Domain Wall Dynamics in Notched Ferromagnetic Nanowires

Gilles Carbou

Université de Pau et des Pays de l'Adour Laboratoire de Mathématiques et de leurs Applications, UMR CNRS 5142

Joint works with David Sanchez (INSA-Toulouse) and Mouna Kassan (UPPA)

ANR MOSICOF

Conference in honour of Prof. Frédéric Hélein "Analyse des EDP, géométrie et physique" 5-9 june 2023 - Toulouse

Gilles Carbou, UPPA (UPPA, LMA)

< □ > < □ > < □ > < □ > < □ > < □ >

Physical Context

Perromagnetic Nanowires

3 DW in infinite nanowire of constant cross-section

DW in infinite nanowire with one notch

- Without applied field
- Pinning and depinning
- After depinning

イロト イポト イヨト イヨト

Ferromagnetic materials

Properties

- Spontaneous magnetization
- Magnetic field generated by the magnetization
- Formation of domains and domain walls

< □ > < □ > < □ > < □ > < □ >

A. Aharoni, Introduction to the Theory of Ferromagnetism, Oxford University Press, 1996

Industrial Applications

- Electromagnets
- Transformers
- Radar absorbing paints
- Mobile phones
- Modern Recording Devices

Magnetic Moment

- Volume occupied by the ferromagnetic material: $\Omega \subset \mathbb{R}^3$
- Magnetization described by the magnetic moment $m: \Omega_X \to \mathbb{R}^3$

|m(x)| = 1 p. p.

- Constitutive Relation: B = H + m
- Static configurations: critical points of \mathcal{E} under the constraint |m| = 1

Micromagnetism energy

$$\mathcal{E}(m) = \frac{A}{2} \int_{\Omega} |\nabla m|^2 + \frac{1}{2} \int_{\mathbb{R}^3} |h_d(m)|^2 + \int_{\Omega} \Psi(m) - \int_{\Omega} m \cdot H_a$$

・ロット (母) ・ ヨ) ・ ヨ)

Magnetic Moment

- Volume occupied by the ferromagnetic material: $\Omega \subset \mathbb{R}^3$
- Magnetization described by the magnetic moment $m: \Omega_X \to \mathbb{R}^3$

|m(x)| = 1 p. p.

- Constitutive Relation: B = H + m
- Static configurations: critical points of \mathcal{E} under the constraint |m| = 1

Micromagnetism energy

$$\mathcal{E}(m) = \frac{A}{2} \int_{\Omega} |\nabla m|^2 + \frac{1}{2} \int_{\mathbb{R}^3} |h_d(m)|^2 + \int_{\Omega} \Psi(m) - \int_{\Omega} m \cdot H_a$$

・ロット (母) ・ ヨ) ・ ヨ)

3d model: static case

Magnetic Moment

- Volume occupied by the ferromagnetic material: $\Omega \subset \mathbb{R}^3$
- Magnetization described by the magnetic moment $m: \Omega_X \to \mathbb{R}^3$

|m(x)| = 1 p. p.

- Constitutive Relation: B = H + m
- Static configurations: critical points of \mathcal{E} under the constraint |m| = 1

Micromagnetism energy

$$\mathcal{E}(m) = \frac{A}{2} \int_{\Omega} |\nabla m|^2 + \frac{1}{2} \int_{\mathbb{R}^3} |h_d(m)|^2 + \int_{\Omega} \Psi(m) - \int_{\Omega} m \cdot H_a$$

$$\operatorname{curl} h_d(m) = 0, \quad \operatorname{div} (h_d(m) + \overline{m}) = 0$$

イロト イポト イヨト イヨト

Magnetic Moment

- Volume occupied by the ferromagnetic material: $\Omega \subset \mathbb{R}^3$
- Magnetization described by the magnetic moment $m: \Omega_X \to \mathbb{R}^3$

|m(x)| = 1 p. p.

- Constitutive Relation: B = H + m
- Static configurations: critical points of \mathcal{E} under the constraint |m| = 1

Micromagnetism energy

$$\mathcal{E}(m) = \frac{A}{2} \int_{\Omega} |\nabla m|^2 + \frac{1}{2} \int_{\mathbb{R}^3} |h_d(m)|^2 + \int_{\Omega} \Psi(m) - \int_{\Omega} m \cdot H_a$$

Uniaxial Anisotropy: $\Psi(m) = -\frac{1}{2}(m \cdot \xi)^2$ or Planar Anisotropy: $\Psi(m) = +\frac{1}{2}(m \cdot \xi)^2$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Magnetic Moment

- Volume occupied by the ferromagnetic material: $\Omega \subset \mathbb{R}^3$
- Magnetization described by the magnetic moment $m: \Omega_X \to \mathbb{R}^3$

|m(x)| = 1 p. p.

- Constitutive Relation: B = H + m
- Static configurations: critical points of \mathcal{E} under the constraint |m| = 1

Micromagnetism energy

$$\mathcal{E}(m) = \frac{A}{2} \int_{\Omega} |\nabla m|^2 + \frac{1}{2} \int_{\mathbb{R}^3} |h_d(m)|^2 + \int_{\Omega} \Psi(m) - \int_{\Omega} m \cdot H_a$$

Applied magnetic field: Ha

・ロット (母) ・ ヨ) ・ ヨ)

3d model: Dynamical Case

Magnetic Moment

- Magnetic domain : $\Omega \subset \mathbb{R}^3$
- Magnetization described by the magnetic moment $m : \mathbb{R}^+_t \times \Omega_x \to \mathbb{R}^3$

|m(t,x)| = 1 p. p.

• Constitutive Relation: B = H + m

Landau-Lifschitz Equation

E

 $\frac{\partial m}{\partial t} = -m \times \mathcal{H} - m \times (m \times \mathcal{H}), \qquad \mathcal{H} = -\partial_m \mathcal{E}(m) = A \Delta m + h_d(m) + \nabla \Psi(m) + H_a$

$$m(0,\cdot) = m_0 \text{ on } \Omega, \qquad \frac{\partial m}{\partial n} = 0 \text{ on } \mathbb{R}^+ \times \partial \Omega,$$

$$(m) = \frac{A}{2} \int_{\Omega} |\nabla m|^2 + \frac{1}{2} \int_{\mathbb{R}^3} |h_d(m)|^2 + \int_{\Omega} \Psi(m) - \int_{\Omega} m \cdot H_a$$

$$\mathcal{E}(m(t,\cdot)) + \int_0^t \|\frac{\partial m}{\partial t}(s,\cdot)\|_{L^2}^2 ds = \mathcal{E}(m_0)$$

3d model: Dynamical Case

Magnetic Moment

- Magnetic domain : $\Omega \subset \mathbb{R}^3$
- Magnetization described by the magnetic moment $m: \mathbb{R}^+_t \times \Omega_x \to \mathbb{R}^3$

|m(t, x)| = 1 p. p.

• Constitutive Relation: B = H + m

Landau-Lifschitz-Gilberg Equation

$$\frac{\partial m}{\partial t} - m \times \frac{\partial m}{\partial t} = -2m \times \mathcal{H} \qquad m \times \Delta m = \sum_{i} \partial_{x_{i}}(m \times \partial_{x_{i}}m)$$
$$\mathcal{H} = -\partial_{m}\mathcal{E}(m) = A\Delta m + h_{d}(m) + \psi(m) + H_{a}$$
$$\mathcal{E}(m) = \frac{A}{2} \int_{\Omega} |\nabla m|^{2} + \frac{1}{2} \int_{\mathbb{R}^{3}} |h_{d}(m)|^{2} + \int_{\Omega} \Psi(m) - \int_{\Omega} m \cdot H_{a}$$
$$\mathcal{E}(m(t, \cdot)) + \int_{0}^{t} \|\frac{\partial m}{\partial t}(s, \cdot)\|_{L^{2}}^{2} ds = \mathcal{E}(m_{0})$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

References: Static Case

$$\mathcal{E}(m) = \frac{A}{2} \int_{\Omega} |\nabla m|^2 + \frac{1}{2} \int_{\mathbb{R}^3} |h_d(m)|^2 + \int_{\Omega} \Psi(m) - \int_{\Omega} m \cdot H_a$$

Visintin (1985); C. (1997); Hardt, Kinderlherer (2000)

Desimone, Kohn, Müller, Otto (2002)

Rivière, Serfaty (2001)

Ignat, Moser (2022)

A. Aharoni, Introduction to the Theory of Ferromagnetism, Oxford University Press, 1996

References: Landau-Lifschitz equation

$$\frac{\partial m}{\partial t} = -m \times \mathcal{H} - m \times (m \times \mathcal{H})$$

$$\mathcal{H} = -\partial_m \mathcal{E}(m) = A\Delta m + h_d(m) + \nabla \Psi(m) + H_a$$

Existence Results

- Joly, Métivier, Rauch (LL-Maxwell without exchange field)
- Visintin; Alouges, Soyeur; C., Fabrie; Ding, Guo (Global in time weak solutions)
- C., Fabrie, Guès (Local in time strong solutions)

Numerical Simulations

- Joly, Haddar (without exchange field)
- Labbé; Garcia-Cervera; Alouges; Bartels, Pröhl; Praetorius;... (with exchange field)

Physical Context

Perromagnetic Nanowires

DW in infinite nanowire of constant cross-section

DW in infinite nanowire with one notch

- Without applied field
- Pinning and depinning
- After depinning

イロト イポト イヨト イヨト

Data storage in ferromagnetic nanowires

- S. Parkin, M. Hayashi, L. Thomas, Magnetic Domain-Wall Racetrack Memory, Science 320 (2008)
 - Bits encoded by the sense of the magnetization
 - Stabilization of walls positions by notches

Stuart S. P. Parkin, Masamitsu Hayashi, Luc Thomas, *Magnetic Domain-Wall Racetrack Memory*, Science **320** (2008)

- 3d devices for the storage of numerical data
- Fast access

G. Hrkac, J. Dean and D. A. Allwood, *Nanowire spintronics for* storage class memories and logic, Phil. Trans. R. Soc. A (2011) 369

Data Storage in Ferromagnetic nanowires: key points

For data storage:

- DW are pinned by the notches (reliability of the storage)
- DW depinning by magnetic field: data recording
- DW depinning by application of an electric current: data reading

Goals

- Obtention and justification of equivalent simpler 1d-models for nanowires
- Description of walls configurations and walls dynamics
- Effects of notches on walls stability
- DW depinning

イロト イポト イヨト イヨト

Data Storage in Ferromagnetic nanowires: key points

For data storage:

- DW are pinned by the notches (reliability of the storage)
- DW depinning by magnetic field: data recording
- DW depinning by application of an electric current: data reading

Goals

- Obtention and justification of equivalent simpler 1d-models for nanowires
- Description of walls configurations and walls dynamics
- Effects of notches on walls stability
- DW depinning

Weak Formulation:

Radius of the cross section: ρ

・ロット (母) ・ ヨ) ・ ヨ)

•
$$\rho: \mathbf{I} \to \mathbb{R}^{*+}, \mathcal{C}^{\infty}$$

• 0 <
$$ho_{min} \leq
ho(x_1) \leq 1$$

•
$$\mathbf{s}(x_1) = \pi(\rho(x_1))^2$$

$$\int_{[0,T]\times\Omega_{\eta}} \left(\frac{\partial m}{\partial t} - m \times \frac{\partial m}{\partial t}\right) \chi = 2 \int_{[0,T]\times\Omega_{\eta}} \sum_{i=1}^{3} m \times \frac{\partial m}{\partial x_{i}} \cdot \frac{\partial \chi}{\partial x_{i}}$$
$$-2 \int_{[0,T]\times\Omega_{\eta}} m \times H_{d}(m) \cdot \chi.$$

• rescaling: fix domaine $\Omega_1 = \{(x_1, \tilde{x}_2, \tilde{x}_3), x \in I, (\tilde{x}_2)^2 + (\tilde{x}_3)^2 < (\rho(x_1))^2\}$ • $\eta \to 0$ in the weak formulation with $\chi(t, x_1, \tilde{x}_2, \tilde{x}_3) = \varphi(t, x_1)$

Weak Formulation:

Radius of the cross section:
$$\rho$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

•
$$\rho: \mathbf{I} \to \mathbb{R}^{*+}, \mathcal{C}^{\infty}$$

• 0 <
$$ho_{min} \leq
ho(x_1) \leq 1$$

•
$$\mathbf{s}(x_1) = \pi(\rho(x_1))^2$$

$$\int_{[0,T]\times\Omega_{\eta}} \left(\frac{\partial m}{\partial t} - m \times \frac{\partial m}{\partial t}\right) \chi = 2 \int_{[0,T]\times\Omega_{\eta}} \sum_{i=1}^{3} m \times \frac{\partial m}{\partial x_{i}} \cdot \frac{\partial \chi}{\partial x_{i}}$$
$$-2 \int_{[0,T]\times\Omega_{\eta}} m \times H_{d}(m) \cdot \chi.$$

• rescaling: fix domaine $\Omega_1 = \{(x_1, \tilde{x}_2, \tilde{x}_3), x \in I, (\tilde{x}_2)^2 + (\tilde{x}_3)^2 < (\rho(x_1))^2 \}$

• $\eta \to 0$ in the weak formulation with $\chi(t, x_1, \tilde{x}_2, \tilde{x}_3) = \varphi(t, x_1)$

3

$$\begin{aligned} & \text{Radius of the cross section: } \rho \\ & & \Omega_{\eta} = \{(x_{1}, x_{2}, x_{3}), x_{1} \in \mathbf{I}, \\ & (x_{2})^{2} + (x_{3})^{2} < \eta^{2}(\rho(x_{1}))^{2} \} \end{aligned}$$

$$& e \cap (1 \to \mathbb{R}^{*+}, \mathbb{C}^{\infty}, \\ & e \cap (x_{1}) \leq 1 \\ & e \circ (x_{1}) = \pi(\rho(x_{1}))^{2} \end{aligned}$$

$$& m : \mathbb{R}^{+}_{t} \times \mathbf{I}_{x} \to S^{2}, \qquad m \text{ is constant in the cross-section} \\ & \int_{[0,T]\times \mathbf{I}} \mathbf{s}(x) \left(\frac{\partial m}{\partial t} - m \times \frac{\partial m}{\partial t} \right) \varphi = 2 \int_{[0,T]\times \mathbf{I}} \mathbf{s}(x) m \times \frac{\partial m}{\partial x} \cdot \frac{\partial \varphi}{\partial x} \\ & -2 \int_{[0,T]\times \Omega_{\eta}} \mathbf{s}(x) m \times (m_{2}e_{2} + m_{3}e_{3}) \cdot \varphi. \end{aligned}$$

$$H_{eff} = \partial_x(\mathbf{s}(x)\partial_x m) - \mathbf{s}(x)(m_2\vec{e}_2 + m_3\vec{e}_3)$$

<ロト < 部 > < き > < き > … き

$$\Omega_{\eta} = \{(x_1, x_2, x_3), x_1 \in \mathbf{I}, (x_2)^2 + (x_3)^2 < \eta^2 (\rho(x_1))^2 \}$$

Radius of the cross section: ρ

(日)

•
$$\rho: \mathbf{I} \to \mathbb{R}^{*+}, \mathcal{C}^{\infty},$$

•
$$0 < \rho_{min} \le \rho(x_1) \le 1$$

•
$$\mathbf{s}(x_1) = \pi(\rho(x_1))^2$$

Model of ferromagnetic nanowire

$$\frac{\partial m}{\partial t} = -m \times \mathcal{H}_{eff} - m \times (m \times \mathcal{H}_{eff})$$

$$\mathcal{H}_{eff} = \partial_{xx} m + \frac{\mathbf{s}'}{\mathbf{s}} \partial_x m - (m_2 \vec{e}_2 + m_3 \vec{e}_3)$$

1d Ferromagnetism Energy

$$E(m) = \frac{1}{2} \int_{\mathbf{I}} \mathbf{s}(x) |\partial_x m|^2 dx + \frac{1}{2} \int_{\mathbf{I}} \mathbf{s}(x) (|m_2|^2 + |m_3|^2) dx$$

Physical Context

2) Ferromagnetic Nanowires

OW in infinite nanowire of constant cross-section

DW in infinite nanowire with one notch

- Without applied field
- Pinning and depinning
- After depinning

イロト イポト イヨト イヨト

Exact Static Solutions

Infinite nanowire of constant cross-section

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to S^{2}, \mathbf{s} \equiv \pi \\ &\frac{\partial m}{\partial t} = -m \times H_{eff} - m \times (m \times H_{eff}) \\ &H_{eff} = m_{xx} - (m_{2}\vec{e}_{2} + m_{3}\vec{e}_{3}) \end{split}$$

- φ is constant
- $\theta'' + \cos\theta\sin\theta = 0$
- $\theta \to \pm \pi/2$ when $x \to \pm \infty$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Exact Static Solutions

Infinite nanowire of constant cross-section

 $m: \mathbb{R}^+_t \times \mathbb{R}_x \to S^2, \mathbf{s} \equiv \pi$

$$\frac{\partial m}{\partial t} = -m \times H_{\text{eff}} - m \times (m \times H_{\text{eff}})$$

 $H_{eff} = m_{xx} - (m_2 \vec{e}_2 + m_3 \vec{e}_3)$

Static Solutions: Walls • $M(x) = R_{\varphi(x)} \begin{pmatrix} \sin \theta(x) \\ \cos \theta(x) \\ 0 \end{pmatrix} = R_{\varphi} \begin{pmatrix} \tanh x \\ \frac{1}{\cosh x} \\ 0 \end{pmatrix}$. $R_{\varphi} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi \\ 0 & \sin \varphi & \cos \varphi \end{pmatrix}$ • $\theta \to \pm \pi/2$ when $x \to \pm \infty$

- φ is constant
- $\theta'' + \cos\theta\sin\theta = 0$
- $\theta \to \pm \pi/2$ when $x \to \pm \infty$

Exact Static Solutions

Infinite nanowire of constant cross-section

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to S^{2}, \, \mathbf{s} \equiv \pi \\ &\frac{\partial m}{\partial t} = -m \times H_{eff} - m \times (m \times H_{eff}) \\ &H_{eff} = m_{xx} - (m_{2}\vec{e}_{2} + m_{3}\vec{e}_{3}) \end{split}$$

Static Solutions: Walls

•
$$M(x) = R_{\varphi(x)} \begin{pmatrix} \sin \theta(x) \\ \cos \theta(x) \\ 0 \end{pmatrix} = R_{\varphi} \begin{pmatrix} \tanh x \\ \frac{1}{\cosh x} \\ 0 \end{pmatrix}$$
.
 $R_{\varphi} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi \\ 0 & \sin \varphi & \cos \varphi \end{pmatrix}$
• $\theta \to \pm \pi/2$ when $x \to \pm \infty$

(日)

- φ is constant
- $\theta'' + \cos\theta\sin\theta = 0$
- $heta
 ightarrow \pm \pi/2$ when $x
 ightarrow \pm \infty$

Stability for Static Profiles

G.C. S. Labbé (2006): Stability of the constant profiles but not asymptotic stability

 $m(t,x)
ightarrow R_{\varphi_{\infty}} M_0(x - \sigma_{\infty})$ when $t
ightarrow \infty$

Infinite nanowire of constant cross-section

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to S^{2} \\ \frac{\partial m}{\partial t} &= -m \times H_{eff} - m \times (m \times H_{eff}) \\ H_{eff} &= m_{xx} - (m_{2}\vec{e}_{2} + m_{3}\vec{e}_{3}) + h_{a}\vec{e}_{1} \end{split}$$

Moving DW

$$M_{0}(x) = \begin{pmatrix} \tanh x \\ 1/\cosh x \\ 0 \end{pmatrix}$$

$$R_{\varphi} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi \\ 0 & \sin \varphi & \cos \varphi \end{pmatrix}$$

$$m(t, x) = R_{h_{a}t} (M_{0}(x + h_{a}t))$$

<ロ> <四> <四> <四> <三> <三> <三> <三

Stability results

Moving DW with constant small applied field: K. Takasao (2011) Stability threshold for constant applied field: R. Jizzini (2011) Controlability results: G.C., S. Labbé, E. Trélat (2008); Y. Privat, E. Trélat (2015). Non constant applied field: R. Côte, R. Ignat

Infinite nanowire of constant cross-section

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to S^{2} \\ \frac{\partial m}{\partial t} &= -m \times H_{eff} - m \times (m \times H_{eff}) \\ H_{eff} &= m_{xx} - (m_{2}\vec{e}_{2} + m_{3}\vec{e}_{3}) + h_{a}\vec{e}_{1} \end{split}$$

Moving DW

$$M_{0}(x) = \begin{pmatrix} \tanh x \\ 1/\cosh x \\ 0 \end{pmatrix}$$

$$R_{\varphi} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi \\ 0 & \sin \varphi & \cos \varphi \end{pmatrix}$$

$$m(t, x) = R_{h_{at}} (M_{0}(x + h_{at}))$$

Stability results

Moving DW with constant small applied field: K. Takasao (2011) Stability threshold for constant applied field: R. Jizzini (2011) Controlability results: G.C., S. Labbé, E. Trélat (2008); Y. Privat, E. Trélat (2015). Non constant applied field: R. Côte, R. Ignat

Physical Context

2 Ferromagnetic Nanowires

3 DW in infinite nanowire of constant cross-section

DW in infinite nanowire with one notch

- Without applied field
- Pinning and depinning
- After depinning

(日)

Model of infinite wire with one notch

$$\Omega_{\eta} = \{(x, y, z), \ x \in \mathbb{R}, \ y^2 + z^2 < \eta^2(\rho(x))^2\}$$

Radius of the section: ρ

- $\rho: \mathbb{R} \to \mathbb{R}^+, \mathcal{C}^{\infty},$
- *ρ* = 1 outside [-*a*, *a*],

•
$$\rho(-x) = \rho(x)$$
,

ρ non decreasing on [0, a]

•
$$s(x) = \pi(\rho(x))^2$$

Model of infinite wire with notch

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to S^{2} \\ \frac{\partial m}{\partial t} &= -m \times \mathcal{H}_{eff} - m \times (m \times \mathcal{H}_{eff}) \\ \mathcal{H}_{eff} &= \partial_{xx}m + \frac{\mathbf{s}'}{\mathbf{s}} \partial_{x}m - (m_{2}\vec{e}_{2} + m_{3}\vec{e}_{3}) + h_{a}\vec{e}_{a} \end{split}$$

section: $\mathbf{s}(x)$

・ロット (母) ・ ヨ) ・ ヨ)

Physical Context

- 2 Ferromagnetic Nanowires
- 3 DW in infinite nanowire of constant cross-section

DW in infinite nanowire with one notch
 Without applied field

- Pinning and depinning
- After depinning

イロト イポト イヨト イヨト

Existence of profiles

Shooting method to reach the separatrix after the notch

3

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Existence of profiles

Shooting method to reach the separatrix after the notch

(日)

Stability

Infinite Nanowire with one notch

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to S^{2} \\ \frac{\partial m}{\partial t} &= -m \times H_{eff} - m \times (m \times H_{eff}) \\ \mathcal{H}_{eff} &= m_{xx} + \frac{\mathbf{s}'}{\mathbf{s}} m_{x} - m_{2} \vec{e}_{2} - m_{3} \vec{e}_{3} \\ m \to \pm \mathbf{e}_{1} \text{ when } x \to \pm \infty \end{split}$$

Wall Profile

$$M_{0}(x) = \begin{pmatrix} \sin \bar{\theta}(x) \\ \cos \bar{\theta}(x) \\ 0 \end{pmatrix}$$
$$\bar{\theta}'' + \frac{\mathbf{s}'}{\mathbf{s}} \bar{\theta}' + \cos \bar{\theta} \sin \bar{\theta} = 0$$
$$BC : \bar{\theta} \to \pm \pi/2 \text{ when } x \to \pm \infty$$

Thm 1 (with D. Sanchez)

Existence and stability of M_0 , asymptotic stability for the position of the wall

If $||m(t=0) - M_0||_{H^1(\mathbb{R})}$ is small, then

- for all time, $||m(t) M_0||_{H^1(\mathbb{R})}$ remains small,
- m(t) tends to $R_{\theta_{\infty}}(M_0)$ when t tends to $+\infty$.

Mobile frame

Geometrical constraint |m| = 1

We describe the perturbations in the mobile frame

$$m(t,x) = \sqrt{1 - |r(t,x)|^2} M_0(x) + r_1(t,x) M_1(x) + r_2(t,x) M_2$$

$$M_{0}(x) = \begin{pmatrix} \sin \bar{\theta}(x) \\ \cos \bar{\theta}(x) \\ 0 \end{pmatrix} \qquad M_{1}(x) = \begin{pmatrix} -\cos \bar{\theta}(x) \\ \sin \bar{\theta}(x) \\ 0 \end{pmatrix} \qquad M_{2} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

New Equations for *n*

 $r: \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to \mathbb{R}^{2}$ $\partial_{t}r_{1} = -L_{1}(r_{1}) - L_{2}(r_{2}) + \text{non linear}$ $\partial_{t}r_{2} = L_{1}(r_{1}) - L_{2}(r_{2}) + \text{non linear}$ $L_{1}(r) = -\partial_{xx}r - \frac{\mathbf{s}'}{\mathbf{s}}\partial_{x}r + (\sin^{2}\bar{\theta} - \cos^{2}\bar{\theta})r$ $L_{2}(r) = -\partial_{xx}r - \frac{\mathbf{s}'}{\mathbf{s}}\partial_{x}r + (\sin^{2}\bar{\theta} - (\bar{\theta}')^{2})r$

Exact Solution

 M_0 for LL \sim 0 for the new system

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Stability of 0 ?

Mobile frame

Geometrical constraint |m| = 1

We describe the perturbations in the mobile frame

$$m(t,x) = \sqrt{1 - |r(t,x)|^2} M_0(x) + r_1(t,x) M_1(x) + r_2(t,x) M_2$$

$$M_{0}(x) = \begin{pmatrix} \sin \bar{\theta}(x) \\ \cos \bar{\theta}(x) \\ 0 \end{pmatrix} \qquad M_{1}(x) = \begin{pmatrix} -\cos \bar{\theta}(x) \\ \sin \bar{\theta}(x) \\ 0 \end{pmatrix} \qquad M_{2} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

New Equations for r

$$r : \mathbb{R}_{l}^{+} \times \mathbb{R}_{x} \to \mathbb{R}^{2}$$

$$\partial_{t}r_{1} = -L_{1}(r_{1}) - L_{2}(r_{2}) + \text{non linear}$$

$$\partial_{t}r_{2} = L_{1}(r_{1}) - L_{2}(r_{2}) + \text{non linear}$$

$$L_{1}(r) = -\partial_{xx}r - \frac{\mathbf{s}'}{\mathbf{s}}\partial_{x}r + (\sin^{2}\bar{\theta} - \cos^{2}\bar{\theta})r$$

$$L_{2}(r) = -\partial_{xx}r - \frac{\mathbf{s}'}{\mathbf{s}}\partial_{x}r + (\sin^{2}\bar{\theta} - (\bar{\theta}')^{2})r$$

Exact Solution

 \textit{M}_{0} for LL \sim 0 for the new system

Stability of 0 ?

(日)

On $L^2(\mathbb{R})$, weighted scalar product:

$$\begin{split} \left\langle u \middle| v \right\rangle_{\mathbf{s}} &= \int_{\mathbb{R}} \mathbf{s}(x) u(x) v(x) \, dx, \\ L_2 &= -\frac{1}{\mathbf{s}} \partial_x (\mathbf{s} \partial_x) + (\sin^2 \bar{\theta} - (\bar{\theta}')^2) \implies L_2 \text{ is self-adjoint for } \left\langle \left| \right. \right\rangle_{\mathbf{s}}. \\ \left\langle L_2 u \middle| v \right\rangle_{\mathbf{s}} &= \left\langle \ell u \middle| \ell v \right\rangle_{\mathbf{s}}, \qquad \text{with } \ell = \partial_x + \bar{\theta}' \tan \bar{\theta} \\ L_2 &\geq 0, \quad \text{Ker } L_2 = \mathbb{R}(\cos \bar{\theta}) \end{split}$$

- Valid whatever the configurations of the wire (several pinched zones)
- for one wall, on $(\cos \bar{\theta})^{\perp}$, $L_2 \ge \alpha_2 > 0$
- Invariance by rotation \implies 0 is an eigenvalue of the linearized

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - つくぐ

Properties of the linearized: L_1

$$L_1 = L_2 + (\bar{\theta}')^2 - \cos^2 \bar{\theta}$$

Key point : $L_1 \ge 0$?

Infinite nanowire without pinching: $L_1 = L_2$, $L_1 \ge 0$. Stability

э

・ロット (母) ・ ヨ) ・ ヨ)

Properties of the linearized: L_1

$$L_1 = L_2 + (\bar{\theta}')^2 - \cos^2\bar{\theta}$$

Physical Context

- 2 Ferromagnetic Nanowires
- 3 DW in infinite nanowire of constant cross-section

DW in infinite nanowire with one notch
 Without applied field

- Pinning and depinning
- After depinning

イロト イポト イヨト イヨト

Small applied field

Notched Nanowire

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to S^{2} \\ \frac{\partial m}{\partial t} &= -m \times H_{eff} - m \times (m \times H_{eff}) \\ \mathcal{H}_{eff} &= m_{xx} + \frac{\mathbf{s}'}{\mathbf{s}} m_{x} - m_{2} \vec{e}_{2} - m_{3} \vec{e}_{3} + h_{a} \vec{e}_{1} \end{split}$$

Constant-cross-section wire: precessional regime

$$m(t,x) = R_{+h_at}M_0(x+h_at)$$

æ

Notched Nanowire

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to S^{2} \\ \frac{\partial m}{\partial t} &= -m \times H_{eff} - m \times (m \times H_{eff}) \\ \mathcal{H}_{eff} &= m_{xx} + \frac{\mathbf{s}'}{\mathbf{s}} m_{x} - m_{2} \vec{e}_{2} - m_{3} \vec{e}_{3} + h_{a} \vec{e}_{3} \end{split}$$

<ロト < 回 > < 回 > < 回 > < 三 > 三 三

Notched wire:

Thm 2, with D. Sanchez

Pinning effects: for small h_a : the wall remains in the notch (static solution), its profile is planar.

Depinning: for $|h_a| \ge \frac{\pi - \mathbf{s}(0)}{\pi + \mathbf{s}(0)}$, there is no static solution with one DW

Pinning and depinning

Notched Nanowire

$$m : \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to S^{2}$$
$$\frac{\partial m}{\partial t} = -m \times H_{eff} - m \times (m \times H_{eff})$$
$$\mathcal{H}_{eff} = m_{xx} + \frac{\mathbf{s}'}{\mathbf{s}} m_{x} - m_{2} \vec{e}_{2} - m_{3} \vec{e}_{3} + h_{a} \vec{e}_{3}$$

$$\theta'' + \frac{\mathbf{s}'}{\mathbf{s}}\theta' + \cos\theta\sin\theta + h_a\cos\theta = 0$$

Left side: $(\theta')^2 = -\sin^2 \theta - 2h_a \sin \theta + 1 - 2h_a$,

Right side: $(\theta')^2 = -\sin^2 \theta - 2h_a \sin \theta + 1 + 2h_a$

Gilles Carbou, UPPA (UPPA, LMA)

DW in Notched Ferromagnetic Nanowires

Physical Context

2 Ferromagnetic Nanowires

3 DW in infinite nanowire of constant cross-section

DW in infinite nanowire with one notch

- Without applied field
- Pinning and depinning
- After depinning

イロト イポト イヨト イヨト

$$m : \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to S^{2}$$
$$\frac{\partial m}{\partial t} = -m \times H_{eff} - m \times (m \times H_{eff})$$
$$\mathcal{H}_{eff} = m_{xx} + \frac{\mathbf{s}'}{\mathbf{s}}m_{x} - m_{2}\vec{e}_{2} - m_{3}\vec{e}_{3} - h_{a}\vec{e}_{1}$$

Solution without notch:

$$\mathcal{M}_{\sigma_0}(t,x) = \mathcal{R}_{-H(t)} \mathcal{M}_0(x - \sigma_0 - H(t)), \quad H(t) = \int_0^t h_a(s) ds.$$

Thm 3 (with M. Kassan)

There exists $0 < h^- < h^+$ such that if $h_a \in C^0(\mathbb{R}^+)$ with $\forall t, 0 < h^- \le h(t) \le h^+$, then for all $\varepsilon > 0$, there exists σ^* and $\eta > 0$ such that:

for all $\sigma_0 \geq \sigma^*$, for all *m*, solution of LL, with $||m(0, \cdot) - \mathcal{M}_{\sigma_0}(0, \cdot)||_{H^1} \leq \eta$,

$$\forall t > 0, \ \|m(t, \cdot) - \mathcal{M}_{\sigma_0}(t, \cdot)\|_{H^1} \leq \varepsilon,$$

$$\exists \varphi_{\infty}, \exists \sigma_{\infty}, \| \textit{m}(t, \cdot) - \textit{R}_{\varphi_{\infty}}\mathcal{M}_{\sigma_{0}}(t, \cdot + \sigma_{\infty}) \|_{H^{1}} \to 0$$

$$\mathcal{M}_{\sigma_0}(t,x) = \mathcal{R}_{-H(t)} M_0(x - \sigma_0 - H(t)), \quad H(t) = \int_0^t h_a(s) ds.$$

We rewrite *m* as:

$$m(t,x) = R_{-H(t)}M(t,x-\sigma_0-H(t)), \quad H(t) = \int_0^t h_a(s)ds.$$

m(t,x) close to $\mathcal{M}_{\sigma_0}(t,x) \iff M(t,\tilde{x})$ close to $M_0(\tilde{x})$, with $\tilde{x} = x - \sigma_0 - H(t)$

Equation for M

$$\partial_t M = -M \times \tilde{H}_{eff}(M) - M \times (M \times \tilde{H}_{eff}(M)) + h_a(t)(\partial_x M + M \times (M \times \vec{e}_1))$$

$$\tilde{H}_{eff}(M) = \partial_{xx}M + \frac{\mathbf{s}'}{\mathbf{s}}(x + \sigma_0 + H(t))\partial_xM + (M \cdot \vec{e}_1)\vec{e}_1.$$

$$M:\mathbb{R}\times\mathbb{R}\longrightarrow S^{2}$$

Mobile frame and new unknown

$$M(t,\tilde{x}) = r_1(t,\tilde{x})M_1(\tilde{x}) + r_2(t,\tilde{x})M_2 + \sqrt{1 - |r|^2 M_0(\tilde{x})}$$

$$M_0 = \begin{pmatrix} \tanh \tilde{x} \\ \frac{1}{\cosh \tilde{x}} \\ 0 \end{pmatrix}, \quad M_1 = \begin{pmatrix} -\frac{1}{\cosh \tilde{x}} \\ \tanh \tilde{x} \\ 0 \end{pmatrix}, \quad M_2 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \Phi \end{pmatrix}$$

Gilles Carbou, UPPA (UPPA, LMA)

DW in Notched Ferromagnetic Nanowires

First step: mobile frame

m(t,x) close to $\mathcal{M}_{\sigma_0}(t,x) \iff M(t,\tilde{x})$ close to $M_0(\tilde{x})$, with $\tilde{x} = x - \sigma_0 - H(t)$

Equation for M

$$\partial_t M = -M \times \tilde{H}_{eff}(M) - M \times (M \times \tilde{H}_{eff}(M)) + h_a(t)(\partial_x M + M \times (M \times \vec{e}_1)),$$

$$\begin{split} \tilde{H}_{eff}(M) &= \partial_{xx}M + \frac{\mathbf{s}'}{\mathbf{s}}(x + \sigma_0 + H(t))\partial_xM + (M \cdot \vec{e}_1)\vec{e}_1. \\ M &: \mathbb{R} \times \mathbb{R} \longrightarrow S^2 \end{split}$$

Mobile frame and new unknown

$$M(t,\tilde{x}) = r_1(t,\tilde{x})M_1(\tilde{x}) + r_2(t,\tilde{x})M_2 + \sqrt{1 - |r|^2 M_0(\tilde{x})}$$

$$M_{0} = \begin{pmatrix} \tanh \tilde{x} \\ \frac{1}{\cosh \tilde{x}} \\ 0 \end{pmatrix}, \quad M_{1} = \begin{pmatrix} -\frac{1}{\cosh \tilde{x}} \\ \tanh \tilde{x} \\ 0 \end{pmatrix}, \quad M_{2} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
$$M(t, \cdot) \text{ close to } M_{0} \iff r \text{ close to } 0$$

Equation in r

 $\partial_t r = \mathcal{V}_{\sigma_0}(t, x) + (J\mathcal{L} + h_a(t)\ell)r + \text{ non linear terms}$

First step: mobile frame

Mobile frame and new unknown

$$M(t,\tilde{x}) = r_1(t,\tilde{x})M_1(\tilde{x}) + r_2(t,\tilde{x})M_2 + \sqrt{1-|r|^2}M_0(\tilde{x})$$

$$M_0 = \begin{pmatrix} \tanh \tilde{x} \\ \frac{1}{\cosh \tilde{x}} \\ 0 \end{pmatrix}, \quad M_1 = \begin{pmatrix} -\frac{1}{\cosh \tilde{x}} \\ \tanh \tilde{x} \\ 0 \end{pmatrix}, \quad M_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

 $M(t, \cdot)$ close to $M_0 \iff r$ close to 0

Equation in r

$$\partial_t r = \mathcal{V}_{\sigma_0}(t, x) + (J\mathcal{L} + h_a(t)\ell)r + \text{ non linear terms}$$

$$\mathcal{V}(t,x) = \frac{1}{\cosh x} \frac{\mathbf{s}'}{\mathbf{s}} (x + \sigma_0 + H(t)) \vec{e}_1, \quad |\mathcal{V}(t,x)| \le K e^{-\gamma(\sigma_0 + H(t))},$$
$$J = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix},$$
$$\mathcal{L}r = -\partial_{xx}r - \frac{\mathbf{s}'}{\mathbf{s}} (x + \sigma_0 + H(t))\partial_x r + (2\tanh^2 x - 1)r, \quad \ell r = \partial_x r + \tanh(x)r$$

ヘロト 人間 とくほ とくほう

Equation in r

$$\partial_t r = \mathcal{V}_{\sigma_0}(t, x) + (J\mathcal{L} + h_a(t)\ell)r + \text{ non linear terms}$$
$$\mathcal{V}(t, x) = \frac{1}{\cosh x} \frac{\mathbf{s}'}{\mathbf{s}} (x + \sigma_0 + H(t))\vec{e}_1, \quad |\mathcal{V}(t, x)| \le K e^{-\gamma(\sigma_0 + H(t))},$$
$$J = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix},$$
$$\mathcal{L}r = -\partial_{xx}r - \frac{\mathbf{s}'}{\mathbf{s}} (x + \sigma_0 + H(t))\partial_x r + (2\tanh^2 x - 1)r, \quad \ell r = \partial_x r + \tanh(x)r$$

To be proved

If σ_0 is large enough, if r(t = 0) is small enough, then $r(t, \cdot)$ remains small.

(日)

LL without notch ($\mathbf{s} \equiv 1$)

 $\begin{aligned} \frac{\partial m}{\partial t} &= -m \times H_{eff} - m \times (m \times H_{eff}) \\ H_{eff} &= m_{xx} - (m_2 \vec{e}_2 + m_3 \vec{e}_3) \end{aligned}$

Invariance by rotation and translation

 \implies existence of a 2-parameter familly of solutions for LL:

 $(t,x)\mapsto R_{\theta}M_0(x+\sigma)$

 \Longrightarrow existence of a 2-parameter familly of solutions in the mobile frame

 \implies 0 \in Ker L, with $L = -\partial_{xx} + (2 \tanh^2 x - 1)$ associated to $x \mapsto \frac{1}{\cosh x}$ and $L = \ell^* \circ \ell$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

LL with notch and applied field

$$\begin{split} &\frac{\partial m}{\partial t} = -m \times H_{eff} - m \times (m \times H_{eff}) \\ &H_{eff} = m_{xx} + \frac{\mathbf{s}'}{\mathbf{s}} m_x - (m_2 \vec{e}_2 + m_3 \vec{e}_3) - h_a \vec{e}_1 \\ &m \text{ close to} \\ &\mathcal{M}_{\sigma_0}(t, x) = R_{-H(t)} \mathcal{M}_0(x - \sigma_0 - H(t)) \end{split}$$

Invariance by rotation, quasi-invariance by translation

2-parameter familly of quasi-solutions close to \mathcal{M}_{σ_0} :

$$(t,x)\mapsto R_{\theta}\mathcal{M}_{\sigma_0}(t,x+\sigma)$$

2-parameter familly of quasi solutions for Eq. in *r*:

$$(t,x)\mapsto \mathcal{R}_{\Lambda}(t,x), \quad \Lambda=(\theta,\sigma)$$

New unknowns: Λ and W

$$r(t,\cdot) = \mathcal{R}_{\Lambda(t)}(\cdot) + W(t,\cdot), \quad \text{with } \int_{\mathbb{R}} W_i(t,x) \frac{1}{\cosh x} dx = 0.$$

Equations in Λ and W

$$\partial_t W = \mathcal{V}_{\sigma_0}(t, x) + (J\mathcal{L} + h_a(t)\ell)W + F(t, x, \sigma_0, \Lambda, W)$$
$$\frac{d\Lambda}{dt} = \mathcal{G}(t, x, \sigma_0, \Lambda, W)$$

$$\|\mathcal{V}_{\sigma_0}(t,\cdot)\|_{L^2_t} \leq C \exp(-c(\sigma_0 + H(t))), \qquad J = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix},$$

$$\mathcal{L}W = -\partial_{xx}W - \frac{\mathbf{s}'}{\mathbf{s}}(x + \sigma_0 + H(t))\partial_xW + (2\tanh^2 x - 1)W, \quad \ell W = \partial_xW + \tanh(x)W$$

$$\|F\|_{L^{2}} \leq C \|W\|_{H^{2}} (|\Lambda| + \|W\|_{H^{1}}) + C \exp(-c(\sigma_{0} + H(t)))$$

$$|G| \leq C ||W||_{H^1} + C \exp(-c(\sigma_0 + H(t)))$$

To be proved:

If W(0) and $\Lambda(0)$ are small, then

• W(t) and $\Lambda(t)$ remain small

•
$$W \longrightarrow 0$$
 in H^1 and $\Lambda(t) \longrightarrow \Lambda_{\infty}$

Coercivity for W

$$\left\langle W_i \middle|_{\cosh x} \right\rangle = 0 \Longrightarrow W \in (\operatorname{Ker} L)^{\perp}, \text{ with } L = -\partial_{xx} + 2 \tanh^2 x - 1. \\ \left\| W \right\|_{L^2}^2 \le \left\langle LW \middle| W \right\rangle = \left\| \ell W \right\|_{L^2}^2 \le \left\| LW \right\|_{L^2}^2$$

We deal with:

$$\mathcal{L}W = -\partial_{xx}W - \frac{\mathbf{s}'}{\mathbf{s}}(x + \sigma_0 + H(t))\partial_xW + (2\tanh^2 x - 1)W$$

We use a scalar product with time-depending weight:

$$\left\langle u \middle| v \right\rangle_t = \int_{\mathbb{R}} \mathbf{s}(x + \sigma_0 + H(t))u(x)v(x)dx$$

for which $\ensuremath{\mathcal{L}}$ is self-adjoint and coercive, so that:

$$\|W\|_{H^1} \sim \left\langle \mathcal{L}W \middle| W \right\rangle_t^{\frac{1}{2}} \text{ and } \|W\|_{H^2} \sim \|LW\|_{L^2_t}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Variational estimates

$$\begin{aligned} \partial_t W &= \mathcal{V}_{\sigma_0}(t, x) + J\mathcal{L}W + h_a(t)\ell W + F(t, x, \sigma_0, \Lambda, W) \\ \|\mathcal{V}_{\sigma_0}(t, \cdot)\|_{L^2_t} &\leq C \exp(-c(\sigma_0 + H(t))), \qquad J = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}, \\ \mathcal{L}W &= -\partial_{xx}W - \frac{\mathbf{s}'}{\mathbf{s}}(x + \sigma_0 + H(t))\partial_xW + (2 \tanh^2 x - 1)W, \quad \ell W = \partial_x W + \tanh(x)W \\ \|F\|_{L^2} &\leq C \|W\|_{H^2} \left(|\Lambda| + \|W\|_{H^1}\right) + C \exp(-c(\sigma_0 + H(t))) \end{aligned}$$

$$\frac{d}{dt} \Big\langle \mathcal{L}W \Big| W \Big\rangle_t \leq -\|\mathcal{L}W\|_{L^2_t}^2 + c(|h| + |\Lambda| + \|W\|_{H^1}) \|\mathcal{L}W\|_{L^2_t}^2 + C \exp(-c(\sigma_0 + H(t))) \|\mathcal{L}W\|_{L^2_t}$$

assumption: $|h| \leq \frac{1}{8c}$

While
$$|\Lambda| \leq \frac{1}{8c}$$
 and $||W||_{H^1} \leq \frac{1}{8c}$, then

$$\frac{d}{dt} \left\langle \mathcal{L}W \middle| W \right\rangle_t + \frac{1}{2} ||\mathcal{L}W||^2_{L^2_t} \leq C \exp(-2c(\sigma_0 + H(t)))$$

$$\frac{d}{dt} \left\langle \mathcal{L}W \middle| W \right\rangle_t + \alpha \left\langle \mathcal{L}W \middle| W \right\rangle_t \leq C \exp(-2c(\sigma_0 + H(t)))$$

Δ

Comparison lemma

Assumption: $c|h| \leq \frac{1}{8c}$ While $|\Lambda| \leq \frac{1}{8c}$ and $||W||_{H^1} \leq \frac{1}{8c}$, then

$$\frac{d}{dt} \left\langle \mathcal{L}W \middle| W \right\rangle_t + \alpha \left\langle \mathcal{L}W \middle| W \right\rangle_t \leq C \exp(-2c(\sigma_0 + H(t))),$$

so $\langle \mathcal{L}W | W \rangle_t \leq Y(t)$ where Y satisfies $Y' + \alpha Y = C \exp(-2c(\sigma_0 + H(t)))$.

$$Y(t) = Y_0 \exp(-\alpha t) + \exp(-2c\sigma_0) \int_0^t C \exp(-\alpha(t-s)) \exp(-2cH(s)) ds.$$

We need:

- Y(t) small for all time if Y(0) is small and σ_0 large enough,
- $Y(t) \rightarrow 0$
- to control A, $\sqrt{Y(t)}$ integrable and its integral can be as small as necessary.

Assumption on h

• |h(t)| small enough

•
$$t \mapsto \left(\int_0^t \exp(-\alpha(t-s) - 2cH(s))ds\right)^{\frac{1}{2}}$$
 tends to zero when $t \to +\infty$ and integrable on \mathbb{R}^+ .

Example: if $0 < h^- \le h(t) \le \frac{1}{8c}$

Conclusion

Done

- Static solution for small constant h_a
- Static solution for multiply notched wire
- Dynamics far from the notch
- Stability threshold for h_a?
- Dynamics of the walls for wires with several notches?
- Dynamics induced by electric current?

Thank you for your attention

イロト イポト イヨト イヨト

Conclusion

Done

- Static solution for small constant h_a
- Static solution for multiply notched wire
- Dynamics far from the notch
- Stability threshold for ha?
- Dynamics of the walls for wires with several notches?
- Dynamics induced by electric current?

Thank you for your attention

(日)