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Abstract

In robust optimization, finding a solution that solely respects
the constraints is not enough. Usually, the uncertainty and un-
known parameters of the model are represented by random
variables. In such conditions, a good solution is a solution
robust to most-likely assignments of these random variables.
Recently, the Confidence constraint has been introduced by
Mercier-Aubin et al. in order to enforce this type of robust-
ness in constraint programming. Unfortunately, it is restricted
to a conjunction of binary inequalities

In this paper, we generalize the Confidence constraint to any
constraint and propose an implementation based on Multi-
valued Decision Diagrams (MDDs). The Confidence con-
straint is defined over a vector of random variables. For a
given constraint C, and given a threshold, the Confidence
constraint ensures that the probability for C to be satisfied by
a sample of the random variables is greater than the threshold.
We propose to use MDDs to represent the constraints on the
random variables. MDDs are an efficient tool for representing
combinatorial constraints, thanks to their exponential com-
pression power. Here, both random and decision variables are
stored in the MDD, and propagation rules are proposed for
removing values of decision variables that cannot lead to ro-
bust solutions. Furthermore, for several constraints, we show
that decision variables can be omitted from the MDD because
lighter filtering algorithms are sufficient. This leads to gain
an exponential factor in the MDD size. The experimental re-
sults obtained on a chemical deliveries problem in factories —
where the chemicals consumption are uncertain — shows the
efficiency of the proposed approach.

Introduction

Stochastic optimization is a class of problem where uncer-
tainty is present (Powell 2019; Charnes and Cooper 1959).
Such problems are present in different domains, and are al-
ready part of constraint programming modeling languages
(Rendl, Tack, and Stuckey 2014). Optimization and satis-
faction problems involving random variables and searching
for robust solutions are ubiquitous in modern continuous
flux applications. Vehicle sharing, organ transplant, textile
manufactures, and deliveries are just a few of the many in-
dustrial areas where robust optimization is necessary (Lin,
Janak, and Floudas 2004; Parra et al. 2005; Kargar et al.
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2020; Mercier-Aubin et al. 2020). In such setting, the chance
constrained problem is usually defined as follow:

mi)r(liér\]lize F(X) subjectto Pr[f(X,Y)] >~ (1)
Where X are decision variables, Y are random variables,
F is an objective function, and f represents the constraints’
satisfiability. The main difference with problem definitions
that do not involve random variables is that Pr returns the
probability that the constraints will be satisfied, given the
assignment of the decision variables.

In the context of constraint programming, optimization
under probability, confidence or statistical constraints is be-
coming standard (Pachet et al. 2015; Pesant 2015; Perez and
Régin 2017; Perez, Rappazzo, and Gomes 2018; Hooker
2022; Latour et al. 2022). At the beginning of this cen-
tury stochastic constraint programming has been defined
(Walsh 2002). Some problems involving Confidence con-
straints, coined ’chance constraints” at that time (Rossi et al.
2008; Hnich et al. 2012), Markov or probability distribu-
tion constraints (Perez and Régin 2017a) have already been
solved. Until recently the Confidence constraint lacked a
generic filtering algorithm. A first attempt had been made in
2015 (Rossi et al. 2015). In 2020, some filtering algorithms
(Mercier-Aubin et al. 2020) were finally presented but they
can handle only conjunction of binary inequality constraints.

We propose to generalize the definition of the Confi-
dence constraint to any constraint as in problem defini-
tion (1). Given X, Y, v, and a constraint C, the Confi-
dence(X,Y, C,~) constraint ensures that the probability of
C(X,Y) to be satisfied by Y given X is greater than ~.

Consider any assignment p of the decision variables. Let
T, be the set of all valid assignments of random variables of
C(p,Y). The constraint ensures that p is a valid assignment
of the decision variables if and only if >, . p(t) > 7.
In the general case, summing all the possible tuples is in-
tractable, hence approximate sampling methods are often
used to represent confidence (Calafiore and Campi 2005).
We propose to use a multi-valued decision diagram (MDD)
to represent the underlined constraints, and propose exact
filtering algorithms for the Confidence constraint.

Multi-valued decision diagrams (MDDs) are a generic
representation tool used to represent any constraint (Cheng
and Yap 2010; Perez and Régin 2015; Bergman et al. 2016).



MDDs are graph data-structures that store all the satisfy-
ing tuples as paths. They have been used to represent ta-
ble constraints (Lecoutre 2011; Demeulenaere et al. 2016),
regular and automaton constraints (Pesant 2004), and even
more complex constraints such as the Allen constraint (Roy
et al. 2016). While an MDD can exponentially compress
some constraints, its own size may grow exponentially. As
an example of this duality, consider the MDD representing
the AllDifferent constraint (Régin 1994). The MDD defined
over n variables having n values each, will have 2" nodes,
but will contain n! solutions (210 ~ 1k, 10! ~ 3628k).
In the general case, many constraints are represented using
polynomial-size MDDs. Such compression power and the
many different algorithms defined on top of MDDs make
them a useful data-structure for optimization (Bergman et al.
2016; Castro, Cire, and Beck 2022).

The representation of the constraint C(X,Y’) using an
MDD allows a recursive confidence computation. Indeed,
instead of extracting all the tuples stored in the MDD, local
confidence values are computed per node, so that the con-
fidence of the constraint can be computed in linear time,
with respect to the MDD size. A linear propagation algo-
rithm enforcing global arc consistency (GAC) is proposed
for the case where the MDD contains both random and de-
cision variables. This algorithm supposes that the ordering
of the variables in the MDD is first the decision variables,
and then the random variables. It can be used to solve any
problem involving a Confidence constraint exactly.

In addition, for several constraints, decision variables can
be omitted from the MDD because lighter filtering algo-
rithms are sufficient. We propose three of such algorithms
for the confidence of the conjunction of binary constraints.
This new representation may gain an exponential factor in
the MDD size, as shown in our examples.

Probability distributions used in constraint programming
are often independent and directly represented by their prob-
ability mass functions (Mercier-Aubin et al. 2020). For
many problems, this is not true, for example, in music gener-
ation, the succession of musical notes is often described by
Markov chains (Pachet and Roy 2011). In this paper, work-
ing with MDDs allows to use the polynomial-size transfor-
mation of an MDD and a Markov chain to an MDD with
layer-independent probabilities (Perez and Régin 2017a).
This gives the Confidence constraint the capability to han-
dle a broad new range of problems.

In the end, the experimental section shows the efficiency
of the algorithm on the chemical deliveries assignment prob-
lem — an assignment problem where deliveries must be as-
signed to containers and where these containers are emptied
in parallel. This experimental evaluation shows the neces-
sity to have a global Confidence constraint, containing all
the constraints that random variables should satisfy.

Preliminaries

A random variable is a variable whose value depends on
a random event A probability mass function (PMF) pmf:
V — R assigns a probability Pr[v] to each discrete event
v € V. Let y be a discrete random variable with do-
main D, = {v1,...,v4}. Its probability mass function
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(a) (b)

Figure 1: (a) MDD containing the tuple set {(a,a), (a,b),
(c,a), (¢,b), (c,©)}. (b) MDD for the constraint > v; < 5.
Values in the nodes are the sum of incoming paths.

pmf(y) = (p(y,v1),...,p(y,vq)) is defined per value as
p(y,v;) = Prly = v;] and satisfies the following condition:

p(y,vi) > 0and S0, ply, vi) = 1.

Let Y = (y1,...,yr) be a vector of r discrete indepen-
dent random variables. Let F' = (py, , ..., py,.) be the vector
of their associated probability mass functions. The probabil-
ity of a sample of all the variables (i.e. a tuple) is given by
the product of the probabilities of the selected values. More
precisely, the probability of a tuple ¢t = (a1, ..., a,) is equal
to:

p(t) = [ s (vi- @) )
=1

Multi-Valued Decision Diagrams

A Multi-valued Decision Diagram (MDD) is a graph data-
structure representing discrete functions. It is a multi-valued
extension of Binary Decision Diagrams (BDDs) (Bryant
1986). An MDD, as used in CP (Cheng and Yap 2010; An-
dersen et al. 2007; Hadzic et al. 2008; Hoda, van Hoeve,
and Hooker 2010; Bergman, van Hoeve, and Hooker 2011;
Gange, Stuckey, and Szymanek 2011; Perez and Régin
2014; Gillard et al. 2021), is a rooted directed acyclic graph
(DAG) used to represent some function f : {0,...,d —
1} — {true, false}, based on a given integer d. Given
the r input variables, the DAG representation is designed to
contain r+1 layers of nodes, such that each variable is repre-
sented as a specific layer of the graph. Each node on a given
layer has at most d outgoing arcs to nodes in the next layer of
the graph. Each arc is labeled by its corresponding integer.
The arc (u, v, a) points from node « to node v and has a as
label. All outgoing arcs of the layer r reach the true terminal
node tt (the false terminal node is typically omitted). There
is an equivalence between f (a1, ..., a,) = true and the ex-
istence of a path from the root node to the true terminal node
whose arcs are labeled aq, ..., a,.. Let L(M, i) denote the set
of arcs of MDD M at layer i. Let L+(M, i) denotes the set of
nodes starting layer <. When there is no ambiguity, the M is
omitted. Figure 1 (a) gives an example of MDD containing
the tuples (a,a), (a,b), (c,a), (c,b) and (c,c).

MDD of a constraint Let C be a constraint defined on a
vector of variables X (C) = (x1,...,2,). The MDD asso-



ciated with C, denoted by MDD(C'), is an MDD containing
only the set of tuples satisfying C'. More precisely, MDD(C')
is defined on X (C'), such that layer 7 corresponds to the vari-
able z;. For each arc emanating from layer i, the label of the
arc is one of the possible values for variable x;. The labels of
a path p= ((uh Uz, (11), (Ug, us, (12), X3 (uT‘a ttv a’?’)) repre-
sent one tuple satisfying the constraint C'.

Consistency with MDD(C) Let D.(x) be the current do-
main (i.e. remaining values) of variable . A value a of vari-
able x; is valid if and only if @ € D.(x;). A path p is valid
if and only if, for each of its arcs, its label is valid. A node
n is valid if and only if at least one valid path goes through
it. An arc (u, v, a) at layer i is valid if at least one valid path
goes through it. The value a of variable x; is consistent with
a constraint C'if and only if there exists at least one valid arc
labeled as a emanating from layer .

MDD propagator for constraint C An MDD propagator
associated with MDD(C') is an algorithm which removes
some inconsistent values of X (C). The MDD propagator
establishes arc consistency of C' if and only if it removes all
arc inconsistent values with C. This means that it ensures
that, for each value of each variable, there is a valid path in
MDD(C).

Constraining MDDs and MDD consistency Usually, in
optimization, some variables may occur in multiple con-
straints. To enforce multiple MDDs on overlapping variable
sets, their intersection can be taken instead. The issue with
consecutive intersections is that the size of the MDD may
grow exponentially with the number of constraints. Hence,
many works propose to constrain MDDs, instead of directly
applying intersections (Hoda, van Hoeve, and Hooker 2010;
Perez and Régin 2017b). Constraints such as the AlIDif-
ferent, Among, Cost, Probabilities etc. can be directly ap-
plied on top of MDDs. Usually, applying a constraint on an
MDD implies modifications of the MDD, by removing arcs
or other transformations. The goal is to reduce the number
of incorrect solutions stored in the MDD, with respect to the
applied constraint. Applying a constraint on top of an MDD
implies that not all the paths of this MDD are valid. An arc
is said MDD consistent if it belongs to at least one valid
path that also satisfies the constraint applied to the MDD
(Hoda, van Hoeve, and Hooker 2010). MDD consistency is
achieved when all the inconsistent arcs of the MDD have
been removed. In this paper, the Confidence constraint is ap-
plied on top of a given MDD, the MDD that the random
variables should satisfy. The goal of the propagation algo-
rithm is to ensure that given the current state of the MDD,
the confidence is still valid.

Generalized Confidence

We consider problems involving random variables for which
the probability distribution is known. Recently, the Con-
fidence constraint has been defined (Mercier-Aubin et al.
2020). Let v € [0,1] be a value. Let Y = (y1,...,y,) be
a vector of independent random bounded integer variables.
Let X = (x1,...,x,) be a vector of integer variables. This
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(a) In each arc, labels are a or
b. The probability associated to
the arc are p(y1, a) etc.

(b) The confidence that node tt
is reached is c*(tt) = 0.3 ¢*(2)
+(0.7+0.3) ¢4 (1) =0.51

Figure 2: Confidence propagation in MDDs

constraint ensures that with probability at least -, the ran-
dom variables Y will be element-wise bounded by X . More
precisely it ensures:

T

PriN\(yi <)) > v

i=1

3)

In this paper, the definition of the confidence is extended
to any constraint, and no longer to only A!_, y; < x;. The
Generalized confidence constraint ensures that with proba-
bility at least -y, the random variables Y will satisfy a given
constraint C. Let C'(X,Y’) denote the satisfaction of the
constraint C' by the random variables Y given the assign-
ment of the decision variables X .

Confidence(X,Y,C,y) < Pri[C(X,Y)]>y @

Note that if v = 0, then the constraint is always satisfied. If
~v = 1, then valid assignments of X must allow any non-zero
probability assignments of Y to satisfy C'(X,Y).

Given a constraint C' for which the confidence of satisfac-
tion must be ensured, Let M = M DD(C). Define M (t)
as the validity of the path through M denoted by tuple .
The Confidence constraint can be rewritten using its MDD
implementation:

Confidence(X,Y, M¢,v) <= Pr[Mc(X,Y)] >~ (5)

Probability, Confidence and MDDs

We consider in the rest of this section that the MDD con-
tains only random variables. In an MDD, the probability of
independent random variables can be directly encoded in the
arcs. Let Y = (yy,...,y,) be a vector of independent ran-
dom bounded integer variables. For each random variable
yi, let pmf(yi) = (p(yi, 1), - P(Yi, vr)) be the probabil-
ity distribution with p(y;,v;) = Prly; = v;]. Using MDDs,
these probabilities can be associated to arcs as shown in Fig-
ure 2 (a). In such settings, the probability of a path (i.e. a
tuple satisfying MDD(C)) is the product of the probabilities
of its arcs.

In an MDD, each path from the root node to the true ter-
minal node represents a valid tuple. The sum of the probabil-
ities of all the tuples represents the probability that a random
sample of the variables Y will satisfy constraint C'. Extract-
ing all the tuples of the MDD is usually not practical as itis a



compressed data-structure, containing an exponential num-
ber of tuples. Luckily, this sum can easily be processed lo-
cally (i.e. by node) and then interpreted globally. Let c*(u)
(resp. c'(u)) be the cumulative probability of the incoming
paths (resp. outgoing paths) of node u. Let c*(r) = 1 be the
value for the root node. Let ¢ (tt) = 1 be the value for the
true terminal node. We have for any node v at layer ¢ the
recursive formulas:

)= D p(uv,a))ct(u) (©)
(u,v,a)€L(7)
w= Y puv,a)c () )
(u,v,a)EL(7)
and
Confidence(Y,M,y) <= c*(tt) >y < c'(r) >~
®)

This can be directly cast into the systematic approach
to MDD-based constraint (Hoda, van Hoeve, and Hooker
2010), analogously to the probability constraint for MDD.
Hence a linear time algorithm can propagate the Confidence
constraint.

Example Figure 2 (b) shows an example of the application
of this algorithm. First for node 1, the incoming confidence
is given by c¢*(1) = 0.3c¢*(r) = 0.3. Then for node 2, the
incoming confidence is given by c¢*(2) = 0.7¢*(r) = 0.7.
Finally the confidence of node tt is given by c*(tt) =
0.3¢*(2) + (0.7 + 0.3)c*(1) = 0.51. It is important to note
that p((a,a)) +p((a, b)) +p((b,b)) = 0.3%0.7+0.3% 0.3+
0.7+ 0.3 =0.51.

Propagation

We consider the constraint Confidence(X,Y, M, ~). When
X = 0, no decision variable is present in the constraint. Let
Y = (y1, -.-, y») be a vector of independent random bounded
integer variables. Let MDD M be defined over r layers of
arcs. Let v € [0, 1] be a value. Either ¢*(tt) > ~ and the
constraint is satisfied, or c*(¢t) < + and the problem is not
satisfiable.

In the general case, constraints on random variables also
involve decision variables. The Confidence constraint is con-
sistent if the decision variables only have values that lead to
solutions with enough confidence for the random variables.
This section considers first the general case where both ran-
dom variables and decision variables are contained in the
MDD. Then, as this may not always be tractable, three addi-
tional dedicated constraint propagation algorithms are pro-
vided for the case of MDD containing only random vari-
ables.

Filtering of the Decision Variables (Confidence) Let
MDD M be defined over k + r layers of arcs. Let y € [0, 1]
be a value. Let X = (1, ..., x)) be a vector of integer vari-
ables. Let Y = (y1, ..., y) be a vector of independent ran-
dom bounded integer variables. Let MDD M have the first
k layers representing the decision variables and the last r
layers representing the random variables. Note that the fol-
lowing algorithms can be adapted to any ordering of the vari-
ables. This ordering has been selected for the sake of clarity.
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Nevertheless, without loss of generality any MDD can be
transformed into an MDD with such an ordering. In such
settings, we do not consider c*(root) = 1, but c*(u) = 1
for any node v in the layer k + 1, the first layer of the ran-
dom variables. Indeed, as MDDs are deterministic, and the
decision variables are all stacked at the top of the MDD,
once assigned, only one node at the first layer of the ran-
dom variables will remain. Equation (9) is a generalization
of Equation (8) integrating both decision and random vari-
ables. When X = (}, root is the only node of the first layer.

©))

The propagation algorithm remove values of decision
variables that cannot lead to a solution with a confidence
greater or equal than . Consider the value ¢'(u) of each
node of layer k£ + 1. This value represent the accumulated
probability of the paths emanating from node u. As stated
before, once the decision variables present in the MDD are
assigned, only one node of layer k 4 1 will remain. This im-
plies that the ' (u) of layer k + 1 are similar to the ¢’ () for
the case without decision variables. A simple propagation
rule can be defined.

Confidence(X,Y, M,v) <= c*(tt) > v

Proposition 1 Global arc consistency on
Confidence(X,Y,M,v) is enforced by the following
rule. For all the nodes u at layer k + 1 of the MDD, if
c'(u) < v then node u becomes invalid and is removed
from the MDD.

The proof can be done by contradiction. Consider a value
a from a decision variable x; that cannot lead to a solution
with confidence greater than . In order to be supported, a
valid arc (u,v,a) at layer ¢ must exists. An arc is valid if
it belong to a valid path. A path is valid is all the value of
the path are still in the domain of their associated variable
and, as stated by the proposition, at layer k + 1, ¢ (w) > 7.
cT(w) > v implies that the confidence is greater than -,
hence the contradiction.

The complexity of enforcing the propagation can be seen
in two parts. First the cost of processing ¢! (u) of each node
of layer k + 1. This can be done in linear time over the size
of the MDD by using the recursive formula from equation
(7). Second, the cost of removing the invalid arcs and val-
ues from the MDD. This can be done in linear time by two
passes in the MDD, one bottom up and one top bottom. Note
that these can be done incrementally during the search as
done by known MDD filtering algorithms.

Example Consider the MDD from Figure 1 (b). This
MDD represents the constraint where the sum of the vari-
ables is bounded by 5. Let X = (z1) be a vector of one de-
cision variable with domain {0,1,2}. Let Y = (y1,y2) be
a vector of 2 random discrete uniform variables with possi-
ble values {0,1,2}. Let v = £. First, we have ¢! (< 5) = 1.
Then, ¢’ (< 3) = 1,¢"(3) = 2,¢7(4) = £. Then, c'(0) = 1,
(1) = &, cM(2) = &. This implies that ¢"(2) < ~, hence
node 2 is removed. The removal of node 2 implies the re-
moval of value 2 from x; as it was the only path containing
this value for this variable.



(b)

Figure 3: (a) An MDD representing the at most 1 constraint.
(b) Propagation of the removal of arc (r,2,1).

Particular Cases

It is often interesting to reduce the number of variables con-
tained in an MDD. That is the reason why this section pro-
poses three cases where a complete propagation is possible
by removing the decision variables from the MDD, and ap-
plying a dedicated algorithm.

1. MDD + per-arc management. C'on fidence_,
2. MDD + in constraint. Con fidencec
3. MDD + Lower-than constraint. Con fidence -

1) Confidence_, Let MDD M be defined over r layers
of arcs. Let v € [0,1] be a value. Let Y = (y1,...,y.) be
a vector of independent random bounded integer variables.
Let B = (by, ..., b)) be a vector of Boolean variables with
one variable per arc of the MDD. Arc a; = (u, v, a) belongs
to the MDD if b; = True, otherwise it is removed. For each
variable b; associated to arc (u, v, a) define vector ¢ as fol-

lows:
¢ = cH(w)p((u,v,a))ct (v) (10)

If omitting arc ¢ from the MDD decreases the satisfaction
probability below the threshold, then b; must be true. This
filtering for each value can be defined using:

)y —ci<y — b (11)

Example Consider the MDD from Figure 3 (a). This
MDD is defined over three variables, each of them tak-
ing values in the set {0,1}. Let Y = (y1,y2,y3) be
a vector of three independent uniform random bounded
integer variables. The four valid tuples of this MDD,
representing the at-most-one constraint for value 1 are
((0,0,0),(1,0,0),(0,1,0),(0,0,1)). The probability of each tu-
pleis 0.5% = 0.125. The total confidence is 4 * 0.125 = 0.5.
Hence, randomly sampling assignments of three indepen-
dent uniform Boolean variables has a probability of 0.5 to
satisfy the at most one 1 constraint. Let v = 0.35.

Consider the impact of the removal of arc from node r to
node 2 labeled by 1. First the propagation of this deletion
results in MDD Figure 3 (b). Arc from node 2 to node 4
labeled by 0 is removed as it is no longer part of a valid path.
The values of the c of each node are: ¢! (1) = 0.375, ct(r) =
L cM(tt) = 1,cH(tt) = 0.375, cT(1) = 0.75,c*(1) = 0.5,
c'(3) =1,c¢*(3) = 0.25, ¢ (4) = 0.5, c+(4) = 0.25.
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Let B be a vector of Boolean variables with one variable
per arc of the MDD. Let the variable b(, 2 1) be assigned
to false, be the cause of the initial arc removal. c(, 1,0y =
cH(r)*0.5%cT (1) = 1x0.5%0.75 = 0.375. cH(tt) —c(p1,0) =
0 < 7, hence b, 1,9y =true (rule (11)). The same goes for
all the arcs.

2) Confidencec Let MDD M be defined over r layers
of arcs. Let v € [0,1] be a value. Let Y = (y1,...,y,) be
a vector of independent random bounded integer variables.
Let X = (X1, ..., X,.) be a vector of set variables. Each set
variable X; contains as many values as there are different
labels at layer ¢ of the MDD. a ¢ X; implies that no arc
labeled by a at layer ¢ exists. This filtering intersects the
constraint contained in the MDD and A|_, (y; € X;). For
each variable X; define vector ¢; = (¢; 1, ..., ¢;,4) where for
each value a € Xj, ¢; 4 is defined as follows:

o=y cHwp((uva)c@w)  (12)
(u,v,a)€L(i)
The first filtering for each value can be defined using:
ct(tt) — Cia<y — aclX; (13)

The second filtering for the cardinality component of the set
variable is defined as follows. Let c;| () be a non-increasing
ordering of ¢;. Let ¢;(;) be the jth largest value of ¢; such

that Cil(1) = Cil(2) = -+ - = Cil(d)-

JE{1,....k}

card; > min{k € {1,...,d} | Ciy) > VH-

(14)
In this settings, values that becomes impossible for a set-
variable lead to the removal of the associated arcs.

Example Consider again the example of the removal of
arc (r,2,1) of the MDD from Figure 3 (a). Let X =
(X1, X2, X3) be a vector of three set variables. Let 1 & 1
be the cause of the initial arc removal. ca g = (1) x 0.5 x
c’(3) = 0.5%0.5%1 = 0.25. ca1 = c*(1)x0.5xcT(4) = 0.5%
0.5 % 0.5 = 0.125. Note that co g + 21 = ¢! (r) = c*(tt).
3.0 = c*(3) % 0.5 % ¢ (tt) + cH(4) * 0.5 x cT(tt) = 0.25 x
05%14+0.25%0.5%1=0.25.c31 = c*(3) x 0.5 cT(tt) =
0.25 % 0.5 x 1 = 0.125. Application of rule (13) leads to
0€ X1,0€ Xo,1 € Xo,0 € X3,1 € X3. Application of
rule (14) leads to cards > 2, cards > 2.

3) Confidence< Let MDD M be defined over r layers of
arcs. Lety € [0,1] be a value. LetY = (yq, ..., y,) be a vec-
tor of independent random bounded integer variables. Let
X = (x1,...,z,) be a vector of integer variables defining
the representing the upper-bound y; < x;. More precisely, if
x; < k, then no arc labeled by values greater than or equal
to k are present at layer ¢. This filtering intersects the con-
straint contained in the MDD and /\z:1 y; < x;. For each
variable z; and each value a € z; define ¢; , using equation
(12). Let a be the smallest required value such that:

a

>

b=min(D,,)

min
a€D(x;)

a subject to Cip > (15)
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Figure 4: (a) MDD for the constraint y < x. y is the first
variable of the MDD. (b) A stick MDD for the constraint

/\2:11h < z;.

Then, variable x; can be pruned using:

T, > a (16)

In this setting, values that are larger than max(D(z;)) are
removed from the MDD. Arcs labeled by values lower or
equal to min(D(z;)) are kept. Note that the same processing
can be done for a lower bound of y; instead of an upper
bound. In practice, it works for any permutation of the values
of D,, not only increasing and decreasing.

Example Consider again the example of the removal of
arc (r,2,1) of the MDD from Figure 3 (a). Let X
(21,22, x3) be a vector of three decision variables with do-
main {0, 1}. Let the variable x; be assigned to 0, be the
cause of the initial arc removal. ¢; , are processed in the
same ways as for the € version above. Application of rule
(16) leads to o > 1 and x3 > 1.

Generalization The original confidence constraint con-
sidered the constraint A\!_, y; < ;. Consider the MDD
from Figure 4 (a). This MDD represents the constraint y < x
for one random variable. In the case where the MDD con-
tains first decision variables and then random variables, the
size of the MDD grows exponentially with the number of
variables. This is not an issue as the decision variables can be
safely removed from the MDD. Indeed, a stick MDD as de-
fined in Figure 4(b) defined on random variables is enough.
A stick MDD is an MDD such that each layer contains 1
node.

Proposition 2 Algorithm Con fidence< and a stick MDD
on the random variables is equivalent to the Confidence fil-
tering algorithm defined in (Mercier-Aubin et al. 2020).

First, the stick MDD contains the Cartesian product of the
domain, hence no constraint. Then, by definition, the con-
straint enforced by Con fidence< is P(\_, (yi < z;)) >
. The filtering algorithms are equivalent.

The maximum size of such an MDD is linear over the do-
main of the variables. The complexity of applying the con-
fidence constraint is linear on the size of the MDD. Hence,
applying arc consistency is linear with respect to the sizes
of the domain. Note that in the general case, the MDD will
not be a stick MDD, but an MDD containing additional con-
straints.
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Application: Chemicals Delivery Assignment

The following problem is part of a larger pipeline of chem-
icals processing. Chemical substances are received by the
factory every day. Once received, they are stored into con-
tainers. Containers are constrained by both the type of prod-
uct and the type of truck delivering the product. Each con-
tainer already contains a known amount of product and has
a maximum capacity. Every night, the factory must assign
each delivery to a suitable container.

In addition, for products in high demand the total amount
delivered is larger than the remaining capacities of the con-
tainers, given their currently stored quantities. In practice,
this is not an issue as the chemicals are also processed, hence
emptying the containers. Some products are in higher de-
mand than others, and more importantly, some containers
are easier to access and tend to have a higher rate of empty-
ing. The problem to solve is to assign chemicals to contain-
ers, with a potential overflow of the capacities. These over-
flows, using prior data, should match, with high confidence,
the usual emptying of the containers. In practice, these prob-
lems involve several plants for the same factory and other
details that are ignored in this experimental evaluation.

More formally, this is an assignment problem. Each deliv-
ery j € D stores a quantity g; in a container b; € B. Each
container b; has a maximum capacity C;. Each container b,
will be emptied in parallel of a quantity y; unknown in ad-
vance. The exact quantity y; is unknown, but its probability
mass function is known. The total amount of used chemical
is also upper bounded by K, that is ZLB‘ v < K.

A solution is an assignment of deliveries to containers
such that the stored quantity in each bucket minus the quan-
tity that will be used does not exceed the maximum capacity
with a high confidence. Let MDD X i represent the sum of
| B| variables with domain [0, d] bounded by K. Let aq, be
the Boolean assignment variable indicating that delivery d
is assigned to container b. Let x; be the lower bound vari-
able used to constrain the random variables and the MDD.
Constraints of the models are:

|D|

Y g~ <Cy YbeB (17)
=1
|B|
Y aip=1 VieD (18)
b=1
Confidence> (z,Y, Xk, ) (19)

With (17) being the capacity constraint, (18) being the as-
signment constraint. Finally constraint (19) is the confidence
constraint. We compare this model to the model that con-
tains only the /\;:1 1; < x; in the confidence constraint as
proposed in (Mercier-Aubin et al. 2020). A full definition of
this other model is given in appendix.

Data Two data sets have been created from existing data:
one called small, and one called large. Both of them contain
samples from the distributions of the random variables. In
the small data set, each delivery has a quantity between 1
and 5. Each container contains some previous content and a
max capacity ranging from 25 to 40. For each container, the
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Figure 5: Impact of the bounded sum constraint. z-axis is
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Figure 6: Impact of the confidence.

random variable ranges from O to 9. Each random variable
has its own distribution. In the /arge data set, each deliv-
ery has a quantity between 2 and 8. Each container contains
some previous content and a max capacity ranging from 50
to 70. For each container, the random variable ranges from
0 to 17. For both of data sets, the number of deliveries span
from 40 to 100. The chemical and truck compatibility is en-
forced at the initial propagation. The timeout is set to 10
minutes. The implementation uses our internal constraint-
programming solver.

Results First, we analyse the impact of constraining the
conjunction of constraints. Figure 5 shows the impact of
having both the maximum sum Xy and the lower-bound
into the confidence constraint. As we can see, for the same
level of confidence, more instances are unsatisfiable. The
reason is that even if independently the Vi,y; < x; con-
straint and the bounded sum constraint might reach the con-
fidence level, constraint (19) contains both of them and pro-
cesses the confidence of their conjunction. This first bench-
mark shows why there is a strong need to include all the
constraints on the random variables in the same Confidence
constraint, as proposed in this paper. Note that in the large
data set, several instances reached the timeout limit, hence
the smaller number of differences. Also, MDDs construction
takes few ms, sizes are around 1,000 nodes and 6,000 arcs.
Figure 6 shows both the probability distributions of Y and
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the selected values of z. The same color is used for the dis-
tribution of y; and the value of x;. When ~ is small, the
x variables have a large range of values. Then, as v is in-
creasing, the range of = decreases. In this example, note that
when v = 0.99, all the containers are overloaded. Table 1
shows the number of solved instances. Remark that a higher
confidence helps to prove unstatisfiablity of instances. The
appendix gives more insight on these experiments.

1%
16,1,3
17,1,2
18,0,2
16,04

35%

17,1,2
16,1,3
17,0,3
15,0,5

50%

17,1,2
14,3,3
17,0,3
16,04

75 %
15,2,3
11,4,5
14,1,5
14,1,5

85%
15,3,2
10,6,4
6,7,7
7.8,5

95 %
11,7,2
7.8,5
5,9,6
5,10,5

99 %
5,14,1
5,132
2,16,2
4,12,4

D]
40
60
80
100

Table 1: For each cell, values represent respectively, the
number of instances solved and satisfied, the number of in-
stances solved and unsatisfied, the number of instances that
reached the timeout

Notes on the Complexity

Computing the probability of the sum of random variables
requires computing consecutive convolutions. Indeed, the
probability of a value j to be reached by summing two ran-
dom independent variables z and y is given by

pla+y=4) =Y ple=kply=>G-k) 0
k

Let the constraint ., y; < K be represented by an
MDD denoted > . The MDD for the sum of discrete vari-
ables is well-defined and has pseudo-polynomial size (Trick
2001). Each node of this MDD, for each layer, is associated
to an intermediate sum. Figure 2 (b) is an example of X .

In this experimental section possible values for the ran-
dom variables are a range [0,1,2,3,...d]. For each layer j, the

maximum number of nodes is bounded by >°7_, y; < jd.
For this particular problem, the size is in the worst-case
O(rd). Moreover, the constraint considered in this problem
is upper-bounded by K, hence no more than K nodes can
be present in each layer. Finally, as shown in Figure 2 (b),
the reduction of the MDD compresses the final MDD even
more. Let C' = min(rd, K'). Enforcing consistency for the
constraint Confidence>(z,Y, Xk ,y) has a worst-case com-
plexity of O(rC).

Conclusion

In this paper, another step has been made toward efficient
solving of stochastic optimization problem using constraint
programming and MDDs. A generalization of the confi-
dence constraint, a constraint ensuring that the probability
of the constraint to be satisfied by the random assignment
of the variables is greater than the threshold, has been pro-
posed. Moreover, an MDD implementation has been pro-
posed. Several different filtering algorithms are proposed to
constrain the MDD. These algorithms, in combination with
a good model, solved hard instances of the chemical assign-
ment problem.
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