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Abstract 20 

Investigating cognitive brain functions using non-invasive electrophysiology can be challenging due 21 
to the particularities of the task-related EEG activity, the depth of the activated brain areas, and the 22 
extent of the networks involved. Stereoelectroencephalographic (SEEG) investigations in patients 23 
with drug-resistant epilepsy offer an extraordinary opportunity to validate information derived from 24 
non-invasive recordings at macro-scales. The SEEG approach can provide brain activity with high 25 
spatial specificity during tasks that target specific cognitive processes (e.g. memory). A full 26 
validation is possible only when performing simultaneous scalp-SEEG recordings, which allows 27 
recording signals in the exact same brain state. This is the approach we have taken in 12 subjects 28 
performing a visual memory task that requires the recognition of previously viewed objects.  The 29 
intracranial signals on 965 contact pairs have been compared to 391 simultaneously-recorded scalp 30 
signals at a regional and whole-brain level, using multivariate pattern analysis. The results show that 31 
the task conditions are best captured by intracranial sensors, despite the limited spatial coverage of 32 
SEEG electrodes, compared to the whole-brain non-invasive recordings. Applying beamformer 33 
source reconstruction or independent component analysis does not result in an improvement of the 34 
multivariate task decoding performance using surface sensor data. Investigating whether the two 35 
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types of signals carry complementary information that would improve the machine-learning classifier 36 
performance, part of the multivariate analysis, revealed that the results are driven by the modality 37 
with best separate performance, namely SEEG.   38 

1 Introduction 39 

Electroencephalography (EEG) is routinely used to understand cognitive processes (Kappenman and 40 
Luck, 2011). The ability of these non-invasive recordings to capture cognitive processes accurately 41 
and entirely is the subject of ongoing investigations. A primary challenge is the well-known ill-posed 42 
problem of source-reconstruction (Grech et al., 2008). Knowing the actual sources and their time-43 
course in detail would provide invaluable information to disentangle brain activities. Clinical uses of 44 
EEG face a similar challenge, for example concerning the surface visibility of epileptiform activity, 45 
either ictal or inter-ictal. The challenge has been addressed through the simultaneous recording of 46 
intracranial and surface, both with EEG (Tao et al., 2005; Ray et al., 2007; Koessler et al., 2015; 47 
Antony et al., 2019; Barborica et al., 2021) and MEG (Pizzo et al., 2019). An asset of the clinical 48 
context is that many forms of epileptiform activity, sometimes paroxysmal, involve relatively large 49 
patches of cortical tissue that present synchronized activity, evoking potentials on scalp having 50 
reasonable signal-to-noise ratio (SNR). By contrast, cognitive processes evoke more subtle activities 51 
and variations, involving deep brain structures, and high frequency activity. These factors may 52 
cumulatively contribute to a poor scalp visibility of the corresponding EEG activity.  53 

Recognition memory provides an ideal test case to explore how neural activities evoked by cognitive 54 
tasks are captured at the scalp by EEG. Recognition memory is complex cognitive function generally 55 
broken down into encoding, storage, and retrieval processes (Mandler, 1980; Besson et al., 2012). 56 
These are known to involve lateral and deep structures such the hippocampus (Rutishauser et al., 57 
2006; Merkow et al., 2015). Recognition memory has been extensively studied with EEG, using 58 
recordings made either on the scalp (Ratcliff et al., 2016) or in the brain, but rarely both 59 
simultaneously. Here, we assess to what extent the postulated processes are visible on scalp EEG by 60 
validating the source localization results with simultaneous scalp-intracranial recordings. The data 61 
are from patients undergoing stereo-electroencephalographic (SEEG) presurgical evaluation for drug-62 
resistant epilepsy; they performed a standard task requiring them to encode and later recognize 63 
pictures of objects (Besson et al., 2012; Despouy et al., 2020). We performed a high-sensitivity 64 
multivariate pattern analysis (MVPA) (Haxby et al., 2001; Grootswagers et al., 2017), not only on 65 
sets of signals of different modalities (intracranial, scalp or reconstructions), but also on combined 66 
sets, to evidence possible synergies between signals recorded at different scales. 67 

2 Methods 68 

2.1 Subjects 69 

We selected 12 patients diagnosed with focal drug resistant epilepsy that underwent long-term 70 
simultaneous EEG and SEEG recordings in the Emergency University Hospital Bucharest between 71 
2020 and 2022 (Table 1). Patients were considered surgical candidates and underwent presurgical 72 
non-invasive evaluation using extended patient history, video-electroencephalography, brain 73 
structural and functional imaging (inter-ictal FDG-PET CT) and neuropsychological profile. 74 
Consequently, in these patients, invasive recordings were considered necessary to delineate the 75 
epileptogenic zone and to map functional cortex for tailoring the surgical resection (Munari et al., 76 
1994; Kahane et al., 2003; Jayakar et al., 2016; Isnard et al., 2018). The details regarding the 77 
patients’ gender, age, type of epilepsy and lateralization are provided in Table 1. In addition, part of 78 
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this research protocol, scalp electrodes were attached, allowing for simultaneous surface and 79 
intracranial long-term recordings.  80 

The study has been performed under Bucharest University ethical committee approval CEC 81 
23/20.04.2019. All patients, or their legal guardian/next of kin, signed a written informed consent, in 82 
accordance with the Declaration of Helsinki, for the simultaneous recordings and data sharing 83 
procedures.   84 

2.2 Experimental paradigm 85 

We have used the same experimental visual memory paradigm as in López-Madrona et al. (2022). In 86 
summary, we used 168 images from the database of Duñabeitia et al., (2018) that were organized in 87 
blocks of 12 or 24 images, presented on a computer screen. There were two block types: encoding 88 
(“ENC”), where a set of 12 images were presented to the patient, followed by a recognition block 89 
type where the same 12 familiar images (“OLD”) were randomly interleaved with other 12 novel 90 
images (“NEW”). The patient was required to indicate by pressing two buttons on the keyboard, 91 
using two fingers of right hand, whether the images were familiar or not, within 1500 ms. A 92 
distracting video of 1 minute was presented in between encoding and recognition blocks. The 93 
sequence of 36 image presentations was repeated 7 times using different images from the 168-image 94 
set and pseudo-random distribution the OLD and NEW items, with the constraint that there were 95 
never more than 3 “old” or “new” items in a row. Stimuli presentation and response logging were 96 
controlled by the software E-Prime 3.0 (Psychology Software Tools, Pittsburgh, PA). 97 

2.3 Simultaneous scalp and intracranial recordings 98 

SEEG exploration was performed using depth electrodes (Dixi Medical, Chaudefontaine, France) 99 
with 8 to 18 contacts per electrode, 2 mm contact length, 3.5 mm center-to-center contact spacing and 100 
0.8 mm diameter. Multiple electrodes were placed following an individual hypothesis allowing for up 101 
to 258 contacts to be available in each patient. Electrodes were placed intracranially using the 102 
microTargeting™ Multi-Oblique Epilepsy STarFix Platform (FHC, Bowdoin, ME USA) (Dewan et 103 
al., 2018; Yu et al., 2018; Pistol et al., 2021) or the Leksell stereotactic frame (Elekta AB, 104 
Stockholm, Sweden). To determine the exact location of each electrode and contact, the post-105 
implantation CT scan was loaded in the surgical planning software (Waypoint Planner, FHC, 106 
Bowdoin, ME USA), co-registered with the pre-implantation MRI, and adjustments to the initially 107 
planned trajectories were made to match the postop location of the electrodes. A manual labeling of 108 
the SEEG contacts has been performed using the following abbreviations: A –  Amygdala; Hc – 109 
Hippocampus; TP –  Temporal Pole; STG – Superior Temporal Gyrus; MTG  –  Middle Temporal 110 
Gyrus; ITG – Inferior Temporal Gyrus; W – Wernicke; F – Fusiform Gyrus; PHG –  111 
Parahippocampal Gyrus; LG – Lyngual Gyrus; E – Entorhinal; SPL – Superior Parietal Lobule; IPL 112 
– Inferior Parietal Lobule; S – Postcentral Gyrus; AG – Angular Gyrus; SMG – Supramarginal 113 
Gyrus; IPS – Intraparietal sulcus; PrC – Pre – Cuneus; PCL – Paracentral Lobule; PCC – Posterior 114 
Cingulate; Ist – Isthmus; O – Lateral Occipital; TPO – Temporo-Parieto-Occipital; V1 – Primary 115 
Visual Cortex; C – Cuneus; aI – Anterior Insula; pI – Posterior Insula; OpF – Operculum Frontalis; 116 
OpR – Operculum Rolandis; OpP – Operculum Parietalis; OpT – Operculum Temporalis; R – 117 
Rolandic; B – Broca; PMC – PreMotor; DLPFC – Dorso-Lateral Prefrontal; VLPFC – Ventro-118 
Lateral Prefrontal; OF – Orbitofrontal; SMA – Supplementary Motor Area; preSMA – Pre-119 
Supplementary Motor Area; SFG – Superior Frontal Gyrus; MOFC – Medial Orbito – Frontalis; FP – 120 
Frontal Pole; ACC – Anterior Cingulate; MCC – Middle Cingulate; DMPFC – Dorso-Medial 121 
Prefrontal Cortex; VMPFC – Ventro-Medial Prefrontal Cortex; BG – Basal Ganglia; WM – White 122 
matter. 123 
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In view of the group analysis, the presurgical MRI of each patient was also used for running an 124 
analysis pipeline implemented in FreeSurfer (Fischl, 2012) that allowed us to obtain the patient’s 125 
cortical surface reconstruction, used for visualization purposes, but also – more importantly -, for 126 
performing a non-rigid registration of the patient’s MRI to the “cvs_avg35_inMNI152” FreeSurfer 127 
template (Postelnicu et al., 2009), providing us with the coordinates of each intracranial contact in a 128 
common MNI space. 129 

One up to three days after the SEEG implantation, between 20 and 37 scalp electrodes were placed 130 
according to the 10-20 system. A few electrodes were repositioned on adjacent 10-10 grid location, 131 
due to interference with the SEEG electrodes and up to 10 electrodes could not be placed at all. The 132 
exact number of scalp electrodes in each patient is provided in Table 1.  133 

Signals were collected using a setup as described in Barborica et al. (2021). In summary, two 134 
identical Natus Quantum 128-channel amplifiers (Natus Neuro, Middleton, WI) were used, one for 135 
each modality (scalp/intracranial) and having separate signal references. The reference for the SEEG 136 
recordings was chosen on one contact located in white matter exhibiting minimal activity, whereas 137 
for the scalp system the reference was Fpz. Raw data was acquired a sample rate of 4096 Hz. The 138 
hardware was synchronized using digital triggers to both systems and a 50 Hz sine reference signal, 139 
recorded simultaneously using DC inputs of the two systems. Patients 9 – 12 were recorded with a 140 
single Quantum 256-channel amplifier, that no longer required the external synchronization 141 
hardware. The data was combined and saved in a single file in AnyWave ADES format (Colombet et 142 
al., 2015), containing both types of signals. The analysis workflow is shown in Fig. 1. 143 

The synchronization between stimuli presentation and (S)EEG recordings has been performed using 144 
a photodiode part of Chronos response box (Psychology Software Tools, Pittsburgh, PA) attached to 145 
a corner of the screen where trial start synchronization flashes were presented. The response time and 146 
correctness were merged into the AnyWave event file by reading the E-Prime log files using Matlab 147 
(Mathworks, Natick, MA) custom scripts. 148 

The intracranial channels located in the seizure onset zone and in white matter were discarded. 149 
Additional artefacted trial removal, as well as bad channel removal was performed manually by 150 
visually inspecting the recordings. 151 

2.4 ERP Processing 152 

Signals were loaded into EEGLab (Delorme and Makeig, 2004) software, resampled at 256 Hz and 153 
filtered in the 0-45 Hz interval. Scalp EEG was re-referenced to common average and artifacts were 154 
removed using Independent Component Analysis (ICA). Only correct trials have been retained for 155 
further analysis. 156 

2.5 Source localization 157 

To test the inverse solution of scalp EEG for finding brain areas that are involved in task decoding, 158 
we have calculated source signals at the location of the intracranial electrodes. To achieve that, we 159 
have performed a beamformer analysis on the standard FreeSurfer’s fsaverage template, brain 160 
electrical model and 10-20 electrode positions available in MNE-Python. The beamformer spatial 161 
filters calculated using Linearly Constrained Minimum Variance (LCMV) were used to calculate 162 
source time courses on a 5-mm grid covering the brain. The source time course on the grid point 163 
nearest to the midpoint between a pair of SEEG contacts that were part of a bipolar-recorded signal 164 
was considered to approximate the source signal at each intracranial site.  We therefore obtained a set 165 
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of signals having a dimensionality identical to the one of the SEEG, that was analyzed through the 166 
common MVPA pipeline. 167 

2.6 Independent component analysis 168 

To test whether a method that is known to separate temporally correlated neuronal sources can 169 
enhance MVPA decoding results, we have performed an independent component analysis (ICA) of 170 
scalp signals using second-order blind identification (SOBI) blind source separation (Belouchrani et 171 
al., 1993, 1997; Tang et al., 2005), using EEGLab software. 172 

2.7 Multivariate Pattern Analysis 173 

For Multivariate Pattern Analysis we have generally followed the workflow described in 174 
Grootswagers et al., (2017). The processing has been performed using MNE-Python toolbox 175 
(Gramfort et al., 2013) and custom Python and Matlab (Mathworks, Natick, MA) scripts. A logistic 176 
regression linear classifier was trained to discriminate between responses for the OLD and NEW 177 
conditions using the L-BFGS-B – (Large-scale Bound-constrained Optimization) solver. The model 178 
was fitted to the data and its performance scored using receiver operating characteristic (ROC) area 179 
under curve (AUC). The scores were evaluated using 20-fold cross-validation and time regions where 180 
they were statistically different from chance were evaluated using a 1-sample permutation cluster test 181 
applied to the set of scores calculated for each fold (Maris and Oostenveld, 2007). 182 

The processing pipeline was applied to SEEG bipolar signals, to the EEG signals or to the scalp 183 
source signals at SEEG sensor location obtained using beamformer. Specific to our study, the 184 
simultaneous collection of scalp and SEEG data allowed pooling of the signals for the two modalities 185 
to investigate whether combined data provides a classifier performance significantly different from 186 
analyzing individual sets.  187 

We have calculated the contribution of signals at each intracranial sensor location (recorded or 188 
reconstructed) to the recognition process by calculating the activation patterns associated with fitting 189 
the data with a linear model (Haufe et al., 2014) using MNE-Python toolbox which in turn resorts 190 
extensively to scikit-learn Python toolbox (Pedregosa et al., 2011; Abraham et al., 2014). 191 

To assess the contribution of various brain structures to decoding task conditions, we have repeated 192 
the MVPA analysis on subset of signals recorded or reconstructed within the same brain area or 193 
structure (Despouy et al., 2020), according to the labeling we have described earlier in this section. 194 
We will further refer to this analysis restricted to a region of interest (ROI) as “regional analysis” 195 
(Ebrahiminia et al., 2022). Compared with activation patterns (Haufe et al., 2014), that have no 196 
significance associated with them, the regional analysis allows inferring, in a probabilistic way, the 197 
time intervals where the decoding performance is different from chance, evidencing the 198 
sequential/hierarchical processing of stimulus novelty within the brain.  199 

3 Results 200 

A total of 136 intracranial electrodes having 1885 contacts were implanted in 12 patients. Additional 201 
436 surface electrodes were attached to the scalp. After data curation and application of inclusion 202 
criteria, signals recorded at 965 intracranial sites and at 391 scalp locations were further included in 203 
the analysis. The subjects correctly identified stimulus novelty in 89.53% of the trials. The MVPA 204 
analysis was applied to 1729 correct recognition trials (OLD: 822, NEW: 907) having a mean±SD 205 
response time of 719.1±162.4 ms (OLD) and 765.0±191.2 ms (NEW).  206 
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3.1 Responses on single scalp and SEEG electrodes 207 

The ERPs for the scalp sensor and SEEG sensor having the highest magnitude multivariate activation 208 
patterns among all scalp and m=965 SEEG signals recorded in all n=12 patients are shown in Figure 209 
2.  210 

While a typical high-amplitude ERP presents prominent peaks either following the stimulus 211 
presentation (~200 ms) or around response time, depending on sensor location, these examples rather 212 
capture situations where the novelty of the stimulus is best captured, between 400 ms and 600 ms and 213 
around the response time (~800 ms).  214 

3.2 Single-subject Multivariate Analysis 215 

The results of the MVPA analysis of responses at the SEEG, scalp, source level and combined scalp-216 
SEEG in patient 3 are shown in Fig. 3. The classifier performance for the SEEG signals is 217 
consistently above chance through the interval ~450 ms through ~900 ms (permutation cluster test, 218 
p<0.05). By contrast, the scalp signals provide a statistically significant classification performance 219 
only during the memory retrieval and stimulus recognitions processes between ~500 ms and ~600 220 
ms. Computing source signals at SEEG sensor locations provide classification results that are similar 221 
in magnitude to the scalp sensor signals, with eventually better results in terms of the extent of the 222 
clusters reflecting the scores significantly different from chance (p<0.05).   223 

A regional MVPA analysis presented in Fig. 3C,D highlights the regions that contribute most to the 224 
overall decoding performance, namely the anterior cingulate cortex and hippocampus. The ACC, as 225 
sampled by SEEG, exhibits sustained better-than-chance scores in the late interval ~500 ms through 226 
~900 ms, whereas Hc presents early (~500 ms), but limited duration (~100 ms) activations. The 227 
scalp, source and combined signals provide similar results in Hc, but rather different ones in ACC.  228 

3.3 Group Analysis 229 

At the population level (n=12 subjects), the classifier performance based on intracranial signals was 230 
much higher than the one based on scalp or source signals, as shown in Fig. 4. 231 

The use of source signals calculated at SEEG sensor locations provides slightly lower classifier 232 
performance than the one based on signals from which it was derived, i.e. scalp signal (Fig. 4). The 233 
MVPA analysis applied to the independent components of the scalp signal provides results that are 234 
virtually identical to the scalp ones. Combined scalp and SEEG scores follow closely the time course 235 
of the SEEG scores. 236 

The time course of the classification performance using SEEG signals is consistent across subjects, 237 
as can be seen in Fig. 5 where we have plotted the scores for all subjects, in addition to the grand 238 
average. This is somehow unexpected, as the areas implanted with depth electrodes can be quite 239 
different. We have illustrated in Fig. 5A and Fig. 5C two implantation schemes providing similar 240 
scores, highlighted in Fig. 5E using green and blue colors. 241 

In performing a regional analysis of the performance in decoding task conditions, we see that the 242 
findings at the level of all m=965 sites in n=12 subjects, shown in Fig. 4, are confirmed at a regional 243 
scale (Fig. 6), the scores significantly different from chance associated with SEEG signals being 244 
higher and more sustained over time, compared to source signals reconstructed at the same locations. 245 
Among the areas exhibiting the highest and earliest SEEG scores, we can count F, ITG, Hc, as well 246 
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as insular-opercular complex. One has to keep in mind that all these findings are strongly influenced 247 
by the coverage of each ROI with SEEG electrodes. 248 

The 3D representation of multivariate activation patterns (Haufe et al., 2014) of SEEG and source-249 
space data is shown in Figure 7. One has to keep in mind that these activation patterns do not reflect 250 
the magnitude of the ERPs, but rather represent a virtual signal corresponding to how well a site 251 
encodes the stimulus novelty, in our case. A wide-area brain activation (Fig. 7A) over the course of 252 
the recognition process is visible for the intracranial signals, whereas at a comparable amplitude 253 
scale, the source data shows much less activations. The activation patterns of various brain areas is 254 
sequential, following a posterior-to-anterior flow, as illustrated in Fig. 7 an in the Supplementary 255 
Data movie. The activations associated with EEG source signals show a roughly similar spatio-256 
temporal pattern. At a closer visual inspection of Fig. 7 we can find evidence of known leakage-257 
related effects (Schoffelen and Gross, 2009), as multiple contacts in several electrodes exhibit similar 258 
activation values.  259 

In SEEG recordings (Fig. 7A) we can divide the activation in four clinically relevant time-intervals. 260 
The significant activation starts at ~200ms and between 200-400ms we can observe the recognition 261 
process that activates the network of structures that mainly involves temporal-basal and hippocampus 262 
on the right side. Then, between 400-600ms we can see the activations related to the decision making 263 
process that significantly involves bilaterally the peri-sylvian, prefrontal and mesial temporal lobe 264 
structures. The sensorimotor activation overlaps the 400-600ms and continues in the next interval 265 
600-800ms and represents the response phase of the task. The last time-interval (600-800ms) 266 
highlights the activation of the prefrontal cortex possibly related to self-evaluation or memory 267 
storage. The EEG source (Fig. 7B) displays a similar timeline of activation pattern in the 200-600ms. 268 
However, the late phase between 600-800ms is not informative. 269 

4 Discussion 270 

While other studies that compared intracranial to scalp data used sequential recording of the two 271 
modalities (Ebrahiminia et al., 2022), or even different sets of participants (Haufe et al., 2018), we 272 
have simultaneously acquired data in the two modalities, approach that allowed us to validate the 273 
results of the EEG source reconstruction using SEEG recordings in decoding task conditions, and 274 
investigate the possible synergy between invasive and non-invasive recording in decoding stimulus 275 
novelty. 276 

Our results show that our task requiring the subjects to categorize visual stimuli based on novelty, 277 
involving memory encoding and retrieval, activates large areas of the brain. This finding is supported 278 
by the widespread activation visible in Fig. 7, as well as by the fact that SEEG implantations at 279 
totally different locations result in decoding performances over time that are close to each other and 280 
to the group average (Figure 5). 281 

The decoding performance of the ML classifier is maximal when using intracranial signals, 282 
regardless of the fact that the SEEG implantation has limited spatial coverage of the brain, compared 283 
with the scalp EEG which is supposed to provide full-brain coverage, as visible in Figs. 3 and 4. The 284 
relatively poor decoding performance of the classifier that uses scalp signals can be attributed, in our 285 
opinion, to significantly lower signal-to-noise ratio (SNR) of the scalp EEG compared to SEEG. It 286 
may also be possible that scalp EEG provides poor visibility of the activity in deep structures of the 287 
brain, whereas SEEG samples with undegraded SNR all implanted locations, no matter how deep 288 
they are. A previous study by Ebrahiminia et al. (2022) performing sequential scalp and 289 
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electrocorticographic (ECoG) recordings have shown that scalp EEG provides slightly better 290 
classification performance of passively viewing visual stimuli of different categories (Liu et al., 291 
2009). Not counting the differences in the tasks, one reason for this discrepancy may relate once 292 
again to the fact that ECoG does not record activity in deep brain structures, therefore both modalities 293 
provide information from outer cortex, with scalp EEG providing a slightly better spatial coverage. 294 
One other factor that may favor EEG in other studies is that in our simultaneous protocol, the EEG 295 
electrodes were glued to the scalp one day or more before running the memory task (part of a wider 296 
set of investigations), presenting a degradation of the quality of the contact within this interval, non-297 
correctable due to the requirement of maintaining sterility at the scalp level. Also, due to spatial 298 
constraints related to pre-existing SEEG electrode anchors, the coverage with scalp electrodes was 299 
non-uniform. 300 

Interestingly, using SEEG electrodes, the classifiers were always able to decode the task conditions 301 
using task-evoked intracranial EEG recorded 300 to 1000ms post stimuli presentation. This was true 302 
not only at the group, but also at individual subject level, even when the spatial sampling of the 303 
SEEG electrodes was completely different (Fig. 5). Recent studies have shown the “traveling wave” 304 
behavior of brain activity (Lubenov and Siapas, 2009; Muller et al., 2014; Liang et al., 2021; 305 
Bhattacharya et al., 2022), and it is possible that we have observed such effects in our analysis. 306 
Under the assumption that the task-evoked intracranial EEG activity is recorded on a critical number 307 
of electrodes, sufficient for the classifier to learn the propagation patterns of the traveling wave, we 308 
may decode the task conditions from various brain regions, without a loss in decoding performance. 309 
Similar effects have been observed by groups that studied the representation and processing of 310 
emotion in the brain with machine learning methods, concluding that emotion representation is 311 
encoded as patterns of activations over widely-distributed brain networks (Wager et al., 2015; Donos 312 
et al., 2022). 313 

The process of reconstructing the EEG source signals using beamforming does not result in a 314 
significant improvement at the population level of the classifier’s performance, yielding results 315 
comparable to signals on scalp sensors, as visible in Fig. 4.  There are exceptions to that general 316 
finding in some individual patients, as illustrated in Fig. 3B, where the decoding performance of a 317 
classifier operating on source signals show earlier and longer statistically significant above-chance 318 
scores than sensor-based analysis, at a significance level p<0.05. However, such results have to be 319 
treated with caution, given the probabilistic nature of the statistical tests applied (Sassenhagen and 320 
Draschkow, 2019). The regional analysis of the classification performance shown in Fig. 6 is in 321 
agreement with the overall results in Fig. 4, where source signals result in more sparse and limited-322 
duration significant scores than the intracranial signals.  323 

The beamformer source reconstruction is based on linear matrix operations on the responses 324 
(Westner et al., 2022), which is equivalent to an affine transformation in the n-dimensional response 325 
space, which is the space in which the MVPA operates (Grootswagers et al., 2017). An affine 326 
transformation is equivalent to a series of elementary transformations like rotation, scaling, shear etc., 327 
that do not change the relationships between points representing the set of n responses at a particular 328 
point in time, therefore it is not expected to significantly affect the performance of a ML classifier 329 
operating on the transformed set of points. In line with this finding, we have also tested whether 330 
performing an Independent Component Analysis (ICA) of the scalp EEG responses, that also uses 331 
linear matrix transformations, results in a set of independent components that provide a better 332 
decoding of the task conditions. The results, presented in Fig. 4 show that classifier performance 333 
operating on the independent components is virtually identical to the one for the original signals on 334 
the scalp sensors. 335 
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In investigating whether scalp and intracranial signals contain complementary information that might 336 
contribute to a classifier performance, we did find that the modality providing best performance (i.e. 337 
SEEG) is determining the combined performance (Figs. 3 and 4).  338 

A limitation of the study is the partial and non-uniform spatial sampling of both scalp and intracranial 339 
sensors, due to objective reasons. Another limitation is that our analysis pipeline is the most 340 
conservative one, being based on wide-band single-trial data. Creating “super-trials” or “pseudo-341 
trials” by averaging several trials (Despouy et al., 2020; Ashton et al., 2022) might improve the SNR 342 
of EEG and correspondingly of the source reconstruction signals. Further measures for improving 343 
SNR can be possibly implemented (Grootswagers et al., 2017), alleviating some of the apparent 344 
limitations of non-invasive recordings.  345 

5 Conclusion 346 

Analysis of invasive EEG provides highest amount of information related to stimulus novelty, 347 
compared with scalp recordings, despite the limited spatial sampling of the brain with depth 348 
electrodes.  This may be related to the limited scalp visibility of the activity related to memory 349 
processes in deep brain structures, particularly if containing higher frequency components. The 350 
synergy between the two modalities - enabled by pooling data recorded simultaneously- is limited, 351 
the SEEG sensors providing best decoding performance driving the combined, overall, performance.  352 
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 519 

12 Figure Captions 520 

Figure 1. Signal collection and analysis workflow. 521 

Figure 2. A) ERP image for the scalp sensor PO2 in subject 1, exhibiting the highest multivariate 522 
activation pattern; trials are grouped by condition and sorted by response time, which are marked 523 
using black lines; average ERPs for each condition as well as the contrast between OLD and NEW 524 
conditions are shown; the statistical significance of the univariate (permutation cluster test) 525 
difference, if present, between OLD and NEW conditions at a significance level p<0.05 is shown 526 
using thick horizontal lines; B) same as A, but for the intracranial sensor X04-X05 located in right 527 
anterior insula in subject 9. 528 

Figure 3. Task decoding performance expressed as the area under curve of the receiver operating 529 
characteristic of the classifier for SEEG, scalp and source signals in patient 3. A) SEEG electrode 530 
locations in the left hemisphere; B) ROC-AUC for sensors of different types, as well as for combined 531 
scalp and SEEG; C) same as (B), but for the contacts located in the anterior cingulate cortex; C) same 532 
as in (B), but for contacts located in the hippocampus.  533 

Figure 4. Classifier performance for SEEG, scalp, source, ICA and combined scalp-SEEG signals for 534 
all n=12 subjects. The dashed areas show standard error interval for the set of classifier scores for all 535 
patients. The horizontal bars indicate the intervals where the scores are statistically different from 536 
chance (1-sample permutation cluster test, p<0.05). 537 

Figure 5. Classifier performance using intracranial signals for two patients having SEEG 538 
implantation covering different areas of the brain; A) Bilateral implantation in subject 8, covering 539 
temporal lobe, including mesial structures; B) mean magnitude of activation patterns in subject 8 540 
across the entire trial duration; C) Electrode locations in subject 12, frontal, parietal and cingulate 541 
areas; D) Same as B, but for subject 12; E) Average and individual classifier scores. 542 

Figure 6. A) Timeline of decoding performance significantly different from chance (p<0.05) for 543 
signals recorded on subsets of intracranial contacts implanted in different brain structures. The color 544 
of the bars indicate the maximum value of the AUC score within a cluster. The numbers at the right 545 
of each bar indicate the number of sites and number of patients for clusters in each ROI;  B) same as 546 
(A), but for scalp sources calculated at the location of intracranial contacts using beamformer. 547 

Figure 7. MVPA timeline of activation patterns for SEEG signals (A) and in EEG source space (B) 548 
for all 965 contacts implanted in 12 patients, shown on the glass brain. The mean values for 549 
activation values within a 200 ms bin are represented.  550 
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13 Tables 553 

Table 1. Patients included in this study 554 
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2 90 17 Insular-
opercular L Left typical 9 86 30 Left, central 

3 92 27 Insular L Left typical 10 145 30 Left, 
posterior 

4 96 26 Temporal R Left typical 11 152 38 Right, 
anterior 

5 97 26 Rolandic 
Operculum L Atypical 

bilateral 10 135 35 Left, central 

6 98 39 Temporal R Left typical 9 129 38 Right, 
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