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ABSTRACT

In recent years, we have seen the development of integrated plenoptic sensors, where multiple pixels are placed
under one microlens. It is mainly used by cameras and smartphones to drive the autofocus of the main lens, and
it often takes the form of dual-pixels with 2 rectangular sub-pixels. We study the evolution of dual-pixels, the
so-called quad-pixel sensor with 2x2 square sub-pixels under the microlens. As it is a simple light field capturing
device, we investigate the computational photography abilities of such sensor. We first present our work on
pixel-level simulations, then we present a model of image formation taking into account the diffraction by the
microlens. Finally, we present new ways to process a quad-pixel images based on deep learning.
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1. INTRODUCTION

Pixel sensors are covered with microlenses to ensure that photons converge on the photodiodes located at the
middle of pixels. With the growing number of pixels, new pixel design are experimented : microlenses can be
designed to cover a fix number of pixels. In this case, the matrix of pixels becomes an integrated plenoptic sensor.
Dual-pixel sensors are a simple kind of plenoptic sensors where a microlens is shared between two rectangular
sub-pixels. Canon and Samsung are using dual-pixel1,2 to drive the autofocus in their cameras or smartphones
and Sony is advertising quad-pixel3 sensors where a microlens is shared between 2x2 square sub-pixels for better
autofocus. Google is using dual-pixel to create a depth map and to produce synthetic bokeh for the portrait mode
of their smartphones.4–6 An integrated plenoptic sensor produces one image per sub-pixel, the Sub-Aperture
Images (SAI’s), which are shifted relatively to each other depending on the amount of defocus. The final image
is the sum of the 4 SAI’s. Computational photography algorithms are based on the shifts between SAI’s and
allows refocusing, correction of main lens aberrations or passive depth estimation.

In a previous work7 we have analysed a quad-pixel sensor at pixel level using electromagnetic simulations.
Then, we have modified a ray-tracing renderer software (PBRT8) to take into account the angular responses of
such quad-pixel thus creating more accurate synthetic images.

Using this tool we have generated a dataset composed of 35 images, declined in multiple versions: ideal
rendering with perfect thin lens model ; extended rendering with geometrical aberrations ; complete rendering
adding diffraction obtained with electromagnetic simulations. Thanks to the raytracer, we also produce ideal
depth maps. While we are waiting for a prototype coming this year, this aricle presents our work on image
processing based on deep learning. To our knowledge, this is the first paper which applies deep learning algorithms
to quad-pixel images.

Our contributions In this paper we explain the image formation when using a quad-pixel. Indeed, the blur
function of the SAI’s varies in a complex maner depending on the depth, the defocus and the angular response.
Completing the work of Punnapurath,9 our image formation model explains how the blur functions are mirored
between sub-apertures, and also we consider the impact of the diffraction.
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Besides we recall how the dataset of quad-pixel images has been computed in section 3. In section 4 we
address 3 algorithms with deep learning applied on the bayered SAI’s ; 1/ SAI’s demosaicing, which is a complex
case of multi-frame demosaicing since blur function are not identical throughout SAI; 2/ diffraction correction,
with custom networks trying to go from a raw to a corrected raw thanks to our database; and finally 3/ depth-
estimation from the SAI’s. In section 5, We then conclude our investigation on image processing dedicated to
an integrated plenoptic sensor.

2. IMAGE FORMATION ON A PLENOPTIC SENSOR

2.1 Pixel level analysis

In this section we study a quad-pixel plenoptic sensor at pixel level using Finite Difference Time Domain sim-
ulations (FDTD). The plenoptic function is made by sharing a microlens between four square sub-pixels, and
the pixel itself is made of severals layers as shown in Figure 1. We first optimize the design of an on-axis 3.5µm
quad-pixel by changing the radius of curvature of the microlens and the height of the different layers. Then we
optimize the design for the off-axis case by translating the microlens above the four subpixels, the other layers
beeing unchanged. In the later case, the optimization is done given the angle \2A0 and i2A0 of the chief ray.
We focus our analysis on the angular response of a 3.5 µm quad-pixel (1.75µm subpixel), which is the power
absorbed by each subpixel given an angle of incidence \ and i of a plane wave.

Figure 1. General design of a quad-pixel sensor with a planarisation layer, a color filter and a passivation layer. (a) and
(c) show the view from the side and from the top. (b) and (d) show our angle convention for \ and i.

We obtain 4D data (\2A0, i2A0, \, i) for each subpixel normalized between 0 and 1. These results (Figure 2)
are represented in polar coordinates where \ is the radius and i the polar angle for different Chief Ray Angles
(CRA). They represent the crosstalk between the subpixels which is caused by the diffraction of the microlens.
We showed7 that the more subpixels crosstalk there is, the more the SAIs are similar, making disparity estimation
difficult and reducing the plenoptic performance.

Figure 2. Angular response of the 4 sub-pixels with 3.5 µm centered microlenses.

2.2 Main lens spot diagram

A plenoptic sensor is used to capture images produced by a main lens. The SAIs define a 4D light-field were the
sub-aperture 2D coordinates corresponds the 2D pupil coordinates. Depending on the amount of defocus, the
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SAIs are globally shifted between themselves. Computational photography alogorithms preliminarly measures
shifts between SAIs to estimate depth-maps. In our study we require the notion of spot digram to handle the
geometrical aberrations of the main lens, and how these aberrations are projected in the 4D light-field.

Usually the spot diagram of a main lens is defined as the pattern formed by the impact of rays on the image
plane, from a point source and through the optical system. It is defined for an object distance � and for a given
position on the image plane (GB , HB) or a chief ray angle (\2A0, i2A0). We propose here to extend the concept of
spot diagram by adding the angle of incidence of each ray with respect to the image plane. What we call spot
diagram in this section is now a reduced light field, corresponding to the parametrization (G, H, \, i) of every ray
of a point source at distance �, going through the optical system and hitting the image plane at coordinates
around (GB , HB). With a perfect lens, all rays hit the image plane exactly at (GB , HB) but it is not the case with
a real lens. If we consider a finite amount of rays, for instance in an optical design software or in a ray-tracing
based renderer, ( is a set of rays:

((�, GB , HB) = {'1, ..., '8 , '# } (1)

where the rays have 4 coordinates, their position on the image plane and their angle of incidence:

'8 = '8 (GA8 , HA8 , i8 , \8) (2)

(GB , HB) and (\2A0, i2A0) are linked by the optical formula of the lens.

\2A0 = 52A0

(√
G2B + H2B

)
(3)

i2A0 = atan2(GB , HB) (4)

where 52A0 can be computed by an optical design software. For instance Figure 3 shows CRA 5 D=2 of a thin
lens and a smartphone lens (US8320061-B2).

Figure 3. the blue curve is a CRA function of a smartphone lens computed with Zemax, the orange one is a CRA function
of a thin lens.

This extended spot diagram will help us to explain how the blur kernel is formed in the next section.
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2.3 Blur kernel model

A translating disk has been proposed by Punnappurath9 as a model for the blur kernel (or Point Spread Function
- PSF) of a dual-pixel sensor. Based on our knowledge about in-pixel diffraction, we propose a more generalistic
equation which encompasses both the spot diagram of the main lens and the microlens diffraction’s effect. Let’s
consider a portion of the scene � at a constant depth �, which forms an image centered at coordinates (GB , HB)
on the image plane. We can write for each SAI:

�B08 (�, GB , HB) = � ∗ �B08 (�, GB , HB) (5)

and
� =

∑
B08

�B08 = � ∗
∑
B08

�B08 = � ∗ � (6)

where �B08 is the one of the SAI (B08 = {�, �, �, �}), �B08 is the blur kernel associated with one of the SAIs, �
is the final image and � the global blur kernel of the system.

We propose to study �B08 more precisely. In a first approximation we neglect the diffraction of the main lens
and we stick with the geometrical approach of a light-field. We can justify it by the fact that a wide-opened lens
is used with a plenoptic sensor, in order to get a clear disparity signal, so the directions of rays is mostly affected
by the geometrical aberrations rather than diffraction. Given the angular response of one SAI, normalized to 1

� = �B08 (\, i, GB , HB) (7)

we describe the blur kernel associated with this SAI as:

�B08 (�, GB , HB) = ((�, GB , HB) ⊗ �B08 (\, i, GB , HB) (8)

⊗ denotes what we call an angular multiplication. It formalizes the procedure of weighting each ray of the
spot diagram by the angular response according to their angle of incidence, and add them to the kernel. We
may also add the rays falling at the same coordinates (G, H). ( ⊗ � is a weight map defined as:

( ⊗ � = {F1, ..., F8 , F# } (9)

where the weights have 2D coordinates GF
8

and , HF
8

, and are computed as:

F8 = F8 (GF8 , HF8 ) =
∑
A 9 ∈(

GA
9
=GF

8
,HA

9
=HF

8

A 9 (GA9 , HA9 , \ 9 , i 9 ) × �(\ 9 , i 9 , GB , HB) (10)

Equation (10) defines the angular multiplication for the image plane, the weights have decimal coordinates
(GF
8
, HF
8
) which represent the intersection of the rays and the image plane. If we take into account the spacial

sampling of the sensor, we have to add the rays falling on the microlens. In this case the weights have whole
coordinates (GF

8
, HF
8
) which represent the indices of microlenses, and given the subpixel size ?, we have:

F8 = F8 (GF8 , HF8 ) =
∑
A 9 ∈(

GF
8
−?≤GA

9
≤GF

8
+?

HF
8
−?≤HA

9
≤HF

8
+?

A 9 (GA9 , HA9 , \ 9 , i 9 ) × �(\ 9 , i 9 , GB , HB) (11)

Finally, the blur kernel for one SAI at a constant depth is given by:

�B08 = � ∗ �B08 = � ∗
(
( ⊗ �B08

)
(12)

Figure 4 shows simulated Sub-Aperture Images of a point source by a thin lens, in front of the focus plane
and behind the focus plane respectively. The first line of each figure is the blur kernel without diffraction and
the second line is with diffraction. The global kernel is the sum of the 4 SAIs and it is shown on the right.
Without diffraction, the light is perfectly split in 4 quarters which do not overlap. This is what we expect from
an ideal quad-pixel plenoptic sensor. In the latter case, there is crosstalk between sub-pixels due to the microlens’
diffraction and the blur kernels are not perfectly delimited.
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Figure 4. Simulated blur patterns using � 5 >2DB = 750mm. First and second lines in a) show the image of a point source
at I = 600mm in geometrical and diffractive mode respectively. b) shows the image of a point source at I = 1100mm.

3. DATASET GENERATION

3.1 Mixing ray tracing and FDTD simulations

As quad-pixel plenoptic sensors are not available on the market, we had to work with synthetic images. In order
to make them more realistic from a physical point of view, we wanted to take into account the effect of diffraction
of the microlens.7 In practice, the blur kernel described above is a bit hard to use because it depends on the
distance of the scene, which is not constant, and we would have to generate multiple kernels for the different
depths and sensor positions. Instead we modified the ray-tracing procedure and we implemented in PBRT v2.
The principle is as following:

• One ray is launched from one sub-pixel, to the microlens.
• The angle of incidence (i, \) is computed just after the microlens. If the CRA is corrected, we also compute

(i2A0, \2A0).
• The ray gets (R,G,B) values from the scene.
• The ray is added to the surrounding sub-pixels under the same microlens, weighted by the angular responses

of the given sub-pixels where it is added according the the angle of incidence.
• Repeat for multiple rays per sub-pixels and for every sub-pixels.

Figure 5. Modified ray-tracing procedure. a) shows the classic ray-tracing procedure applied to quad-pixel plenoptic
sensors. b) shows the perfect angular responses formed by a). c) shows our custom ray-tracing procedure. Finally, d)
shows the angular responses from pixel simulation from where we extract the weights applied to the rays.

Figure 5a) and b) illustrate the classic ray tracing procedure where rays are only added to the pixels from
where they were launched, which forms perfect angular responses. Figure 5c) and d) illustrate our modified
procedure, where we read the angular response of pixel simulations and use them to weight and splat the rays
on the sub-pixels.

3.2 Different datasets

Using this new rendering method we have generated 35 synthetic images using the lens described in the patent
US8320061-B2, 23 of them are based on the proposed 3D scenes of PBRT v2 (mainly SanMiguel), and other
ones are photos placed as 2D textures so the depth is constant. Those 35 images are declined in diffractive and
non-diffractive mode, for a total of 70 images. We also computed the depth maps for every scene. Each image
is 3400x3400 pixels, so the SAIs are 1700x1700.
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Figure 6. Exemples of generated images with our custom PBRT v2. a) and c) are 3D scenes, b) is the depth map of a),
and d) is a photo used as plane texture.

4. IMAGE PROCESSING USING CONVOLUTIONAL NEURAL NETWORKS

4.1 Demosaicing

Usually for a plenoptic sensor of type 1, color filters are placed per microlenses in a RGB bayer pattern. It
means that all SAIs are mosaiced and must be demosaiced. There are already neural networks for demosaicing
RGB images, for instance the CNN presented by Syu10 in its simple or very deep version (Figure 7 a and b)) or
the bottlenecked resnet presented by Verma11 (Figure 8) based on residual blocks. In our case, those networks
must be applied to each SAI independently and the 4 demosaiced SAIs must be summed to produce the final
image. However, the SAIs could be globally shifted between each other to achieve refocusing, or locally shifted to
correct aberrations of the main lens. Depending on the shift applied it is possible to naturally obtain a partially
demosaiced final image. For instance if the refocusing parameter d is 0, we have to demosaic each SAIs entirely,
but if d = 1 then the final image is demosaiced completely.

a) b)

Figure 7. a) and b) show the demosaicing networks of Syu, respectively in simple and very deep version.

Figure 8. Demosaicing network of Verma based on residual blocks.

In this section we compare the networks presented above, used 4 times independently, to our network which
takes 12 channels input (4 mosaiced SAIs concatenated) and outputs 12 channels (4 demosaiced SAIs). It is also
based on residual blocks (Figure 9), as this architecture seemed better than regular CNNs, and has 485k free
parameters (Syu VD: 670k, Verma: 714k). Each SAI goes through a first set of convolutions (Net 1) composed
of a first convolution with kernel size of 7 and 48 channels then two other convolutions with a kernel size of
5 and 64 channels, each one follwed by a ReLu activation. This first net is shared between the SAIs. The 15
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Figure 9. Our network, composed of 3 convolutions treating the SAIs, then a residual network which takes the features
of the previous convolutions concatenated along channels dimension.

residucal blocks (Net 2) are similar to Verma’s ones: one convolution with a kernel size of 1 and 128 channels,
one convolution with a kernel size of 3 and 32 channels, and a final convolution with a kernel size of 1 and 128
channels. Each one is followed by a ReLu function. The results of each SAI after the Net 1 are concatenated along
channels dimension, giving a 256 channels mid-result, and it is passed to the Net 2 using a single convolution
with kernel size of 1 and 128 channels. The final convolution brings the 128 channels result of the last residual
block to a 12 channels result, representing the 4 RGB SAIs.

4.1.1 Training

To train our network we use a custom loss. We compute the MSE of each SAI versus its ground truth, but also
the MSE of the final image versus its ground truth. The goal is to have the network learn the final image, but
also have good quality SAIs if desired. Without the MSE on SAIs, some experiments showed a good final image
but SAIs with artefacts, preventing them from being useful for further processing. These two factors can be
weighted, but we used U = 0.5 and V = 0.5.

! =
U

4

∑
B=(��

MSE(B, B̂) + V MSE(FI, F̂I) (13)

The images from PBRT are patched, then mosaiced using randomly choosen color pattern per microlens
(namely RGGB, BGGR, GRBG, GBRG). During the mosaicing process we place zeros at unkown colors but the
channel dimension is preserved. Finally they are transformed into SAIs and stacked along channels dimension,
forming 12 channels data (4 SAIs of 3 channels). We also implemented some random transformations like flips
or rotations. We also implemented random shift between the SAIs. We chose only integer values between -2 and
+2 for both the horizontal and vertical axis. The shifts do not necessarily follow the refocusing equation because
we also want to take into account local shifts due to aberration correction for instance. We were forced to use
integer values because otherwise the interpolation needed for subpixel translation degraded the ground truth too
much.

The Syu and Verma’s networks are trained using the Flickr500 dataset, while our network is trained on the
custom PBRT dataset presented above. From the PBRT dataset we have selected 5 images for the validation
set and 5 other images for the test set. These 10 images are not seen by the network during the training. In the
results presented in the next section we show the average PSNR of the 5 test images only. It should limit the
impact of the bias due to using different dataset. On the other hand, the Flickr500 dataset is composed of very
sharp images, contrary to our dataset. We are mainly limited by the 3D models and the textures used in the
proposed scenes of PBRT v2. Overall, the networks from Syu and Verma have learned from more difficult cases
(high frequencies images) and it should compensate the fact that our network is trained directly with the PBRT
dataset.

4.1.2 Results

The inferences are done for 2 cases, for a refocusing parameter d = 0 and d = 1, and we compute the PSNR on
the final image for each cases and networks (table 1). We only take into account the 5 images of the test set.
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The networks for 2D images are used on each SAI independently. Figure 10 shows one exemple of inference of
our network.

Bilinear Syu VD Verma Our
d = 0 35.00964 36.0144 37.651 37.775
d = 1 37.743 38.878 40.753 40.865

Table 1. PSNR of inferences for d = 0 and d = 1 and the different networks. Bilinear is given for reference.

Figure 10. Exemple of inference (only the SAIs are represented). Left: mosaiced SAIs, center: ground truth, right:
inference.

As expected, the case where the refocusing parameter d = 1 is way better because all pixels receive the
contribution of the 4 different colours, and the gain is almost +3dB for every network. We can see that our
network is slightly better, especially when the d = 1. It means the network can use the shifts between the SAIs to
improve the quality of the demosaicing. It is also important to note that our network is roughly 25% lighter than
Syu’s VD network, which could be useful in energy contrained environments like smartphones. Those results
need to be confirmed because the usage of 2 different datasets could have introduced a bias. For exemple one
can train the Syu or Verma’s networks on the PBRT dataset instead of the Flickr500.

4.2 Diffraction correction

In this section we present an attempt to correct the diffraction caused by the microlens, in other words to
remove the crosstalk between SAIs. We tried a simplified bottleneck resnet and a simplified 3-levels unet.12 The
”diffraction images” from PBRT are the inputs, and the ”diffraction-less images” are the ground truth. Because
the diffraction appears at pixel level, we decided to work with ”raw data”: the images are first mosaiced using a
per microlens Bayer pattern, then the channel dimension is flattened. These single channel images are patched
are fed to the networks.

The unet follows the Ronneberger’s architecture, but we only use 4 levels (instead of 5) and 8 channels for the
first level (instead of 64). In this form, the network has 120k parameters. The residual network is very similar
to the demosaicing one but shorter. ReLU functions follow each convolution. It has 382k parameters:

• A convolution of 256 channels, with a kernel size of 2 and a stride of 2. It is meant to transform the image
from ”raw space” to ”SAI space”, but we let the network learn different combinaisons of subpixels. In fact
it is the same as feeding the network with SAIs and using a kernel size of 1 and a stride of 1. It depends
only on how the data have been prepared.

• 3 residual blocks. Each block is made of 3 convolutions of 64, 64, and 256 channels respectively. The kernel
size is 1, 3, and 1 respectively. It is the same block as the demosaicing network but we increase the number
of features.

• A transposed convolution of 64 channels, a kernel size of 2 and stride of 2. It is meant to go back to ”raw
space”.
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• 2 convolutions of 32 channels and a kernel size of 5.
• One last convolution of 1 channel and a kernel size of 1 used to flatten the features.

We use the MSE on the raw images as the loss function. We show the real inference in Figure 11 and a
bilinearly demosaiced version fot better visualization in Figure 12. On the test images we read an average PSNR
of 21dB for the residual net, and 19dB for the unet. It shows it may be possible to remove the effect of diffraction
by the microlenses and produce cleaner SAIs, without crosstalk.

Further investigation needs to be done, for instance better network architecture, different loss function, or a
better dataset. This experiment is easy to do because we based our research on synthetic images and a rendering
tool which easily allows to add or remove the diffraction effect. It seems more difficult to create diffraction-less
images in real life. One way to do it would be to place 3 quarters of an opaque disk at the exit pupil position of
a lens, allowing light to go through only one quarter of the pupil at a time. Four acquisitions are necessary, each
one with the disk rotated by step of 90 degrees. On each one of the 4 images, one would keep only the subpixel
that was really aimed by the quarter of the main lens, and zero the other subpixels. Finally, the 4 images would
be merged together by replacing the zeros by the subpixel values from the 3 others acquisitions. This method is
only theoritical and has not been tested.

Figure 11. Exemple of inference, raw images. Left: raw with diffraction, center: ground truth without diffraction, right:
inference.

Figure 12. Exemple of inference, colored SAIs images. Left: SAIs with diffraction, center: ground truth without diffraction,
right: inference.

4.3 Depth estimation

In order to test depth estimation with quad-pixel we re-implemented both the DU2Net from Zhang6 and the
method of Punnappurath,9 and adapted them to the quad-pixel case. The Du2Net aims to fuse the data from
dual-pixels and dual-cameras in order to produce a depth map, so we extracted only the dual-pixel part of
the network. Unfortunately we were not able to produce good depth maps, the different networks did not
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converge in our case. Concerning the Punnappurath’s method, the dataset we generated with PBRT was not
appropriate because Punnappurath method’s relies on constant depth patches. Especially, the San Miguel scene
was problematic in our case because they do not really contain constant depth areas. The only constant depth
images we had were the photographs but they were simulated at the same depth every time. As for the Du2Net,
we were not able to make it converge. We think that it is also due to our dataset which may not be large enough
to train the network properly. In addition to that, the textures used in PBRT v2 may not be detailed enough to
have the network ”see” the disparities. However, we believe that passive depth mapping is possible and is likely
to be better than dual-pixel because it adds the vertical disparities. We tried a simple block matching method
on the San Miguel scene (the table, Figure 6c) and it appears that some disparities exist (Figure 13).

Figure 13. Exemple of depth map using block matching algorithm. Left: average of horizontal and vertical disparities.
Center : horizontal disparities only. Right: vertical disparities only.

5. CONCLUSION

In this paper we recalled our previous work on quad-pixel simulations and described a model of the blur function
which impacts the Sub Aperture Images. We also explained how we mixed it to a ray-tracing rendering software
to generate a dataset. We used this dataset to investigate what was possible to achieve in terms of image
processing and deep learning. We demonstrate that quad-pixel image demosaicing is a complex case of multiframe
demosaicing and is improved over single image demosaicing. Also our demosaicing solution relies on network of
reduced size compared to single image demosaicing. Deep learning applied to diffraction removal gives interesting
results and needs to be pushed further. As for the depth estimation, we were not able to reproduce the results
from the previous papers on dual-pixel. We think it is mainly due to our dataset, 35 images are too few to
properly feed relatively big networks. Generally speaking, the generation of synthetic images with our method is
too long to produce a big amount of different images, and the available scenes for PBRT v2 may not be detailed
and various enough. That’s why a prototype is being made and we hope to use it to produce a better and real
dataset.
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