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ABSTRACT
In this paper, we establish the existence of global-in-time weak solutions for
the Landau-Lifschitz-Gilbert equation with magnetostriction in the case of mixed
boundary conditions. From this model, we derive by asymptotic method a two-
dimensional model for thin ferromagnetic plates taking into account magnetostric-
tive effects.
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1. Introduction

Ferromagnetic materials are characterized by a spontaneous magnetization, even in the
absence of an external magnetic field. This magnetization influences the shape of the
materials, and conversely, a deformation of the material leads to a change in magneti-
zation. This phenomenon, called magnetostriction, is used for industrial applications,
for example in magnetostrictive pressure sensors or ultrasonic transducers.

In this paper, starting from the 3D model describing the time behavior of the mag-
netization of a material taking into account the magnetostriction, our goal is to obtain
and justify by asymptotic method a two-dimensional model of thin ferromagnetic plate.
We first describe the three-dimensional model coupling Landau-Lifschitz-Gilbert with
elasticity equations (see [15]).

1.1. Three dimensional model

We denote byΩ, the domain occupied by the ferromagnetic material, and bym(t,x) ∈
R3 the magnetic moment at time t and at point x = (x1,x2,x3) ∈ Ω. We assume that
the material is saturated, so that m satisfies the saturation constraint |m(t,x)| = ms

a.e., where ms is a constant expressed in A.m−1. The dynamics of m is described by
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the Landau-Lifschitz-Gilbert equation (see [1], [5], [8] and [14]):
∂m

∂t
− α

ms
m× ∂m

∂t
= −(1 + α2)γm×Heff in R+ ×Ω,

∂nm = 0 on R+ × ∂Ω,

(1)

where × is the cross product in R3, γ is the gyromagnetic ratio (expressed in A.s.kg−1),
α is the dimensionless damping coefficient and n the outward unit normal vector on
∂Ω. The effective field Heff (expressed in T = kg.s−2.A−1) is given by:

Heff =
A

m2
s

∆m+ µ0hd(m) + µ0Ψ(m) + (Λm : σ)m,

where

• A is the exchange constant (expressed in J.m−1),
• µ0 = 4π.10−7kg.m.s−2.A−2 is the vacuum permeability,
• Ψ is an anisotropic linear term satisfying: Ψ(m) = −∇Φ(m), where Φ : R3 → R
is a non negative quadratic form,

• the demagnetizing field hd(m) is calculated from m solving the static Maxwell
equation coupled with the law of Faraday:

curl hd(m) = 0 and div (hd(m) +m) = 0, (2)

where m is the extension of m by zero outside Ω,
• in the magnetostrictive term, σ is the stress tensor (2-tensor expressed in
kg.m−1.s−2), Λm is a 4-tensor expressed in m2.A−2, and : is the contraction
operator (see below).

Notation 1. Let Λ be a 4-tensor in R3. Let ξ be a 3× 3 matrix. We denote Λ : ξ the
3× 3 matrix which entries are given by:

(Λ : ξ)ij =

3∑
k=1

3∑
l=1

Λijklξkl.

Let ξ and ζ be two 3× 3 matrices. We denote ξ : ζ the scalar given by:

ξ : ζ =

3∑
i=1

3∑
j=1

ξijζij .

The Landau-Lifschitz-Gilbert Equation (1) is coupled with the wave elasticity equa-
tion:

ρ
∂2u

∂t2
− div σ = 0, (3)

where ρ is the mass density (expressed in kg.m−3) and where the stress tensor σ is
given by σ = Λe : εe, with
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• Λe is a 4-tensor (expressed in kg.m−1s−2),
• the total strain εe is a 3 × 3 matrix obtained from the linearized strain tensor
ε(u) and the magnetostrictive strain tensor εm by the relation ε(u) = εe + εm,
with

εij(u) =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
and εm = Λm : m⊗m,

where m⊗m = m · tm is the 3×3 matrix which entries are given by (m⊗m)ij =
mimj .

The 4-tensors Λe and Λm are supposed to be symmetric and positive, as defined
below:

Definition 1.1. Let Λ be a 4-tensor in R3. This tensor is said to be symmetric if:

∀(i, j, k, l) ∈ {1, 2, 3}4, Λijkl = Λjikl = Λijlk = Λklij .

This tensor is said to be positive if there exists λ∗ ∈ R∗+ such that for all symmetric
matrix ξ of entries ξij , we have:∑

ijkl

Λijklξijξkl ≥ λ∗
∑
ij

|ξij |2.

We assume that the material is clamped on Γ1 ⊂ ∂Ω and that a surface force
f (expressed in N.m2) is applied on Γ2 = ∂Ω \ Γ1, so that we have the following
boundary conditions:  u = 0 on Γ1,

σ ·n = f on Γ2,
(4)

In order to obtain a dimensionless model, we write m(t,x) = msm(tτ ,
x
ℓ ) and

u(t,x) = ℓu(tτ ,
x
ℓ ), where the characteristic time τ and the exchange length ℓ are

respectively given by:

τ =
1

γµ0ms
and ℓ2 =

A

µ0m2
s

.

We denote by t = t/τ the dimensionless time and by x = (x1, x2, x3) = x/ℓ ∈ Ω = Ω/ℓ
the dimensionless position. We denote by Γ1 = Γ1/ℓ and Γ2 = Γ2/ℓ. We introduce
the dimensionless tensors λm and λe such that:

Λm =
1

m2
s

λm and Λe = µ0m
2
sλ

e,

and we define the dimensionless applied force f ∈ L2(Γ2) by f = µ0m
2
sf. We denote

then by σ and ρ the dimensionless stress tensor and density given respectively by:

σ(t, x) =
1

m2
s

σ(τt, ℓx) = (λe : ε(u)− λe : (λm : m⊗m)) (t, x) and ρ =
ρ γ2A

m2
s

.
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We obtain then the following dimensionless model: m(t, x) and u(t, x) are defined
for t ∈ R+ and x ∈ Ω and satisfy:



∂m

∂t
− αm× ∂m

∂t
= −(1 + α2)m×Heff in R+ × Ω,

Heff = ∆m+ hd(m) + Ψ(m) + (λm : σ)m,

σ = λe : εe with εe = ε(u)− λm : m⊗m,

ρ
∂2u

∂t2
− div σ = 0 in R+ × Ω,

(5)

with the following boundary conditions
∂nm = 0 on R+ × ∂Ω,

u(t, x) = 0 on R+ × Γ1,

σ ·n = f on R+ × Γ2,

(6)

We remark that from the assumptions on Λe, there exists a constant λe∗ > 0 such
that for all symmetric 2-tensor ξ:∑

ijkl

λe
ijklξijξkl ≥ λe∗

∑
ij

|ξij |2. (7)

Note that α and ρ are dimensionless constants whose values do not affect the math-
ematical analysis of the equations. We therefore take them equal to 1. We define the
space

V (Ω) = {v ∈ H1(Ω;R3); v = 0 on Γ1}.

For m ∈ H1(Ω;S2), v ∈ V (Ω) and w ∈ L2(Ω;R3), we define the energy E(m, v,w)
by:

E(m, v,w) =
1

2

∫
Ω
|∇m(x)|2dx+

∫
Ω
Φ(m(x))dx+

1

2

∫
R3

|hd(m)(x)|2dx

+
1

4

∫
Ω
(λe : εe(x)) : εe(x)dx+

1

4

∫
Ω
|w(x)|2dx− 1

2

∫
Γ2

f(s) ·u(s) dΓs,

(8)
where εe(x) = ε(v(x))− λm : m(x)⊗m(x).

We aim to solve the Cauchy problem coupling (5)-(6) with the following initial
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conditions: 

m(t = 0) = m0 in Ω,

u(t = 0) = u0 in Ω,

∂u

∂t
(t = 0) = u1 in Ω,

(9)

where m0 ∈ H1(Ω;S2), u0 ∈ V (Ω) and u1 ∈ L2(Ω;R3). We define the notion of weak
solutions for the previous Cauchy problem:

Definition 1.2. We say that (m,u) is a weak solution for (5)-(6)-(9) if

(1) m ∈ L∞(R+;H1(Ω;R3)),
∂m

∂t
∈ L2(R+;L2(Ω;R3)) and m(0, · ) = m0,

(2) m satisfies the saturation constraint

|m(t, x)| = 1 for almost every (t, x) ∈ R+ × Ω, (10)

(3) u ∈ L∞(R+;V (Ω)),
∂u

∂t
∈ L∞(R+;L2(Ω;R3)) and u(0, · ) = u0,

(4) for all χ ∈ C∞
c (R+;H1(Ω;R3)),

∫
R+×Ω

(
∂m

∂t
−m× ∂m

∂t

)
·χ = 2

∫
R+×Ω

3∑
i=1

m× ∂m

∂xi
·
∂χ

∂xi

−2

∫
R+×Ω

m× (hd(m) + Ψ(m) + (λm : σ)m) ·χ,

with σ = λe : ε(u)− λe : (λm : m⊗m),

(11)

(5) for all χ ∈ C∞
c (R+;V (Ω)),

ρ

∫
R+×Ω

∂u

∂t
·
∂χ

∂t
−
∫
R+×Ω

(λe : ε(u)) : ε(χ) +

∫
R+×Γ2

f ·χ

−
∫
Ω
u1χ(0, x) = −

∫
R+×Ω

(λe : (λm : m⊗m)) : ε(χ),
(12)

(6) we have the following energy inequality: for all t ≥ 0,

E(m(t, · ), u(t, · ),
∂u

∂t
(t, · )) +

∫ t

0

∫
Ω

∣∣∣∣∂m∂t (τ, x)
∣∣∣∣2 dτ dx ≤ E(m0, u0, u1) (13)

where E is defined by (8).

1.2. Statement of the results

First, we establish the existence of global-in-time weak solutions for the Cauchy prob-
lem (5)-(6)-(9). Such a result is proved in [8] for homogeneous Dirichlet boundary
conditions for the deformation. With the same method, we address mixed boundary
conditions and we obtain the following theorem:
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Theorem 1.3. Let m0 ∈ H1(Ω;S2), u0 ∈ V (Ω), u1 ∈ L2(Ω) and f ∈ L2(Γ2). Then,
there exists a weak solution (m,u) for (5)-(6)-(9).

In a second time, we aim to obtain a reduced two-dimensional model for thin ferro-
magnetic plate. We consider a thin plate Ωη of the form Ωη = ω×]− η, η[, where ω is
a smooth bounded domain of R2.

Figure 1. Ωη = ω×]− η, η[

We assume that this plate is clamped on Γη
1 = C1×] − η, η[, (where C1 ⊂ ∂ω such

that the one-dimensional measure of C1 is non vanishing). We denote by C2 = ∂ω \ C1,
Γη
b = C2×] − η, η[, Γη

+ = ω̄ × {+η} and Γη
− = ω̄ × {−η}, so that Γη

1 ∪ Γη
2 (with

Γη
2 = Γη

b ∪ Γη
+ ∪ Γη

−) is a partition of ∂Ωη.

We define the spaces:

V (Ωη) = {v ∈ H1(Ωη;R3) ; v = 0 on Γη
1},

W(ω) =
{
v = (vi) ∈ H1(ω)×H1(ω)×H2(ω) ; vi = 0 on C1 and ∂1v3 = ∂2v3 = 0 on C1

}
.

Notation: for y = (y1, y2, y3) ∈ R3, we denote yT = (y1, y2).

Let h ∈ L2(C2;R3) and g+ and g− in L2(ω;R3). We define the η-depending boundary
data on Γη

2 by:
∀xT ∈ ω, ∀α ∈ {1, 2}, fη

α(xT ,±η) = g±α (xT ) and fη
3 (xT ,±η) = η2g±3 (xT ),

∀ (xT , x3) ∈ C2×]− η, η[, ∀α ∈ {1, 2}, fη
T (xT , x3) = hT (xT ),

∀ (xT , x3) ∈ C2×]− η, η[, ∀α ∈ {1, 2}, fη
3 (xT , x3) = ηh3(xT ).

(14)

Let m0 ∈ H1(ω;S2(0, 1)), ũ0 ∈ W(ω) and u1 ∈ L2(ω;R3). We assume that the third
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component of u1 vanishes: u1,3 = 0 on ω. We define the η-depending initial data by:
for x = (xT , x3) ∈ Ωη,

mη
0(xT , x3) = m0(xT ),

∀α ∈ {1, 2}, uη0,α(xT , x3) = ũ0,α(xT )−
x3
η
∂αũ0,3(xT ),

uη0,3(xT , x3) =
1
η ũ0,3(xT ),

uη1(xT , x3) = u1(xT ).

(15)

We consider (mη, uη) the weak solution of (5)-(6)-(9), given by Theorem 1.3, with
initial datamη

0, u
η
0, u

η
1 and external force fη previously defined. We rescale this solution

in order to work on the fixed domain Ω1 = ω×]− 1, 1[: for (xT , x3) ∈ Ω1, we set:

Mη(t, xT , x3) = mη(t, xT , ηx3), Hη(t, xT , x3) = (hd(m
η))(t, xT , ηx3),

Uη
T (t, xT , x3) = uηT (t, xT , ηx3), Uη

3 (t, xT , x3) = ηuη3(t, xT , ηx3).
(16)

We obtain the following convergence result, announced in [13] in the isotropic case:

Theorem 1.4. Using the notations above, when η tends to zero, there exists a sub-
sequence still denoted (Mη, Hη, Uη)η such that Mη tends to M in L∞(0, T ;H1(Ω1))
weak *, Hη tends to H in L∞(0, T ;L2(Ω1)) strongly, U

η tends to U in L∞(0, T ;V (Ω1))
weak *. In addition, M does not depend on its third variable and there exists ũ ∈ W(ω)
such that:

Uα(xT , x3) = ũα(xT )− x3∂αũ3 for α ∈ {1, 2}, and U3(xT , x3) = ũ3(xT ).

The limit (M, ũ) is a weak solution for the following initial and boundary value
problem: 

∂M

∂t
−M × ∂M

∂t
= −2M ×Heff(M) in R+ × ω

with Heff(M) = ∆M − (M, e⃗3)e⃗3 +Ψ(M) + (λm : σ̃)M,

∂2ũT
∂t2

− d̃iv σ̃ = −1

2
(g+T + g−T ) in R+ × ω,

σ̃ = λeq : ε(ũT )− λeq : (λm : M ⊗M),

M(0, · ) = m0, ũT (0, · ) = ũ0,T and
∂ũT
∂t

(0, · ) = u1,T ,

∂nM = 0 on ∂ω, ũT = 0 on C1 and σ̃.n = hT on C2,

(17)

where λeq is a 4-tensor only depending on the coefficients of λe (see below), and where

d̃ivS is defined by
(
d̃ivS

)
α
=

2∑
β=1

∂βSαβ.
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The new tensor λeq arising in the two-dimensional model (17) is defined as follows:
we denote by G the set of symmetric real 3 × 3 matrices and by Gn the set of the
matrices D = (dij) ∈ G such that dαβ = 0 for (α, β) ∈ {1, 2}2. We define the linear
operator K : G −→ Gn by:

∀D ∈ G, (K(D))ij =


0 if (i, j) ∈ {1, 2}2,

(λe : D)ij =
∑

(k,l)∈{1,2,3}2

λe
ijkldkl if i = 3 or j = 3.

We claim that the restriction of K to Gn is a bijection from Gn to itself (see the proof
in subsection 3.4). We denote by T : Gn −→ Gn the inverse of K|Gn

. Then λeq is given
by:

∀D ∈ G, λeq : D = λe :
(
D − T (K(D))

)
. (18)

We remark that the resulting model (17) is indeed two-dimensional, but it does not
describe the behavior of the normal deformations. We remark also that in this regime,
the magnetization is not influenced by the normal deformations, so that our model is
closed.

This paper is organized as follows: Theorem 1.3 is proved in section 2. We follows
the method due to Alouges and Soyeur [2] and generalized in [9]. First, we prove
the existence of solution for a penalized system, in which the saturation constraint is
relaxed. Then, we take the limit when the penalization constant tends toward zero.
In [8], global existence for (5)-(9) is obtained in the case of a clamped sample, that is
with u = 0 on ∂Ω. Our proof is very close to the proof in [8]. We reproduce it for the
convenience of the reader in order to present a self-contained paper.

Theorem 1.4 is established in section 3. In order to avoid working on a domain
depending on η, we perform a rescaling inspired both by [7] for the magnetization and
by [12] for the deformation. The thickness parameter η appears then as a stiff term in
the equations. Nevertheless, we are able to obtain a limit model thanks to the energy
inequality and by choosing convenient test functions in the rescaled weak formulation.

2. Weak solutions for the Landau-Lifschitz-Gilbert equation with
magnestostriction

Let m0 ∈ H1(Ω) with values in the unit sphere S2, u0 ∈ V (Ω), u1 ∈ L2(Ω) and
f ∈ L2(Γ2).

2.1. Penalized system

As in [2] and [8], we relax the saturation contraint and for ζ > 0, we consider the
following penalized system:

8





∂mζ

∂t
+mη × ∂mζ

∂t
− 2Hζ

eff +
1

ζ
(|mζ |2 − 1)mζ = 0 in R+ × Ω,

Hζ
eff = ∆mζ + hd(m

ζ) + Ψ(mζ) + (λm : σζ)mζ ,

σζ = λe : ε(uζ)− λe : (λm : mζ ⊗mζ),

∂2uζ

∂t2
− div σζ = 0 in R+ × Ω,

mζ(t = 0) = m0, uζ(t = 0) = u0,
∂uζ

∂t
(t = 0) = u1,

∂nm
ζ = 0 on R+ × ∂Ω, uζ(t, x) = 0 on R+ × Γ1, σζ .n = f on R+ × Γ2.

(19)
For a fixed penalization parameter ζ > 0, we construct by Galerkine method a weak

solution for (19) such that

(1) mζ ∈ L∞(R+;H1(Ω;R3)) and
∂m

∂t

ζ

∈ L2(R+;L2(Ω;R3)),

(2) uζ ∈ L∞(R+;V (Ω))) and
∂uζ

∂t
∈ L∞(R+;L2(Ω;R3)),

(3) for all t ≥ 0, we have the following energy inequality:

Eζ(t) +
1

4ζ

∫
Ω

(
|mζ(t, x)|2 − 1

)2
dx+

∫ t

0

∫
Ω

∣∣∣∣∂mζ(τ, x)

∂t

∣∣∣∣2 dτdx ≤ Eζ(0)

with Eζ(t) = E(mζ(t, · ), uζ(t, · ),
∂uζ

∂t
(t, · )).

We recall that since the surface measure of Γ1 is positive, the Korn inequality below
is valid (see [11], Theorem 6.3-4 page 292): there exists a constant c(Ω) such that for
all v ∈ V (Ω), ∫

Ω
ε(v) : ε(v) ≥ c(Ω)

∫
Ω
|v|2. (20)

This inequality yields that ∥ · ∥V =
(∫

Ω ε( · ) : ε( · )
) 1

2 is a norm on V (Ω) equivalent to

the norm ∥ · ∥H1(Ω) =
(∫

Ω | · |2 + |∇ · |2
) 1

2 , and then it is also equivalent to the norm

| · |1,Ω =
(∫

Ω |∇ · |2
) 1

2 .

2.1.1. First step: Galerkin approximation

For m, we use a Galerkin basis (e1, e2, . . .) of eigenvectors of −∆ with homogeneous
Neumann conditions at the boundary.{

−∆ei = αiei in Ω,
∂nei = 0 on ∂Ω.
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We denote by VN =span(e1, . . . , eN ) and by PN the orthogonal projection map onto
VN .

For u, we use a the Galerkin basis (ϕ1, ϕ2, . . .) of eigenvectors of −div (λe : ε) with
homogeneous mixed conditions at the boundary: −div (λe : ε(ϕj)) = bjϕj in Ω,

ϕj = 0 on Γ1,
(λe : ε(ϕj)) ·n = 0 on Γ2.

(21)

We denote by WN =span(ϕ1, . . . , ϕN ) and by ΠN the orthogonal projection map into
WN .

We consider for N fixed, the following Galerkin problem: Find mζ
N : [0, TN [→ VN

and uζN : [0, TN [→ WN , such that ∀ g1 ∈ VN and g2 ∈ WN , we have

d

dt

∫
Ω
mζ

N · g1 +
∫
Ω
mζ

N ×
∂mζ

N

∂t
· g1 − 2

∫
Ω
HN

eff · g1 +
1

ζ

∫
Ω
(|mζ

N |2 − 1)mζ
N · g1 = 0 in R+,

HN
eff = ∆mζ

N + hd(m
ζ
N ) + Ψ(mζ

N ) + (λm : σζ
N )mζ

N ,

σζ
N = λe : εe,ζN with εe,ζN = ε(uζN )− λm : mζ

N ⊗mζ
N ,

d2

dt2

∫
Ω
uζN · g2 +

∫
Ω
(λe : σζ

N ) : ε(g2)−
∫
Γ2

f · g2 = 0 in R+,

mζ
N (t = 0) = PN (m0), uζN (t = 0) = ΠN (u0),

∂uζN
∂t

(t = 0) = ΠN (u1).

(22)
By the Cauchy-Lipschitz theorem, as in subsection 2.1 in [8], there exists a unique

solution (mζ
N , uζN ) for (22) whose maximal existence time is denoted by TN .

2.1.2. Energy estimate on the Galerkin approximation

We denote by Eζ
N (t) the following quantity:

Eζ
N (t) := E

(
mζ

N (t, · ), uζN (t, · ),
∂uζN
∂t

(t, · )
)

=
1

2

∫
Ω
|∇mζ

N (t, x)|2dx+

∫
Ω
Φ(mζ

N (t, x))dx+
1

2

∫
R3

|hd(mζ
N (t, · ))(x)|2dx

+
1

4

∫
Ω

[
λe : εe,ζN (t, x)

]
: εe,ζN (t, x)dx+

1

4

∫
Ω
|
∂uζN
∂t

(t, x)|2dx

− 1

2

∫
Γ2

f(s) ·uζN (t, s) dΓs.

10



Using the symmetry of λe, we have:

d

dt
Eζ
N =

∫
Ω
∇mζ

N : ∇
∂mζ

N

∂t
+

∫
Ω
∇Φ(mζ

N ) ·
∂mζ

N

∂t
+

∫
R3

hd(m
ζ
N ) ·hd(

∂mζ
N

∂t
)

+
1

2

∫
Ω
(λe : εe,ζN ) :

∂εe,ζN

∂t
+

1

2

∫
Ω

∂2uζN
∂t2

·
∂uζN
∂t

− 1

2

∫
Γ2

f ·
∂uζN
∂t

.

Since −hd is an orthogonal projection for the L2(R3)-inner product, we have:∫
R3

hd(m
ζ
N ) ·hd(

∂mζ
N

∂t
) = −

∫
Ω
hd(m

ζ
N ) ·

∂mζ
N

∂t
.

In addition, using the symmetry of λm, we have:

∂εe,ζN

∂t
= ε(

∂uζN
∂t

)− 2λm : mζ
N ⊗

∂mζ
N

∂t
.

Using that σζ
N = λe : εe,ζN , by the symmetry of λe and λm, we have:

σζ
N : (λm : mζ

N ⊗
∂mζ

N

∂t
) =

[
(λm : σζ

N )mζ
N

]
·
∂mζ

N

∂t
.

Therefore, we have:

d

dt
Eζ
N =

∫
Ω
∇mζ

N : ∇
∂mζ

N

∂t
−
∫
Ω
Ψ(mζ

N ) ·
∂mζ

N

∂t
−
∫
Ω
hd(m

ζ
N ) ·

∂mζ
N

∂t

−
∫
Ω

[
(λm : σζ

N )mζ
N

]
·
∂mζ

N

∂t
+

1

2

∫
Ω

∂2uζN
∂t2

·
∂uζN
∂t

+
1

2

∫
Ω
σζ
N : ε(

∂uζN
∂t

)

−1

2

∫
Γ2

f ·
∂uζN
∂t

.

Taking g1 =
∂mζ

n

∂t and g2 =
∂uζ

N

∂t in (22), we obtain that

d

dt

(
Eζ
N +

1

4ζ

∫
Ω
(|mζ

N |2 − 1)2
)
+

∫
Ω

∣∣∣∣∣∂mζ
N

∂t

∣∣∣∣∣
2

= 0,

and integrating from t = 0 to t = T , we get that for all T < TN

Eζ
N (T )+

1

4ζ

∫
Ω
(|mζ

N |2−1)2+

∫ T

0

∫
Ω

∣∣∣∣∣∂mζ
N

∂t

∣∣∣∣∣
2

= Eζ
N (0)+

1

4ζ

∫
Ω
(|PN (m0)|2−1)2, (23)

We establish the following lemma:
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Lemma 2.1. There exists a constant C such that for all u ∈ V (Ω) and for all m ∈
H1(Ω;R3),

1

2

∫
Ω
[λe : (ε(u)− λm : m⊗m)] : (ε(u)− λm : m⊗m) ≥ λe∗

4
∥ε(u)∥2L2(Ω) − C∥m∥4L4(Ω).

where λe∗ is the coercivity constant appearing in (7).

Proof. From (7), we have:

[λe : (ε(u)− λm : m⊗m)] : (ε(u)− λm : m⊗m) ≥ λe∗ |ε(u)− λm : m⊗m|2 ,

≥ λe∗ ∣∣|ε(u)| − |λm : m⊗m|
∣∣2 ,

≥ λe∗

2 |ε(u)|2 − λe∗|λm : m⊗m|2

using that (a − b)2 ≥ 1
2a

2 − b2. By integrating on Ω and using that there exists a
constant K such that |λm : m ⊗ m|2 ≤ K|m|4, we conclude the proof of Lemma
2.1.

By the previous lemma, we obtain that

1

2

∫
Ω

[
λe : (ε(uζN )− λm : mζ

N ⊗mζ
N )
]
: (ε(uζN )− λm : mζ

N ⊗mζ
N )

≥ 1

2
λe∗∥ε(uζN )∥2L2(Ω) − C∥mζ

N∥4L4(Ω).

Moreover, since the trace application H1(Ω) → H
1

2 (Γ) is linear continuous and with
the Cauchy-Schwarz inequality, there exist c < 0 such that∫

Γ2

f ·uζNdΓ ≤ c∥f ||L2(Γ2) ∥ uζN ∥H1(Ω) .

Thus, if ζ is small enough, by using of (|ξ|2 − 1)2 ≥ 1
2 |ξ|

4 − 1, we obtain that

Eζ
N +

1

4ζ

∫
Ω
(|mζ

N |2 − 1)2 ≥ ∥∇mζ
N∥2L2(Ω) +

1

2

∥∥∥∥∥∂uζN∂t
∥∥∥∥∥
2

L2(Ω)

+
1

4
λe∗∥ε(uζN )∥2L2(Ω)

+
1

8ζ

∫
Ω
(|mζ

N |2 − 1)2 − 2Cmes(Ω)− c∥f∥L2(Γ2)∥ε(u
ζ
N )∥L2(Ω).

(24)

2.1.3. Limit in the Galerkin Approximation

Let us prove that the right-hand side of the energy estimate (23) is uniformly bounded
with respect to N . We will follow the calculation made in [8] section 2.3 and the
following.
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Take the term Eζ
N (0), then the following calculation holds∫

Ω
(λe : ε(ΠN (u0))) : ε(ΠN (u0)) = −

∫
Ω
div (λe : ε(ΠN (u0)))ΠN (u0)

+

∫
∂Ω

(λe : ε(ΠN (u0)))ΠN (u0) ·n

= −
∫
Ω
div (λe : ε(ΠN (u0))) (u0),

since ΠN (u0) ∈ WN =spam(ϕ1, . . . , ϕN ) and ϕj satisfy (21), then ΠN (u0) = 0 on Γ1

and (λe : ε(ΠN (u0)))n = 0 on Γ2. Furthermore, WN is stable by v 7→ div (λe : ε(v))
because −div (λe : ε(ϕj)) = −bjϕj , and ΠN is self-adjoint. Then, by Cauchy–Schwarz
inequality, we obtain∫

Ω
(λe : ε(ΠN (u0))) : ε(ΠN (u0)) =

∫
Ω
(λe : ε(ΠN (u0))) : ε(u0)

≤
∫
Ω
((λe : ε(ΠN (u0))) : ε(ΠN (u0)))

1

2 · ((λe : ε(u0)) : ε(u0))
1

2

≤
(∫

Ω
(λe : ε(ΠN (u0))) : ε(ΠN (u0))

) 1

2
(∫

Ω
(λe : ε(u0)) : ε(u0)

) 1

2

.

This last inequality implies∫
Ω
(λe : ε(ΠN (u0))) ε(ΠN (u0)) ≤

∫
Ω
(λe : ε(u0)) ε(u0). (25)

With (25), we prove the density of ∪
N≥1

WN in V (Ω). For this, if v ∈ V (Ω), then ΠN (v)

is also bounded in V (Ω) since fj = 0 on Γ1. In addition,∫
Ω
(λe : ε(ΠN (v))) : ε(ΠN (v)) ≤

∫
Ω
(λe : ε(v)) : ε(v),

so (ε(ΠN (v)))N is bounded in L2(Ω), hence ε(ΠN (v)) ⇀ ε(v) weakly in L2(Ω), because
ΠN (v) → v strongly in L2(Ω). Then

lim

∫
Ω
ε(ΠN (v)) : ε(ΠN (v)) ≤

∫
Ω
ε(v) : ε(v) ≤ lim

∫
Ω
ε(ΠN (v)) : ε(ΠN (v)),

then,

lim
N→+∞

∫
Ω
ε(ΠN (v)) : ε(ΠN (v)) =

∫
Ω
ε(v) : ε(v).

It follows that there exists a positive constant Kζ , uniformly bounded with respect
to N of the right side of (23). Hence, and from (24) together with the energy estimate

13



(23), we obtain that for ζ small enough

∥∇mζ
N∥2L2(Ω) +

1

2

∥∥∥∥∥∂uζN∂t
∥∥∥∥∥
2

L2(Ω)

+
1

4
λe∗∥ε(uζN )∥2L2(Ω) +

1

8ζ

∫
Ω
(|mζ

N |2 − 1)2

−c∥g||L2(Γ2)∥ε(u
ζ
N )∥L2(Ω) +

∫ T

0

∫
Ω

∣∣∣∣∣∂mζ
N

∂t

∣∣∣∣∣
2

≤ Kζ + 2Cmes(Ω).

(26)

The uniform bound (26) implies uniform bounds of the following quantities:

•
∂mζ

N

∂t
in L2(0, TN ;L2(Ω)),

• ∇mζ
N in L∞(0, TN ;L2(Ω)),

• mζ
N in L∞(0, TN ;L4(Ω)),

•
∂uζN
∂t

in L∞(0, TN ;L2(Ω)),

• ε(uζN ) in L∞(0, TN ;L2(Ω)).

This implies directly that TN = +∞. In addition, since the bounds do not de-

pend on N , we can assume that there exists a sub-sequence of (mζ
N , uζN )N , still noted

(mζ
N , uζN )N , and there exist (mζ , uζ) such that for all T > 0:

• mζ
N ⇀ mζ in L∞(0, T ;H1(Ω)) weak ∗,

• mζ
N → mζ in L∞(0, T ;L4(Ω)) strong (by applying the Aubin-Simon lemma [3]

Theorem II.5.16),

•
∂mζ

N

∂t
⇀

∂mζ

∂t
in L2(0, T ;L2(Ω)) weak,

• uζN ⇀ uζ in L∞(0, T ;V (Ω)) weak ∗,

•
∂uζN
∂t

⇀
∂uζ

∂t
in L∞(0, T ;L2(Ω)) weak ∗.

Let us study the limit in the initial condition. On the one hand, using Aubin-Simon
Lemma [3], we have

mζ
N → mζ and uζN → uζ in C0([0, T ];L2(Ω)).

On the other hand, using Hilbert basis properties, we have

PN (m0) → m0 and ΠN (u0) → u0 in L2(Ω).

Therefore, by the uniqueness of the limit,

mζ(t = 0) = m0 and uζ(t = 0) = u0.

By the third equation of (22), ∂2uζ
N

∂t2 is bounded uniformly with respect to N in

L∞(0, T ;L2(Ω)), then (∂u
ζ
N

∂t )N is bounded in W 1,∞(0, T ;L2(Ω)), so there exists a sub-
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sequence, still noted (∂u
ζ
N

∂t )N , such that

∂uζN
∂t

⇀
∂uζ

∂t
in L∞(0, T ;L2(Ω)) weak-*.

The application tr defined by

tr : W 1,∞(0, T ;L2(Ω)) −→ L2(Ω)
h 7−→ h(0)

is linear continuous for the weak ∗ topology, then

∂uζN
∂t

(t = 0) → ∂uζ

∂t
(t = 0) in L2(Ω).

Additionally, we have

ΠN (u1) → u1 in L2(Ω).

Therefore

∂uζ

∂t
(t = 0) = u1.

Finally, taking the limit of the Galerkin approximation (22) and the lower limit in
the energy formula (23), we obtain, for a fixed ζ small enough, that the weak limit
(mζ , uζ) is a weak solution of the penalized system (19) and satisfies the following
energy formula

Eζ(t) +
1

4ζ

∫
Ω
(|mζ | − 1)2 +

∫ t

0

∫
Ω

∣∣∣∣∣∂m∂t ζ
∣∣∣∣∣
2

≤ Eζ(0), (27)

where Eζ is defined by Eζ(t) = E(mζ(t, · ), uζ(t, · ),
∂uζ

∂t
(t, · )).

2.2. Limit when ζ tends to zero

We remark that the right side of the estimate of energy (27) does not depend on ζ,
because the initial data m0 satisfies |m0| = 1 a.e., then, by using the same arguments
as in the previous section, we obtain uniform bounds with respect to ζ for the following
quantities:

• ∂mζ

∂t
in L2(R+;L2(Ω)),

• ∇mζ in L∞(R+;L2(Ω)),
• mζ in L∞(R+;L4(Ω)),
• ε(uζ) in L∞(R+;L2(Ω)),

• ∂uζ

∂t
in L∞(R+;L2(Ω)).
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Therefore, there exists a subsequence still noted (mζ , uζ)ζ , such that for all T > 0,

• mζ ⇀ m in L∞(0, T ;H1(Ω)) weak ∗,
• mζ → m in L∞(0, T ;L4(Ω)) strong (by applying the Aubin-Simon lemma [3]

Theorem II.5.16),

• ∂mζ

∂t
⇀

∂m

∂t
in L2(0, T ;L2(Ω)) weak,

• uζ ⇀ u in L∞(0, T ;V (Ω)) weak ∗,

• ∂uζ

∂t
⇀

∂u

∂t
in L∞(0, T ;L2(Ω)) weak ∗.

If we apply the same calculation as in (26) and (27), we obtain that
1

4ζ

∫
Ω
(|mζ |2−1)2

is bounded uniformly with respect to ζ, so

∫
Ω
(|mζ |2 − 1)2 → 0 as ζ tends to zero,

and since mζ → m in L∞(0, T ;L4(Ω)) strong, then we obtain that m satisfies the
saturation constraint (10).

Now, using the strong and weak convergence and by taking the limit of (27) as
ζ → 0, we obtain that for all T > 0

E(m(T ), u(T ),
∂u

∂t
(t)) +

∫ T

0

∫
Ω

∣∣∣∣∂m∂t (s, x)
∣∣∣∣2 dx ≤ E(m0, u0, u1). (28)

In order to show that (m,u) satisfies the Landau-Lifschitz-Gilbert equation, we
take the inner product of the first equation of (19) and the test function (t, x) 7→
mζ(t, x)× χ(t, x), where χ ∈ C∞

c (R+;H1(Ω)) compactly supported in [0, T [ (as in [8],
[2] and [9]), then by making the limit as ζ goes to zero, we obtain

∫
R+×Ω

(
∂m

∂t
−m× ∂m

∂t

)
χ(t, x)dt dx = 2

∫
R+×Ω

3∑
i=1

m× ∂m

∂xi
·
∂χ

∂xi

−2

∫
R+×Ω

m× (hd(m) + Ψ(m)) ·χ− 2

∫
R×+Ω

m×
(
(λm : (λe : ε(u)))m

)
·χ

−2

∫
R×+Ω

m×
(
(λm : (λe : (λm : m⊗m)))m

)
·χ.

Furthermore, if we take the inner product of the third equation of (19), and a test
function χ ∈ C∞

c (R+;V (Ω)), and by passing to the limit as ζ tends to zero, we obtain∫
R+×Ω

∂u

∂t
·
∂χ

∂t
−
∫
R+×Ω

(λe : ε(u)) : ε(χ)−
∫
Ω
u1χ(0, x)dx+

∫
R+×Γ2

f ·χ

= −
∫
R+×Ω

(λe : (λm : m⊗m)) : ε(χ).

Consequently, (m,u), is a global in time weak solution of (5)-(6)-(9), which concludes
the proof of Theorem 1.3 .
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3. Asymptotic model for plates: proof of Theorem 1.4

Let ω be a regular bounded domain in R2. We assume that its boundary ∂ω is divided
in two parts of empty intersection: ∂ω = C1∪C2, such that the one dimensional measure
of C1 is positive.
Given η > 0, we denote:

• Ωη = ω×]− η, η[,
• Γη

1 = C1×]− η, η[,
• Γη

b = C2×]− η, η[, Γη
− = ω̄ × {−η}, Γη

+ = ω̄ × {η}, Γη
2 = Γη

b ∪ Γη
− ∪ Γη

+.

We recall the definitions of the following spaces:

V (Ωη) = {v ∈ H1(Ωη) ; v = 0 on Γη
1},

V (Ω1) = {v ∈ H1(Ω1) ; v = 0 on Γ1
1},

V(ω) = {v ∈ H1(ω) ; v = 0 on C1},

W(ω) =
{
v = (vi) ∈ H1(ω)×H1(ω)×H2(ω) ; vi = 0 on C1 and ∂1v3 = ∂2v3 = 0 on C1

}
,

VKL(Ω1) =
{
ξ ∈ H1(Ω1) ; ξ = 0 on Γ1

1 and εi3(ξ) = 0 in Ω1 for i ∈ {1, 2, 3}
}
.

We recall without proof the following result, proved in details in [10] (of Th. 1.4.1.).

Lemma 3.1. The application I defined as follows:

I : W(ω) −→ VKL(Ω1)

v 7−→
(
(vα − x3∂αv3), v3

)
,

is an isomorphism.

Let m0 ∈ H1(ω ;S2(0, 1)), ũ0 ∈ W(ω) and u1 ∈ L2(ω;R3) such that (u1)3 = 0. We
define mη

0 ∈ H1(Ωη;S
2), uη0 ∈ V (Ωη) and uη1 ∈ L2(Ωη;R3) by:

mη
0(xT , x3) = m0(xT ),

∀α ∈ {1, 2}, uη0,α(xT , x3) = ũ0,α(xT )−
x3
η
∂αũ0,3(xT ),

uη0,3(xT , x3) =
1
η ũ0,3(xT ),

uη1(xT , x3) = u1(xT ).

(29)

Let g+ and g− ∈ L2(ω) and h ∈ L2(C2). From these data, we define on Γη
2 the
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η-depending boundary data fη by:
∀xT ∈ ω, ∀α ∈ {1, 2}, fη

α(xT ,±η) = g±α (xT ) and fη
3 (xT ,±η) = η2g±3 (xT ),

∀ (xT , x3) ∈ C2×]− η, η[, ∀α ∈ {1, 2}, fη
T (xT , x3) = hT (xT ),

∀ (xT , x3) ∈ C2×]− η, η[, ∀α ∈ {1, 2}, fη
3 (xT , x3) = ηh3(xT ).

(30)
We consider then the solution for the initial and boundary value problem (5)-(6)-(9)
with these initial and boundary data, and we define the rescaled variables Mη, Uη and
Hη by:

Mη(t, xT , x3) = mη(t, xT , ηx3), Hη(t, xT , x3) = (hd(m
η))(t, xT , ηx3),

Uη
T (t, xT , x3) = uηT (t, xT , ηx3), Uη

3 (t, xT , x3) = ηuη3(t, xT , ηx3).
(31)

We define the 2-tensor ε(η, ξ) for ξ ∈ C∞(R+;V (Ω1)) by

εαβ(η, ξ) = εαβ(ξ) for α, β ∈ {1, 2},
εα3(η, ξ) =

1

η
εα3(ξ) for α ∈ {1, 2},

ε33(η, ξ) =
1

η2
ε33(ξ),

(32)

So that we have:

ε(uη) = ε(η, Uη). (33)

Now we rewrite the properties satisfied by mη and uη (see Definition 1.2) for the
rescaled variables. We obtain that:

• Mη ∈ L∞(R+;H1(Ω1;R3)),
∂M

∂t

η

∈ L2(R+;L2(Ω1;R3)), and |Mη(t, x)| = 1 for

a.e. (t, x) ∈ R+ × Ω1,
• Mη(0, x1, x2, x3) = mη

0(0, x1, x2, ηx3) = m0(x1, x2) in the trace sense,

• Uη ∈ L∞(R+;V (Ω1)) and
∂Uη

∂t
∈ L∞(R+;L(Ω1)),

• Uη(0, x1, x2, x3) = u0(x1, x2) in the trace sense,
• for all χ ∈ C∞

c (R+;H1(Ω1;R3)), we define χη ∈ C∞
c (R+;H1(Ωη;R3)) by:

χη(t, xη1, x
η
2, x

η
3) = χ(t, x1, x2,

x3
η
)
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Taking χη as a test function in (11), we obtain that:

∫
R+×Ω1

(
∂Mη

∂t
−Mη × ∂Mη

∂t

)
χ = 2

∫
R+×Ω1

2∑
α=1

Mη × ∂αM
η · ∂αχ

+
2

η2

∫
R+×Ω1

Mη × ∂3M
η · ∂3χ− 2

∫
R+×Ω1

Mη × (Hη +Ψ(Mη)) ·χ

−2

∫
R+×Ω1

(
Mη × (λm : (λe : ε(η, Uη)))Mη

)
·χ

+2

∫
R+×Ω1

Mη ×
(
(λm : (λe : (λm : Mη ⊗Mη)))Mη

)
·χ,

(34)

• for all ξ ∈ C∞(R+;V (Ω1)), we define ξη ∈ C∞(R+;V (Ωη)) by:

ξηα(t, x1, x2, x3) = ξα(t, x1, x2,
x3
η
) for α = 1, 2,

ξη3 (t, x1, x2, x3) =
1

η
ξ3(t, x1, x2,

x3
η
).

. (35)

We remark then that

ε(ξη) = ε(η, ξ). (36)

Taking ξη as a test function in (12), using that the third component of u1 = 0,
we obtain that:∫

R+×Ω1

2∑
α=1

∂Uη
α

∂t

∂ξα
∂t

+
1

η2

∫
R+×Ω1

∂Uη
3

∂t

∂ξ3
∂t

−
∫
R+×Ω1

(λe : ε(η, Uη)) : ε(η, ξ)

+

∫
R+×Γ1

−

g+ · ξ −
∫
R+×Γ1

+

g+ · ξ +
∫
R+×Γ1

2

h · ξ −
∫
Ω1

u1 · ξ(0, x)

= −
∫
R+×Ω1

(λe : (λm : Mη ⊗Mη)) : ε(η, ξ).

(37)
• for all t > 0, from (13), we have

Eη(t) +

∫ t

0

∫
Ω1

∣∣∣∣∂Mη

∂t

∣∣∣∣2 ≤ Eη(0), (38)
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where

Eη(t) :=
1

η
E(mη, uη,

∂uη

∂t
)

=

∫
Ω1

2∑
α=1

|∂αMη|2 + 1

η2

∫
Ω1

|∂3Mη|2 +
∫
Ω1

Φ(Mη) +

∫
R3

|Hη|2

+
1

2

∫
Ω1

[λe : (ε(η, Uη)− λm : Mη ⊗Mη)] : (ε(η, Uη)− λm : Mη ⊗Mη)

+
1

2

∫
Ω1

(
2∑

α=1

∣∣∣∣∂Uη
α

∂t

∣∣∣∣+ 1

η2

∣∣∣∣∂Uη
3

∂t

∣∣∣∣2
)

−
∫
Γ1

−

g− ·Uη −
∫
Γ1

+

g+ ·Uη

−
∫
Γ1

2

h ·Uη,

3.1. Uniform bound and limit when η tends to zero

Since Mη(0) does not depend on x3, we have:

Eη(0) :=
1

η
E(mη

0, u
η
0, u

η
1)

= 2

∫
ω

[
2∑

α=1

|∂αm0|2 +Φ(m0)

]
dxT +

∫
R3

|Hη(0)|2dx

+
1

2

∫
Ω1

[λe : (ε(η, Uη(0))− λm : m0 ⊗m0)] : (ε(η, U
η(0))− λm : m0 ⊗m0)

+

∫
ω
|u1,T |2dxT −

∫
ω

(
g− + g+

)
dxT ·u0 −

∫
Γ1

2

h ·u0.

Since εi3(U
η(0)) = 0 for i ∈ {1, 2, 3}, ε(η, Uη(0)) does not depend on η. In addition,∫
R3

|Hη(0)|2dx =
1

η

∫
R3

|hd(mη(0))|2 ≤ 1

η

∫
Ωη

|mη(0)|2 ≤ 2meas(ω).

Therefore, there exists a constant C1, independent of η, such that:

∀η > 0, Eη(0) ≤ C1. (39)

Using (39) and the same arguments as in the proof of Lemma 2.1, using also the
saturation constraint satisfied by Mη, we obtain that there exists a constant C such
that for all η,

1

2

∫
Ω1

[λe : (ε(η, Uη)− λm : Mη ⊗Mη)] : (ε(η, Uη)− λm : Mη ⊗Mη)

≥ λe∗

4
∥ε(η, Uη)∥2L2(Ω1)

− C.

(40)
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By continuity of the trace from H1(Ω) into H
1

2 (∂Ω), we have∫
Γ1

−

g− ·Uη +

∫
Γ1

+

g+ ·Uη +

∫
Γ1

2

h ·Uη ≤ C2∥Uη∥H1(Ω1), (41)

where C2 is a constant depending only on Ω1.
Now, using the energy inequality (38), and inequalities (40), (41) and the fact that
Φ(Mη) is non negative, for all t > 0, we have

2∑
α=1

∥∂αMη∥2L2(Ω1)
+

1

η2
∥∂3Mη∥2L2(Ω1)

+ ∥Hη∥2L2(R3) +

∫ t

0

∫
Ω1

∣∣∣∣∂Mη

∂t

∣∣∣∣2
+
λe∗

4
∥ε(η, Uη)∥2L2(Ω1)

− C1 − C2∥Uη∥H1(Ω1) +

2∑
α=1

∥∥∥∥∂Uη
α

∂t

∥∥∥∥2
L2(Ω1)

+
1

η2

∥∥∥∥∂Uη
3

∂t

∥∥∥∥2
L2(Ω1)

≤ Eη(0).
(42)

Using Definition (32) and Korn inequality (20) we can prove that

∥ε(η, ξ)∥L2(Ω1) ≥ ∥ε(ξ)∥L2(Ω1) ≥ c∥ξ∥H1(Ω) for all ξ ∈ V (Ω1). (43)

Hence, applying Inequality (43) on (42), we obtain that, for all T > 0 and η in a
neighborhood of zero, there exists a constant C independent of η such that

• ∥∂M
η

∂t
∥L2(0,T ;L2(Ω1)) ≤ C,

• ∥∂1Mη∥L∞(0,T ;L2(Ω1)) + ∥∂2Mη∥L∞(0,T ;L2(Ω1)) ≤ C,

• 1

η
∥∂3Mη∥L∞(0,T ;L2(Ω1)) ≤ C,

• ∥Uη∥L∞(0,T ;L2(Ω1)) ≤ C,

• ∥∂U
η
1

∂t
∥L∞(0,T ;L2(Ω1)) + ∥∂U

η
2

∂t
∥L∞(0,T ;L2(Ω1)) ≤ C,

• 1

η
∥∂U

η
3

∂t
∥L∞(0,T ;L2(Ω1)) ≤ C,

• ∥ε(η, Uη)∥L2(Ω1) ≤ C,
• ∥Hη∥L∞(0,T ;L2(R3)) ≤ C.

So, we can extract subsequences, still denoted (Mη, Uη) and Hη, such that when η
tends to zero:

• Mη ⇀ M in L∞(0, T ;H1(Ω1)) weak ∗,

• ∂Mη

∂t
⇀

∂M

∂t
in L2(0, T ;L2(Ω1)) weak,

• Uη ⇀ U in L∞(0, T ;V (Ω1)) weak ∗,
• ε(η, Uη) ⇀ A in L∞(0, T ;L2(Ω1)) weak ∗,

• ∂Uη

∂t
⇀

∂U

∂t
in L∞(0, T ;L2(Ω1)) weak ∗,

• ∂Uη
3

∂t
→ 0 in L∞(0, T ;L2(Ω1))

• Hη ⇀ H in L∞(0, T ;L2(R3)) weak ∗.

Using the Aubin-Simon lemma (see [3], Theorem II.5.16), we can prove that Mη →
M in L∞(0, T ;Lr(Ω1))∩C0([0, T ];L2(Ω1)) strong for r < 6. In addition, we can extract
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a subsequence, still denoted by (Mη)η, such that Mη → M almost everywhere in
[0, T ]× Ω1. Hence M verifies the saturation constraint

|M | = 1 a.e. in R+ × Ω1,

and by continuity in time with values in L2(Ω1), M(0, x) = m0(x) in the trace sense.
Furthermore, we have ∂3M

η → 0 in L∞(0, T ;L2(Ω1)) strong, so M only depends

on (t, x1, x2) ∈ R+ × ω and does not depend on x3. In addition,
∂U3

∂t
= 0.

3.2. Limit in the Landau-Lifschitz Equation

In order to characterize H, the weak limit of Hη, we apply Lemma 2.A in [6] to obtain:

H(t, x, y, z) =


−

 0
0

M3(t, x, y)

 for (x, y, z) ∈ Ω1,

0 for x /∈ R3 \ Ω1.

(44)

Let χ̃ ∈ C∞
c (R+;D(ω̄)), and define χ in R+ × Ω1 by χ(t, x1, x2, x3) = χ̃(t, x1, x2).

Then, χ ∈ C∞
c (R+;H1(Ω)) and ∂3χ = 0, so we can take χ as a test function in (34).

Using the strong convergence of Mη in L∞(0, T ;L4(Ω1)) and the weak convergence of
∂M
∂t

η
and∇Mη in L2(0, T×Ω1), by weak ∗ convergence of E(η;Uη) in L∞(0, T ;L2(Ω1)),

we obtain that ∫
R+×Ω1

(
∂M

∂t
−M × ∂M

∂t

)
χ̃ = −2

∫
R+×Ω1

2∑
α=1

M × ∂αM · ∂αχ̃

−2

∫
R+×Ω1

M × (−M3e3 +Ψ(M)) · χ̃− 2

∫
R+×Ω1

M × (λm : (λe : A))M · χ̃

+2

∫
R+×Ω1

M ×
(
(λm : (λe : (λm : M ⊗M)))M

)
· χ̃.

We denote Ā :=
1

2

∫ 1

−1
Adx3, so that Ā is a symmetric 2-tensor. We define σ̃ by:

σ̃ = λe : ϵe, with ϵe = Ā− λm : M ⊗M. (45)

Since χ̃ and M do not depend on x3, we obtain that:

∫
R+×ω

(
∂M

∂t
−M × ∂M

∂t

)
χ̃ = −2

∫
R+×ω

2∑
α=1

M × ∂αM · ∂αχ̃

−2

∫
R+×ω

M × (−M3e3 +Ψ(M)) · χ̃− 2

∫
R+×ω

M × (λm : (λe : σ̃))M · χ̃.
(46)
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3.3. Limit in the elasticity wave equation

We remark that ( 1ηεα3(U
η))η for α ∈ {1, 2} and ( 1

η2 ε33(U
η))η are bounded in

L∞(0, T ;L2(Ω)), because (ε(η, Uη))η is bounded, this gives that εi3(U
η) → 0 strongly

in L∞(0, T ;L2(Ω)), for all T > 0, i.e. εi3(U) = 0 for i ∈ {1, 2, 3}. Therefore,
U ∈ L∞(R+;VKL(Ω1)), then by Lemma 3.1, there exist ũ ∈ L∞(R+;V (ω)) such
that

Uα(t, x1, x2, x3) = ũα(t, x1, x2)− x3∂αũ3 for α ∈ {1, 2},
U3(t, x1, x2, x3) = ũ3(t, x1, x2).

(47)

For abbreviation, we write ũT = (ũ1, ũ2). Using that Uη ⇀ U in L∞(0, T ;V (Ω1))
weak ∗, since for all (α, β) ∈ {1, 2}2, (ε(η, Uη))αβ = (ε(Uη))αβ, we obtain at the weak
limit that:

Aαβ = εαβ(U) for (α, β) ∈ {1, 2}2. (48)

Taking the average in the variable x3 ∈ [−1, 1] and using (47), we obtain that:

Āαβ = εαβ(ũT ) for (α, β) ∈ {1, 2}2. (49)

For v ∈ C∞(R+;W(ω)), we define ξ ∈ C∞(R;VKL(Ω1)) by

ξα(x1, x2, x3) = vα(x1, x2)− x3∂αv3(x1, x2) for α = 1, 2,
ξ3(x1, x2, x3) = v3(x1, x2).

(50)

Then, εi3(ξ) = 0 for i ∈ {1, 2, 3}, so that ε(η, ξ) = ε(ξ). With ξ as a test function in
the weak formulation (37), we obtain

∫
R+×Ω1

2∑
α=1

∂Uη
α

∂t

∂ξα
∂t

+
1

η2

∫
R+×Ω1

∂Uη
3

∂t

∂ξ3
∂t

−
∫
R+×Ω1

(λe : ε(η, Uη)) : ε(ξ)

+

∫
R+×Γ1

−

g+ · ξ −
∫
R+×Γ1

+

g+ · ξ +
∫
R+×Γ1

2

h · ξ −
∫
Ω1

u1 · ξ(0, x)

=

∫
R+×Ω1

(λe : (λm : Mη ⊗Mη)) : ε(ξ).

(51)

Taking v = (v1, v2, 0) in (51), where v1 and v2 are in C∞(R+;V(ω)), we obtain:

∫
R+×Ω1

2∑
α=1

∂Uη
α

∂t

∂vα
∂t

−
∫
R+×Ω1

(λe : ε(η, Uη)) : ε(ξ)

+

∫
R+×ω

(g+ − g−)T · vT +

∫
R+×Γ1

2

hT · vT −
∫
Ω1

u1,T · vT (0, x)

=

∫
R+×Ω1

∑
(α,β)∈{1,2}2

(λe : (λm : Mη ⊗Mη))αβ : εαβ(v).
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By taking the limit when η tends to zero, we obtain that, for all vT ∈ C∞(R+;V(ω)):

∫
R+×ω

∂ũT
∂t

∂vT
∂t

−
∫
R+×ω

2∑
αβ=1

(λe : Ā)αβεαβ(vT ) +
1

2

∫
R+×ω

(g+T + g−T ) · vT

+

∫
R+×C2

hT · vT −
∫
R+×ω

u1T vT (0, x) = −
∫
R+×ω

2∑
αβ=1

(λe : (λm : M ⊗M))αβεαβ(v),

and therefore, using notation (45), we have:

∫
R+×ω

∂ũT
∂t

∂vT
∂t

−
∫
R+×ω

2∑
αβ=1

σ̃αβεαβ(v) +
1

2

∫
R+×ω

(g+T + g−T ) · vT +

∫
R+×C2

hT · vT

−
∫
R+×ω

u1T vT (0, x) = 0.

(52)

3.4. Characterization of σ̃

For all ξ ∈ C∞(R+;V (Ω1)), multiplying (37) by η2 and taking the limit when η tends
to zero, we obtain that

∫
R+×Ω1

∂U3

∂t
·
∂ξ

∂t
−
∫
R+×Ω1

(λe : A)33ε33(ξ) = −
∫
R+×Ω1

(λe : (λm : M ⊗M))33ε33(ξ).

(53)

We remark that
∂U3

∂t
= 0, so the first integral in (53) vanishes. For φ ∈ D(R+ × ω),

we choose ξ such that:

ξα = 0 for α = 1, 2
ξ3 = x3 φ,

then e33(ξ) = φ, and (53) implies∫
R+×ω

(λe : Ā)33φ =

∫
R+×ω

(λe : (λm : M ⊗M))33φ,

since M and φ are independent of x3. Then

(λe : Ā)33 = (λe : (λm : M ⊗M))33 in L2(R+ × ω).

Fix α ∈ {1, 2} and choose ξ such that ξα = x3φ, and ξi = 0 for i ̸= α, where
φ ∈ D(R+ × ω), then eα3(ξ) = 1

2φ and ε33(ξ) = 0. Replacing ξ by its value in (37),
multiplying the obtained equation by η and η → 0, we get:∫

R+×Ω1

(λe : A)α3φ =

∫
R+×Ω1

(λe : (λm : M ⊗M))α3φ.
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This is true for all φ ∈ D(R+×ω), then by using the fact that φ and M are independent
of x3, we obtain

(λe : Ā)α3 = (λe : (λm : M ⊗M))α3 in L2(R+ × ω). (54)

Therefore, we obtain that:

∀i ∈ {1, 2, 3}, σ̃i3 = σ̃3i = 0. (55)

We define I and J by:

I = {(i, j) ∈ {1, 2}2} and J = {(i, j) ∈ {1, 2, 3}2, i = 3 or j = 3}.

We denote by G the set of symmetric real 3 × 3 matrices endowed with the scalar
product :. We denote by Gn the set of the matrices D = (dij) ∈ G such that dαβ = 0
for (α, β) ∈ I, and by GT the set of the matricies D = (dij) ∈ G such that dij = 0 for
(i, j) ∈ J , so that

G = GT ⊕⊥ Gn

.
For D ∈ G, we define K(D) ∈ Gn by:

(K(D))ij =


0 if (i, j) ∈ I,

(λe : D)ij =
∑

(k,l)∈{1,2,3}2

λe
ijkldkl if (i, j) ∈ J.

We remark that K is linear and that its restriction to Gn is a bijection from Gn to
itself. Indeed, if D ∈ Gn with K(D) = 0, we have:

0 =
∑

(i,j)∈J

(K(D))ijDij since K(D) = 0,

=
∑

(i,j)∈J

(λe : D)ijDij ,

=
∑

(i,j)∈{1,2,3}2

(λe : D)ijDij since Dij = 0 if (i, j) ∈ I,

= (λe : D) : D.

So by positivity of λe, if K(D) = 0 with D ∈ Gn, then D = 0. So K is bijective from Gn

into Gn. We denote by T : Gn −→ Gn the inverse of K|Gn
. We split ϵe as ϵe = ϵeT + ϵen

where:

(ϵeT )ij =

 0 if (i, j) ∈ J,

ε(ũT )ij − (λm : M ⊗M)ij if (i, j) ∈ I,
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and

(ϵen)ij =

 0 if (i, j) ∈ I,

Āij − (λm : M ⊗M)ij if (i, j) ∈ J.

By (55), K(ϵeT + ϵen) = 0, so K(ϵen) = −K(ϵeT ). Since ϵen ∈ G, we obtain that:

ϵen = −T (K(ϵeT )).

Therefore,

σ̃ = λe : (ϵeT − T (K(ϵeT ))).

We denote by λeq the 4-tensor defined by:

for D ∈ G, λeq : D = λe :
(
D − T (K(D))

)
,

so that we have:

σ̃ = λeq :
(
ε(ũT )− λm : M ⊗M

)
.

Remark 1. In the isotropic case, that is for λe given by

∀S ∈ G, (λe : S)ij =
E

1 + ν

(
Sij +

ν

1− 2ν
(trS)δij

)
,

where E is the young modulus and ν ∈ [0, 12 [ is the Poisson coefficient, we obtain that
σ̃ is deduced from ϵeT by:

σ̃ij =


0 if i = 3 or j = 3,

E
1+ν

(
(ϵeT )ij +

ν
1−ν (t̃r ϵ

e
T )δij

)
if (i, j) ∈ {1, 2}2,

where t̃r ϵeT = (ϵeT )11 + (ϵeT )22. This particular case was studied in [13].

4. Conclusion

We have obtained the following 2d-model for thin ferromagnetic plates with magne-
tostriction:

• M ∈ L∞(R+;H1(ω;S2)),
∂M

∂t
∈ L2(R+ × ω),

• ũT ∈ L∞(R+;H1(ω;R2)) with ũT = 0 on R+×C1 and
∂ũT
∂t

∈ L∞(R+;L2(ω;R2))
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• For all χ̃ ∈ C∞(R+;H1(ω;R3)),

∫
R+×ω

(
∂M

∂t
−M × ∂M

∂t

)
χ̃ = −2

∫
R+×ω

2∑
α=1

M × ∂αM · ∂αχ̃

−2

∫
R+×ω

M × (−M3e3 +Ψ(M) + (λm : σ̃)M) · χ̃.

• For all vT ∈ C∞(R+;V(Ω;R2)),

∫
R+×ω

∂ũT
∂t

∂vT
∂t

−
∫
R+×ω

2∑
αβ=1

σ̃αβεαβ(vT ) +
1

2

∫
R+×ω

(g+T + g−T ) · vT

+

∫
R+×C2

hT · vT −
∫
R+×ω

u1T vT (0, x) = 0.

• σ̃ = λeqϵeT with ϵeT = ε(ũT )− λm : M ⊗M .

We remark that the equation in vT is hyperbolic since the equivalent tensor λeq is
positive on GT . Indeed, if D ∈ GT , then:

(λeq : D) : D = (λe : (D − T (K(D)))) : D.

We remark that λe : (D − T (K(D))) ∈ GT and T (K(D)) ∈ Gn. Thus,

(λeq : D) : D = (λe : (D − T (K(D)))) : (D − T (K(D)))

≥ λe∗∥D − T (K(D))∥2

≥ λe∗∥D∥2 since GT ⊥ Gn.

It is well known that in 3d, the weak solutions for the Landau Lifschitz equation are
not unique (see [2]). The uniqueness is only proved for regular solutions (at least with
H2 regularity in the space variable). For the 2D-model coupling , the uniqueness of
weak solutions remains an open problem. Although, using J L Lions theorem, we can
show that if M is fixed, then the solution of the initial and boundary value hyperbolic
problem satisfied by ũT is unique (see Theorem 10.14 in [4] and [16]).

In conclusion, the model we obtain will be easier to study and to simulate since it
is bi-dimensional and since the 2d demagnetizing field is local. It would be interesting
to characterize the normal deformations in the 2d model, even though they have no
influence on magnetization in the regime we studied.
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