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Abstract

The challenge of long-term video understanding remains constrained by the efficient
extraction of object semantics and the modelling of their relationships for downstream
tasks. Although OpenAI’s CLIP visual features exhibit discriminative properties for vari-
ous vision tasks, particularly in object encoding, they are suboptimal for long-term video
understanding. To address this issue, we present the Attributes-Aware Network (AAN),
which consists of two key components: the Attributes Extractor and a Graph Reasoning
block. These components facilitate the extraction of object-centric attributes and the
modelling of their relationships within the video. By leveraging CLIP features, AAN
outperforms state-of-the-art approaches on two popular action detection datasets: Cha-
rades and Toyota Smarthome Untrimmed datasets.

1 Introduction
In video understanding, temporal action detection is one of the ultimate tasks that automati-
cally detects human actions in videos along with classifying them. The deep learning revolu-
tion has been a huge driving force for the advancements in the video understanding domain.
Despite the progress of action recognition algorithms in trimmed videos [2, 4, 11, 15, 38],
the majority of real-world videos are lengthy and untrimmed with dense regions of inter-
est [10, 35]. In these regions (temporal intervals), most actions involve human interaction
with objects, such as opening "fridge", taking "ham", and cutting "bread". These objects and
their state changes are crucial attributes to understand human actions performed in videos.
Thus, modelling these fine-grained object semantics for detecting actions is paramount in
complex activities such as making breakfast or furniture assembling.

Many successful action detection models have been developed to process untrimmed
videos in two stages [8, 9, 29, 30]. In the initial stage, frame-level features are extracted
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Figure 1: CLIP image classification for the video frames. A list of daily living attributes
(i.e., objects) is used as labels, i.e, the inputs to the CLIP Text model. We show the top 5
highest similarity attributes for two example frames (below) along with the action label (top
right). We find that the CLIP Image features effectively preserve the action-relevant object
semantics of an image.

from visual input using a 3D convolutional network [4] that has been pre-trained on extensive
video datasets like Kinetics [22]. The subsequent stage entails modeling temporal relation-
ships among the frame features to detect activities. Nevertheless, these approaches do not
explicitly encode object semantics. On one hand, limited by the absence of annotations of
the relevant objects involved in action due to constrained labeling, the frame-level features
may not preserve the object semantics relevant to the target actions in the first stage. On
the other hand, the second stage is dedicated exclusively to temporal representation learning
across the frame features. Some methods [14, 40] have attempted to enhance action under-
standing by employing object detectors and subsequently incorporating a reasoning module
that operates on the extracted objects for action detection. While these frameworks are ca-
pable of efficiently extracting object semantics, the accuracy of action prediction is heavily
dependent on the precision of object detection. Furthermore, the inclusion of an object de-
tector introduces a trade-off. Object detectors are known for their large model complexity,
often leading to increased computation costs during inference. Furthermore, methods using
object detectors leverage region of interest (ROI) operations on intermediate 3D convolution
features to optimize object detection [40]. Nevertheless, this technique typically operates on
a restricted temporal data sequence, potentially restricting the model’s capability to capture
short-term relationships.

In pursuit of a dense understanding of scene, vision-language models, specifically Ope-
nAI’s CLIP [31], have demonstrated remarkable efficacy in pre-training image and text en-
coders for a variety of downstream tasks. Inspired by CLIP’s success, numerous models
have been pre-trained using large-scale open-vocabulary data comprising image-text pairs,
resulting in a joint feature space for image and language [31, 33, 41]. As the pre-training
process is not limited to a predefined set of object labels, the visual representations obtained
are aligned with a more extensive range of "language" semantics [27]. Due to this configu-
ration, CLIP features retain a richer object semantics (refer to Fig. 1). Consequently, in this
paper, we explore the question: How can we leverage CLIP features for fine-grained action
detection?

To this end, we propose the Attributes-Aware Network to address the challenge of multi-
label action detection. This network is composed of two modules: Firstly, an attribute ex-
tractor that learns to extract attribute semantics from the frame-level features obtained from
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Figure 2: On the left hand, there is an example of fine-grained actions in a video. Multiple
actions can occur at the same time and actions can involve different objects (attributes).
On the right hand, we show an example of the feature space of CLIP. In this space, the
representation of the text sentence and image with the same semantics are close to each
other.

the CLIP. Different from the existing object-centric video recognition methods [14, 17, 40],
our method does not rely on the prior of the object detectors but leverages the joint visual
and language space of CLIP features. The extracted attributes are relevant objects (e.g.,
knife) for an action (e.g., cutting) and the semantics of each attribute form nodes of a graph.
Secondly, we introduce an attention-based graph reasoning module that models the inter-
attribute relations and temporal relations of attributes within a video for frame-level action
prediction.

To summarize, our contribution mainly lies in three folds. Firstly, we propose a module
that extracts relevant object semantics of image frames using the CLIP. This module disen-
tangles target information from the shared space between visual and semantic features. Sec-
ondly, we introduce an attention-based block to model the complex attribute relations within
and across frames. Finally, our proposed method outperforms state-of-the-art approaches on
two challenging multi-label action detection datasets. To our knowledge, we are the first to
disentangle CLIP embeddings for the purpose of long-term video understanding.

2 Related Work
In this section, we survey existing approaches that model relations between different seman-
tics for action understanding.

Lan et al. [25] propose a method that represents videos by a hierarchy of mid-level action
elements in an unsupervised manner. Each action element corresponds to a spatio-temporal
segment in the video and can represent actions at multiple spatio-temporal resolutions. Sig-
urdsson et al. [36] propose a fully-connected temporal CRF model for reasoning over the
variant intent of videos, where the intent is defined as the clustering of similar activities
(e.g., actions, objects) in a video. Although these approaches can structure the video us-
ing semantics, they do not explicitly learn the temporal structure nor are they learned in an
end-to-end fashion.

In recent years, Wang et al. [40] proposed video as graphs where the nodes are based
on object proposals. Likewise, Ghosh et al. [14] utilized the labels of the object bounding
boxes to form fine-grained graphs of humans, scenes and objects for each image frame.
Guermal et al. [17] extract object-specific feature descriptors for each object using an object
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detector and learn action correlations using an attention mechanism. While these methods
better characterize complex object-based actions in videos, they rely on object detectors pre-
trained on a predefined set of object categories, which limits their ability to handle unseen
objects and increases the computation complexity at both training and inference time.

More recently, several methods [3, 20, 28, 39] have used CLIP features for video un-
derstanding. However, these methods are designed to handle short temporal videos, and
the challenge of handling actions over a long range of time for solving the task of action
detection still persists. Towards long-term video understanding, Tirupattur et al. [37] in-
troduced MLAD that can explore the action-temporal relations with a set of self-attention
layers: an inter-class attention map for every time step and an inter-time attention map for
every action class. Similarly, Dai [7] propose CTRN that can model the interaction relations
via graph neural networks. However, both methods overlook object attributes, limiting their
performance over object-dominated actions. In contrast, this paper proposes a method that
learns relations among attributes (i.e., objects) extracted from CLIP features. To the best
of our knowledge, this is the first method that leverages CLIP features for long-term video
understanding while implicitly modelling object attributes.

Besides, model relations between different semantics. There are also some works using
pure temporal modelling for temporal action detection [6, 9, 29]. TGM [29] is a temporal
filter based on Gaussian distributions, which enables the learning of longer temporal struc-
tures with a limited number of parameters. PDAN [8] is a temporal convolutional network,
with temporal kernels which are adaptive to the input data. MSTCT [9] uses convolutions
in a token-based architecture to promote multiple temporal scales of tokens, and to blend
neighbouring tokens imposing a temporal consistency with ease. Different from the above
methods, besides the temporal modelling, our proposed method further models the object
semantic relation for a better understanding of the video content.

3 Proposed Method

Figure 3: Overall framework for the proposed Attribute-Aware Network. This network is
composed of 3 main components: CLIP encoder, attribute extractor and graph reasoning
block for graph classification.

In this section, we present our Attributes-Aware Network (AAN), which leverages
CLIP features for the task of action detection. AAN is composed of three main components:
a frozen CLIP encoder, an attributes extractor and a graph reasoning block (see Fig. 3).
The attributes extractor extracts the attribute semantics from the frame-level CLIP features.
Conversely, the graph reasoning block models the attribute relation and performs graph clas-
sification. These two components of AAN are trained end-to-end to optimize the attribute
representation for the action detection task. We elaborate on these components in the fol-
lowing.
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Figure 4: Attributes Extractor. For each attribute, it has a specific extractor to obtain its
semantic representation from the input frame. The extractor for the same attribute is shared
across the frames.

3.1 Attributes Extraction
The attributes extractor is used to extract the attributes from the frames. These attributes
are object semantics encoded within the frame representations. Different from the previous
works [14, 40] that extract the object semantics via object detector from the 3D convolutional
feature map, in this work, the attributes extraction is based on the frame level representation
obtained from CLIP encoder.

CLIP [31] is trained using a vast collection of image-text pairs in a contrastive fashion.
Owing to the CLIP pre-training process, language and image features are projected into
a shared embedding space, as depicted in Fig.2(b). This configuration enables the CLIP
Image model to compute more generalized visual features, as demonstrated in [16, 34, 39]
for a range of vision tasks. As illustrated in Fig. 1, CLIP Image features effectively retain the
action-relevant object semantics within an image. However, CLIP Image features consist of
a blend of various object representations. This raises the question: how can we disentangle
object semantics from the CLIP Image feature for long-term video understanding?

In the joint embedding space of CLIP, when given a text prompt describing a specific
object, such as "a photo of a bottle", the feature embedded by the Text CLIP encoder con-
veys the pure semantics of "bottle" in this space. This feature is closely related to images
of "bottle" embedded by the Image CLIP model (refer to Fig. 2(b)). These prompts can be
considered as anchors within the joint space, allowing the disentanglement of particular ob-
ject semantics from the holistic image representation. Therefore, in this work, the semantics
for a specific object are computed by minimizing the Euclidean distance between the visual
frame feature and the text anchor representation in the shared semantic space.

In this work, our focus is on indoor environments. Initially, we pre-define N attributes
associated with daily living actions. Since action labels typically consist of a noun and a
verb, the attributes should encompass all nouns in the datasets. Next, we generate prompts
based on these attributes and employ the CLIP Text encoder to extract text anchor features
in the joint embedding space, represented by T n, where n ∈ N.

In the visual aspect, frame-level features are obtained using the CLIP Image encoder (re-
fer to Fig. 4). These extracted features are stacked along the temporal axis (i.e., frames) to
create a T ×D0 video representation. This video representation is then fed to the attributes
extractor, which comprises N filters. Each filter corresponds to a specific attribute and in-
cludes a linear layer, batch normalization, and ReLU activation, as follows:

In
t = ReLU(BN(W nFt)) (1)

Here, Ft represents the CLIP feature of the frame at time step t, and W n denotes the linear
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Figure 5: Graph Classification.

layer for attribute n. ReLU and BN refer to ReLU non-linear activation and batch normaliza-
tion, respectively. Note that each filter signifies an object semantics in the latent space. We
minimize the L2 distance [1] between the output feature (In

t ) of the attributes extractor and
its corresponding text anchor feature (T n). This minimization objective encourages the ex-
tractor to extract the object-specific attributes in an image. The formulation of this objective
is as:

Lattributes =
1

NT ∑
t∈T

∑
n∈N

||In
t −T n||2 (2)

Therefore, the linear layers situated above the frozen CLIP visual encoder, optimized with
the aforementioned loss, facilitate the extraction of relevant attributes (object-related infor-
mation) pertaining to the scene for video understanding. Note that, it is possible to utilize
both MSE loss and contrastive loss [18] for semantic extraction. In our work, we have ex-
plored the use of contrastive loss but found that MSE loss (L2) performs better for our spe-
cific task. This observation aligns with our intuition, which suggests that contrastive learning
is more suitable for large-scale pre-training rather than fine-tuning downstream tasks. Bal-
ancing embedding learning with downstream task classification can be challenging, making
MSE loss a more effective choice for our purposes.

3.2 Graph Reasoning Block

Following the attribute extraction, each frame can be represented as a graph, where the ex-
tracted attributes function as the graph nodes. The graph edges are initialized based on the
statistics of attribute occurrences in the training distribution. An action label consists of a
noun and a verb. The occurrence of attributes is determined by the co-occurring probability
of the nouns. Gi j represents the concurrent instances for attribute classes ni and n j. The
conditional probability matrix Pi j = P(n j|ni) is then calculated as Pi j = Gi j/Gi, where Gi de-
notes the frequency of ni in the training distribution, and Pi j ∈RN×N indicates the probability
of class n j given the simultaneous occurrence of ni. The computed P represents the initial
graph edges. All graphs (i.e., frames) within the video share the same graph initialization
settings. The action prediction for each frame can be interpreted as a graph classification
task.

In this work, our graph classification mechanism is close to Self-Attention Graph Pooling
(SAGPool) [26]. However, in contrast to [26], we perform graph reasoning on a series of
frames, which includes modelling both attribute-attribute and attribute-temporal relations.
As shown in Fig. 5, this block comprises L attention-based graph reasoning layers followed
by a pooling layer to aggregate the graph-level information. Each graph reasoning block
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contains a multi-head graph convolution layer, a Temporal Convolution layer, and a linear
layer with non-linear activations and residual links.

The input feature is first fed into a linear layer (i.e., bottleneck layer) to squeeze the
feature dimension from D0 to D1. Then the features are fed to the graph reasoning blocks.
In each block, self-attention-based graph convolution is applied on each frame. The graph
convolution is used for modeling the relationship among the attributes at each frame. In
practice, for block i at frame t, the input features is X i

t ∈ RD1×1×N . Then we utilize a self-
attention module to learn the inter-attributes relation. Moreover, the computed relation is
then summed up with the initial graph edge based on the co-occurring attributes probability
matrix P. The obtained graph adjacency matrix is formulated as follows:

Ai
t = so f tmax((W i

1X i
t )

⊤W i
2X i

t )+P (3)

where W i
1 and W i

2 ∈RD1×D1 are the weights of two linear layers. Each value in At can be seen
as a composite edge between two vertices. P represents the global co-occurrence statistics
from the training set and the self-attention mask represents the relation that is adaptive to dif-
ferent frames. Finally, the graph convolutional operation is performed using the formulation
from [24]:

X ′i
t = ReLU(Ai

tX
i
t W

i
3)+X i

t (4)

where W i
3 ∈ RD1×D1 is the weight of the linear layer. The output feature of the graph convo-

lution is then fed into a linear layer, followed by a temporal convolution. The linear layer is
employed for channel mixing prior to applying the temporal convolution. Temporal convo-
lution is performed for the same node across multiple frames to model temporal information.
This is followed by a ReLu activation and an additional linear layer. These operations can
be expressed as:

X i+1 =W i
5(ReLU(TC(W i

4X ′i)))+X ′i (5)

where W i
4 and W i

5 ∈ RD1×D1 are the weights of two linear layers, while TC denotes the
temporal convolution operation. The output X i+1 is input to the subsequent graph reasoning
blocks.

In the final step, graph classification is carried out by classifying the aggregated graph
representation for each frame. The graph aggregation is performed using an average pooling
layer, while the classification of the graph employs a linear layer with sigmoid activation.
The Binary Cross Entropy (BCE) loss, Laction, is computed in comparison to the ground-
truth labels for multi-label action classification of each frame, as demonstrated in [5]. Con-
sequently, the total loss for training AAN is given by:

Ltotal = Lattributes +Laction (6)

4 Experiment

4.1 Dataset
In this work, we evaluate our method on two challenging action detection datasets which
involve actions with fine-grained object details. Charades [35] is a large untrimmed dataset
with 9848 videos of daily living actions. The dataset contains 157 action classes with more
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than 30 objects shared across multiple action classes. We utilize the "action localization"
setting for this dataset, which aims at detecting actions for different frames [36]. We also
evaluate our method on Toyota Smarthome Untrimmed (TSU) [10] (Cross-subject proto-
col). Similar to the Charades, TSU is recorded in an indoor environment. There are up to
5 actions that can occur at the same time in a given frame. Different from Charades, the
TSU involves long-term videos and composite activities. For evaluation, we compute the
per-frame mAP by default on these two datasets following [43].

4.2 Implementation details
In the proposed network, we employ ViT/14 [12] based CLIP visual encoder. The CLIP
encoding feature size D0 is 768. For light-weighting the network, we then map the D0 to
intermediate channel size D1, which is 256. We set the number of attributes N to 38 to fit the
requirement of general daily living video understanding. There are L = 5 graph reasoning
blocks used, and the kernel size for the temporal convolution within the graph reasoning
block is 3. The number of heads for the multi-head attention is set to 4. AAN is trained
using two RTX 6000 GPUs with a batch size of 32. The Adam optimizer [23] is utilized
with an initial learning rate of 0.0001, which is scaled by a factor of 0.5 with a patience of 8
epochs.
Prompt: In our work, we perform feature extraction on a per-frame setting. As a result,
we utilize a standard image prompt for image classification. Specifically, during the training
phase, we define a list of prompts including (1) "A photo of xx", (2) "There is a xx", (3) "An
image of xx", and (4) "A photo with a xx", where xx represents the object label. To enhance
the robustness of attribute representation, we randomly select one of these prompts for each
video during training. During inference, we use prompt (1) to extract attributes.
Attributes: The predefined attributes in our study are derived from the object and action
labels (e.g. "book" in "reading book") provided by the Charades and TSU datasets. Addi-
tionally, both datasets include a list of objects present in their respective datasets, and we
leverage this information to compile our attribute list.

4.3 Comparison to the State-of-the-Art
In this section, we compare AAN with state-of-the-art methods on two large indoor datasets,
Charades [35] and TSU [10], as shown in Table 1. Note that, similar to our method, we
compared only the RGB only result. Both datasets feature complex actions with varying
object interactions. We compare our approach with leading methods for these two datasets,
including techniques utilizing TCN [8], Transformer [32, 37], graph convolution [7], and
ConvTransformer [9]. We observe that our method significantly outperforms state-of-the-art
approaches (e.g., +3.2% on Charades and +7.4% on TSU compared to MS-TCT [9]). This
marks the first time a method achieves 30% in the localization task on the Charades dataset
and 40% on the TSU dataset. In our model analysis, we demonstrate that this substantial
improvement in action detection performance is not solely due to the use of the CLIP vi-
sual encoder in comparison to I3D [4] or X3D [13] encoders employed in state-of-the-art
methods. Rather, it is attributed to each component of AAN, which plays a crucial role in
leveraging the CLIP features for the action detection task.

Additionally, we assess the performance of our method using the action dependency
metrics [37] on the Charades dataset. As depicted in Table 2, our method surpasses MLAD
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Eval in per-frame mAP (%) Charades TSU
R-C3D [42] 12.7 8.7
Super-event [30] 18.6 17.2
TGM [29] 20.6 26.7
PDAN [8] 23.7 32.7
Coarse-Fine [19] 25.1 -
MLAD [37] 18.4 -
CTRN [7] 25.3 33.5
MS-TCT [9] 25.4 33.7
Coarse-fine + SSDet [21] 26.9 -
ViVit-L + TTM [32] 28.8 -
Attribute-Aware Network 32.0 41.3

Table 1: Comparison with the
state-of-the-art methods.

Figure 6: Visualization of action detection.

τ = 0 τ = 20 τ = 40
PAC F1AC mAPAC PAC F1AC mAPAC PAC F1AC mAPAC

I3D [4] 14.3 2.1 15.2 12.7 2.9 21.4 14.9 3.1 20.3
MLAD [37] 19.3 8.9 28.9 18.9 10.5 35.7 19.6 10.8 34.8
MS-TCT [9] 26.3 19.5 30.7 27.6 22.1 37.6 27.9 22.1 36.4
Attribute-Aware Network 31.4 20.4 35.4 30.4 22.3 41.8 32.5 22.2 40.8

Table 2: Evaluation on the Charades dataset using the action-conditional metrics [37].

and MS-TCT across all metrics for both co-occurring action detection (τ = 0) and distant
action detection (τ = 40). This demonstrates the robustness of our proposed approach.

4.4 Further Analysis
4.4.1 Ablation

Model Analysis. In this section, we examine the effectiveness of each component in AAN
on the Charades dataset. Table 3 demonstrates our analysis of the necessity of the Attribute
Extractor and the Graph Reasoning block. Note that the graph reasoning block can not op-
erate without the attribute extractor. As seen in the table, merely extracting object attributes
from the CLIP feature does not significantly enhance performance (+1.4%). However, per-
forming reasoning across these extracted attributes leads to better modelling of complex
videos (+14.0%).

Furthermore, we assess the importance of components within the Graph Classification
block: Multi-Head Attention (MHA) and Temporal Convolution. These results are com-
puted based on the presence of the Attribute Extractor. Table 4 reveals that adding MHA
or Temporal Convolution both improve performance compared to the vanilla Attribute Ex-
tractor (+7.0% and +8.3%, respectively). By incorporating all components, AAN achieves a
substantial improvement.
Backbone. As our method is built on top of the CLIP backbone (i.e., pre-trained ViT
model [12]) rather than the conventional I3D model [4]. We thus further analyse if the
performance boost is principal because of changing the backbone network. As shown in
Table 5, we first evaluate the state-of-the-art method PDAN [8] and MS-TCT [9] with the
pre-trained ViT backbone (i.e., CLIP Image model [31]). We find that while using the same
backbone as our method, the performance of PDAN and MS-TCT can be improved. How-
ever, as PDAN and MS-TCT do not have a specific design for leveraging the object-related
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Attribute Extractor Graph Reasoning Blocks mAP (%)
18.1

✓ 19.4
✓ ✓ 32.0

Table 3: Ablation on the Proposed Modules.

Multi-Head Attention Temporal Conv. mAP (%)
✓ 25.1

✓ 26.4
✓ ✓ 32.0

Table 4: Ablation inside graph classifica-
tion module.

MLP PDAN [8] MS-TCT [9] Ours
I3D [4] 15.6 23.7 25.4 -
ViT [31] 19.0 26.0 29.7 32.0

Table 5: Ablation on the visual backbone.

feature, our method can still perform better (+2.3%).
We further compared our method and MS-TCT in terms of per-action class precision on

Charades. We observe that for 22.9% action classes, our method outperforms MS-TCT for
more than 5%. The top-5 actions that outperform MS-TCT are: Closing a window (+37.2%),
Sitting on a chair (+26.4%), Taking a broom (+23.6%), Closing a fridge (+22.0%), Putting a
laptop (+18.9%). All the classes are relevant to objects.

4.4.2 Qualitative analysis

As shown in Fig. 6, we visualize the predictions of our method and the state-of-the-art
method MS-TCT on a sample video from the Charades dataset. Both methods employ the
same backbone network. We observe that, in comparison to MS-TCT, our method is more
proficient in predicting object-related actions, such as play a phone, put a phone, and sit in
a chair.

5 Conclusion

In this paper, we introduced the Attributes-Aware Network (AAN), which utilizes CLIP
features for action detection tasks. AAN comprises two essential components: the Attributes
Extractor and the Graph Reasoning block, which are vital for learning object semantics and
modelling their relationships in videos. AAN surpasses previous state-of-the-art methods on
two widely-used Activities of Daily Living datasets, establishing a new benchmark. Future
research will focus on rethinking various vision tasks using CLIP features and AAN-style
frameworks.
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