆Uk

}| .

In this case there would exists a j ∈ Dk : ∆j > ∆Uk
, a contradiction via Proposition B.1. Similarly

we can show,

|{i ∈ Dk : |µi − µUk
| ≥ ∆Uk

}| ≤ 2|{i ∈ Dk : |µi − µUk
| ≤ ∆Uk

}| ,

and the result follows.

For m ∈ [M ], set Cm = {x : |η(x)− µUm
| ≤ ∆Um

}. Consider a family of problems νQ indexed by
Q ∈ {0, 1}K , where the target function ηQ corresponding to νQ is defined by the partition of [0, 1],

PQ = {CQ
m,1, C

Q
m,2 : m ∈ [M ]} ∪ C0 ,

and coefficients
(β1

m, β2
m)m∈[M ]

where,

ηQ(x) =
∑

m∈[M ]

1(x ∈ CQ
m,1)β

1
m + 1(x ∈ CQ

m,2)β
2
m .

For m ∈ [M ], we set α1 = 0.1 and αm =
∑

l≤m 6∆Um
. Via our assumption that max(η(x)) −

min(η(x)) ≤ 1/12 we have that αM ≤ 0.9. Set βm
1 = αm + 4/3∆Um , β2 = αm − 4/3∆Um . For

m ∈ [M ], set Pi = {i : |µi − µUm
| ≤ ∆Um

} and then set,

CQ
m,1 =

⋃
i:Pi∈Cm,Qi=1

[i/K, (i+ 1)/K) CQ
m,2 = Cm \ CQ

m,1 .

Finally set C0 = P \ {CQ
m,1, C

Q
m,2 : m ∈ [M ]} and for all x ∈ C0, set η(x) = 0. The following

Lemma shows that, for a problem ν ∈ B, the gaps and complexity across our family problems, νQ
indexed by Q, does not differ too much from ν.

Lemma B.3. Given, ν ∈ B, we have that for all νQ, i ∈ [K], ∆̃i ≥ ∆i/2, where ∆̃i is the gap of
point i on problem νQ. Furthermore, under the assumption p ≥ c,

∑
H̃

(1)
i ≥ c

∑
H

(1)
i where H̃

(1)
i

is the complexity of point i on problem νQ.

Proof. We prove the first statement. For all i : Pi ∈ C0 we have that ∆̃i = 1 and for all m ∈ [M ], i ∈
[K] : Pi ∈ Cm, we have that ∆̃i ≥ ∆Um . It remains to remark that ∀i : |µi − µUm | ≤ ∆Um ,
∆i ≤ 2∆Um . For the second statement, under the assumption p ≥ ζ, for some ζ > 0, from
proposition B.1, for all m ∈ [M ], i ∈ Dm : Pi ̸⊂ Cm, j ∈ Cm, Hi ≤ cHj ≤ c′Hj , where c, c′ are
constants depending only on ζ, the proof then follows via Proposition B.2.
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Step 2: showing that one suffers ε regret on a well chosen event Let Qi be the transformation of
Q that flips the ith coordinate,

Qk
a =

{
Qa If a ̸= k,

1−Qa If a = k .

We remind the reader that we denote the scoring function outputted by the learner as ŝ. Now define,

zm := min

z : HsP̂
(z) ≥

λ
(⋃m−1

n=1 Cn ∪ CQ
m,1

)
(1− κ

(⋃m−1
n=1 Cn ∪ CQ

m,1

)
(1− p)

 ,

define the event,

ξi,m :=

{
{x ∈ [Gi, Gi+1) : ŝ(x) > zm} ≤ 1

2K

}
.

and then the events,

Em
1 :=

 ∑
i:Pi∈Cm,Qi=1

1(ξi,m) ≤ 3Kλ(Cm)

4

, Em
0 :=

 ∑
i:Pi∈Cm,Qi=0

1(ξi,m) ≥ Kλ(Cm)

4

 .

Let Ẑm ⊂ [0, 1] be such that, ∀x ∈ Ẑm, y /∈ Ẑm, sP̂(x) ≤ sP̂(y), and,

λ(Ẑm)(1− κ(Ẑm)) = λ

(
m−1⋃
n=1

Cn ∪ Cm,1

)(
1− κ

(
m−1⋃
n=1

Cn ∪ Cm,1

))
.

Note that Ẑm is not necessarily unique, in this case we choose an arbitrary such Ẑm. Furthermore
define,

Ẑ0
m =

{
x ∈ Ẑm : x ∈

m−1⋃
n=1

Cn

}
, Ẑ1

m =
{
x ∈ Ẑm : x ∈ Cm,1

}
,

and

Ẑ2
m =

{
x ∈ Ẑm : x ∈ Cm,2 ∪

M⋃
n=m+1

Cn

}
.

And let Ĝm =
⋃m−1

n=1 Cn \ Ẑ0
m. Note that under event Em

1 , we have λ
(
Z1
m

)
≤ Kλ(Cm)/4. Now,

via definition of Ẑ, we have the following,

λ(Ẑ1
m)(1− κ(Cm,1)) + λ(Ẑ2

m)(1− κ(Cm,2)) ≤ λ(Cm,1)(1− κ(Cm,1)) + λ(Ĝm)(1− κ(Ĝm)) ,

and on event E , λ(Ẑ1
m) ≤ 1/K4. Thus, for a problem νQ :

∑
i:Pi∈Cm

Qi ≥ Kλ(Cm)/2, on event
Em
1 ,

λ(Ẑ2
m)(1− κ(Cm,2)) ≤ 3λ(Cm,1)(1− κ(Cm,1))/4 + λ(Ĝm)(1− κ(Ĝm)) (24)

≤ (3λ(Cm,1)/4 + λ(Ĝm))(1− κ(Cm,1)) , (25)

where the final inequality comes from the fact κ(Cm,1) ≥ κ(Ĝm).To complete Step: 2 we now lower
bound d∞(sP̂ , η) on event Em

1 . Firstly note that,

ROC

(
(1− Ẑm)λ(Ẑm)

1− p
, η

)
=

λ
(⋃m−1

n=1 Cn ∪ Cm,1

)
κ
(⋃m−1

n=1 Cn ∪ Cm,1

)
p

=
λ
(⋃m−1

n=1 Cn

)
κ
(⋃m−1

n=1 Cn

)
p

+
λ(Cm,1)κ(Cm,1)

p
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therefore, for a problem νQ :
∑

i:Pi∈Cm
Qi ≥ Kλ(Cm)/2, on event Em

1 , via Equation (24),

d∞(sP̂ , η) ≥
λ(Ĝm)κ(Ĝm)

p
+

λ(Cm,1)κ(Cm,1)

p
− κ(Cm,1)λ(Ẑ

1
m)

p
− κ(Cm,2)λ(Ẑ

2
m)

p

≥ λ(Ĝm)κ(Ĝm)

p
+

3λ(Cm,1)κ(Cm,1)

4p
− κ(Cm,2)λ(Ẑ

2
m)

p

≥ λ(Ĝm)κ(Ĝm)

p
+

3λ(Cm,1)κ(Cm,1)

4p
− κ(Cm,2)(3λ(Cm,1/4 + λ(Ĝm))

p

1− κ(Cm,1)

1− κ(Cm,2)

≥ 3λ(Cm,1)

4p

(
κ(Cm,1)− κ(Cm,1)

1− κ(Cm,1)

1− κ(Cm,2)

)
=

3λ(Cm,1)

4p

(
κ(Cm,1)− κ(Cm,2)

1− κ(Cm,2)

)
=

3λ(Cm,1)

4p

(
8/3∆m

1− κ(Cm,2)

)
≥ 3λ(Cm,1 ∪ Cm,2)

8p

(
8/3∆m

1− κ(Cm,2)

)
≥ ε

Thus, as we assume policy π is PAC(δ, ε), on all problems νQ, we must have that, on all problems
νQ :

∑
i:Pi∈Cm

Qi ≥ Kλ(Cm)/2,
PνQ,π(Em

1 ) ≤ δ , (26)

Via similar reasoning we can show that on all problems νQ :
∑

i:Pi∈Cm
Qi ≤ Kλ(Cm)/2, we must

have that,
PνQ,π(Em

0 ) ≤ δ . (27)

Step 4: bounding the probability of the sum of ξmi Now, for m ∈ [M ], via the Azuma hoeffding
inequality applied to the martingale,∑

i:Pi∈Cm,Qi=0

[1(ξi,m)− PQ(ξi,m)] ,

we have that,

PQ

 ∑
i:Pi∈Cm,Qi=0

[1(ξi,m)− PQ(ξi,m)] ≥ Kλ(Cm) log

(
1

1− δ

) ≤ 1− δ . (28)

Thus via combination of Equations (27) and (28) we must have that, ∀Q :
∑K

i:Pi∈Cm
Qi ≤

Kλ(Cm)/2,

∑
i:Pi∈Cm,Qi=0

PQ(ξi,m) ≤ λ(Cm)

(
K

4
+K log

(
1

1− δ

))
≤ 3Kλ(Cm)

8
, (29)

where the second inequality comes from our assumption δ ≤ 1− exp(−1/8). Via similar reasoning
we also have that, ∀Q :

∑
i:Pi∈Cm

Qa ≥ Kλ(Cm)/2

∑
i:Pi∈Cm,Qi=1

PQ(ξi,m) ≥ λ(Cm)

(
K

2
−K log

(
1

1− δ

))
≥ 5Kλ(Cm)

8
. (30)

Step 5: applying a Fano type inequality We first define the class of problems upon which we will
apply Fano.

Q =

{
Q : ∀m ∈ [M ],

∑
i:Pi∈Cm

Qi =
Kλ(Cm)

2

}

Q0 =

{
Q : ∀m ∈ [M ],

∑
i:Pi∈Cm

Qi =
Kλ(Cm)

2
− 1

}
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We remind the reader that for i ∈ [K], we write τi =
∑τ

t=1 1(at ∈ Pi) and for m ∈ [M ],
τ(m) =

∑
i:Pi∈Cm

Ti. We see that, for all Q ∈ Q0, i : Qi = 0, there exists a unique Q̃ ∈ Q such that
Q̃i = Q, therefore,∑

Q∈Q

∑
m∈[M ]

∑
i:Pi∈Cm,Qi=1

PQi(ξi,m) =
∑

Q∈Q0

∑
m∈[M ]

∑
i:Pi∈Cm,Qi=0

PQ(ξi,m) ,

and thus, using the data processing inequality and the convexity of the relative entropy we have,

kl


1

|Q|
∑
Q∈Q

∑
m∈[M ]

2

Kλ(Cm)

∑
i:Pi∈Cm,Qi=1

PQi(ξi,m)

︸ ︷︷ ︸
≤6/8

,
1

|Q|
∑
Q∈Q

∑
m∈[M ]

2

Kλ(Cm)

∑
i:Pi∈Cm,Qi=1

PQ(ξi,m)

︸ ︷︷ ︸
≥10/8


≤ 1

|Q|
∑
Q∈Q

∑
m∈[M ]

2

Kλ(Cm)

∑
i:Pi∈Cm,Qi=1

EQ[τm]
kl(αm − 4/3∆Um

, αm + 4/3∆Um
)

2

≤ 1

|Q|
∑
Q∈Q

∑
m∈[M ]

EQ[τ(m)] kl(αm − 4/3∆Um
, αm + 4/3∆Um

)

Kλ(Cm)

≤ max
Q∈Q

∑
m∈[M ]

EQ[τ(m)] kl(αm − 4/3∆Um
, αm + 4/3∆Um

)

Kλ(Cm)
.

Then using the Pinsker inequality kl(x, y) ≥ 2(x− y)2, we obtain

1

|Qm|
∑

Q∈Qm

∑
m∈[M ]

2

Kλ(Cm)

∑
i:Pi∈Cm,:Qi=1

PQ(ξi,m) ≤ 3

8
+

√√√√max
Q∈Q

∑
m∈[M ]

EQ[τ(m)] kl(αm − 4/3∆Um
, αm + 4/3∆Um

)

Kλ(Cm)
,

and therefore,

max
Q∈Q

∑
m∈[M ]

EQ[τ(m)] kl(αm −∆m, αm +∆m)

Kλ(Cm)
≥ 9

64

thus

max
Q∈Q

∑
m∈[M ]

EQ[τ(m)] ≥ c′
∑

m∈[M ]

Kλ(Cm)

kl(αm − 4/3∆Um
, αm + 4/3∆Um

)

where c′ > 0 is an absolute constant. The proof now follows, as ∀m ∈ [M ], i : Pi ⊂ Cm,
Hi ≥ 1

kl(αm−4/3∆Um ,αm+4/3∆Um ) .
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