

Elastic moduli, anisotropy and refractive index of γ -Ge3N4 via laser ultrasonics, Brillouin light scattering, and first-principles calculations

Chen-Hui Li, Philippe Djemia, Nikolay Chigarev, Siham Sodki, Y. Roussigné, Samuel Raetz, Vitalyi Gusev, Andreas Zerr

▶ To cite this version:

Chen-Hui Li, Philippe Djemia, Nikolay Chigarev, Siham Sodki, Y. Roussigné, et al.. Elastic moduli, anisotropy and refractive index of γ -Ge3N4 via laser ultrasonics, Brillouin light scattering, and first-principles calculations. The Joint 28th AIRAPT and 60th EHPRG International Conference 2023, Jul 2023, Edinburgh, United Kingdom. pp.17. hal-04241737

HAL Id: hal-04241737

https://hal.science/hal-04241737

Submitted on 13 Oct 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Public Domain

Elastic moduli, anisotropy and refractive index of γ-Ge₃N₄ via laser ultrasonics, Brillouin light scattering, and first-principles calculations

Dr. Chen-Hui Li¹, Prof. Philippe Djemia¹, Dr. Nikolay Chigarev², Ms. Siham Sodki¹, Prof. Yves Roussigné¹, Prof. Samuel Raetz², Prof. Vitalyi E. Gusev², <u>Dr. Andreas Zerr</u>¹
Laboratoire des Sciences des Procédés et des Matériaux - CNRS, Villetaneuse, France, ²Laboratoire d'Acoustique de l'Université du Mans, Le Mans, France

Poster Session 2 and Refreshments, July 27, 2023, 16:00–17:30

Germanium nitride having cubic spinel structure, γ-Ge₃N₄, is a wide band-gap semiconductor, Eg=3.65(5) eV, with a large exciton binding energy [1,2] which exhibits high hardness, elastic moduli and elevated thermal stability to ~700°C. Experimental data on its bulk and shear moduli (B_0 and G_0 , respectively) are strongly limited [3–6], inconsistent and, thus, require verification. Moreover, earlier first-principles density functional calculations provided significantly scattering B_o values but consistently predicted G_o much higher than the experimental one [7–9]. Here, we investigated the elastic behaviour of y-Ge₃N₄ experimentally, using the techniques of laser ultrasonics (LU) and Brillouin light scattering (BLS), and theoretically, using the first-principles calculations. We measured velocities of the Rayleigh surface acoustic waves (RSAWs) and of the longitudinal acoustic waves (LAWs) in our low-porosity polycrystalline sample using the LU-technique and derived its isotropic elastic moduli Bp and Gp (here and below, the subscripts p and 0 indicate values for the porous and densified sample, respectively). Applying the Hashin-Shtrikman approach, we obtained $B_0=322(44)$ GPa and $G_0=188(7)$ GPa for the dense γ -Ge₃N₄. The significant error in B_0 is explained by the low amplitude of the LAW-signals in our LU-measurements. Nevertheless, it agrees, within experimental uncertainties, with the B₀=295(5) GPa [3] obtained from the EOS measured upon quasi-hydrostatic compression. Both the previous and the present first-principles calculations underestimated B₀ while the GGA-PBEsol functional with a hard PAW potential showed the least deviation from the experiment.

Our experimental G_0 exceeds by ~1.5 times the previous experimental value, G_0 =124-129 GPa derived from the nanoindentation testing [4, 5]. The calculated G_0 values, typically around 170 GPa, were underestimated but much less significant than the B_0 , between 211-269 GPa. However, G_0 =186(10) GPa calculated using the GGA-PBEsol functional with a hard PAW potential agreed with our measurements. Comparison of the RSAW-velocity values, VR₀, measured using the LU- and BLS techniques confirmed the theoretically-predicted elastic anisotropy of γ -Ge₃N₄. The anisotropy led to the asymmetric RSAW peaks in our BLS measurements resulting in the VR₀ underestimation by ~10%. Combining our LU- and BLS results for the LAWs, we determined the refractive index of the dense γ -Ge₃N₄ to be n_0 =2.4(1). This value ranks γ -Ge₃N₄ in the class of very-high-refractive-index materials transparent for visible light, such as diamond, GaN or TiO₂ having anatase structure.

- [1] Boyko T.D., et al., Phys. Rev. Lett. 111, 097402 (2013)
- [2] Feldbach E., et al., Electron. Mater. Lett. 17, 315-323 (2021)
- [3] Somayazulu M.S., et al., in Proceedings of AIRAPT-17, M. Manghnani, W.J. Nellis, M. Nicol, 663-666 (2000)
- [4] Shemkunas M.P., et al., J. Mater. Res. 19, 1392-1399 (2004)
- [5] Zerr A., J. Mater. Res. 23, 3273-3274 (2008)
- [6] Nishiyama N., et al., J. Am. Ceram. Soc. 102, 2195-2202 (2019)
- [7] Dong J.J., et al., Phys. Rev. B 67, 094104 (2003)
- [8] Luo Y.S., et al., Comput. Condens. Matter 1, 1-7 (2014)
- [9] Xiang H.M., et al., Sci. Rep. 8, 14374 (2018)

28th AIRAPT and 60th EHPRG

23-28 July 2023

Edinburgh International Conference Centre, Edinburgh, UK

