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Abstract

Recently, there has been a surge in methodological development for the difference-in-differences

(DiD) approach to evaluate causal effects. Standard methods in the literature rely on the par-

allel trends assumption to identify the average treatment effect on the treated. However, the

parallel trends assumption may be violated in the presence of unmeasured confounding, and the

average treatment effect on the treated may not be useful in learning a treatment assignment

policy for the entire population. In this article, we propose a general instrumented DiD approach

for learning the optimal treatment policy. Specifically, we establish identification results using

a binary instrumental variable (IV) when the parallel trends assumption fails to hold. Addi-

tionally, we construct a Wald estimator, novel inverse probability weighting (IPW) estimators,

and a class of semiparametric efficient and multiply robust estimators, with theoretical guaran-

tees on consistency and asymptotic normality, even when relying on flexible machine learning

algorithms for nuisance parameters estimation. Furthermore, we extend the instrumented DiD

to the panel data setting. We evaluate our methods in extensive simulations and a real data

application.

Keywords: individualized treatment rule, instrumental variable, multiple robustness, semipara-

metric efficiency, unmeasured confounding
∗Email: pan.zhao@inria.fr
†Email: cuiyf@zju.edu.cn

1

mailto:pan.zhao@inria.fr
mailto:cuiyf@zju.edu.cn


1 Introduction

Data-driven individualized decision making has received increasing interests in many fields, such

as precision medicine [Luedtke and van der Laan, 2016b, Tsiatis et al., 2019], econometrics and

quantitative social sciences [Imai and van Dyk, 2004, Athey and Wager, 2021], computer science

and operations research [Shi et al., 2022, Kallus et al., 2022]. The common goal is to learn opti-

mal treatment assignment policies (also known as regimes, rules or plans) which map individual

characteristics to treatment assignments so as to optimize some functional of the counterfactual

outcome distributions, leveraging observational data where causal effects can be identified under

various strategies and assumptions.

Popular existing methods in the statistical and machine learning literature include model-based

approaches such as Q-learning [Watkins and Dayan, 1992, Murphy, 2003, Linn et al., 2017], A-

learning [Robins et al., 2000, Shi et al., 2018], and direct model-free policy search approaches

[Zhang et al., 2012, Zhao et al., 2012]. Recent advances of policy learning have also considered

a variety of data structures, optimization objectives, criteria or constraints, such as survival and

longitudinal data [Goldberg and Kosorok, 2012, Ertefaie and Strawderman, 2018, Zhao et al., 2023],

networks [Viviano, 2019, Sherman et al., 2020], distributional robustness [Mo et al., 2021, Sahoo

et al., 2022], budget, fairness, or interpretability constraints [Luedtke and van der Laan, 2016a,

Fang et al., 2022], among others [Luedtke and Chambaz, 2020, Hadad et al., 2021, Nie et al., 2021,

Hu et al., 2022, Jin et al., 2023].

With few exceptions, most methods in prior work rely on the pivotal assumption that there

is no unmeasured confounding. This is a key threat to credible causal inference in observational

studies, and may lead to suboptimal policies, because this assumption is impossible to verify or

test in practice. An ad hoc work-around commonly adopted by practitioners is to collect and

appropriately adjust for a large number of covariates, which still lacks theoretical guarantee and

seems likely to be error-prone. To address this limitation, there has been recent progress made in

several directions. Kallus and Zhou [2018] propose to minimize the worst-case regret of a policy

under a marginal sensitivity model for the unmeasured confounding. Zhang et al. [2021] utilize

a randomization test to rank by a partial order and select treatment rules within a given finite

collection. While partial identification results provide certain improvement, the performance of
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such a learned policy may still be suboptimal. Qi et al. [2023] build on the semiparametric proximal

causal inference framework introduced by Cui et al. [2023] to establish point identification results

on different policy classes and accordingly propose several classification-based approaches; but this

framework requires the analyst to correctly classify the measured covariates into three types of

proxies, and it may be difficult to estimate the confounding bridge functions.

Instrumental variable methods are widely used to handle unmeasured confounding in observa-

tional studies or randomized trials with non-compliance. The core requirements for a pretreatment

variable to be a valid IV are: (i) it is associated with the treatment; (ii) it is independent of all

unmeasured confounders; (iii) it does not have a direct causal effect on the outcome other than

through the treatment. Along with the seminal work of Imbens and Angrist [1994], Angrist et al.

[1996], extensive development has been made in using the IV to estimate the local average treat-

ment effect [Tan, 2006, Ogburn et al., 2015], defined as the average treatment effect for the complier

subgroup who would always comply with their treatment assignments. Since the complier subgroup

is unknown and may have systematically different characteristics from the population, the popula-

tion (conditional) average treatment effect is arguably the causal parameter of primary interest in

most studies [Hernán and Robins, 2006, Aronow and Carnegie, 2013], especially for policy learning.

More recently, Pu and Zhang [2021] consider a partial identification approach to optimal treatment

rule estimation; and Wang and Tchetgen Tchetgen [2018] formally establish point identification of

the population average treatment effect under alternative no-interaction assumptions, upon which

Cui and Tchetgen Tchetgen [2021] propose various IV methods for estimating optimal treatment

regimes. It is notable that all of these IV methods in the literature only consider the setting with

a single time point, with the only exception of Xu et al. [2023], where the authors propose an IV

approach to off-policy evaluation in confounded Markov decision processes with infinite horizons.

There has always been interest in exploiting the longitudinal structure common in datasets such

as electronic health records and medical claims in epidemiology and biomedicine [Robins et al.,

2000], as well as cross-sectional or panel data in program evaluations, economic censuses, and sur-

veys [Athey and Imbens, 2017]. DiD methods have been an important tool widely used by empirical

researchers [Card and Krueger, 1994]. The key identification assumption of DiD is that the trend

in outcome of the control group over time is informative about what the trend would have been for

the treatment group in the absence of the treatment. Specifically, under the standard (conditional)
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parallel trends assumption, which states that the (conditional) expected trends in the potential

outcomes of the two groups in the absence of the treatment are identical, the average treatment

effect on the treated can be identified [Abadie, 2005, Sant’Anna and Zhao, 2020]; we refer interested

readers to Lechner et al. [2011] and Roth et al. [2023] for detailed reviews. However, concerns often

arise that the parallel trends assumption may be violated due to unmeasured confounding. Athey

and Imbens [2006] develop a new changes-in-changes model that relates outcomes to an individual’s

group, time, and unobservable characteristics; and various recent extensions for DiD include partial

identification [Ye et al., 2020], sensitivity analysis [Keele et al., 2019] and negative control [Sofer

et al., 2016], among others [Dukes et al., 2022, Park and Tchetgen, 2023]. Moreover, DiD methods

focus on the identification and estimation of the average treatment effect on the treated, which

limits its application in policy learning since the treated cannot represent the population. To the

best of our knowledge, this is the first work to systematically study policy learning under the DiD

setting.

In this article, we combine the two natural experiments and propose an instrumented DiD

approach to policy learning when the parallel trends assumption fails to hold in the presence of

unmeasured confounding. Specifically, we adapt and extend the recent progress in Ye et al. [2022]

and Vo et al. [2022], relaxing some key assumptions of the conventional IV and DiD methods. We

allow for the violation of the parallel trends assumption by leveraging an IV which has no direct

effect on the the trend in outcome, and does not modify the average treatment effect. Notably, this

exogenous variable is not necessarily a valid instrument for the conventional treatment-outcome

association, since we allow it to have a direct effect on the outcome not just through the treatment

at each time point.

The contributions of this article are summarized as follows. First, we propose the direct policy

search approach to learn optimal treatment assignment policies, based on the conditional average

treatment effect estimators using instrumented DiD. This approach essentially allows us to learn

the optimal policy that maximizes the estimated value within a restricted policy class. Second, we

establish novel identification results of optimal policies for the instrumented DiD design subject to

unmeasured confounding. The new results give rise to new inverse probability weighting estimators

of optimal policies without necessarily identifying the value function for a given policy. Another

interesting progress is also made towards identifying optimal policies without necessarily using the
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subjects’ realized treatment values. In summary, we construct a Wald estimator and novel inverse

probability weighting estimators. A class of semiparametric efficient and multiply robust estimators

is also proposed, which is consistent provided that a subset of several posited models indexing the

observed data distribution is correctly specified. Third, we prove theoretical guarantees for the

proposed multiply robust policy learning approaches. Specifically, we consider both parametric

models and flexible data-adaptive machine learning algorithms with the cross-fitting procedure to

estimate the nuisance parameters, to draw valid inferences under mild regularity conditions and

certain rate of convergence conditions. In particular, we consider a restricted policy class indexed by

an Euclidean parameter η and establish the n−1/3 convergence rate of η̂, even though its resultant

limiting distribution is not standard. Fourth, we extend our proposed methods to the panel data

setup. We establish identification of the conditional average treatment effect under alternative

assumptions and provide the direct policy search approaches for panel data. The theoretical results

for panel data can be similarly derived.

The rest of this article is organized as follows. In Section 2, we introduce the statistical frame-

work of instrumental variable, DiD and policy learning. Section 3 develops our main methodology

of learning the optimal policy using the instrumented DiD. Semiparametric efficiency results and

multiply robust estimators are presented in Section 4. Section 5 establishes the asymptotic prop-

erties of the proposed estimators. Extensive simulations are reported in Section 6 to demonstrate

the proposed methods, followed by a real data application in Section 7. Next, we consider the

extension of our methods to panel data in Section 8. The article concludes in Section 9 with a

discussion of some remarks and future work. All proofs and additional results are provided in the

Supplementary Material.

2 Statistical framework

We first introduce some notation. Let X denote the p-dimensional vector of covariates that belongs

to a covariate space X ⊂ Rp, A ∈ A = {0, 1} denote the binary treatment, Y ∈ R denote the

outcome of interest, and T ∈ T = {0, 1} denote the time period. Suppose that U = (U0, U1) is an

unmeasured confounder of the effect of A on Y , and Z ∈ {0, 1} is a binary instrumental variable;

the observed data are O = (X,A, Y, T, Z). We assume that the random samples (O1, . . . , On)
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collected at the two time periods are independent and identically distributed (i.i.d.) observations

of O ∼ P0, and there is no overlap between individuals in these two time periods. This setup is

commonly known as the repeated cross-sectional data. Extension to panel data setting is studied

in Section 8.

We use the potential outcomes framework [Neyman, 1923, Rubin, 1974] to define causal effects.

Let At(z) denote the potential exposure at time t if the instrument were set to level z, Yt(a) denote

the potential outcome at time t if the exposure were set to level a and the instrument would take the

same value it actually had, and Yt(z, a) denote the potential outcome at time t had the instrument

and exposure been set to z, a respectively.

Without loss of generality, we assume that larger values of Y are more desirable. Our aim is

to identify and estimate an policy d : X → A, that maximizes the expected potential outcome in a

counterfactual world had this policy been implemented on the population. The optimal policy at

time t is given by dopt,t(x) = I{τt(x) > 0}, where τt(x) = E[Yt(1)−Yt(0) | X = x] is the conditional

average treatment effect (CATE) at time t.

Let Yt(d) = d(X)Yt(1) + (1 − d(X))Yt(0) denote the potential outcome under a hypothetical

intervention that assigns treatment according to policy d. The value function of a policy d at time

t is defined as Vt(d) = E[Yt(d)]. Let D be the class of candidate policies of primary interest. The

optimal policy can be obtained by directly maximizing the value function:

dopt,t = argmax
d∈D

Vt(d) = argmax
d∈D

E[τt(X)d(X)]. (1)

Throughout this article, we assume that the stable treatment effect over time assumption holds,

which says that the CATE does not vary over time, and thus ensures that the optimal policy remains

the same between the two time periods. The subscript t is omitted when it is clear from the context.

Remark 1. Our proposed instrumented DiD methodology can also be readily formulated in the

weighted classification perspective. Pioneered by Zhang et al. [2012], this perspective has been

widely used in the biostatistics and precision medicine literature, and enjoys certain robustness

empirically. Specifically, the above maximization problem (1) can be transformed into the following
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equivalent weighted classification problem:

dopt(x) = argmax
d∈D

E[WI{A = d(X)}], (2)

where W is regarded as a weight that is motivated by standard outcome regression, inverse proba-

bility weighting and doubly robust methods. Many robust classification methods and off-the-shelf

implementations can be utilized.

3 Instrumented difference-in-differences

In this section, we introduce a general instrumented DiD framework for policy learning under

endogeneity, and provide novel identification results. Let π(t, z, x) = Pr(T = t, Z = z | X = x),

and for any random variable C ∈ {A, Y }, we define µC(t, z, x) = E[C | T = t, Z = z,X = x],

δC(x) = µC(1, 1, x) − µC(0, 1, x) − µC(1, 0, x) + µC(0, 0, x). We make the following identification

assumptions.

Assumption 1 (Consistency). A = AT (Z) and Y = YT (A).

Assumption 2 (Positivity). c1 < π(t, z, x) < 1− c1 for some 0 < c1 < 1/2.

Assumption 3 (Random sampling). T ⊥ {At(z), Yt(a) : t = 0, 1, z = 0, 1, a = 0, 1} |X,Z.

Assumption 4 (Stable treatment effect over time). E[Y0(1)− Y0(0) | X] = E[Y1(1)− Y1(0) | X].

Assumption 1 is also known as the stable unit treatment value assumption, which states that

there is no interference between subjects and no multiple versions of the instrument and treatment.

Assumption 2 ensures the same support of X for each (T,Z) level. Assumption 3 is commonly

assumed for repeated cross-sectional data [Abadie, 2005]. Assumption 4 requires that the CATE

τ(x) does not vary over time, and thus ensures that the optimal policy remains the same between

the two time periods.

Assumption 5 (Trend relevance). E[A1(1)−A0(1) | Z = 1, X] ̸= E[A1(0)−A0(0) | Z = 0, X].

Assumption 6 (Independence & exclusion restriction). Z ⊥ {At(1), At(0), Yt(1) − Yt(0), Y1(0) −

Y0(0) : t = 0, 1} |X.
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Assumption 7 (No unmeasured common effect modifier). Cov{At(1)−At(0), Yt(1)−Yt(0) | X} =

0 for t = 0, 1.

Assumption 5 and 6 are parallel to the core assumptions in the standard IV literature. Directed

acyclic graphs illustrating the causal structure are provided in Section A of the Supplementary

Material. Assumption 5 states that the IV affects the trend in treatment. Assumption 6 requires

that the IV is unconfounded, has no direct effect on the trend in outcome, and does not modify the

treatment effect. This exogenous variable is not necessarily a valid instrument for the conventional

treatment-outcome association, since we allow it to have a direct effect on the outcome not just

through the treatment at each time point. Assumption 7 essentially states that there is no common

effect modifier by an unmeasured confounder, of the additive effect of treatment on the outcome,

and the additive effect of the IV on treatment. It has been studied in Cui and Tchetgen Tchetgen

[2021], and relax certain no additive interaction assumptions in Wang and Tchetgen Tchetgen

[2018]. We refer interested readers to Ye et al. [2022] for detailed discussion and concrete examples

of an IV for DiD. Now we present our first identification result under the above assumptions.

Theorem 1. Under Assumptions 1-7, the optimal policy is nonparametrically identified by

argmax
d∈D

E

[
δY (X)

δA(X)
d(X)

]
. (3)

Theorem 1 combines the Wald estimator for CATE and the direct policy search approach in

Equation (1). Similarly, the IPW estimator proposed by Ye et al. [2022] can also be used to

learn the optimal policy. Semiparametric efficient and multiply robust estimators are presented

in Section 4. Next we propose our novel identification results, which also serves as basis for the

estimators proposed in Section 4.

Theorem 2. Under Assumptions 1-7, the optimal policy is nonparametrically identified by

argmax
d∈D

E

[
(2Z − 1)(2T − 1)(2A− 1)Y I{A = d(X)}

π(T,Z,X)δA(X)

]
. (4)

Theorem 2 extends prior identification of CATE, and proposes a novel IPW estimator of the

optimal policy without necessarily identifying the value function. Semiparametric efficiency results

based on (4) are given in Section F and G of the Supplementary Material.
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Theorem 3. Under Assumptions 1-7, the optimal policy is nonparametrically identified by

argmax
d∈D

E

[
(2T − 1)Y I{Z = d(X)}

π(T,Z,X)δA(X)

]
. (5)

Theorem 3 essentially proves that we can identify the optimal policy without necessarily using

the subjects’ realized treatment values, for instance when δA(X) is known a priori, or when a

separate sample with data on (A,X, T, Z) is available to estimate δA(X). To conclude this section,

we propose the following estimators for optimal policies:

d̂Wald = argmax
d∈D

1

n

n∑
i=1

δ̂Y (Xi)

δ̂A(Xi)
d(Xi),

d̂IPW1 = argmax
d∈D

1

n

n∑
i=1

(2Zi − 1)(2Ti − 1)(2Ai − 1)YiI{Ai = d(Xi)}
π̂(Ti, Zi, Xi)δ̂A(Xi)

,

d̂IPW2 = argmax
d∈D

1

n

n∑
i=1

(2Ti − 1)YiI{Zi = d(Xi)}
π̂(Ti, Zi, Xi)δ̂A(Xi)

,

where δ̂Y , δ̂A and π̂ are estimated by parametric models or machine learning algorithms. Our

simulation studies in Section 6 empirically shows comparable performance of the IPW estimators (4)

and (5).

Remark 2. Similarly, classification-based estimators based on Theorem 2 and 3 can be proposed:

argmax
d∈D

E[W̃1I{A = d(X)}], argmax
d∈D

E[W̃2I{Z = d(X)}], (6)

respectively, where the weights are given by

W̃1 =
(2Z − 1)(2T − 1)(2A− 1)Y

π(T,Z,X)δA(X)
, W̃2 =

(2T − 1)Y

π(T,Z,X)δA(X)
.

The Fisher consistency, excess risk bound and universal consistency of the estimated policy can

also be established [Zhao et al., 2012].
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4 Semiparametric efficiency and multiply robust estimators

In this section, we use semiparametric theory and propose multiply robust estimators. The Wald

and the IPW approaches require the corresponding models to be correctly specified. Hence, meth-

ods that are robust against model misspecification are highly desired, where consistency is guaran-

teed when a subset of several posited models indexing the observed data distribution is correctly

specified.

We consider the (uncentered) efficient influence function:

∆(O) =
δY (X)

δA(X)
+

(2Z − 1)(2T − 1)

π(T,Z,X)δA(X)

{
Y − µY (T,Z,X)− δY (X)

δA(X)
(A− µA(T,Z,X))

}
,

which has been proposed in Ye et al. [2022]. Therefore, the optimal policy is identified by

argmaxD E [∆(X)d(X)]. Moreover, in light of the optimization tasks formulated in (6), we propose

the following two choices of statistic:

W1 =
(2A− 1)δY (X)

δA(X)
+
(2A− 1)(2Z − 1)(2T − 1)

π(T,Z,X)δA(X)

{
Y − µY (T,Z,X)− δY (X)

δA(X)
(A− µA(T,Z,X))

}
,

and

W2 =
(2Z − 1)δY (X)

δA(X)
+

2T − 1

π(T,Z,X)δA(X)

{
Y − µY (T,Z,X)− δY (X)

δA(X)
(A− µA(T,Z,X))

}
,

which also enjoy the multiply robustness property.

First, we consider positing parametric models. Let µA(t, z, x;α), µY (t, z, x;β) and π(t, z, x; θ)

denote the posited models. α̂, β̂ and θ̂ can be estimated by maximum likelihood estimation. In

Theorem 4, we show the multiple robustness in the sense of maximizing the objective function (or

minimizing the weighted classification error) in the union model of the following models:

M1: models for π(t, z, x) and δA(x) are correct;

M2: models for π(t, z, x) and δY (x)/δA(x) are correct;

M3: models for δY (x)/δA(x) and µC(0, 0, x), µC(1, 0, x), µC(0, 1, x) for C ∈ {A, Y } are correct.

10



Theorem 4. Under Assumptions 1-7, the optimal policy is identified by

argmax
D

E [W1I{A = d(X)}] = argmax
D

E [W2I{Z = d(X)}] = argmax
D

E [∆(X)d(X)] , (7)

under the union model M1 ∪M2 ∪M3.

We also consider using modern machine learning methods to estimate these nuisance parameters.

In practice, we apply the cross-fitting technique [Schick, 1986, Zheng and van der Laan, 2010,

Chernozhukov et al., 2018], which is easy to implement. The cross-fitting procedure goes as follows.

We randomly split data into K folds; the cross-fitted estimator is given by

M̂CF =
1

K

K∑
k=1

Pn,k{∆(O; µ̂A,−k, µ̂Y,−k, π̂−k)d(X)},

where Pn,k denote empirical averages only over the k-th fold, and µ̂A,−k, µ̂Y,−k and π̂−k denote

the nuisance estimators constructed excluding the k-th fold. Similar cross-fitted estimators for

E [W1I{A = d(X)}] and E [W2I{Z = d(X)}] can also be constructed in the same way.

5 Asymptotic analysis of policy learning

In this section, we study theoretical guarantees for our proposed policy learning approaches. While

researchers have suggested applying machine learning algorithms to estimate the optimal policies

from large classes which cannot be described by a finite dimensional parameter [Luedtke and van der

Laan, 2016b, Künzel et al., 2019], it is also important to consider certain classes of policies for

better interpretability and transparency, especially in clinical medicine and policy research [Zhang

et al., 2015, Athey and Wager, 2021]. Specifically, here we focus on a class of feasible policies

D =
{
I{η⊤X > 0} : η ∈ H

}
, where η indexes different policies and H is a compact subset of Rp.

That is, we analyze the following estimator:

η̂ = argmax
η∈H

M̂(η) = argmax
η∈H

1

n

n∑
i=1

∆̂(Oi)d(Xi; η),

where M̂(η) is estimated by posited parametric models, or the cross-fitted estimator. Let η∗ =

argmaxη∈HE[∆(X)d(X; η)] denote the Euclidean parameter that indexes the optimal policy. We
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detail the main large sample property of our proposed estimator, that η̂ converges to η∗ at n1/3

rate, and that M̂(η̂) is n1/2-consistent and asymptotically normal under weak conditions (mostly

requiring standard regularity conditions [White, 1982], or only that the nuisance parameters are

estimated at faster than n1/4 rates).

Remark 3. In order to obtain certain rates of convergence or regret bounds, it is necessary to

require some control over the complexity of the class D; see Athey and Wager [2021, Section 2.2]

for examples of the VC-dimension of classes of linear rules, decision trees and monotone rules. Here

we apply the empirical process techniques to establish theoretical guarantees for linear rules, which

also hold on any other D indexed by finite-dimensional parameters. Also note that all identification

and semiparametric efficiency results hold for any class of policies, and other optimization methods

can be readily utilized.

We assume the following regularity conditions.

Condition 1. (i) The supports of X and Y are bounded. (ii) The functions µY (t, z, x), µA(t, z, x)

and π(t, z, x) are smooth and bounded for all (t, z, x). (iii) The function M(η) is twice continuously

differentiable in a neighborhood of η∗; (iv) For all δ > 0, we have that Pr(|XT η∗| ≤ δ) ≤ c2δ, for

some constant c2 > 0 such that c2δ ≤ 1.

Condition 2. (i)
√
n(α̂− α∗) = Op(1); (ii)

√
n(β̂ − β∗) = Op(1); (iii)

√
n(θ̂ − θ∗) = Op(1).

Theorem 5. Under Assumptions 1-7, if Conditions 1 and 2 hold, we have (i) ∥η̂ − η∗∥2 =

Op(n
−1/3); (ii)

√
n{M(η̂) − M(η∗)} = op(1); (iii)

√
n{M̂(η̂) − M(η∗)} → N (0, σ21), where σ21

is given in the Supplementary Material.

Condition 1 (i), (ii) and (iii) are standard regularity conditions to establish uniform conver-

gence. Condition 1 (iv), also known as the margin condition, is often assumed in the literature of

classification [Tsybakov, 2004], reinforcement learning [Hu et al., 2022] and treatment assignment

policies [Luedtke and Chambaz, 2020], to guarantee fast convergence rates. Condition 2 requires
√
n

convergence rates of parameter estimates of the posited models, which holds under mild conditions.

We assume the following conditions for the machine learning algorithms used to construct cross-

fitted estimators.
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Condition 3. ∥µ̂A(t, z,X)−µA(t, z,X)∥L2 = op(n
−1/4), ∥µ̂Y (t, z,X)−µY (t, z,X)∥L2 = op(n

−1/4)

and ∥π̂(t, z,X)− π(t, z,X)∥L2 = op(n
−1/4), for t, z = 0, 1.

Theorem 6. Under Assumptions 1-7, if Conditions 1 and 3 hold, we have (i) ∥η̂ − η∗∥2 =

Op(n
−1/3); (ii)

√
n{M(η̂) − M(η∗)} = op(1); (iii)

√
n{M̂(η̂) − M(η∗)} → N (0, σ22), where σ22

is given in the Supplementary Material.

Condition 3 says the nuisance estimators must be consistent and converge at a fast enough

rate (essentially n1/4 in L2 norm). This is quite general and can be achieved by many existing

algorithms under nonparametric smoothness, sparsity, or other structural constraints. According

to Theorems 5 and 6 (ii), the regret of our estimated regime vanishes as the sample size increases.

Theorems 5 and 6 (iii) imply that M̂(η̂) is a regular and asymptotic normal estimator of M(η∗).

6 Simulations

In this section, we conduct extensive simulations to evaluate the finite-sample performance of

the proposed estimators. Specifically, we compare them to the instrumental variable approach

proposed by Cui and Tchetgen Tchetgen [2021], which is in principle valid only for a single time

point. Replication code is available at GitHub.

We first describe the complete data generation process as follows. Baseline covariates X =

(X1, X2)
⊤ are generated from independent standard normal distributions. The time period indica-

tor T is generated from a Bernoulli distribution with probability 0.5. The unmeasured confounders

U = (U0, U1)
⊤ are generated from independent bridge distributions with parameter 0.5 1. The in-

strumental variable Z is generated from a Bernoulli distribution with probability 0.5. The potential

treatments and outcomes at time points t = 0, 1 are generated from the models:

Pr(A0 = 1 | Z,U,X) = expit(2− 7Z + 0.2U0 + 2X1),

P r(A1 = 1 | Z,U,X) = expit(−1.5 + 5Z − 0.15U1 + 1.5X2),

(Y0 | Z,U,X,A0) ∼ N (µ0, 1), (Y1 | Z,U,X,A1) ∼ N (µ1, 1),

1The bridge density function is p(u) = 1/(2π cosh (u/2)). We use the bridge distribution because by Wang and
Louis [2003], the data generation process ensures that upon marginalizing over U , the model for Pr(At = 1 | Z,X)
remains a logistic regression.
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where µ0 = 200 + 10(A0(1.5X1 + 2X2 − 0.5) + 0.5U0 + 2Z + 1.5X1 + 2X2), and µ1 = 240 +

10(A1(1.5X1 +2X2 − 0.5)+ 0.5U1 +2Z +2X1 +1.5X2). Therefore, the optimal policy is dopt(x) =

I{3x1 + 4x2 − 1 > 0}. Let A = TA1 + (1 − T )A0, Y = TY1 + (1 − T )Y0; thus the observed

cross-sectional data are (X,A, Y, T, Z).

A large test dataset of size N = 1×106 is generated independently to evaluate the performance

of different estimators. The percentage of correct decisions (PCD) of an estimated policy d̂(x) is

computed by 1−N−1
∑N

i=1 |d̂(Xi)− dopt(Xi)|.

We compare 7 estimators in our study: the two IPW estimators, the Wald estimator, and

the two multiply robust estimators, along with the below IV estimators proposed by Cui and

Tchetgen Tchetgen [2021]:

dIV.t0 = argmax
d∈D

1

nt0

n∑
i=1

ZiAiYiI{Ai = d(Xi)}I{Ti = 0}
δ̂t0(Xi)π̂t0(Zi, Xi)

,

dIV.t1 = argmax
d∈D

1

nt1

n∑
i=1

ZiAiYiI{Ai = d(Xi)}I{Ti = 1}
δ̂t1(Xi)π̂t1(Zi, Xi)

,

where nt0 and nt1 are the sample sizes at time point 0, 1, respectively; δt0(x) = µA(0, 1, x) −

µA(0, 0, x), δt1(x) = µA(1, 1, x) − µA(1, 0, x), πt0(z, x) = Pr(Z = z | X = x, T = 0), πt1(z, x) =

Pr(Z = z | X = x, T = 1) are the nuisance parameters, and δ̂t0, δ̂t1, π̂t0, π̂t1 can be estimated using

parametric models or machine learning algorithms. We utilize the genetic algorithm implemented

in the R package rgenoud [Mebane Jr and Sekhon, 2011] to solve the optimization tasks.

First, we posit parametric models for the nuisance parameters. The linear/logistic regression

models for µA(t, z, x;α), µY (t, z, x;β) and π(t, z, x; θ) are correctly specified. The sample size is

n = 5000.

We also consider flexible machine learning algorithms for nuisance parameter estimation. Specif-

ically, we apply the generalized random forests [Athey et al., 2019] implemented in the R package

grf with default tuning parameters. For the cross-fitting procedure, we use K = 4 folds. The

sample size is n = 104.

Figure 1 reports the main simulation results from 500 Monte Carlo replications. In both sce-

narios, the two standard IV estimators fail to learn the optimal policy, due to the direct effects of

the treatment A on the outcomes Y0, Y1. The two IPW estimators perform much better, but the
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Figure 1: The percentage of correct decisions (PCD) results of the estimated optimal policies, using
parametric models (left) or machine learning (right).

variability can be large due to possibly extreme weights. The Wald and multiply robust estimators

generally lead to lower variability, and attain superior performance. Additional simulation results

are reported in Section K of the Supplementary Material to illustrate how different sample sizes

and the strength of the IV affect the performance of the estimated policies. We observe that a

stronger strength of IV generally leads to lower variability and better accuracy, and also as sample

size increases, our proposed methods have better performance.

7 Data application

In this section, we illustrate the use of the instrumented DiD approach for policy learning with a

analysis of the Australian Longitudinal Survey (ALS) data. Researchers in labor economics have a

longstanding interest in investigating the causal effect of education on earnings in the labor market.

Card [2001] suggests that the endogeneity of education might partially explain the continuing

interest “in this very difficult task of uncovering the causal effect of education in labor market

outcomes”, and argues that the effects of education are heterogeneous since the economic benefits

are individual-specific. Besides the well acknowledged benefits of personal growth and social good

from education, we aim to provide a personalized recommendation on whether an individual should
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pursuit more education or not, in order to gain higher earnings.

The Australian Longitudinal Survey was conducted annually since 1984. Specifically, we include

the 1984 and 1985 waves as cross sectional data in our analysis. The 1984 wave surveyed a sample

of 3000 people aged 15 − 24, and the 1985 wave consisted of 9000 interviews with people aged

16 − 25. The surveys aim mainly at providing data on the dynamics of the youth labour market,

and include basic demographic variables, labour market variables, background variables and topics

related to the main labour market theme. We follow the guidelines from Su et al. [2013], Cai et al.

[2006] and Vella [1994], who was among the first researchers extensively working with the ALS

data. Finally, our data include 2401 subjects from the 1984 wave, and 8997 subjects from the 1985

wave. We consider the following baseline covariates: whether a person is born in Australia, marital

status, union membership, government employment, age and work experience. The treatment is

the education level, and the outcome is the hourly wage. We use an index of labor market attitudes

as the instrumental variable [Su et al., 2013]. The details of our analysis are provided in Section L

of the Supplementary Material.

The nuisance parameters are estimated by posited linear/logistic regression models, and we

apply our proposed methods with the same configurations as Section 6. The policy coefficient

estimates of all covariates are reported in Table 1.

Policies intercept born australia married uni mem gov emp age year expe

IV.t0 0.4442 −0.4547 0.1311 −0.1179 −0.5181 0.0080 −0.5444
IV.t1 −0.2518 −0.3103 0.2445 −0.6157 −0.1406 0.2015 −0.5840
IPW1 −0.4203 −0.0847 0.5454 −0.3941 −0.5690 0.0299 0.1969
IPW2 −0.2503 −0.0529 0.6051 −0.4384 −0.5801 0.0207 0.1980
Wald 0.5032 0.3891 0.4738 0.5755 −0.1656 −0.0772 0.0793
MR1 −0.0513 0.1341 −0.6039 0.4127 0.5861 −0.0226 −0.3168
MR2 0.5480 −0.3937 −0.4072 0.4393 0.4167 −0.0302 −0.1064

Table 1: Coefficients of estimated optimal policy (normalized with L2 norm 1). born australia:
whether a person is born in Australia; married: marital status; uni mem: union membership;
gov emp: government employment; age: age; year expe: work experience.

The coefficients should be interpreted cautiously. We also find that there exists some discrep-

ancies among the treatment recommendations by our proposed estimators. The Wald and multiply

robust estimators usually agree, but the variability of the IPW estimators are a bit large. Due to

the potentially different recommendations by different estimated policies, one may conservatively
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suggest a recommendation by the majority rule, and accordingly obtain an ensemble policy. It

is also interesting to construct a decision tree to further explore which covariates indicate which

treatment level [Qi et al., 2023].

8 Extension to panel data

In this section, we consider extending the instrumented DiD approach to the panel data setup

where a random sample from the population is followed up over two time points [Abadie, 2005].

The observed data are O = (X,Z,A0, Y0, A1, Y1). Let δY,z(x) = E[Y1 − Y0 | X = x, Z = z],

δA,z(x) = E[A1 − A0 | X = x, Z = z], and πZ(x) = Pr(Z = 1 | X = x). We make the following

identification assumptions.

Assumption 8. Suppose the following assumptions hold: (consistency) At = At(Z) and Yt =

Yt(At) for t = 0, 1; (positivity) c3 < πZ(x) < 1 − c3 for some 0 < c3 < 1/2; (trend rele-

vance) E[A1(1) − A0(1) | Z = 1, X] ̸= E[A1(0) − A0(0) | Z = 0, X]; (stable treatment effect

over time) E[Y0(1) − Y0(0) | X] = E[Y1(1) − Y1(0) | X]; (independence & exclusion restriction)

Z ⊥ {At(1), At(0), Yt(1) − Yt(0), Y1(0) − Y0(0) : t = 0, 1} | X; (no unmeasured common effect

modifier) Cov{At(1)−At(0), Yt(1)− Yt(0) | X} = 0 for t = 0, 1.

Assumption 8 is the counterpart of Assumptions 1-7 for the panel/longitudinal structure. Vo

et al. [2022] use a structural mean model and consider alternative assumptions to the no unmeasured

common effect modifier assumption above. In Section J of the Supplementary Material, we also

prove the identification results under the following assumptions that replaces the no unmeasured

common effect modifier assumption: (sequential ignorability) Yt(a) ⊥ At | U,X,Z for t, a = 0, 1,

and there is no additive interaction of either (i) E[A1−A0 | X,U,Z = 1]−E[A1−A0 | X,U,Z = 0] =

E[A1−A0 | X,Z = 1]−E[A1−A0 | X,Z = 0] or (ii) E[Yt(1)−Yt(0) | U,X] = E[Yt(1)−Yt(0) | X]

for t = 0, 1. The sequential ignorability is intuitive, and commonly assumed in panel/longitudinal

data analysis. We note that the no additive interaction assumption implies the no unmeasured

common effect modifier assumption.
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Theorem 7. Under Assumption 8, the CATE is nonparametrically identified by

τ(x) =
E[Y1 − Y0 | X = x, Z = 1]− E[Y1 − Y0 | X = x, Z = 0]

E[A1 −A0 | X = x, Z = 1]− E[A1 −A0 | X = x, Z = 0]
, (8)

and the efficient influence function is

ϕpanel =
δY,1(x)− δY,0(x)

δA,1(x)− δA,0(x)
− z − πZ(x)

πZ(x)(1− πZ(x))(δA,1(x)− δA,0(x))2
{(y1 − y0)(δA,1(x)− δA,0(x))

−(a1 − a0)(δY,1(x)− δY,0(x)) + δY,1(x)δA,0(x)− δY,0(x)δA,1(x)} − τ(x).

Theorem 8. Under Assumption 8, the optimal policy is nonparametrically identified by

argmax
D

E

[
δY,1(X)− δY,0(X)

δA,1(X)− δA,0(X)
d(X)

]
= argmax

D
E [∆panel(X)d(X)] , (9)

where the uncentered efficient influence function ∆panel is

∆panel =
δY,1(X)− δY,0(X)

δA,1(X)− δA,0(X)
− Z − πZ(X)

πZ(X)(1− πZ(X))(δA,1(X)− δA,0(X))2
{(Y1 − Y0)(δA,1(X)− δA,0(X))

−(A1 −A0)(δY,1(X)− δY,0(X)) + δY,1(X)δA,0(X)− δY,0(X)δA,1(X)} .

Estimators of optimal policies can be constructed by the empirical versions of equations in

Theorem 8, and the cross-fitting procedure can also be applied when using the efficient influence

function. Similarly, asymptotic analysis of policy learning as Theorems 5 and 6 can be established

for panel data.

9 Discussion

Similar approaches as the instrumented difference-in-differences design has long been employed

by econometricians [Duflo, 2001] and has also been formally considered as fuzzy differences-in-

differences by De Chaisemartin and d’Haultfoeuille [2018], where the individuals can switch treat-

ment in only one direction within each treatment group. We refer interested readers to Ye et al.

[2022] and its rejoinder for discussions on the differences, and applications in biomedicine and

epidemiology.
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There are several interesting directions for future research and application. Our approach is

the first work to systematically study policy learning under the DiD setting. It may be possible

to consider alternative assumptions or structures in DiD design to learn the optimal policy. Our

instrumented DiD may also be generalized to multiple time points, continuous time, or continuous

IV.

Note that Assumption 7 can be replaced by the monotonicity assumption, i.e. At(1) ≥ At(0)

for t = 0, 1 with probability 1, which identifies the complier treatment effects. Then we can also

target complier optimal policies that would optimize the potential outcome among compliers.
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SUPPLEMENTARY MATERIAL

A Directed acyclic graphs

In this section, we present the directed acyclic graphs (DAGs) in Figures 2 and 3 illustrating the

causal structure of the proposed instrumented DiD. The IV Z is associated with the trend in

treatment A1−A0, is independent of the unmeasured confounders U0, U1, cannot have direct effect

on the trend in outcome Y1 − Y0, and does not modofy the treatment effect. But in comparison to

a standard IV, here Z is allowed to have a direct effect on the outcomes Y0, Y1, as illustrated by

the edges Z → Y0 and Z → Y1 in Figure 3.

Z A1 −A0 Y1 − Y0

X

U0, U1

Figure 2: DAG for instrumented DiD on the trend scale.

Z A0 Y0 A1 Y1

X

U0 U1

Figure 3: DAG for instrumented DiD over two time points.

B Proof of Theorem 1

In this section, we provide a proof of Theorem 1 for completeness. Similar proof can be found at

Ye et al. [2022].
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We first note that

δY (X) = µY (1, 1, X)− µY (0, 1, X)− µY (1, 0, X) + µY (0, 0, X)

=
∑
z=0,1

(2z − 1)(E[Y | T = 1, Z = z,X]− E[Y | T = 0, Z = z,X])

=
∑
z=0,1

(2z − 1)(E[Y1(A1(z)) | T = 1, Z = z,X]− E[Y0(A0(z)) | T = 0, Z = z,X])

=
∑
z=0,1

(2z − 1)(E[Y1(A1(z)) | Z = z,X]− E[Y0(A0(z)) | Z = z,X])

=
∑
z=0,1

(2z − 1)E[Y1(A1(z))− Y0(A0(z)) | Z = z,X]

=
∑
z=0,1

(2z − 1)E[A1(z)Y1(1) + (1−A1(z))Y1(0)−A0(z)Y0(1)− (1−A0(z))Y0(0) | Z = z,X]

=
∑
z=0,1

(2z − 1)E[A1(z)(Y1(1)− Y1(0))−A0(z)(Y0(1)− Y0(0)) + Y1(0)− Y0(0) | Z = z,X]

=
∑
z=0,1

(2z − 1)(E[A1(z)(Y1(1)− Y1(0)) | X]− E[A0(z)(Y0(1)− Y0(0)) | X] + E[Y1(0)− Y0(0) | X])

= E[(A1(1)−A1(0))(Y1(1)− Y1(0)) | X]− E[(A0(1)−A0(0))(Y0(1)− Y0(0)) | X]

= E[A1(1)−A1(0) | X]E[Y1(1)− Y1(0) | X]− E[A0(1)−A0(0) | X]E[Y0(1)− Y0(0) | X]

= E[A1(1)−A1(0)−A0(1) +A0(0) | X]τ(X).

Then note that

δA(X) = µA(1, 1, X)− µA(0, 1, X)− µA(1, 0, X) + µA(0, 0, X)

=
∑
z=0,1

(2z − 1)(E[A | T = 1, Z = z,X]− E[A | T = 0, Z = z,X])

=
∑
z=0,1

(2z − 1)(E[A1(z) | T = 1, Z = z,X]− E[A0(z) | T = 0, Z = z,X])

= E[A1(1)−A1(0)−A0(1) +A0(0) | X].

Hence we have that δY (X) = δA(X)τ(X). That is, the CATE τ(X) can be identified by
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δY (X)/δA(X). It follows that the optimal policy is nonparametrically identified by

argmax
d∈D

E[τ(X)d(X)] = argmax
d∈D

E

[
δY (X)

δA(X)
d(X)

]
,

which completes the proof.

C Proof of Theorem 2

In this section, we prove our first novel identification results of the optimal policy.

First we note that

E

[
(2Z − 1)(2T − 1)(2A− 1)Y I{A = d(X)}

π(T,Z,X)δA(X)

]

= E

∑
a=0,1

(2Z − 1)(2T − 1)(2a− 1)YT (a)I{A = a}I{d(X) = a}
π(T,Z,X)δA(X)


= E

∑
a=0,1

(2Z − 1)(2T − 1)(2a− 1)E[YT (a) | X,U ]I{A = a}I{d(X) = a}
π(T,Z,X)δA(X)


= E

∑
a=0,1

(2Z − 1)(2T − 1)(2a− 1)E[YT (a) | X,U ]Pr(A = a | X,U, T, Z)I{d(X) = a}
π(T,Z,X)δA(X)


= E

[
Pr(A = 1 | X,U, T = 1, Z = 1)I{d(X) = 1}E[Y1(1) | X,U ]

δA(X)

]
− E

[
Pr(A = 1 | X,U, T = 0, Z = 1)I{d(X) = 1}E[Y0(1) | X,U ]

δA(X)

]
− E

[
Pr(A = 1 | X,U, T = 1, Z = 0)I{d(X) = 1}E[Y1(1) | X,U ]

δA(X)

]
+ E

[
Pr(A = 1 | X,U, T = 0, Z = 0)I{d(X) = 1}E[Y0(1) | X,U ]

δA(X)

]
− E

[
Pr(A = 0 | X,U, T = 1, Z = 1)I{d(X) = 0}E[Y1(0) | X,U ]

δA(X)

]
+ E

[
Pr(A = 0 | X,U, T = 0, Z = 1)I{d(X) = 0}E[Y0(0) | X,U ]

δA(X)

]
+ E

[
Pr(A = 0 | X,U, T = 1, Z = 0)I{d(X) = 0}E[Y1(0) | X,U ]

δA(X)

]
− E

[
Pr(A = 0 | X,U, T = 0, Z = 0)I{d(X) = 0}E[Y0(0) | X,U ]

δA(X)

]
= E

[
[Pr(A = 1 | X,U, T = 1, Z = 1)− Pr(A = 1 | X,U, T = 1, Z = 0)]I{d(X) = 1}E[Y1(1) | X,U ]

δA(X)

]
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+ E

[
[Pr(A = 1 | X,U, T = 1, Z = 1)− Pr(A = 1 | X,U, T = 1, Z = 0)]I{d(X) = 0}E[Y1(0) | X,U ]

δA(X)

]
− E

[
[Pr(A = 1 | X,U, T = 0, Z = 1)− Pr(A = 1 | X,U, T = 0, Z = 0)]I{d(X) = 1}E[Y0(1) | X,U ]

δA(X)

]
− E

[
[Pr(A = 1 | X,U, T = 0, Z = 1)− Pr(A = 1 | X,U, T = 0, Z = 0)]I{d(X) = 0}E[Y0(0) | X,U ]

δA(X)

]
.

Since we have that for t = 0, 1,

I{d(X) = 1}E[Yt(1) | X,U ] + I{d(X) = 0}E[Yt(0) | X,U ]

= d(X)(E[Yt(1) | X,U ]− E[Yt(0) | X,U ]) + E[Yt(0) | X,U ]

= d(X)τ(X) + E[Yt(0) | X,U ],

we continue by Assumption 7 that

E

[
(2Z − 1)(2T − 1)(2A− 1)Y I{A = d(X)}

π(T,Z,X)δA(X)

]
= E[d(X)τ(X)] + E[ν(X,U)],

where the second term E[ν(X,U)] does not depend on the policy d. That is,

argmax
d∈D

E

[
(2Z − 1)(2T − 1)(2A− 1)Y I{A = d(X)}

π(T,Z,X)δA(X)

]
= argmax

d∈D
E[τ(X)d(X)],

which completes the proof.

D Proof of Theorem 3

In this section, we prove our second novel identification results of the optimal policy.

First we note that

E

[
(2T − 1)Y I{Z = d(X)}

π(T,Z,X)δA(X)

]

= E

∑
a=0,1

(2T − 1)I{Z = d(X)}YT (a)I{A = a}
π(T,Z,X)δA(X)


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= E

∑
a=0,1

(2T − 1)I{Z = d(X)}E[YT (a) | X,U ]Pr(A = a | X,U, T, Z)
π(T,Z,X)δA(X)


= E

[
Pr(A = 1 | X,U, T = 1, Z = 1)I{d(X) = 1}E[Y1(1) | X,U ]

δA(X)

]
− E

[
Pr(A = 1 | X,U, T = 0, Z = 1)I{d(X) = 1}E[Y0(1) | X,U ]

δA(X)

]
+ E

[
Pr(A = 1 | X,U, T = 1, Z = 0)I{d(X) = 0}E[Y1(1) | X,U ]

δA(X)

]
− E

[
Pr(A = 1 | X,U, T = 0, Z = 0)I{d(X) = 0}E[Y0(1) | X,U ]

δA(X)

]
+ E

[
Pr(A = 0 | X,U, T = 1, Z = 1)I{d(X) = 1}E[Y1(0) | X,U ]

δA(X)

]
− E

[
Pr(A = 0 | X,U, T = 0, Z = 1)I{d(X) = 1}E[Y0(0) | X,U ]

δA(X)

]
+ E

[
Pr(A = 0 | X,U, T = 1, Z = 0)I{d(X) = 0}E[Y1(0) | X,U ]

δA(X)

]
− E

[
Pr(A = 0 | X,U, T = 0, Z = 0)I{d(X) = 0}E[Y0(0) | X,U ]

δA(X)

]
= E

[
[Pr(A = 1 | X,U, T = 1, Z = 1)− Pr(A = 1 | X,U, T = 1, Z = 0)]I{d(X) = 1}E[Y1(1) | X,U ]

δA(X)

]
+ E

[
[Pr(A = 1 | X,U, T = 1, Z = 1)− Pr(A = 1 | X,U, T = 1, Z = 0)]I{d(X) = 0}E[Y1(0) | X,U ]

δA(X)

]
− E

[
[Pr(A = 1 | X,U, T = 0, Z = 1)− Pr(A = 1 | X,U, T = 0, Z = 0)]I{d(X) = 1}E[Y0(1) | X,U ]

δA(X)

]
− E

[
[Pr(A = 1 | X,U, T = 0, Z = 1)− Pr(A = 1 | X,U, T = 0, Z = 0)]I{d(X) = 0}E[Y0(0) | X,U ]

δA(X)

]
+ E

[
Pr(A = 1 | X,U, T = 1, Z = 0)E[Y1(1) | X,U ] + Pr(A = 0 | X,U, T = 1, Z = 1)E[Y1(0) | X,U ]

δA(X)

]
− E

[
Pr(A = 1 | X,U, T = 0, Z = 0)E[Y0(1) | X,U ] + Pr(A = 0 | X,U, T = 0, Z = 1)E[Y0(0) | X,U ]

δA(X)

]
.

Then by the same arguments as in Section C, we have that

E

[
(2T − 1)Y I{Z = d(X)}

π(T,Z,X)δA(X)

]
= E[d(X)τ(X)] + E[ν̃(X,U)],

where the second term does not depend on the policy d. That is,

argmax
d∈D

E

[
(2T − 1)Y I{Z = d(X)}

π(T,Z,X)δA(X)

]
= argmax

d∈D
E[τ(X)d(X)],
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which completes the proof.

E Proof of Theorem 4

In this section, we prove our identification results of the optimal policy using the efficient influence

functions.

First we note that

E[W1I{A = d(X)}]

=
1

2
E[W1(2I{A = d(X)} − 1)] +

1

2
E[W1]

=
1

2
E[W1(2A− 1)(2d(X)− 1)] +

1

2
E[W1]

=
1

2
E[∆(O)(2d(X)− 1)] +

1

2
E[W1]

= E[∆(O)d(X)] +
1

2
E[W1 −∆(O)]

= E[τ(X)d(X)] +
1

2
E[W1 −∆(O)],

where the last equality holds under the union model M1 ∪M2 ∪M3. The proof of the multiple

robustness is omitted since it simply follows the same arguments of Theorem 1 in Ye et al. [2022].

We also note that

E[W2I{Z = d(X)}]

=
1

2
E[W2(2I{Z = d(X)} − 1)] +

1

2
E[W2]

=
1

2
E[W2(2Z − 1)(2d(X)− 1)] +

1

2
E[W2]

=
1

2
E[∆(O)(2d(X)− 1)] +

1

2
E[W2]

= E[∆(O)d(X)] +
1

2
E[W2 −∆(O)]

= E[τ(X)d(X)] +
1

2
E[W2 −∆(O)],

where the last equality holds under the union model M1 ∪M2 ∪M3.
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F A locally efficient and multiply robust estimator

In this section, we present the semiparametric efficiency results for our proposed IPW formula:

Ψ(P ) = E

[
(2Z − 1)(2T − 1)(2A− 1)Y I{A = d(X)}

π(T,Z,X)δA(X)

]
.

We first characterize the efficient influence function, and then propose the multiply robust

estimator.

Theorem 9. The efficient influence function of Ψ(P ) is

ϕP =
(2Z − 1)(2T − 1)(2A− 1)Y I{A = d(X)}

π(T,Z,X)δA(X)

− (2Z − 1)(2T − 1)E[(2A− 1)Y I{A = d(X)} | T,Z,X]

π(T,Z,X)δA(X)
+ γ(X)

− (2Z − 1)(2T − 1)(A− µA(T,Z,X))γ(X)

π(T,Z,X)δA(X)
−Ψ(P ),

where γ(x) =
∑

t,z(2z − 1)(2t− 1)E[(2A− 1)Y I{A = d(X)} | T = t, Z = z,X = x]/δA(x).

By Theorem 9, we conclude that the optimal policy is nonparametrically identified by argmaxD ψP ,

where

ψP = E

[
(2Z − 1)(2T − 1)(2A− 1)Y I{A = d(X)}

π(T,Z,X)δA(X)

−(2Z − 1)(2T − 1)E[(2A− 1)Y I{A = d(X)} | T,Z,X]

π(T,Z,X)δA(X)
+ γ(X)

−(2Z − 1)(2T − 1)(A− µA(T,Z,X))γ(X)

π(T,Z,X)δA(X)

]
.

In Theorem 10, we show the multiple robustness of the above formula under models:

M̃1: models for π(t, z, x) and δA(x) are correct;

M̃2: models for π(t, z, x) and γ(x) are correct;

M̃3: models for µA(t, z, x), γ(x) and ν(t, z, x) are correct, where ν(t, z, x) = E[(2A − 1)Y I{A =

d(X)} | T = t, Z = z,X = x].
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Theorem 10. Under standard regularity conditions, we have that

Pnψ(P̂ ) = Pn

[
(2Z − 1)(2T − 1)(2A− 1)Y I{A = d(X)}

π̂(T,Z,X)δ̂A(X)

−(2Z − 1)(2T − 1)Ê[(2A− 1)Y I{A = d(X)} | T,Z,X]

π̂(T,Z,X)δ̂A(X)
+ γ̂(X)

−(2Z − 1)(2T − 1)(A− µ̂A(T,Z,X))γ̂(X)

π̂(T,Z,X)δ̂A(X)

]

is a consistent and asymptotically normal estimator of Ψ(P ) under the union model M̃1∪M̃2∪M̃3.

Furthermore, it is locally efficient under the intersection model M̃1 ∩ M̃2 ∩ M̃3.

Despite the fact that we characterize the efficient influence function and propose a multiply

robust estimator, note that it is not straightforward to posit models for γ(x) and ν(t, z, x).

G Proof of Theorem 9 and Theorem 10

We first prove Theorem 9 by deriving the efficient influence function.

For a given distribution P in the nonparametric statistical model M, we let p denote the density

of P with respect to some dominating measure ν. For all bounded h ∈ L2(P ), define the parametric

submodel pϵ = (1 + ϵh)p, which is valid for small enough ϵ and has score h at ϵ = 0.

We study the following statistical functional

Ψ(P ) = EP

[
(2Z − 1)(2T − 1)(2A− 1)Y I{A = d(X)}

π(T,Z,X)δA(X)

]
,

and would establish that Ψ(P ) is pathwise differentiable with respect to M at P with efficient

influence function ϕP if we have that for any P ∈ M

∂

∂ϵ
Ψ(Pϵ)

∣∣∣∣
ϵ=0

=

∫
ϕP (o)h(o)dP (o).

We denote πϵ(t, z, x) = EPϵ [I{T = t, Z = z} | X = x], δA,ϵ(x) = µA,ϵ(1, 1, x) − µA,ϵ(0, 1, x) −

µA,ϵ(1, 0, x) + µA,ϵ(0, 0, x), µA,ϵ(t, z, x) = EPϵ [A | T = t, Z = z,X = x], S = ∂ log pϵ/∂ϵ, and
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compute

∂

∂ϵ
Ψ(Pϵ)

∣∣∣∣
ϵ=0

=
∂

∂ϵ
EPϵ

[
(2Z − 1)(2T − 1)(2A− 1)Y I{A = d(X)}

πϵ(T,Z,X)δA,ϵ(X)

] ∣∣∣∣
ϵ=0

=
∂

∂ϵ
EP

[
(1 + ϵS)

(2Z − 1)(2T − 1)(2A− 1)Y I{A = d(X)}
πϵ(T,Z,X)δA,ϵ(X)

] ∣∣∣∣
ϵ=0

= EP

[
S
(2Z − 1)(2T − 1)(2A− 1)Y I{A = d(X)}

π(T,Z,X)δA(X)

]
− EP

[
(2Z − 1)(2T − 1)(2A− 1)Y I{A = d(X)}

π2(T,Z,X)δ2A(X)

(
δA(X)

∂

∂ϵ
πϵ(T,Z,X)

∣∣∣∣
ϵ=0

+π(T,Z,X)
∂

∂ϵ
δA,ϵ(X)

∣∣∣∣
ϵ=0

)]
.

Then we need to compute

∂

∂ϵ
πϵ(t, z,X)

∣∣∣∣
ϵ=0

=
∂

∂ϵ
EPϵ [I{T = t, Z = z} | X]

∣∣∣∣
ϵ=0

=
∂

∂ϵ

π(t, z,X) + ϵEP [SI{T = t, Z = z} | X]

1 + ϵEP [S | X]

∣∣∣∣
ϵ=0

= EP [SI{T = t, Z = z} | X]− π(t, z,X)EP [S | X],

∂

∂ϵ
δA,ϵ(X)

∣∣∣∣
ϵ=0

=
∂

∂ϵ
{µA,ϵ(1, 1, X)− µA,ϵ(0, 1, X)− µA,ϵ(1, 0, X) + µA,ϵ(0, 0, X)}

∣∣∣∣
ϵ=0

,

and

∂

∂ϵ
µA,ϵ(t, z,X)

∣∣∣∣
ϵ=0

=
∂

∂ϵ
EPϵ [A | T = t, Z = z,X]

∣∣∣∣
ϵ=0

=
∂

∂ϵ

µA(t, z,X) + ϵEP [SA | T = t, Z = z,X]

1 + ϵEP [S | T = t, Z = z,X]

∣∣∣∣
ϵ=0

= EP [SA | T = t, Z = z,X]− µA(t, z,X)EP [S | T = t, Z = z,X]

= EP

[
S
(A− µA(t, z,X))I{T = t, Z = z}

π(t, z,X)
| X
]
.
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In summary, we obtain the efficient influence function

ϕP =
(2Z − 1)(2T − 1)(2A− 1)Y I{A = d(X)}

π(T,Z,X)δA(X)

− (2Z − 1)(2T − 1)E[(2A− 1)Y I{A = d(X)} | T,Z,X]

π(T,Z,X)δA(X)
+ γ(X)

− (2Z − 1)(2T − 1)(A− µA(T,Z,X))γ(X)

π(T,Z,X)δA(X)
−Ψ(P ),

which completes the proof of Theorem 9.

Next, we prove Theorem 10 by verifying the multiple robustness property.

We first note the facts that µA(T,Z,X) = µA(0, 0, x)+Z(µA(0, 1, x)−µA(0, 0, x))+T (µA(1, 0, x)−

µA(0, 0, x))+TZδA(X), ν(T,Z,X) = ν(0, 0, x)+Z(ν(0, 1, x)−ν(0, 0, x))+T (ν(1, 0, x)−ν(0, 0, x))+

TZδA(X), E[(2Z − 1)(2T − 1)/π(T,Z,X) | T,X] = E[(2Z − 1)(2T − 1)/π(T,Z,X) | Z,X] = 0,

and E[γ(X)] = Ψ(P ).

If M̃1 is correctly specified, we have that

E[ϕP (O)] = E

[
(2Z − 1)(2T − 1)(A− µA(T,Z,X))γ(X)

π(T,Z,X)δA(X)

]
= E

[
(2Z − 1)(2T − 1)γ(X)

π(T,Z,X)δA(X)
(A− µA(T,Z,X))

]
= 0.

If M̃2 is correctly specified, we have that

E[ϕP (O)] = E

[
(2Z − 1)(2T − 1)(2A− 1)Y I{A = d(X)}

π(T,Z,X)δA(X)

−(2Z − 1)(2T − 1)E[(2A− 1)Y I{A = d(X)} | T,Z,X]

π(T,Z,X)δA(X)

−(2Z − 1)(2T − 1)(A− µA(T,Z,X))γ(X)

π(T,Z,X)δA(X)

]
= 0.

If M̃3 is correctly specified, we have that

E[ϕP (O)] = E

[
(2Z − 1)(2T − 1)(2A− 1)Y I{A = d(X)}

π(T,Z,X)δA(X)

−(2Z − 1)(2T − 1)E[(2A− 1)Y I{A = d(X)} | T,Z,X]

π(T,Z,X)δA(X)

]
= 0,

which completes the proof.
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H Proof of Theorem 5

We study the following maximization problem:

η̂ = argmax
η∈H

1

n

n∑
i=1

(
δY (Xi; β̂)

δA(Xi; α̂)
+

(2Zi − 1)(2Ti − 1)

π(Ti, Zi, Xi; θ̂)δA(Xi; α̂)

{
Yi − µY (Ti, Zi, Xi; β̂)

−δY (Xi; β̂)

δA(Xi; α̂)
(Ai − µA(Ti, Zi, Xi; α̂))

})
d(Xi; η),

where α̂, β̂ and θ̂ are estimated by posited parametric models. We let M̂(η) denote the estimated

objective function above, i.e. η̂ = argmaxη∈H M̂(η).

Under standard regularity conditions, we have that

√
n(α̂− α∗) =

1√
n

n∑
i=1

ϕα,i + op(1),

√
n(β̂ − β∗) =

1√
n

n∑
i=1

ϕβ,i + op(1),

√
n(θ̂ − θ∗) =

1√
n

n∑
i=1

ϕθ,i + op(1),

where α∗, β∗ and θ∗ are the probability limits, ϕα, ϕβ and ϕθ are the influence functions.

Now we start our proof which has three main parts as follows.

PART 1. First we note that, by the multiple robustness property, the strong law of large

numbers and uniform consistency, M̂(η) =M(η) + op(1).

We denote

M∗
n(η) =

1

n

n∑
i=1

(
δY (Xi;β

∗)

δA(Xi;α∗)
+

(2Zi − 1)(2Ti − 1)

π(Ti, Zi, Xi; θ∗)δA(Xi;α∗)
{Yi − µY (Ti, Zi, Xi;β

∗)

−δY (Xi;β
∗)

δA(Xi;α∗)
(Ai − µA(Ti, Zi, Xi;α

∗))

})
d(Xi; η),

and apply the Taylor expansion on M̂(η) at (α∗, β∗, θ∗),

M̂(η) =M∗
n(η) +HT

α∗(α̂− α∗) +HT
β∗(β̂ − β∗) +HT

θ∗(θ̂ − θ∗) + op(n
−1/2),

whereHα∗ = limn→∞ ∂M̂(η)/∂α|α=α∗ ,Hβ∗ = limn→∞ ∂M̂(η)/∂β|β=β∗ , andHθ∗ = limn→∞ ∂M̂(η)/∂θ|θ=θ∗ .
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Hence, we obtain that

√
n
{
M̂(η)−M(η)

}
=

1√
n

n∑
i=1

(
M∗

n(η)−M(η) +HT
α∗ϕα,i +HT

β∗ϕβ,i +HT
θ∗ϕθ,i

)
+ op(1). (10)

PART 2. We prove that n1/3∥η̂ − η∗∥2 = Op(1).

First we note that, by Condition 1 (iii), M(η) is twice continuously differentiable at a neigh-

borhood of η∗. In PART 1, we show that M̂(η) = M(η) + op(1),∀η. Since η̂ maximizes M̂(η), we

have that M̂(η̂) ≥ supη M̂(η); thus by the Argmax theorem, we obtain that η̂
p→ η∗ as n→ ∞.

Then we apply Theorem 14.4 (Rate of convergence) of Kosorok [2008] to establish the n−1/3

rate of convergence of η̂, and need to find the suitable rate that satisfies three conditions below.

Condition 1 For every η in a neighborhood of η∗ such that ∥η− η∗∥2 < δ, by Condition 1 (iii),

we apply the second-order Taylor expansion,

M(η)−M(η∗) =M ′(η∗)∥η − η∗∥2 +
1

2
M ′′(η∗)∥η − η∗∥22 + o(∥η − η∗∥22)

=
1

2
S′′(η∗)∥η − η∗∥22 + o(∥η − η∗∥22),

and as S′′(η∗) < 0, there exists c0 = −1
2S

′′(η∗) > 0 such that S(t; η)− S(t; η∗) ≤ c0∥η − η∗∥22.

Condition 2 For all n large enough and sufficiently small δ, we consider the centered process

M̂ −M , and have that

E∗

[
√
n sup

∥η−η∗∥2<δ

∣∣∣M̂(η)−M(η)−
{
M̂(η∗)−M(η∗)

}∣∣∣]

= E∗

[
√
n sup

∥η−η∗∥2<δ

∣∣∣M̂(η)−M∗
n(η) +M∗

n(η)−M(η)−
{
M̂(η∗)−M∗

n(η
∗) +M∗

n(η
∗)−M(η∗)

}∣∣∣]

≤ E∗

[
√
n sup

∥η−η∗∥2<δ

∣∣∣M̂(η)−M∗
n(η)−

{
M̂(η∗)−M∗

n(η
∗)
}∣∣∣]

+ E∗

[
√
n sup

∥η−η∗∥2<δ
|M∗

n(η)−M(η)− {M∗
n(η

∗)−M(η∗)}|

]

= (I) + (II),

where E∗(·) denote the outer expectation, and we bound (I) and (II) respectively as follows.
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Condition 2.1 To bound (II), we note that

M∗
n(η)−M∗

n(η
∗) =

1

n

n∑
i=1

∆∗(Oi)(d(Xi; η)− d(Xi; η∗))

=
1

n

n∑
i=1

∆∗(Oi)(I{XT
i η > 0} − I{XT

i η
∗ > 0}),

where

∆∗(o) =
δY (x;β

∗)

δA(x;α∗)
+

(2z − 1)(2t− 1)

π(t, z, x; θ∗)δA(x;α∗)

{
y − µY (t, z, x;β

∗)− δY (x;β
∗)

δA(x;α∗)
(a− µA(t, z, x;α

∗))

}
.

We define a class of functions

F1
η (o) =

{
∆∗(o)(I{xTη > 0} − I{xTη∗ > 0}) : ∥η − η∗∥2 < δ

}
,

and let B1 = sup |∆∗(o)|. By Assumption 2 and Condition 1, we have that B1 <∞.

When ∥η − η∗∥2 < δ, by Condition 1 (i), there exists a constant 0 < k0 < ∞ such that

|xT(η−η∗)| < k0δ. Furthermore, we show that |d(x; η)−d(x; η∗)| = |I{xTη > 0}− I{xTη∗ > 0}| ≤

I{−k0δ ≤ xTη∗ ≤ k0δ}, by considering the three cases:

• when −k0δ ≤ xTη∗ ≤ k0δ, we have |d(x; η)− d(x; η∗)| ≤ 1 = I{−k0δ ≤ xTη∗ ≤ k0δ};

• when xTη∗ > k0δ > 0, we have xTη = xT(η − η∗) + xTη∗ > 0, so |d(x; η) − d(x; η∗)| = 0 =

I{−k0δ ≤ xTη∗ ≤ k0δ};

• when xTη∗ < −k0δ < 0, we have xTη = xT(η − η∗) + xTη∗ < 0, so |d(x; η)− d(x; η∗)| = 0 =

I{−k0δ ≤ xTη∗ ≤ k0δ}.

Thus we define the envelope of F1
η as F1 = B1I{−k0δ ≤ xTη∗ ≤ k0δ}. By Condition 1 (iv),

there exists a constant 0 < k1 <∞ such that

∥F1∥P,2 ≤ B1

√
Pr(−k0δ ≤ xTη∗ ≤ k0δ) ≤ B1

√
2k0k1δ

1/2 <∞.

By Lemma 9.6 and Lemma 9.9 of Kosorok [2008], we have that F1
η , a class of indicator functions,

is a Vapnik-Cervonenkis (VC) class with bounded bracketing entropy J∗
[](1,F

1
η ) <∞.
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Next, we note that

GnF1
η = n−1/2

n∑
i=1

{
F1
η (Oi)− E[F1

η (O)]
}

=
√
n (M∗

n(η)−M∗
n(η

∗)− {M(η)−M(η∗)}) ,

and by Theorem 11.2 of Kosorok [2008], we obtain that there exists a constant 0 < c1 <∞,

(II) = E∗

[
sup

∥η−η∗∥2<δ
|GnF1

η |

]
≤ c1J

∗
[](1,F

1
η )∥F1∥P,2 ≤ c1J

∗
[](1,F

1
η )B1

√
2k0k1δ

1/2 = c̃1δ
1/2,

hence we conclude that (II) ≤ c̃1δ
1/2, where c̃1 > 0 is a finite constant.

Condition 2.2 To bound (I), first we note that

M̂(η)−M∗
n(η)− {M̂(η∗)−M∗

n(η
∗)} = M̂(η)− M̂(η∗)− {M∗

n(η)−M∗
n(η

∗)}

=
1

n

n∑
i=1

(d(Xi; η)− d(Xi; η∗))(∆̂(Oi)−∆∗(Oi)),

and then apply the Taylor expansion at (α∗, β∗, θ∗)

M̂(η)−M∗
n(η)− {M̂(η∗)−M∗

n(η
∗)}

=
1

n

n∑
i=1

(d(Xi; η)− d(Xi; η∗))

{[
g∗1(Oi)

(
∂δA(Xi;α

∗)

∂α

)T

+ g∗2(Oi)

(
∂µA(Ti, Zi, Xi;α

∗)

∂α

)T
]
(α̂− α∗)

+

[
g∗3(Oi)

(
∂δY (Xi;β

∗)

∂β

)T

+ g∗4(Oi)

(
∂µY (Ti, Zi, Xi;β

∗)

∂β

)T
]
(β̂ − β∗)

+g∗5(Oi)

(
∂π(Ti, Zi, Xi; θ

∗)

∂θ

)T

(θ̂ − θ∗)

}
+ op(n

−1/2),

(11)

where

g∗1(o) = −δY (x;β
∗)

δ2A(x;α
∗)
−(2z − 1)(2t− 1)(y − µY (t, z, x;β

∗))

π(t, z, x; θ∗)δ2A(x;α
∗)

+
2(2z − 1)(2t− 1)δY (x;β

∗)

π(t, z, x; θ∗)δ3A(x;α
∗)

(a−µA(t, z, x;α∗)),

g∗2(o) =
(2z − 1)(2t− 1)δY (x;β

∗)

π(t, z, x; θ∗)δ2A(x;α
∗)

,

40



g∗3(o) =
1

δ2A(x;α
∗)

− 2(2z − 1)(2t− 1)

π(t, z, x; θ∗)δ2A(x;α
∗)
(a− µA(t, z, x;α

∗)),

g∗4(o) = − (2z − 1)(2t− 1)

π(t, z, x; θ∗)δA(x;α∗)
,

g∗5(o) = − (2z − 1)(2t− 1)

π2(t, z, x; θ∗)δA(x;α∗)

{
y − µY (t, z, x;β

∗)− δY (x;β
∗)

δA(x;α∗)
(a− µA(t, z, x;α

∗))

}
.

Similarly, we define the following classes of functions

F2
η (o) =

{[
g∗1(o)

(
∂δA(x;α

∗)

∂α

)T

+ g∗2(o)

(
∂µA(t, z, x;α

∗)

∂α

)T
]
(I{xTη > 0} − I{xTη∗ > 0}) : ∥η − η∗∥2 < δ

}
,

F3
η (o) =

{[
g∗3(o)

(
∂δY (x;β

∗)

∂β

)T

+ g∗4(o)

(
∂µY (t, z, x;β

∗)

∂β

)T
]
(I{xTη > 0} − I{xTη∗ > 0}) : ∥η − η∗∥2 < δ

}
,

F4
η (o) =

{
g∗5(o)

(
∂π(t, z, x; θ∗)

∂θ

)T

(I{xTη > 0} − I{xTη∗ > 0}) : ∥η − η∗∥2 < δ

}
,

and let B2 = sup |g∗1(o)∂δA(x;α∗)/∂α+ g∗2(o)∂µA(t, z, x;α
∗)/∂α|, B3 = sup |g∗3(o)∂δY (x;β∗)/∂β +

g∗4(o)∂µY (t, z, x;β
∗)/∂β|, and B4 = sup |g∗5(o)∂π(t, z, x; θ∗)/∂θ|, where B2, B3, B4 > 0 and the

supremum is taken over all the coordinates. By Assumption 2 and Condition 1, we have that

B2, B3, B4 <∞.

Using the same technique as inCondition 2.1, we define the envelop of F j
η as Fj = BjI{−k0δ ≤

xTη∗ ≤ k0δ} for j = 2, 3, 4, and obtain that

∥Fj∥P,2 ≤ B̃jδ
1/2 <∞, j = 2, 3, 4,

where B̃2, B̃3, B̃4 are some finite constants, and that F j
η is a VC class with bounded bracketing

entropy J∗
[](1,F

j
η) <∞, for j = 2, 3, 4. By Theorem 11.2 of Kosorok [2008], we obtain that

E∗

[
sup

∥η−η∗∥2<δ

∥∥GNF j
η

∥∥
1

]
≤ cjJ

∗
[](1,F

j
η)∥Fj∥P,2, j = 2, 3, 4,

where c2, c3, c4 > 0 are some finite constants.
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Furthermore, by Theorem 2.14.5 of van der Vaart and Wellner [1996], we obtain that

{
E∗

[
sup

∥η−η∗∥2<δ
∥GnF j

η∥22

]}1/2

≤ lj

{
E∗

[
sup

∥η−η∗∥2<δ
∥GnF j

η∥1

]
+ ∥Fj∥P,2

}

≤ lj{cjJ∗
[](1,F

j
η) + 1}∥Fj∥P,2

≤ c̃jδ
1/2, j = 2, 3, 4,

where l2, l3, l4 and c̃2, c̃3, c̃4 are some finite constants.

By Equation (11), we have that

(I) = E∗

[
n1/2 sup

∥η−η∗∥2<δ

∣∣∣M̂(η)−M∗
n(η)− {M̂(η∗)−M∗

n(η
∗)}
∣∣∣]

≤ E∗

[
sup

∥η−η∗∥2<δ

{
|GnF2

η (α̂− α∗)|+ |GnF3
η (β̂ − β∗)|+ |GnF4

η (θ̂ − θ∗)|+ op(1)
}]

≤ n−1/2

{
E∗

[
sup

∥η−η∗∥2<δ
|GnF2

η · n1/2(α̂− α∗)|

]
+ E∗

[
sup

∥η−η∗∥2<δ
|GnF3

η · n1/2(β̂ − β∗)|

]

+E∗

[
sup

∥η−η∗∥2<δ
|GnF4

η · n1/2(θ̂ − θ∗)|

]}
,

and then by the Cauchy-Schwarz inequality, we obtain that

(I) ≤n−1/2
{
E[n∥α̂− α∗∥22]

}1/2{
E∗

[
sup

∥η−η∗∥2<δ
∥GnF2

η∥22

]}1/2

+ n−1/2
{
E[n∥β̂ − β∗∥22]

}1/2
{
E∗

[
sup

∥η−η∗∥2<δ
∥GnF3

η∥22

]}1/2

+ n−1/2
{
E[n∥θ̂ − θ∗∥22]

}1/2
{
E∗

[
sup

∥η−η∗∥2<δ
∥GnF4

η∥22

]}1/2

.

By Condition 2, we have that Bα =
{
E[n∥α̂− α∗∥22]

}1/2
<∞, Bβ =

{
E[n∥β̂ − β∗∥22]

}1/2
<∞,

Bθ =
{
E[n∥θ̂ − θ∗∥22]

}1/2
<∞, hence

(I) ≤ n−1/2(Bαc̃2 +Bβ c̃3 +Bθ c̃4)δ
1/2.
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In summary, we conclude that as n→ ∞, the centered process satisfies

E∗

[
√
n sup

∥η−η∗∥2<δ

∣∣∣M̂(η)−M(η)− {M̂(η∗)−M(η∗)}
∣∣∣] ≤ (I) + (II) ≤ c̃1δ

1/2. (12)

Let ϕn(δ) = δ1/2 and b = 3
2 < 2, thus we have ϕn(δ)

δb
= δ−1 is decreasing, and b does not depend

on n.

Condition 3 By the facts that η̂
p→ η∗ as n → ∞, and that M̂(η̂) ≥ supη M̂(η), we choose

rn = n1/3 such that r2nϕn(r
−1
n ) = n2/3ϕn(n

−1/3) = n1/2.

In the end, the three conditions are satisfied with rn = n1/3; thus we conclude that n1/3∥η̂ −

η∗∥2 = Op(1), which completes the proof of (i) of Theorem 5.

PART 3. We characterize the asymptotic distribution of M̂(η̂). First we note that

√
n{M̂(η̂)−M(η∗)} =

√
n{M̂(η̂)− M̂(η∗)}+

√
n{M̂(η∗)−M(η∗)},

and then study the two terms in two steps.

Step 3.1 To establish
√
n{M̂(η̂)−M̂(η∗)} = op(1), it suffices to show that

√
n{M(η̂)−M(η∗)} =

op(1) and
√
n(M̂(η̂)− M̂(η∗)− {M(η̂)−M(η∗)}) = op(1).

First, as n1/3∥η̂ − η∗∥2 = Op(1), we apply the second-order Taylor expansion

√
n{M(η̂)−M(η∗)} =

√
n

{
M ′(η∗)∥η̂ − η∗∥2 +

1

2
M ′′(η∗)∥η̂ − η∗∥22 + op(∥η̂ − η∗∥22)

}
=

√
n

{
1

2
M ′′(η∗)∥η̂ − η∗∥22 + op(∥η̂ − η∗∥22)

}
=

√
n

{
1

2
M ′′(η∗)Op(n

−2/3) + op(n
−2/3)

}
= op(1),

which proves (ii) of Theorem 5.

Next, we follow the result (12) obtained in PART 2. As n1/3∥η̂ − η∗∥2 = Op(1), there exists
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δ̃ = c5n
−1/3, where c5 <∞ is a finite constant, such that ∥η̂ − η∗∥2 ≤ δ̃. Therefore we have

√
n(M̂(η̂)− M̂(η∗)− {M(η̂)−M(η∗)})

≤ E∗

[
√
n sup

∥η̂−η∗∥2<δ̃

∣∣∣M̂(η̂)−M(η̂)− {M̂(η∗)−M(η∗)}
∣∣∣]

≤ c̃1δ̃
1/2 = c̃1

√
c5n

−1/6 = op(1),

which yields the result.

Step 3.2 To derive the asymptotic distribution of
√
n{M̂(η∗)−M(η∗)}, we follow the result (10)

obtained in PART 1 and have that

√
n
{
M̂(η∗)−M(η∗)

}
D→ N (0, σ21),

where σ21 = E[(M∗ −M +HT
α∗ϕα,i +HT

β∗ϕβ,i +HT
θ∗ϕθ,i)

2].

Therefore we obtain in the end

√
n{M̂(η̂)−M(η∗)} =

√
n{M̂(η̂)− M̂(η∗)}+

√
n{M̂(η∗)−M(η∗)}

= op(1) +
√
n{M̂(η∗)−M(η∗)}

D→ N (0, σ21),

which completes the proof.

I Proof of Theorem 6

We first review a useful lemma from Kennedy et al. [2020], which illustrates the basic technique of

cross-fitting.

Lemma 1. Consider two independent samples O1 = (O1, . . . , On) and O2 = (On+1, . . . , Oñ), let

f̂(o) be a function estimated from O2 and Pn the empirical measure over O1, then we have

(Pn − P)(f̂ − f) = OP

(
∥f̂ − f∥√

n

)
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Proof. First note that by conditioning on O2 we obtain

E
{
Pn(f̂ − f)

∣∣O2

}
= E(f̂ − f | O2) = P(f̂ − f)

and the conditional variance is

var{(Pn − P)(f̂ − f) | O2} = var{Pn(f̂ − f) | O2} =
1

n
var(f̂ − f | O2) ≤ ∥f̂ − f∥2/n

therefore by Chebyshev’s inequality we have

P

{
|(Pn − P)(f̂ − f)|

∥f̂ − f∥2/n
≥ t

}
= E

[
P

{
|(Pn − P)(f̂ − f)|

∥f̂ − f∥2/n
≥ t

∣∣∣∣O2

}]
≤ 1

t2

thus for any ϵ > 0 we can pick t = 1/
√
ϵ so that the probability above is no more than ϵ, which

yields the result.

We randomly split data into K folds. For k = 1, . . . ,K,

M̂(η) =
1

K

K∑
k=1

M̂k(η) =
1

K

K∑
k=1

Pn,k{∆(O; µ̂A,−k, µ̂Y,−k, π̂−k)d(X)},

where Pn,k denote empirical averages only over the k-th fold, and µ̂A,−k, µ̂Y,−k and π̂−k denote the

nuisance estimators constructed excluding the k-th fold.

Now we start our proof which has three main parts as follows.

PART 1. We prove that M̂(η)−Mn(η) = op(n
−1/2), whereMn(η) = Pn{∆(O)d(X, η)}. Essen-

tially it suffices to prove that M̂k(η)−Mn,k(η) = op(n
−1/2), where Mn,k(η) = Pn,k{∆(O)d(X, η)}.
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First we note the following decomposition

M̂k(η)−Mn,k(η)

= Pn,k d(η)

{
δ̂Y,−k

δ̂A,−k

− δY
δA

+ (2Z − 1)(2T − 1)

[(
1

π̂−k
− 1

π

)(
1

δ̂A,−k

− 1

δA

)(
Y − µ̂Y,−k −

δ̂Y,−k

δ̂A,−k

(A− µ̂A,−k)

)

+
1

δA

(
1

π̂−k
− 1

π

)
G1 +

1

π

(
1

δ̂A,−k

− 1

δA

)
G1 +

1

πδA
G2

+
1

δA

(
1

π̂−k
− 1

π

)(
Y − µY − δY

δA
(A− µA)

)
+

1

π

(
1

δ̂A,−k

− 1

δA

)(
Y − µY − δY

δA
(A− µA)

)

+
1

πδA

(
µY − µ̂Y,−k −

1

δA
(δ̂Y,−k − δY )(A− µA)− δY

(
1

δ̂A,−k

− 1

δA

)
(A− µA) +

δY
δA

(µ̂A,−k − µA)

)]}
,

where we omit the arguments of the nuisance functions to simplify the notation, and denote

G1 = µY − µ̂Y,−k − (δ̂Y,−k − δY )

(
1

δ̂A,−k

− 1

δA

)
(A− µA)−

1

δA
(δ̂Y,−k − δY )(A− µA)

+
1

δA
(δ̂Y,−k − δY )(µ̂A,−k − µA)− δY

(
1

δ̂A,−k

− 1

δA

)
(A− µA)

+ δY

(
1

δ̂A,−k

− 1

δA

)
(µ̂A,−k − µA) +

δY
δA

(µ̂A,−k − µA),

G2 =
δ̂Y,−k − δY

δA
(µ̂A,−k−µA)+δY

(
1

δ̂A,−k

− 1

δA

)
(µ̂A,−k−µA)−(δ̂Y,−k−δY )

(
1

δ̂A,−k

− 1

δA

)
(A−µA).

In summary, we have two types of terms from this decomposition: product terms and mean zero

terms (by multiple robustness). The product terms are op(n
−1/2) by Cauchy-Schwarz inequality

and Condition 3 (rate of convergence). The mean zero terms are op(n
−1/2) by Lemma 1.

PART 2. We prove that n1/3∥η̂ − η∗∥2 = Op(1).

First we note that, by Condition 1 (iii), M(η) is twice continuously differentiable at a neigh-

borhood of η∗. In PART 1, we show that M̂(η) = M(η) + op(1),∀η. Since η̂ maximizes M̂(η), we

have that M̂(η̂) ≥ supη M̂(η); thus by the Argmax theorem, we obtain that η̂
p→ η∗ as n→ ∞.

Then we apply Theorem 14.4 (Rate of convergence) of Kosorok [2008] to establish the n−1/3

rate of convergence of η̂, and need to find the suitable rate that satisfies three conditions below.

Condition 1 For every η in a neighborhood of η∗ such that ∥η− η∗∥2 < δ, by Condition 1 (iii),
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we apply the second-order Taylor expansion,

M(η)−M(η∗) =M ′(η∗)∥η − η∗∥2 +
1

2
M ′′(η∗)∥η − η∗∥22 + o(∥η − η∗∥22)

=
1

2
S′′(η∗)∥η − η∗∥22 + o(∥η − η∗∥22),

and as S′′(η∗) < 0, there exists c0 = −1
2S

′′(η∗) > 0 such that S(t; η)− S(t; η∗) ≤ c0∥η − η∗∥22.

Condition 2 For all n large enough and sufficiently small δ, we consider the centered process

M̂ −M , and have that

E∗

[
√
n sup

∥η−η∗∥2<δ

∣∣∣M̂(η)−M(η)−
{
M̂(η∗)−M(η∗)

}∣∣∣]

= E∗

[
√
n sup

∥η−η∗∥2<δ

∣∣∣M̂(η)−M∗
n(η) +M∗

n(η)−M(η)−
{
M̂(η∗)−M∗

n(η
∗) +M∗

n(η
∗)−M(η∗)

}∣∣∣]

≤ E∗

[
√
n sup

∥η−η∗∥2<δ

∣∣∣M̂(η)−M∗
n(η)−

{
M̂(η∗)−M∗

n(η
∗)
}∣∣∣]

+ E∗

[
√
n sup

∥η−η∗∥2<δ
|M∗

n(η)−M(η)− {M∗
n(η

∗)−M(η∗)}|

]

= (I) + (II),

where E∗(·) denote the outer expectation, and we bound (I) and (II) respectively as follows.

It follows from the result in PART 1 that (I) = op(1).

To bound (II), we note that

M∗
n(η)−M∗

n(η
∗) =

1

n

n∑
i=1

∆∗(Oi)(d(Xi; η)− d(Xi; η∗))

=
1

n

n∑
i=1

∆∗(Oi)(I{XT
i η > 0} − I{XT

i η
∗ > 0}),

where

∆∗(o) =
δY (x)

δA(x)
+

(2z − 1)(2t− 1)

π(t, z, x)δA(x)

{
y − µY (t, z, x)−

δY (x)

δA(x)
(a− µA(t, z, x))

}
.
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We define a class of functions

F5
η (o) =

{
∆∗(o)(I{xTη > 0} − I{xTη∗ > 0}) : ∥η − η∗∥2 < δ

}
,

and let B5 = sup |∆∗(o)|. By Assumption 2 and Condition 1, we have that B5 <∞.

Using the same technique as in Section Condition 2.1, we define the envelop of F5
η as F5 =

B5I{−k0δ ≤ xT η∗ ≤ k0δ}, and obtain that ∥F5∥P,2 ≤ B̃9δ
1/2 < ∞, where B̃9 is a finite constant,

and that F5
η is a VC class with bounded entropy J∗

[](1,F
5
η ) < ∞. By Theorem 11.2 of Kosorok

[2008], we obtain that there exists a constant 0 < c6 <∞,

(II) = E∗

[
sup

∥η−η∗∥2<δ
|GnF5

η |

]
≤ c6J

∗
[](1,F

5
η )∥F5∥P,2 ≤ c6J

∗
[](1,F

5
η )B5

√
2k0k1δ

1/2 = c̃5δ
1/2.

In summary, we conclude that as n→ ∞, the centered process satisfies

E∗

[
√
n sup

∥η−η∗∥2<δ

∣∣∣M̂(η)−M(η)− {M̂(η∗)−M(η∗)}
∣∣∣] ≤ (I) + (II) ≤ c̃5δ

1/2. (13)

Let ϕn(δ) = δ1/2 and b = 3
2 < 2, thus we have ϕn(δ)

δb
= δ−1 is decreasing, and b does not depend

on n.

Condition 3 By the facts that η̂
p→ η∗ as n → ∞, and that M̂(η̂) ≥ supη M̂(η), we choose

rn = n1/3 such that r2nϕn(r
−1
n ) = n2/3ϕn(n

−1/3) = n1/2.

In the end, the three conditions are satisfied with rn = n1/3; thus we conclude that n1/3∥η̂ −

η∗∥2 = Op(1), which completes the proof of (i) of Theorem 6.

PART 3. We characterize the asymptotic distribution of M̂(η̂). First we note that

√
n{M̂(η̂)−M(η∗)} =

√
n{M̂(η̂)− M̂(η∗)}+

√
n{M̂(η∗)−M(η∗)},

and then study the two terms in two steps.

Step 3.1 To establish
√
n{M̂(η̂)−M̂(η∗)} = op(1), it suffices to show that

√
n{M(η̂)−M(η∗)} =

op(1) and
√
n(M̂(η̂)− M̂(η∗)− {M(η̂)−M(η∗)}) = op(1).
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First, as n1/3∥η̂ − η∗∥2 = Op(1), we apply the second-order Taylor expansion

√
n{M(η̂)−M(η∗)} =

√
n

{
M ′(η∗)∥η̂ − η∗∥2 +

1

2
M ′′(η∗)∥η̂ − η∗∥22 + op(∥η̂ − η∗∥22)

}
=

√
n

{
1

2
M ′′(η∗)∥η̂ − η∗∥22 + op(∥η̂ − η∗∥22)

}
=

√
n

{
1

2
M ′′(η∗)Op(n

−2/3) + op(n
−2/3)

}
= op(1),

which proves (ii) of Theorem 6.

Next, we follow the result (13) obtained in PART 2. As n1/3∥η̂ − η∗∥2 = Op(1), there exists

δ̃ = c7n
−1/3, where c7 <∞ is a finite constant, such that ∥η̂ − η∗∥2 ≤ δ̃. Therefore we have

√
n(M̂(η̂)− M̂(η∗)− {M(η̂)−M(η∗)})

≤ E∗

[
√
n sup

∥η̂−η∗∥2<δ̃

∣∣∣M̂(η̂)−M(η̂)− {M̂(η∗)−M(η∗)}
∣∣∣]

≤ c̃5δ̃
1/2 = c̃5

√
c7n

−1/6 = op(1),

which yields the result.

Step 3.2 To derive the asymptotic distribution of
√
n{M̂(η∗) −M(η∗)}, we follow the result

obtained in PART 1 and have that

√
n
{
M̂(η∗)−M(η∗)

}
D→ N (0, σ22),

where σ22 = E[(∆(Oi)d(Xi; η
∗)−M(η∗))2].

Therefore we obtain in the end

√
n{M̂(η̂)−M(η∗)} =

√
n{M̂(η̂)− M̂(η∗)}+

√
n{M̂(η∗)−M(η∗)}

= op(1) +
√
n{M̂(η∗)−M(η∗)}

D→ N (0, σ22),

which completes the proof.
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J Proof of Theorem 7 and 8

We first prove the identification result.

First we note that

δY,1(X)− δY,0(X) = E[Y1 − Y0 | X,Z = 1]− E[Y1 − Y0 | X,Z = 0]

=
∑
z=0,1

(2z − 1)E[Y1 − Y0 | X,Z = z]

=
∑
z=0,1

(2z − 1)E[Y1(A1(z))− Y0(A0(z)) | X,Z = z]

=
∑
z=0,1

(2z − 1)E[A1(z)Y1(1) + (1−A1(z))Y1(0)−A0(z)Y0(1)− (1−A0(z))Y0(0) | Z = z,X]

=
∑
z=0,1

(2z − 1)E[A1(z)(Y1(1)− Y1(0))−A0(z)(Y0(1)− Y0(0)) + Y1(0)− Y0(0) | Z = z,X]

=
∑
z=0,1

(2z − 1)(E[A1(z)(Y1(1)− Y1(0)) | X,Z = z]− E[A0(z)(Y0(1)− Y0(0)) | X,Z = z]

+ E[Y1(0)− Y0(0) | X,Z = z])

=
∑
z=0,1

(2z − 1)(E[A1(z)(Y1(1)− Y1(0)) | X,Z = z]− E[A0(z)(Y0(1)− Y0(0)) | X,Z = z]

=
∑
z=0,1

(2z − 1)(E[A1(z)(Y1(1)− Y1(0)) | X]− E[A0(z)(Y0(1)− Y0(0)) | X]

= E[(A1(1)−A1(0))(Y1(1)− Y1(0)) | X]− E[(A0(1)−A0(0))(Y0(1)− Y0(0)) | X]

= E[A1(1)−A1(0) | X]τ(X)− E[A0(1)−A0(0) | X]τ(X)

= E[A1(1)−A1(0)−A0(1) +A0(0) | X]τ(X).

We also note that

δA,1(X)− δA,0(X) = E[A1 −A0 | X,Z = 1]− E[A1 −A0 | X,Z = 0]

=
∑
z=0,1

(2z − 1)E[A1 −A0 | X,Z = z]

=
∑
z=0,1

(2z − 1)E[A1(z)−A0(z) | X,Z = z]

= E[A1(1)−A1(0)−A0(1) +A0(0) | X].
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Combining the above derivations, we obtain that δY,1(X)−δY,0(X) = (δA,1(X)−δA,0(X))τ(X).

That is, the CATE is identified by

τ(X) =
δY,1(X)− δY,0(X)

δA,1(X)− δA,0(X)
.

Alternatively, we consider the following assumptions: (sequential ignorability) Yt(a) ⊥ At |

U,X,Z for t, a = 0, 1, and there is no additive interaction of either (i) E[A1 − A0 | X,U,Z =

1]−E[A1−A0 | X,U,Z = 0] = E[A1−A0 | X,Z = 1]−E[A1−A0 | X,Z = 0] or (ii) E[Yt(1)−Yt(0) |

U,X] = E[Yt(1)− Yt(0) | X] for t = 0, 1.

We can continue that

δY,1(X)− δY,0(X)

=
∑
z=0,1

(2z − 1)(E[A1(z)(Y1(1)− Y1(0)) | X,Z = z]− E[A0(z)(Y0(1)− Y0(0)) | X,Z = z])

= EU

∑
z=0,1

(2z − 1)(E[A1(z)(Y1(1)− Y1(0)) | X,U,Z = z]− E[A0(z)(Y0(1)− Y0(0)) | X,U,Z = z]

= EU

∑
z=0,1

(2z − 1)(E[A1(z) | X,U,Z = z]E[Y1(1)− Y1(0) | X,U,Z = z]

− E[A0(z) | X,U,Z = z]E[Y0(1)− Y0(0) | X,U,Z = z])

= EU [E[Yt(1)− Yt(0) | U,X](E[A1 −A0 | X,U,Z = 1]− E[A1 −A0 | X,U,Z = 0])].

Under Assumption (i), we have that

E[A1 −A0 | X,U,Z = 1]− E[A1 −A0 | X,U,Z = 0]

= E[A1 −A0 | X,Z = 1]− E[A1 −A0 | X,Z = 0]

= δA,1(X)− δA,0(X);

or under Assumption (ii), we have that

E[Yt(1)− Yt(0) | U,X] = E[Yt(1)− Yt(0) | X], t = 0, 1,
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and also

EU [E[A1 −A0 | X,U,Z = 1]− E[A1 −A0 | X,U,Z = 0]] = δA,1(X)− δA,0(X).

Hence combining the above derivations, we obtain the same identification results.

Next, we derive the efficient influence function.

For a given distribution P in the nonparametric statistical model M, we let p denote the density

of P with respect to some dominating measure ν. For all bounded h ∈ L2(P ), define the parametric

submodel pϵ = (1 + ϵh)p, which is valid for small enough ϵ and has score h at ϵ = 0.

We study the following statistical functional

Ψ(P ) = EP

[
EP [Y1 − Y0 | X = x, Z = 1]− EP [Y1 − Y0 | X = x, Z = 0]

EP [A1 −A0 | X = x, Z = 1]− EP [A1 −A0 | X = x, Z = 0]

]
,

and would establish that Ψ(P ) is pathwise differentiable with respect to M at P with efficient

influence function ϕP if we have that for any P ∈ M

∂

∂ϵ
Ψ(Pϵ)

∣∣∣∣
ϵ=0

=

∫
ϕP (o)h(o)dP (o).

We denote δY,z,ϵ(x) = EPϵ [Y1 − Y0 | X = x, Z = z], δA,z,ϵ(x) = EPϵ [A1 − A0 | X = x, Z = z],

S = ∂ log pϵ/∂ϵ, and compute

∂

∂ϵ
Ψ(Pϵ)

∣∣∣∣
ϵ=0

=
∂

∂ϵ
EPϵ

[
δY,1,ϵ(X)− δY,0,ϵ(X)

δA,1,ϵ(X)− δA,0,ϵ(X)

] ∣∣∣∣
ϵ=0

=
∂

∂ϵ
EP

[
(1 + ϵS)

δY,1,ϵ(X)− δY,0,ϵ(X)

δA,1,ϵ(X)− δA,0,ϵ(X)

] ∣∣∣∣
ϵ=0

= EP

[
S
δY,1(X)− δY,0(X)

δA,1(X)− δA,0(X)

]
+ EP

[
1

δA,1(X)− δA,0(X)

(
∂

∂ϵ
δY,1,ϵ(X)

∣∣∣∣
ϵ=0

− ∂

∂ϵ
δY,0,ϵ(X)

∣∣∣∣
ϵ=0

)]
− EP

[
δY,1(X)− δY,0(X)

{δA,1(X)− δA,0(X)}2

(
∂

∂ϵ
δA,1,ϵ(X)

∣∣∣∣
ϵ=0

− ∂

∂ϵ
δA,0,ϵ(X)

∣∣∣∣
ϵ=0

)]
.
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Then we need to compute

∂

∂ϵ
δY,z,ϵ(X)

∣∣∣∣
ϵ=0

=
∂

∂ϵ
EPϵ [Y1 − Y0 | X,Z = z]

∣∣∣∣
ϵ=0

=
∂

∂ϵ

δY,z(X) + ϵEP [S(Y1 − Y0) | X,Z = z]

1 + ϵEP [S | X,Z = z]

∣∣∣∣
ϵ=0

= EP [S(Y1 − Y0) | X,Z = z]− δY,z(X)EP [S | X,Z = z]

= EP

[
S
(Y1 − Y0 − δY,z(X))I{Z = z}
zπZ(X) + (1− z)(1− πZ(X))

| X
]
,

and

∂

∂ϵ
δA,z,ϵ(X)

∣∣∣∣
ϵ=0

=
∂

∂ϵ
EPϵ [A1 −A0 | X,Z = z]

∣∣∣∣
ϵ=0

=
∂

∂ϵ

δA,z(X) + ϵEP [S(A1 −A0) | X,Z = z]

1 + ϵEP [S | X,Z = z]

∣∣∣∣
ϵ=0

= EP [S(A1 −A0) | X,Z = z]− δA,z(X)EP [S | X,Z = z]

= EP

[
S
(A1 −A0 − δA,z(X))I{Z = z}
zπZ(X) + (1− z)(1− πZ(X))

| X
]
.

In summary, we obtain the efficient influence function

ϕP (O) =
E[Y1 − Y0 | X,Z = 1]− E[Y1 − Y0 | X,Z = 0]

E[A1 −A0 | X,Z = 1]− E[A1 −A0 | X,Z = 0]

+
Z − πZ(X)

πZ(X)(1− πZ(X))(δA,1(X)− δA,0(X))2
{(Y1 − Y0)(δA,1(X)− δA,0(X))

−(A1 −A0)(δY,1(X)− δY,0(X)) + δY,1(X)δA,0(X)− δY,0(X)δA,1(X)} −Ψ(P ).

Finally, it follows to prove Theorem 8 by Equation (1).

K Additional simulations

In this section, we report additional simulation results to illustrate how different sample sizes and

the strength of the IV affect the performance of the estimated policies.
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K.1 Sensitivity analysis

In this section, we study how the strength of the IV affects the performance of the estimated

policies. The data generation process is the same as Section 6, except that the treatment assignment

mechanism is given by

Pr(A0 = 1 | Z,U,X) = expit(1.5− 3Z + 0.2U0 + 2X1),

P r(A1 = 1 | Z,U,X) = expit(−1.5 + 2Z − 0.15U1 + 1.5X2),

for weak IV strength, and

Pr(A0 = 1 | Z,U,X) = expit(3− 7Z + 0.2U0 + 2X1),

P r(A1 = 1 | Z,U,X) = expit(−3 + 5Z − 0.15U1 + 1.5X2),

for strong IV strength, respectively. Simulation results are reported in Figures 4 and 5.

K.2 Sample size

In this section, we study how different sample sizes affect the performance of the estimated policies.

The data generation process is the same as Section 6. The sample sizes are n = 2500, 10000 when

using parametric models, and n = 5000, 20000 when using machine learning. Simulation results are

reported in Figures 6 and 7.

L Australian Longitudinal Survey

In this section, we provide supplementary information on our data analysis of the Australian Lon-

gitudinal Survey. The data can be accessed by making a request to the Australian Data Archive

(Australian National University).

We follow Su et al. [2013], Cai et al. [2006] and use an index of labor market attitudes as the

instrumental variable in our analysis. The survey includes seven questions about work, social roles

and school attitudes towards working women. Individuals respond to these questions with scores

(1) strongly agree, (2) agree, (3) don’t know, (4) disagree, and (5) strongly disagree. This survey
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Figure 4: The percentage of correct decisions (PCD) results of the estimated optimal policies using
parametric models, under weak (left) or strong (right) IV strength.
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Figure 5: The percentage of correct decisions (PCD) results of the estimated optimal policies using
machine learning, under weak (left) or strong (right) IV strength.
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n = 2500 n = 10000
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Figure 6: The percentage of correct decisions (PCD) results of the estimated optimal policies, using
parametric models with sample size n = 2500 (left) or n = 10000 (right).
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Figure 7: The percentage of correct decisions (PCD) results of the estimated optimal policies, using
machine learning with sample size n = 5000 (left) or n = 20000 (right).
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design implies that a response with a higher score indicates more positive attitude towards the

education benefit of women and also their active role in the labor market. Following Su et al.

[2013], we use only six out of the seven questions to construct our attitudes index, since questions

2 and 3 are actually very similar, thus might be repetitive. We choose question 2 over question

3. Summary statistics of our data from the 1984 and 1985 waves are reported in Table 2 and 3,

respectively. Replication code is available at GitHub.
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Variable Source Mean SD Min Max

born australia A12 0.82 0.38 0 1
married A9 0.07 0.25 0 1
uni mem G10 0.34 0.48 0 1
gov emp G9 0.21 0.41 0 1
age A4 20.07 2.45 14 26

year expe F3-4, F7-10, F31-33, G21-23 0.94 1.40 0 11
attitude O1-7 17.94 3.48 6 28
year edu E4, E7, E10, E14, E16, E23, E25 11.14 1.93 3 20
wage hour G3-5, G7-8 4.83 2.01 0.57 21.43

Table 2: The 1984 wave summary statistics of variables born australia: whether a person is
born in Australia; married: marital status; uni mem: union membership; gov emp: government
employment; age: age; year expe: work experience; attitude: index of labor market attitudes;
year edu: education levels; wage hour: hourly wage. Source indicates which questions in the
survey provide the information.

Variable Source Mean SD Min Max

born australia B3 0.84 0.36 0 1
married A7 0.15 0.36 0 1
uni mem G11 0.38 0.49 0 1
gov emp G10 0.22 0.42 0 1
age A4 20.22 2.87 15 26

year expe F3-4, F7-10, F31-33, F23-25 1.82 2.13 0 16
attitude O1-7 18.75 3.49 6 30
year edu E3, E5, E8, E12, E14, E21, E23 11.69 2.11 2 20
wage hour G3-5, G7-8 7.48 2.94 0.375 75.00

Table 3: The 1985 wave summary statistics of variables born australia: whether a person is
born in Australia; married: marital status; uni mem: union membership; gov emp: government
employment; age: age; year expe: work experience; attitude: index of labor market attitudes;
year edu: education levels; wage hour: hourly wage. Source indicates which questions in the
survey provide the information.
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