Steve Malalel

Arnaud Malapert

Marie Pelleau

Jean-Charles Régin

MDD Archive for Boosting the Pareto Constraint

Keywords: 2012 ACM Subject Classification Applied computing → Multi-criterion optimization and decisionmaking, Theory of computation → Constraint and logic programming, Mathematics Keywords and phrases Constraint Programming, Global Constraint, MDD, Multi-Objective Problem, Pareto Constraint Digital Object Identifier 10.4230/LIPIcs.CP.2023.24

come

Introduction

Multi-objective combinatorial optimization (MOCO) problems are present in many industrial applications [START_REF] Vafaeenezhad | Multi-objective mathematical modeling for sustainable supply chain management in the paper industry[END_REF][START_REF] Wang | Multi-objective optimization of synergic energy conservation and co2 emission reduction in china's iron and steel industry under uncertainty[END_REF]. They involve several incomparable objectives represented by objective variables.

For the sake of clarity and without loss of generality, we will consider that we have to solve a problem where all objective variables must be minimized.

A solution S 1 of objective variables is dominated by another solution S 2 if for each objective variable obj i the value of obj i in S 2 is better than or equal to the value of obj i in S 1 . For instance the solution (4, 6, 3, 1) is dominated by (4, 3, 2, 1) but it is not dominated by [START_REF] Bergman | Decision Diagrams for Optimization[END_REF][START_REF] Bergman | Decision Diagrams for Optimization[END_REF][START_REF] Bergman | Decision Diagrams for Optimization[END_REF][START_REF] Gavanelli | An algorithm for multi-criteria optimization in csps[END_REF]. The set of non dominated solutions defines the set of Pareto optimal solutions. In MOCO, the goal is to compute that set of Pareto optimal solutions. Usually the set of non dominated solutions are saved in an archive that is maintained during the search for solutions. Two operations are involved: insert that manages the addition of a new non dominated solution and delete that removes the solutions that are dominated by the new solution.

In addition, solvers dealing with MOCO problems have to deal with another question: Is a new solution dominated by an archive solution?

In Constraint Programming, we answer this question by avoiding the generation of dominated solutions. To do this, we add a constraint to the problem that ensures that no dominated solution can be computed. This added constraint is called Pareto constraint and was proposed by Schaus and Hartert [START_REF] Schaus | Multi-objective large neighborhood search[END_REF][START_REF] Hartert | A support-based algorithm for the bi-objective pareto constraint[END_REF]. It implements the ideas of Gavanelli [START_REF] Gavanelli | An algorithm for multi-criteria optimization in csps[END_REF]. This constraint reduces the bounds of the objective variables such that dominated solutions cannot be produced. This result is obtained by preventing a new solution from being dominated by a solution from the archive. In order to understand this process, let us create a tuple composed of the current minimum of all objective variables. This tuple will dominate all solutions that can be constructed from the current objective variables. Thus, if there is a solution in the archive that dominates this tuple then clearly it will dominate all future solutions and so we can stop the search. Now, consider the objective variable obj i . If we replace in our tuple the value of obj i by its maximum possible value and if we found S, a solution of the archive, dominating this tuple, then obj i must take a value less than or equal to that of S otherwise the future solutions will be dominated by S. By applying this process for each variable, Schaus and Hartert establish the bound consistency of the constraint. We will denote by filter this process. The complexity of this operation is not detailed in their paper. A simple implementation will require to traverse n (the number of objectives) times the archive. It is not straightforward to reach a time complexity linear in the size of the archive.

It may be tempting to use multi-valued decision diagrams (MDDs) for this constraint because MDDs are a compressive data structure for representing solution sets. Perez [START_REF] Perez | Decision diagrams: constraints and algorithms[END_REF] defined the MDD representing the Pareto constraint, i.e. the set of tuples allowed by the constraint that are the possible future non-dominated solutions. As mentioned by Perez, this approach failed mainly because at the beginning the MDD compresses very strongly the set of solutions since everything is almost possible, then it will decompress because we only delete tuples and the chances of recompression are low.

In this article we propose to use MDDs to represent the archive, that are the current non dominated solutions. Currently the archive is often represented as lists. We can also use quad-trees but this is only efficient if we have few objectives [START_REF] Mostaghim | Quad-trees: A Data Structure for Storing Pareto Sets in Multiobjective Evolutionary Algorithms with Elitism[END_REF], which is not our case of study. With lists (or quad-trees for that matter), the complexity of the operations insert and delete is linear with the size of the archive (i.e. the number of elements multiplied by the number of objectives). Representing the archive by an MDD will allow parts of common solutions to be merged. As with an MDD, all the solutions are treated globally, we can therefore hope to save time thanks to these groupings.

The operation delete will therefore potentially save time. The operation insert may be slower because MDDs are a heavier data structure than lists. However, this operation takes much less time than delete or filter. For this last operation, we will benefit from the global view of the MDD. We propose to improve the algorithm of Schaus and Hartet in two ways: we define an algorithm to find the tightest solutions (i.e. the largest possible value of an objective) faster and we introduce a variant of this algorithm that processes all objective variables at once, and not successively.

Our algorithms are based on the following idea: Consider the objective variable obj i . Let us remove from the MDD that represents the archive all the values of the objective variables different from obj i that are less than or equal to the minimum of their variable. Then we perform a reduction of the MDD in order to obtain MDD D . If MDD D is not empty then it means that there exist paths from root to tt in the MDD, that is solutions in the archive which will dominate any new solution involving some values of obj i . More precisely, there exist solutions of the form (v 1 , v 2 , . . . , v i , . . . , v n) such that ∀j = 1 . . . n, j ̸ = i : v j ≤ min(obj j). These solutions dominate (or are equal to) any future solution with obj i ≥ v i . Hence, the maximum possible value for obj i is the smallest value of obj i in MDD D . The obtained algorithms have a linear time complexity in the size of the MDD, which improves the algorithm of Schaus and Hartet.

The paper is organized as follows. First, we recall some concepts and definitions of Constraint Programming, Multi-Objective Optimization Problems and Multi-valued Decision Diagrams. Then, we introduce the representation of the archive by an MDD. We present how the insert and delete operations are implemented. We detail two algorithms for the operation filter that establishing the bound consistency of the Pareto Constraint associated with an MDD. Next, we experiment with these methods on bin packing and multi-knapsack problems. At last, we conclude.

Preliminaries

Constraint Programming

A finite constraint network N is defined as a set of n variables X = {x 1 , . . . , x n }, a set of current domains D = {D(x 1), . . . , D(x n)} where D(x i) is the finite set of possible values for variable x i , and a set C of constraints between variables. If x is a variable, then x min = min(D(x)) and x max = max(D(x)). We introduce the particular notation D 0 = {D 0 (x 1), . . . , D 0 (x n)} to represent the set of initial domains of N on which constraint definitions were stated. An element of D 0 (x 1) × • • • × D 0 (x n) on the ordered set D is called a tuple and is denoted τ . In a tuple τ , the assignment of the i th variable is denoted τ i .

A solution of N is a tuple τ that satisfies all the constraints in C. A constraint C on the ordered set of variables X(C) = (x i1 , . . . , x ir) is a subset T (C) of the Cartesian product D 0 (x i1) × • • • × D 0 (x ir) that specifies the allowed combinations of values for the variables x i1 , . . . , x ir .

Multi-Objective Optimization

A multi-objective problem in combinatorial optimization is a problem where several objectives have to be improved while satisfying constraints. For the sake of clarity and without loss of generality, these objectives are represented by integer variables and have to be minimized. We denote by O = (obj 1 , . . . , obj m) the ordered set of the objective variables in X, the set of variables of the whole problem. Then, this problem can be modeled as follows:

Minimize O Subject to C (1)
However, the minimization of several objectives simultaneously may seem ambiguous. Indeed, there is no order of priority between the different objectives and improving one often means degrading at least one of the others. This generally introduces the need to make compromises during the solving process: the goal is not to find only one optimal solution but a set of solutions that are considered Pareto optimal.

In the rest of the paper, we will focus only on the objective variables. As a consequence, a tuple will always be understood only in relation to the set O, and the same applies to a solution. Thus, for a tuple τ , the assignment of the i th objective variable is denoted by τ i .

C P 2 0 2 3 24:4

MDD Archive for Boosting the Pareto Constraint

The following definitions are taken from [START_REF] Schaus | Multi-objective large neighborhood search[END_REF]:

▶ Definition 1 (Pareto dominance). Let τ and τ ′ be two solutions of a multi-objective problem represented by a constraint network N . We say that τ dominates τ ′ , denoted τ ≺ τ ′ , if and only if:

∀i ∈ [1 . . . m] : τi ≤ τ ′ i ∧ ∃i ∈ [1 . . . m] : τi < τ ′ i (2)
We say that τ weakly-dominates

τ ′ , denoted τ ⪯ τ ′ , if and only if ∀i ∈ [1 . . . m] : τ i ≤ τ ′ i .
▶ Definition 2 (Pareto optimality). Let S be the set of all the feasible solutions of a multiobjective problem represented by a constraint network N . A solution τ is Pareto optimal if and only if there is no solution τ ′ in S that dominates τ :

∄τ ′ ∈ S : τ ′ ≺ τ (3)
▶ Definition 3 (Pareto set). Let N be the constraint network representing a multi-objective problem and S be the set of all the feasible solutions of N . The Pareto set of N is the set of all the Pareto optimal solutions in S:

{τ ∈ S|∄τ ′ ∈ S : τ ′ ≺ τ } (4)
The search for the exact Pareto set of a multi-objective problem can be impossible to achieve in a reasonable time. This leads to search for an approximation of the Pareto set: the archive.

▶ Definition 4 (Archive). An archive A is a set of solutions such that there is no solution τ ′ in the archive that dominates another solution τ in the archive. This property is known as the domination-free property:

τ ∈ A, ∄τ ′ ∈ A : τ ′ ≺ τ (5)
A basic way to maintain an archive A is to verify if a solution τ found during the search is dominated by a solution of the archive:

If τ is dominated by at least one solution, do not add it in A.

If τ is not dominated by any solution, add it and remove from A all the solutions dominated by τ .

Pareto Constraint

We reformulate the definition introduced in [START_REF] Schaus | Multi-objective large neighborhood search[END_REF] in order to avoid the notion of "next discovered solution".

▶ Definition 5 (Pareto Constraint). Let X be a set of objective variables and A be an archive defined on

O. A Pareto constraint is a constraint C associated with A defined by Pareto(O, A) = {τ s.t. τ is a tuple on O and ∄τ ′ ∈ A with τ ′ ⪯ τ }.
When using this constraint during the search for solutions, newly found solutions must be inserted in the archive. One could notice that this constraint prevents finding a solution τ such that τ ′ ∈ A and τ = τ ′ . We adapt the definition of ideal point of multi-objective problems to our purpose: From this proposition we can identify all values of all variables that are inconsistent with the constraint and so we can establish the arc consistency of the constraint which is equivalent in our case to the bound consistency. Figure 1 gives an example of domain reduction.

D(obj1) = {2, 4} D(obj2) = {1, 2, 5} D(obj3) = {1, 3, 4, 5} D(obj4) = {2, 5, 6} ∧ (3, 1, 3, 1) (2, 1, 4, 2) A =⇒ obj 3 < 4
▶ Definition 6 (Ideal tuple). Let C =Pareto(O,

Multi-valued Decision Diagram

The decision diagrams considered in this paper are reduced ordered multi-valued decision diagrams (MDD) [START_REF] Kam | Multi-valued decision diagrams[END_REF][START_REF] Srinivasan | Algorithms for discrete function manipulation[END_REF][START_REF] Bergman | Decision Diagrams for Optimization[END_REF], which are a generalization of binary decision diagrams [START_REF] Bryant | Graph-based algorithms for boolean function manipulation[END_REF]. They use a fixed variable ordering for canonical representation and shared sub-graphs for compression obtained by means of a reduction operation. An MDD is a rooted directed acyclic graph (DAG) used to represent some multi-valued functions f : {0 . . . d -1} n → true, f alse. Given the n input variables, the DAG contains n + 1 layers of nodes, such that each variable is represented at a specific layer of the graph. Each node on a given layer has at most d outgoing arcs to nodes in the next layer of the graph. Each arc is labeled by its corresponding integer. The arc (u, a, v) is from node u to node v and labeled by a. Sometimes it is convenient to say that v is a child of u. The set of outgoing arcs from node u is denoted by ω + (u). All outgoing arcs of the layer n reach tt, the true terminal node (the false terminal node is typically omitted). There is an equivalence between f (a 1 , . . . , a n) = true and the existence of a path from the root node to the tt whose arcs are labeled a 1 , . . . , a n . Figure 2 shows an example of MDD and the kind of compression it can offer. The reduction of an MDD is one of the most important operations that may reduce the MDD size by an exponential factor. It consists in removing nodes that have no successor and merging equivalent nodes, i.e., nodes having the same set of neighbors associated with the same labels. This means that only nodes of the same layer can be merged. Other operations used in this paper are the addition and deletion of tuples of an MDD. They can be performed with in-place operations provided by Perez and Régin [START_REF] Perez | Constructions and in-place operations for mdds based constraints[END_REF].

The advantage of using MDDs instead of the usual data structures is their compression capability which is useful for reducing memory consumption. Moreover, this compression may also improve the time performance of algorithms computing on a set.

Pareto Constraint Using MDD

We propose to use MDD A , an MDD, to represent the solution archive. Consider τ a new solution. Without loss of generality, we assume that τ is not weakly-dominated by any tuple of the archive. As mentioned in the introduction we need to implement the operations insert and delete: insert: τ has to be added to MDD A . delete: All the tuples dominated by τ must be removed from MDD A . In addition we need to design algorithms for implementing the filter operation of the Pareto constraint.

Insert and Delete Operations

Adding τ to MDD A can be done thanks to the in-place addition operation [START_REF] Perez | Constructions and in-place operations for mdds based constraints[END_REF]. The deletion from MDD A of all the tuples that are dominated by τ can be done by creating MDD dom (τ), the MDD of all the tuples weakly-dominated by τ . MDD dom (τ) is really simple: each layer contains only one node, and for each layer i ∈ [1 . . . (n -1)] there are arcs labeled with all the values that belong to the range [τ i . . . max(D 0 (obj i))] between the node of layer i and the node of layer i + 1. Figure 3 shows an example of such an MDD. Then, the operation MDD A -MDD dom (τ) can be performed in-place thanks to the in-place difference operator [START_REF] Perez | Constructions and in-place operations for mdds based constraints[END_REF]. It should be noted that this operation also deletes the tuple τ from MDD A , so it is better to perform first the delete operation and then the insert operation.

Filtering algorithm of the Pareto Constraint

Let C =Pareto(O, MDD A) be a Pareto constraint whose archive is represented by an MDD. We present two methods that eliminate all values of the variables satisfying Proposition 8 (i.e., that are not consistent with C). That establishes the bound consistency of C. The first one has to be executed for each objective variable, and the second one uses the concept of the first method to filter all the objective variables at the same time.

Unidirectional Marking

This method operates only on one objective variable obj i at a time. It must be repeated for each objective variable to be complete.

MDD A is traversed using a Depth-First Search (DFS) procedure from root following two rules:

For each layer j ̸ = i it is possible to go only through arcs whose values are less than or equal to obj min j . For the layer i, it is possible to go only through arcs whose values are less than or equal to obj max i . Each time the node tt is reached, the value of the arc of the layer i belonging to the current path is memorized if it is less than the previous memorized value. Then, obj max i takes the lower value between the current upper bound and the memorized value minus one. Figure 4 shows two examples based on the same archive with different states for the domains. Algorithm 3.1 is a possible implementation of this filtering for all the objective variables.

▶ Proposition 9. The unidirectional marking method eliminates all the values of obj i that are not consistent (c.f. Proposition 8).

Proof. The unidirectional marking method finds paths corresponding to the tuples that weakly-dominate τ * (O, i, obj max i) and it eliminates all the values a such that τ * (O, i, a) is weakly-dominated, by setting the maximum of obj i to minV -1 where minV = min({a such that τ * (O, i, a) is weakly-dominated}). ◀

The time complexity of this method for one objective variable is linear in the size of the MDD, because it traverses the MDD with a DFS. However, as it is repeated for each objective variable and the size of the MDD depends on the number of objective variables, the overall time complexity is then quadratic in the number of objectives. This method takes advantage of the compression offered by MDDs. Nonetheless, we can notice that a large part of the DFS is shared between the filtering of each objective variable, that is to say there are many repetitions. We then propose an improvement of this method that will execute only two DFSs.

Bidirectional Marking

The first step is to identify in MDD A , for all j ∈ (1 . . . n), all the beginning of tuple τ (1...j) = (τ 1 , . . . , τ j) such that τ (1...j) weakly-dominates (obj min 1 , . . . , obj min j). This can be done by using a DFS from root to find the corresponding paths by following one rule: for the layer j it is possible to go only through arcs whose values are less than or equal to obj min j . All the nodes reached with this method are considered as marked from root. ▶ Proposition 10. If tt is reached by the first step of the bidirectional marking method, then the Pareto constraint C is not consistent.

Proof. If tt is reached by the first step of the bidirectional marking method it means that there exists a path corresponding to a tuple that weakly-dominates τ * (O). Then C is not consistent according to Proposition The second step is similar to the first one. It consists of identifying in MDD A , for all j ∈ (1 . . . n), all the end of tuple τ (j...n) = (τ j , . . . , τ n) such that τ (j...n) weakly-dominates (obj min j , . . . , obj min n). This time the DFS starts from tt, takes arcs only in reverse, and follows the same rule as for the first step. All the nodes reached during this step are considered as marked from tt.

The inconsistent edge can now be identified: these are the arcs (u, a, v) on the layer i, such that u is marked from root and v is marked from tt. More formally we have: ▶ Proposition 11. Let Λ i be the set of all the arcs (u, a, v) on the layer i, such that u is marked from root and v is marked from tt. The value a of obj i satisfies Proposition 8 if and only if ∃(u, a, v) ∈ Λ i Proof. For all the arcs (u, l, v) in Λ i there is at least one path going from root to u that weakly-dominates (obj min 1 , . . . , obj min i-1), and there is also at least one path going from v to tt that weakly-dominates (obj min i+1 , . . . , obj min n

). It means that there is at least one tuple τ such that τ i = l and τ ⪯ τ * (O, i, l). Conversely, if there exists one tuple τ such that τ i = l and τ ⪯ τ * (O, i, l), then there is at least one path going from root to u that weaklydominates (obj min 1 , . . . , obj min i-1), and there is also at least one path going from v to tt that weakly-dominates (obj min i+1 , . . . , obj min We immediately have: ▶ Proposition 12. The bidirectional marking method finds and eliminates for each objective variable obj i all the value a such that τ * (O, i, a) is weakly-dominated, by setting the maximum of obj i to minV -1 where minV = min({a such that τ * (O, i, a) is weakly-dominated}). Algorithm 3.2 is a possible implementation of this method. Figure 5 shows two examples based on the same archive with different states for the domains. In Figure 5 (a), obj 1 and obj 4 are not filtered because for both cases there is no arc between a node marked from root and a node marked from tt at their corresponding layer. Concerning obj 2 there is the arc (c, 5, f) that satisfies this condition so obj max 2 = min(8, 5 -1) and the domain becomes {3, 4}. For obj 3 , the arc (e, 4, h) is the only one that satisfies this condition so obj max 3 = min(7, 4 -1) and the domain becomes {2, 3}. In Figure 5 (b), tt is reached from root during the first step of the bidirectional marking. Therefore there is no possible assignment with current domains.

The MDD is traversed two times with DFS and one time with the search of minimal value for each objective variable, then the time complexity of this method is linear in the size of the MDD.

bottomUpMarking(MDD

A , D, l -1, u, markedFromTt) twoWaysMarkingFiltering(O, D, MDD A) 9 size ← O.size 10 for i ∈ 1 . . . size + 1 do 11 markedF romRoot[i] ← ∅ 12 markedF romT t[i] ← ∅ 13 topDownMarking(MDD A , D, 1, root, markedFromRoot) // If tt si reached, it
means that there is no // more possible assignment with current domains.

Experiments

The methods presented in this paper have been implemented in Java 17 using Choco-solver version 4.10.10 [START_REF] Prud | Choco-solver: A java library for constraint programming[END_REF]. All the experiments were run in sequential on a machine with an Intel(R) Xeon(R) W-2175 CPU @ 2.50GHz using Ubuntu 20.04.6 LTS version 5.4.0-146-generic. In these experiments, three implementations of the Pareto constraint are compared: List: the Pareto constraint of Choco, using a list for representing the archive. When a new solution is inserted, all the solutions in the list are compared with this solution to determine if they must be removed from the list. Concerning the filtering, for each objective variable obj i the inconsistent values are found by comparing all the solutions in the list with the dominated point DP i , defined in [START_REF] Schaus | Multi-objective large neighborhood search[END_REF][START_REF] Gavanelli | An algorithm for multi-criteria optimization in csps[END_REF]. M-U: the Pareto constraint associated with an MDD for representing the archive and using the Unidirectional marking algorithm as filtering algorithm.

C P 2 0 2 3 M-B: the Pareto constraint associated with an MDD for representing the archive and using the Bidirectional marking algorithm as filtering algorithm. The considered problems are the bin packing and the multi-criteria knapsack problems.

Bin Packing Problem

The bin packing problem is a problem where n items have to be placed into bins. Each item has m types of weight, and each bin has a limit for each type of weight. For each type of weight the objective is to minimize the maximum weight among all the bins, so there are m objectives. These objectives encourage an equitable distribution of weights. The datasets used involve items with weights randomly chosen between 1 and 40, and a limit of 120 for each type of weight for each bin. These items have to be distributed between 8 bins. The problem is modeled using the matrix-based symmetry-breaking constraints proposed by Salem and Kieffer [START_REF] Salem | An experimental study on symmetry breaking constraints impact for the one dimensional bin-packing problem[END_REF].

In order to compare the different methods, we focused on the time taken to find at most 30000 solutions. Moreover, we measured the total time taken by the filtering of the Pareto constraint throughout the search (Filtering time), and the total time taken to maintain the domination-free property of the archive throughout the search (Deletion and Insertion time, or D&I time). Table 1 shows the evolution of these times depending of the number of items n while Table 2 shows this evolution depending of the number of objectives m.

The first thing that comes out of the results of Table 1 is that M-B generally performs better than the list for this problem. These performances seem to depend on the size of the archive: the larger it is, the more the compression of MDDs shows its advantage. When we look at the time spent on the different operations, we can notice that this time saving is mainly done during the D&I part. For example with data b9, which has the largest archive with 7763 solutions, M-B is 7.5 times faster than the list and its D&I part is 200 times faster than the D&I part of the list. Concerning the filtering part M-B is sometimes slower than the list but when this is the case, it is not much slower. Moreover, when M-B is faster on the filtering it can be up to almost 2 times faster as with data b15.

The experiments in Table 2 show another interesting phenomenon about the filtering part: compared to the list, the more objectives there are, the faster the filtering with M-B. For example with data b26 where there are 20 objectives, the filtering with M-B is almost 4 times faster than the filtering with the list. However, when there are few objectives the list is globally better as shown by the results for m = 5.

The results with M-U are not as good as those with M-B, and are even worse than those with the list. Indeed, even if M-U has an advantage on the D&I part compared to the list, the filtering takes too much time which negates totally the advantage.

Multi-Criteria Knapsack Problem

This problem is a variant of the knapsack problem with n items: the goal is not to maximize only one type of profit but m types of profit. Then, each item has m values and there are m objectives to maximize. The data sets used represent items with weights and values randomly chosen between 1 and 40. For each data set, the limit of the knapsack is equal to (n i=1 w i)/2 with w i the weight of the i-th item. We took the same types of measures as for the bin packing problem (i.e. the total time, the filtering time and the D&I time) but we only ran the methods with the list and M-B. Table 3 lists the results obtained.

The results between the methods are similar for this problem, the solving times are more or less equivalent for each instance. However, we can observe a behavior that we have already seen with the bin packing problem: M-B is generally better when the size of the archive is large. The results show also that for this problem the list is generally more efficient for the filtering while M-B is better for the D&I.

Conclusion

In this paper we presented methods to use an MDD as an archive for the Pareto Constraint.

The insertion of a new solution into the MDD and the deletion from the MDD of the solutions dominated by this new solution are made by applying classical operators. We presented two methods for establishing the bound consistency of this constraint: the unidirectional marking method and the bidirectional marking method. The second method is linear in the size of the MDD. We have shown that, depending on the problem, using an MDD as an archive with the bidirectional marking method can be very effective compared to the classical list representation of the archive. The use of MDDs is particularly well suited to maintaining the dominance-free relation of the archive. It is also interesting for the filtering algorithm. These performances are even more important as the number of objectives increases.

Figure 1

 1 Figure 1 Application of the propagator of the Pareto constraint.

Figure 2

 2 Figure 2 An MDD representing the tuple set {(1, 1), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}.

Figure 3

 3 Figure 3 An MDD representing all the tuples weakly-dominated by (2, 5, 1) with D0(obj1) = [1 . . . 5], D0(obj2) = [1 . . . 6] and D0(obj3) = [1 . . . 3].

C P 2

 2) = {2, 4} D(obj2) = {2, 3, 4} D(obj3) = {1, 2, 3, 4, 5} D(obj4) = {3, 5, 6}tt is never reached, so obj3 does not need to be filtered.) = {4, 5, 8}D(obj2) = {3, 7} D(obj3) = {1, 2, 3, 4, 5} D(obj4) = {5, 6}tt is reached two times with the tuples[START_REF] Gavanelli | An algorithm for multi-criteria optimization in csps[END_REF][START_REF] Gavanelli | An algorithm for multi-criteria optimization in csps[END_REF][START_REF] Gavanelli | An algorithm for multi-criteria optimization in csps[END_REF][START_REF] Gavanelli | An algorithm for multi-criteria optimization in csps[END_REF] and[START_REF] Bergman | Decision Diagrams for Optimization[END_REF][START_REF] Gavanelli | An algorithm for multi-criteria optimization in csps[END_REF][START_REF] Hartert | A support-based algorithm for the bi-objective pareto constraint[END_REF][START_REF] Hartert | A support-based algorithm for the bi-objective pareto constraint[END_REF]. The domain of the obj3 becomes {1, 2}.

Figure 4

 4 Figure 4Application of the unidirectional marking in MDDA for the objective variable obj3. MDDA contains the set of tuples {(3, 3, 3, 3),[START_REF] Bergman | Decision Diagrams for Optimization[END_REF][START_REF] Hartert | A support-based algorithm for the bi-objective pareto constraint[END_REF][START_REF] Gavanelli | An algorithm for multi-criteria optimization in csps[END_REF][START_REF] Gavanelli | An algorithm for multi-criteria optimization in csps[END_REF],[START_REF] Bergman | Decision Diagrams for Optimization[END_REF][START_REF] Gavanelli | An algorithm for multi-criteria optimization in csps[END_REF][START_REF] Hartert | A support-based algorithm for the bi-objective pareto constraint[END_REF][START_REF] Hartert | A support-based algorithm for the bi-objective pareto constraint[END_REF], (9, 2, 3, 4)}. All the nodes and arcs reached with the unidirectional marking method are represented with plain lines while those not reached with dotted lines.

n).C

 Therefore (u, l, v) belongs to Λ i ◀ D(obj1) = {4, 5, 8} D(obj2) = {3, 4, 6, 8} D(obj3) = {2, 3, 4, 7} D(obj4) = {3, 6}The nodes b, c and e are marked from root, and the nodes f and h are marked from tt. D(obj2) becomes {3, 4} and D(obj3) becomes {2, 3}. obj1 and obj4 do not need to be filtered.D(obj1) = {4, 6} D(obj2) = {3, 4, 6, 8} D(obj3) = {4, 9} D(obj4) = {3, 5, 6}tt is reached from root: the constraint is not consistent.

Figure 5

 5 Figure 5 Application of the bidirectional marking in MDDA. It represents the set of tuples {(7, 1, 1, 5), (2, 6, 1, 5), (2, 1, 4, 3), (3, 5, 2, 3)}. All the nodes and arcs reached with the bidirectional marking method are represented with plain lines while those not reached with dotted lines.

14 if

 14 tt ∈ markedF romRoot[size + 1] A , D, size, tt, markedFromTt) 18 for i ∈ 1 . . . size do 19 minV alue ← MAX_INTEGER 20 for each u ∈ markedF romRoot[i] do 21 for each arc (u, a, v) do 22 if v ∈ markedF romT t[i + 1] and a < minV alue then 23 minV alue ← a 24 obj max i ← min(obj max i , minV alue -1)

C P 2 0 2 3 24: 14 MDD

 314 Archive for Boosting the Pareto Constraint

 The ideal tuple for the value a of the variable obj i denoted by τ * (O, i, a) is the tuple composed of obj i = a and the best objective values for the other objective variables, that is (obj min

A) be a Pareto constraint with O = (obj 1 , . . . , obj n). The ideal tuple of C denoted by τ * (O) is the tuple composed of the best objective values, that is (obj min 1 , . . . , obj min n). 1 , . . . , obj min i-1 , a, obj min i+1 , . . . , obj min n). ▶ Proposition 7. Let C =Pareto(O, A) be a Pareto constraint; the following two properties are equivalent: C is consistent; τ * (O) is not weakly-dominated by any tuple of A Proof. By definition τ * (O) weakly-dominates any tuple defined on O, thus if τ * (O) is not weakly-dominated then it is a possible solution and the constraint is consistent. Otherwise, there is no solution and C is not consistent. ◀ We reformulate the filtering algorithm associated with the Pareto constraint given in [11]. ▶ Proposition 8. Let C =Pareto(O, A) be a Pareto constraint. The value a of the objective variable obj i is not consistent with C if and only if ∃τ ∈ A such that τ ⪯ τ * (O, i, a). Proof. ⇒ If the value a of obj i is not consistent with C then every tuple τ of C with τ i = a is weakly-dominated by a tuple of A. Therefore τ * (O, i, a) is weakly-dominated by a tuple of A. ⇐ The tuple τ * (O, i, a) weakly-dominates all the possible tuples τ of C with τ i = a. Thus if this tuple is weakly-dominated then there is no tuple with τ i = a consistent with the constraint and the value a of obj i is not consistent with C. ◀

Table 1

 1 Time (s) comparison between the use of lists and MDDs for the Pareto constraint with 10 objectives. The search ends when all solutions are found or if 30000 solutions are found, or if it exceeds 30 minutes (TO).

	n	Data	# Solutions found	#Solutions in A	List	Total time M-U M-B	Filtering time List M-U M-B	Deletion and insertion time List M-U M-B
		b1	6770	1687	11	46	9	3	23	8	6	0.7	0.8
		b2	7443	3004	36	61	11	7	26	6	25	0.8	0.9
	12	b3	7351	2651	29	55	11	6	23	7	19	0.6	0.7
		b4	7754	3187	40	61	13	7	32	8	29	0.8	0.9
		b5	8502	3284	49	129	18	10	65	13	35	0.9	0.9
		b6	30000	4894	420	781	103	87	360	70	309	4	4
		b7	30000	5805	708	TO	239	170	TO	166	487	TO	5
	16	b8	30000	5015	615	901	159	106	460	116	478	3	3
		b9	30000	7763 1336 1171	178	236	467	128	1055	6	5
		b10	30000	7144 1150	TO	312	215	TO	236	881	TO	5
		b11	30000	2085	265	504	115	100	247	67	123	5	5
		b12	30000	3812	386	938	142	131	508	86	207	6	6
	20	b13	30000	1198	143	827	159	56	439	77	17	3	4
		b14	30000	2647	246 1430	205	107	709	108	56	3	3
		b15	30000	2707	713	TO	406	427	TO	216	108	TO	5

Table 2

 2 Time (s) comparison between the use of lists and MDDs for the Pareto constraint with 16 items. The search ends when all solutions are found or if 30000 solutions are found, or if it exceeds 30 minutes (TO).

	m Data	# Solutions found	#Solutions in A	List	Total time M-U M-B	Filtering time List M-U M-B	Deletion and insertion time List M-U M-B
		b16	4619	121	7	17	9	0.5	5	2	0.1	0.2	0.2
		b17	5452	640	14	58	19	4	28	9	1	0.3	0.3
	5	b18	5679	382	3	12	5	0.6	6	2	0.3	0.3	0.3
		b19	8078	597	16	52	20	4	24	9	2	0.6	0.7
		b20	4658	234	3	6	4	0.3	2	1	0.1	0.2	0.2
		b6	30000	4894	420	781	103	87	360	70	309	4	4
		b7	30000	5805	708	TO	239	170	TO	166	487	TO	5
	10	b8	30000	5015	615	901	159	106	460	116	478	3	3
		b9	30000	7763 1336 1171	178	236	467	128	1055	6	5
		b10	30000	7144 1150	TO	312	215	TO	236	881	TO	5
		b21	30000	2242	78	290	44	16	179	30	53	2	2
		b22	30000	4651	583 1005	116	105	545	91	456	4	4
	15	b23	30000	3442	271	363	68	70	180	39	178	3	4
		b24	30000	3379	296 1180	97	54	614	63	223	5	4
		b25	30000	8421 1359 1213	121	305	532	77	1014	10	9
		b26	30000	7145	911 1098	77	185	568	47	706	6	5
		b27	30000	6828 1059	TO	149	202	TO	108	828	TO	7
	20	b28	30000	5327	684	889	87	140	529	61	521	5	5
		b29	30000	5791	819	TO	247	243	TO	176	516	TO	6
		b30	30000	7142	864	855	106	178	342	63	650	7	7

Table 3

 3 Time (s) comparison between the use of lists and MDDs for the Pareto constraint with 10 objectives. The search ends when all solutions are found or if 10000 solutions are found.

	n	Data	# Solutions found	#Solutions in A	Total time List M-B	Filtering time List M-B	Deletion and insertion time List M-B
		k1	1809	640	182	186	1	4	0.3	0.2
	20	k2	3667	1750	309	317	6	13	4	0.9
		k3	1661	1661	134	135	0.5	2	0.2	0.2
		k4	10000	6714	786	672	52	97	175	6
	21	k5	7806	3265	865	868	27	59	15	2
		k6	4537	815	472	467	5	11	1	1
		k7	3705	2750 1011	1050	20	35	8	1
	22	k8	1895	601	450	446	2	6	0.3	0.3
		k9	10000	5192	1123 1073	59	92	73	6
		k10	10000	4561	1116 1101	54	99	66	6
	23	k11	4634	1593 1360	1420	21	46	3	1
		k12	5390	2816	1225 1193	22	40	11	2
		k13	1791	823	848	873	4	12	0.5	0.3
	24	k14	10000	5781	1402 1335	77	112	89	5
		k15	10000	3528 1545	1570	54	92	45	5

Funding This work has been supported by the French government, through the 3IA Côte d'Azur Investments in the Future project managed by the National Research Agency (ANR) with the reference number ANR-19-P3IA-0002.