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Perturbation results for distance-edge-monitoring numbers

Introduction

In 2022, Foucaud et al. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] introduced a new graph-theoretic concept called distance-edgemonitoring set (DEM for short), which means network monitoring using distance probes. Networks are naturally modeled by finite undirected simple connected graphs, whose vertices represent computers and whose edges represent connections between them. When a connection (an edge) fails in the network, we can detect this failure, and thus achieve the purpose of monitoring the network. Probes are made up of vertices we choose in the network. At any given moment, a probe of the network can measure its graph distance to any other vertex of the network. Whenever an edge of the network fails, one of the measured distances changes, so the probes are able to detect the failure of any edge. Probes that measure distances in graphs are present in real-life networks. They are useful in the fundamental task of routing [START_REF] Dall'asta | Exploring networks with traceroute-like probes: Theory and simulations[END_REF][START_REF] Govindan | Heuristics for Internet map discovery[END_REF] and are also frequently used for problems concerning network verification [START_REF] Bampas | Network verification via routing table queries[END_REF][START_REF] Beerliova | Network discovery and verification[END_REF][START_REF] Bilò | Discovery of network properties with all-shortest-paths queries[END_REF].

In a network, we can put as few detectors as possible to monitor all the edges, a natural question is whether the detectors placed in the original graph are still sufficient and need to be supplemented or reduced when some nodes or edges in the original graph are subjected to external interference and damage, we refer to [START_REF] Delen | The effect of vertex and edge deletion on the independence number of graphs[END_REF][START_REF] Eroh | The effect of vertex or edge deletion on the metric dimension of graphs[END_REF][START_REF] Monson | The effects of vertex deletion and edge deletion on the clique partition number[END_REF][START_REF] Wei | The effect of vertex and edge deletion on the edge metric dimension of graphs[END_REF][START_REF] Ye | Diameter vulnerability of graphs by edge deletion[END_REF]. This kind of problem is usually called perturbation problem.

Graphs considered are finite, undirected and simple. Let G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G), whose cardinality are denoted by |V (G)| and e(G), respectively. The neighborhood set of a vertex

v ∈ V (G) is N G (v) = {u ∈ V (G) | uv ∈ E(G)}. Let N G [v] = N G (v) ∪ {v} be the closed neighborhood set of a vertex v. The degree of a vertex v in G is denoted d(v) = |N G (v)|.
Let δ(G) and ∆(G) be the minimum and maximum degree of a graph G, respectively. For any subset X of V (G), let G[X] denote the subgraph of G induced by X; similarly, for any subset F of E(G), let G[F ] denote the subgraph induced by F . We use G \ X to denote the subgraph of G obtained by removing all the vertices of X together with the edges incident with them from G; similarly, we use G -F to denote the subgraph of G obtained by removing all the edges of F from G. If X = {v} and F = {e}, we simply write G \ v and G -e for G -{v} and G -{e}, respectively. For an edge e of G, we denote by G + e the graph obtained by adding a edge e ∈ E(G) to G. The Cartesian product G H of two graphs G and H is the graph whose vertex set is V (G) × V (H) and whose edge set is the set of pairs (u, v)(u ′ , v ′ ) such that either uu ′ ∈ E(G) and v = v ′ , or vv ′ ∈ E(H) and u = u ′ . Let G ∨ H be a join graph of G and

H with V (G ∨ H) = V (G) ∪ V (H) and E(G ∨ H) = {uv | u ∈ V (G), v ∈ V (H)} ∪ E(G) ∪ E(H).
We denote by d G (x, y) the distance between two vertices x and y in graph G. For an edge uv and an vertex w ∈ V (G), the distance between them is defined as d G (uv, w) = min{d G (u, w) , d G (v, w)}. A x-y path with length d G (x, y) in G is a x-y geodesic. Let P n , C n and K n be the path, cycle and complete graph of order n, respectively.

DEM sets and numbers

Foucaud et al. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] introduced a new graph-theoretic concept called DEM sets, which is relevant to network monitoring. Definition 1. For a set M of vertices and an edge e of a graph G, let P (M, e) be the set of pairs (x, y) with a vertex x of M and a vertex y of V (G) such that d G (x, y) ̸ = d G-e (x, y). In other words, e belongs to all shortest paths between x and y in G. Definition 2. For a vertex x, let EM (x) be the set of edges e such that there exists a vertex v in G with (x, v) ∈ P ({x}, e), that is EM (x) = {e | e ∈ E(G) and ∃v ∈ V (G) such that d G (x, v) ̸ = d G-e (x, v)} or EM (x) = {e | e ∈ E(G)and P ({x}, e) ̸ = ∅}. If e ∈ EM (x), we say that e is monitored by x.

Finding a particular vertex set M and placing a detector on that set to monitor all edge sets in G have practical applications in sensor and network systems.

Definition 3.

A vertex set M of the graph G is DEM set if every edge e of G is monitored by some vertex of M , that is, the set P (M, e) is nonempty. Equivalently, ∪ x∈M EM (x) = E(G).

Theorem 1.1. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] Let G be a connected graph with a vertex x of G and for any y ∈ N (x), then, we have xy ∈ EM (x).

One may wonder to know the existence of such an edge detection set M . The answer is affirmative. If we take M = V (G), from Theorem 1.1, then

E(G) ⊆ ∪ x∈V (G) ∪ y∈N (x) {xy} ⊆ ∪ x∈V (G) EM (x).
Therefore, we consider the smallest cardinality of M and give the following parameter. Definition 4. The DEM number dem(G) of a graph G is defined as the smallest size of a distance-edge-monitoring set of G, that is

dem(G) = min {|M || ∪ x∈M EM (x) = E(G)} . Furthermore, for any DEM set M of G, M is called a DEM basis if |M | = dem(G).
The vertices of M represent distance probes in a network modeled by G. The DEM sets are very effective in network fault tolerance testing. For example, a DEM set can detect a failing edge, and it can correctly locate the failing edge by distance from x to y, because the distance from x to y will increases when the edge e fails.

Foucaud et al. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] showed that 1 ≤ dem(G) ≤ n -1 for any G with order n, and graphs with dem(G) = 1, n -1 was characterized in [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF]. Theorem 1.2. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] Let G be a connected graph with at least one edge. Then dem(G) = 1 if and only if G is a tree. Theorem 1.3. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] dem(G) = n -1 if and only if G is the complete graph of order n. Theorem 1.4. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] For a vertex x of a graph G, the set of edges EM (x) induces a forest.

In a graph G, the base graph G b of a graph G is the graph obtained from G by iteratively removing vertices of degree 1.

Observation 1.1. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] Let G be a graph and G b be its base graph. Then we have dem

(G) = dem(G b ). A vertex set M is called a vertex cover of G if M ∩ {u, v} ̸ = ∅ for uv ∈ E(G).
The minimum cardinality of a vertex cover M in G is the vertex covering number of G, denoted by β(G). Theorem 1.5. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] In any graph G of order n, any vertex cover of G is a DEM set of G, and thus dem(G) ≤ β(G).

Ji et al. [START_REF] Ji | Erdős-Gallai-type problems for distance-edgemonitoring numbers[END_REF] studied the Erdős-Gallai-type problems for distance-edge-monitoring numbers. Yang et al. [START_REF] Yang | On the distance-edge-monitoring numbers of graphs[END_REF] obtained some upper and lower bounds of P (M, e), EM (x), dem(G), respectively, and characterized the graphs with dem(G) = 3, and gave some properties of the graph G with dem(G) = n -2.

Progress and our results

Perturbation problems in graph theory are as follows.

Problem 1. Let G be a graph, and let e ∈ E(G) and v ∈ V (G). Let f (G) be a graph parameter.

(1) The relation between f (G) and f (G -e);

(2) The relation between f (G) and f (G \ v).

Chartrand et al. [START_REF] Chartrand | The theory and applications of resolvability in graphs-A Survey[END_REF] studied the perturbation problems on the metric dimension. Monson et al. [START_REF] Monson | The effects of vertex deletion and edge deletion on the clique partition number[END_REF] studied the effects of vertex deletion and edge deletion on the clique partition number in 1996. In 2015, Eroh et al. [START_REF] Eroh | The effect of vertex or edge deletion on the metric dimension of graphs[END_REF] considered the effect of vertex or edge deletion on the metric dimension of graphs. Wei et al. [START_REF] Wei | The effect of vertex and edge deletion on the edge metric dimension of graphs[END_REF] gave some results on the edge metric dimension of graphs. Delen et al. [START_REF] Delen | The effect of vertex and edge deletion on the independence number of graphs[END_REF] study the effect of vertex and edge deletion on the independence number of graphs.

A graph

H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G), in which case we write H ⊑ G. If V (H) = V (G), then H is a spanning subgraph of G. If H is a subgraph of a graph G, where H ̸ = G, then H is a proper subgraph of G. Therefore, if H is a proper subgraph of G, then either V (H) ⊂ V (G) or E(H) ⊂ E(G).
We first consider the existence of graphs with given values of DEM numbers.

Problem 2. Let r, s, n be three integers with 1 ≤ r, s ≤ n -1, and let G be a connected graph of order n.

(1) Is there a connected graph G of order n such that dem(G) = r?

(2) Is there a connected subgraph H in G such that dem(H) = s and dem(G) = r?

In Section 2, we give the answers to Problem 2.

Proposition 1.1. For any two integers r, n with 1 ≤ r ≤ n -1, there exists a connected graph G of order n such that dem(G) = r.

Corollary 1.6. Given three integers s, t, n with 1 ≤ s ≤ t ≤ n -1, there exists a connected graph H ⊑ G such that dem(H) = s and dem(G) = t.

In Section 3, we focus on Problem 1 [START_REF] Bampas | Network verification via routing table queries[END_REF] and study the difference between dem(G -e) and dem(G). Theorem 1.7. Let G be a graph. For any edge e ∈ E(G), we have

dem(G -e) -dem(G) ≤ 2.

Moreover, this bound is sharp.

Let G be a graph and

E ⊆ E(G). Denote by G + E the graph with V (G + E) = V (G) and E(G + E) = E(G) ∪ E.
We construct graphs with the following properties in Section 3.

Theorem 1.8. For any positive integer k ≥ 2, there exists a graph sequence

{G i | 0 ≤ i ≤ k}, with e(G i )-e(G 0 ) = i and V (G i ) = V (G j ) for 0 ≤ i, j ≤ k, such that dem(G i+1 )-dem(G 0 ) = i, where 1 ≤ i ≤ k -1. Furthermore, we have dem(G 0 ) = 1, dem(G 1 ) = 2 and dem(G i ) = i, where 2 ≤ i ≤ k.
A feedback edge set of a graph G is a set of edges such that removing them from G leaves a forest. The smallest size of a feedback edge set of G is denoted by fes(G) (it is sometimes called the cyclomatic number of G). Theorem 1.9. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] If fes(G) ≤ 2, then dem(G) ≤ fes(G) + 1. Moreover, if fes(G) ≤ 1, then equality holds. Theorem 1.9 implies the following corollary, and its proof will be given in Section 3.

Corollary 1.10. Let T n be a tree of order n, where n ≥ 6. For edges e 1 , e 2 ∈ E(T n ), we have

(1) dem(T n + e 1 ) = dem(T n ) + 1.

(2) dem(T n + {e 1 , e 2 }) = 2 or 3. Furthermore, there exists a tree T i n with two edges

e i 1 , e i 2 ∈ E(T i n ) such that dem(T i n + {e i 1 , e i 2 }) = i + 1, where i = 1, 2.
The following result shows that there exists a graph G and an induced subgraph H such that the difference dem(G) -dem(H) can be arbitrarily large; see Section 4 for proof details. In addition, we also give an answer to the Problem 1 (2). Theorem 1.11. For any positive integer k, there exist two graphs G 1 , G 2 and their nonspanning subgraphs

H 1 , H 2 such that dem(G 1 ) -dem(H 1 ) = k and dem(H 2 ) -dem(G 2 ) = k.
Furthermore, dem(G) -dem(H) can be arbitrarily large, even for H = G \ v. Theorem 1.12. For any positive integer k, there exist two graphs G, H and two vertices u ∈

V (G), v ∈ V (H) such that (1) dem(G) -dem(G \ u) ≥ k (2) dem(H \ v) -dem(H) ≥ k.
For a graph G of order n, where n is fixed, the difference between dem(G) and dem(G \ v) can be bounded. 

Proposition 1.2. For a graph G with order n (n ≥ 2) and v ∈ V (G), if G \ v contains at least one edge, then dem(G) -dem(G \ v) ≤ n -2.
(G) = 2. Let E ⊆ E(G). If dem(G) = dem(G -E), then |E| ≤ 2n -6.
Furthermore, the bound is sharp.

For H ⊑ G, the DEM set of H in G is a set M ⊆ V (H) such that E(H) ⊆ ∪ x∈M EM (x).
Definition 5. For H ⊑ G, the restrict-DEM number dem(G| H ) of a graph G is defined as the smallest size of a DEM set of H in G, that is,

dem(G| H ) = min { |M | E(H) ⊆ ∪ x∈M EM (x), M ⊆ V (H) } . v 0 v 1 v 2 v 3 v 2 v 1 v 0 v 3 T 1 T 2 Figure 1: T 1 and T 2 Example 1. Let G = K 4 with V (G) = {v 0 , v 1 , v 2 , v 3 } and E(G) = {v i v j | 0 ≤ i < j ≤ 3}. Let T 1 and T 2 be the subgraphs of G with E(T 1 ) = {v 0 v 1 , v 0 v 2 , v 0 v 3 } and E(T 2 ) = {v 0 v 3 , v 3 v 1 , v 1 v 2 }. Then, dem(K 4 | T 1 ) = 1 and dem(K 4 | T 2 ) = 2. The DEM set of subgraph T i (i = 1, 2) in K 4 is
shown in Figure 1, where the blue vertices form the set M .

Proof.

Let M 1 = {v 0 }. Since v 0 v 1 , v 0 v 2 , v 0 v 3 ∈ EM (v 0 ), it follows that dem(K 4 | T 1 ) ≤ 1. Obviously, dem(K 4 | T 1 ) ≥ 1, and hence dem(K 4 | T 1 ) = 1.
Then, we prove that dem(

K 4 | T 2 ) = 2. Since d G (v 0 , v 1 ) = d G-v 1 v 2 (v 0 , v 1 ) = 1 and d G (v 0 , v 2 ) = d G-v 1 v 2 (v 0 , v 2 ) = 1, it follows that v 1 v 2 / ∈ EM (v 0 ). Similarly, v 1 v 3 / ∈ EM (v 0 ). Therefore, v 1 v 2 , v 1 v 3 / ∈ EM (v 0 )
. By a similar argument, we have

v 0 v 3 / ∈ EM (v 1 ), v 1 v 3 , v 0 v 3 / ∈ EM (v 2 ) and v 1 v 2 /
∈ EM (v 3 ), and hence dem(

K 4 | T 2 ) ≥ 2. Let M = {v 1 , v 3 }. Then, v 1 v 2 , v 1 v 3 ∈ EM (v 1 ), v 1 v 3 , v 0 v 3 ∈ EM (v 3
), and hence dem(K 4 | T 1 ) ≤ 2. Therefore, we have dem(K 4 | T 2 ) = 2, and so dem(K 4 | T i ) = i (i = 1, 2). Theorem 1.14. Let T be a spanning tree of K n . Then 1 ≤ dem(K n | T ) ≤ ⌊n/2⌋. Furthermore, the bound is sharp.

In Section 5, we focus on the following problem and give an algorithm to judge whether the DEM set is still valid in the resulting graph when any edge (or vertex) of a graph G is deleted. Problem 3. For any graph G, if some edges or vertices in G is deleted, we want to know whether the original DEM set can monitor all edges.

Results for Problem 2

A kite K(r, n) is a graph obtained from the complete graph K r+1 and a path P n-r by attaching a vertex of K r+1 and one end-vertex of P n-r ; see an example of K [START_REF] Dall'asta | Exploring networks with traceroute-like probes: Theory and simulations[END_REF][START_REF] Ji | Erdős-Gallai-type problems for distance-edgemonitoring numbers[END_REF] in Figure 2. We first give the proof of Proposition 1.1.

u 0 u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 u 9 u 10 u 11

Proof of Proposition 1.1:

Let G = K(r, n) with V (G) = {u i | 0 ≤ i ≤ n -1} and E(G) = {u i u j | 0 ≤ i < j ≤ r} ∪{u r+s u r+s+1 | 0 ≤ s ≤ n -r -2}. From Observation 1.1 and Theorem 1.3, we have dem(G) = dem(G b ) = dem(K r+1 ) = r.
In fact, for the above G, the path P n-r-1 can be replaced by T n-r-1 , where T n-r-1 is any tree of order n -r -1.

Proposition 1.1 shows that Corollary 1.6 is true. For three integers s, t, n with 1

≤ s ≤ t ≤ n -1, let G = K(t, n) and H = K(s, n) ⊑ G. From Proposition 1.1, dem(G) = t and dem(H) = s. Therefore, there exists a connected graph H ⊑ G such that dem(H) = s and dem(G) = t.
This gives an answer about Problem 2, see Corollary 1.6. One might guess that if H is a subgraph of G, then dem(H) ≤ dem(G), however we will show in the next section that there is no monotonicity for the DEM number.

The effect of deleted edge

The following observation is immediate.

Observation 3.1. Let G 1 , G 2 , ..., G m be the connected components of G. Then dem(G) = dem (G 1 ) + • • • + dem (G m ) .
Furthermore, we suppose that the DEM number of K 1 is 0.

Proposition 3.1. For any uv ∈ E(G), uv / ∈ EM (w) for w ∈ (N G (u) ∪ N G (v)) \ {u, v} if and only if uv is only monitored by u and v. Proof. Since w ∈ (N G (u) ∪ N G (v)) \ {u, v} and uv / ∈ EM (w), it follows that d G (w, u) = d G-uv (w, u) and d G (w, v) = d G-uv (w, v). For any x ∈ V (G) -N G [u] ∪ N G [v], the path from x to u must through w 1 , where w 1 ∈ (N G (u) ∪ N G (v)) \ {u, v}. Then d G (x, u) = d G (x, w 1 ) + d G (w 1 , u) = d G (x, w 1 ) + d G-uv (w 1 , u) = d G-uv (x, w 1 ) + d G-uv (w 1 , u) = d G-uv (x, u). Similarly, d G (x, v) = d G-uv (x, v). For any x ∈ V (G) -{u, v}, we have uv /
∈ EM (x). From Theorem 1.1, uv ∈ EM (u) and uv ∈ EM (v), and hence uv is only monitored by the vertex in {u, v}.

Conversely, if uv is only monitored by u and v, then uv / ∈ EM (w) for any w ∈ V (G)\{u, v},

Especially, since (N G (u) ∪ N G (v)) \ {u, v} ⊆ V (G) \ {u, v}, it follows that uv / ∈ EM (w) for w ∈ (N G (u) ∪ N G (v)) \ {u, v}, as desired.
Then, we give the proof of Theorem 1.7.

Proof of Theorem 1.7:

If G is a disconnected graph, then the edge e must be in some connected component G 1 of G for any e ∈ E(G), and hence e can only be monitored by the vertex in V (G 1 ). Therefore, we just need consider the graph G which is connected.

Let M be a DEM set of G with |M | = dem(G) and e = uv ∈ E(G). If M is also a DEM set of G -e, then dem(G -e) ≤ dem(G). Otherwise, let M ′ = M ∪ {u, v}. It suffices to show that M ′ is a DEM set of G -e.
If G -e has two components, say G 1 and G 2 , then e is a cut edge of G and from Observation 3.1, we have dem(G -e) = dem (G 1 ) + dem (G 2 ). Without loss of generality, assume that

u ∈ V (G 1 ) and v ∈ V (G 2 ). Fact 1. dem (G 1 ) ≤ |(M ∩ V (G 1 )) ∪ {u}| and dem (G 2 ) ≤ |(M ∩ V (G 2 )) ∪ {v}|.
Proof. For any edge e 1 = x 1 y 1 ∈ E (G 1 ), if there exists a vertex w ∈ V (G 1 ) ∩ M such that e 1 ∈ EM (w), then we are done. Otherwise, there exists a vertex w ∈

V (G 2 ) ∩ M such that d G-e 1 (x 1 , w) ̸ = d G (x 1 , w) or d G-e 1 (y 1 , w) ̸ = d G (y 1 , w). Without loss of generality, we suppose that d G-e 1 (y 1 , w) ̸ = d G (y 1 , w) and d G (w, e 1 ) = d G (w, x 1 ). Since d G (y 1 , w) = d G (y 1 , x 1 ) + d G (x 1 , u) + d G (u, w), d G-{e,e 1 } (x 1 , u) = d G-e 1 (x 1 , u) and d G-{e,e 1 } (y 1 , x 1 ) > d G-e (y 1 , x 1 ), it follows that d G-{e,e 1 } (u, y 1 ) =d G-{e,e 1 } (u, x 1 ) + d G-{e,e 1 } (x 1 , y 1 ) =d G-{e,e 1 } (u, x 1 ) + d G-e (x 1 , y 1 ) >d G-e (u, x 1 ) + d G-e (x 1 , y 1 ) =d G-e (u, y 1 )
and hence From Claim 1, without loss of generality, we may assume that every geodesic in G from z to y traverses the edge e in the order u, v. Thus, we have

d G-{e,e 1 } (y 1 , u) ̸ = d G-e 1 (y 1 , u). Therefore, e 1 is monitored by (M ∩ V (G 1 )) ∪ {u} in graph G -e. This implies that dem (G 1 ) ≤ |(M ∩ V (G 1 )) ∪ {u}|. Similarly, we can obtain that dem (G 2 ) ≤ |(M ∩ V (G 2 )) ∪ {v}|. From Fact 1, we have dem(G -e) ≤ |M ′ | = |M ∪ {u, v}| ≤ |M | + 2 = dem(G) + 2. Suppose that G -e is connected. If M is also a DEM set of G -e, then dem(G -e) ≤ |M | = dem(G) and we are done. Otherwise, there exists e 1 = xy ∈ E(G -e) such that the edge e 1 is not monitored by M in G -e. Since M is a distance-edge-monitoring set of G, it follows that there exists a vertex z ∈ M such that d G-e 1 (x, z) ̸ = d G (x, z) or d G-e 1 (y, z) ̸ = d G (y, z). In addition, since e 1 is not monitored by M in G -e, it
d G (z, y) = d G (z, v) + d G (v, y). We now show that xy can be monitored by v in G -e. Note that d G-e 1 (z, y) ̸ = d G (z, y), d G-e (v, y) = d G (v, y) and d G-e (x, y) = d G (x, y). Then d G-{e,e 1 } (v, y) = d G-{e,e 1 } (v, x) + d G-{e,e 1 } (x, y) = d G-e 1 (v, x) + d G-e 1 (x, y) > d G (v, x) + d G (x, y) = d G-e (v, x) + d G-e (x, y) ≥ d G-e (v, y). Since d G-e (v, y) > d G-{e,e 1 } (v, y), it follows that e 1 can be monitored by v. Since e 1 ∈ EM (u)
or e 1 ∈ EM (v), it follows that M ′ = M ∪ {u, v} is a distance edge-monitoring-set of G -e, and thus dem(G -e) ≤ dem(G) + 2, as desired.

Li et al. obtained the following result about DEM numbers of C k P ℓ . Theorem 3.1. [START_REF] Li | Monitoring the edges of product networks using distances[END_REF] Let ℓ and k be two integers with ℓ ≥ 3 and k ≥ 2. Then

dem (C k P ℓ ) =    k if k ≥ 2ℓ + 1, 2ℓ if k < 2ℓ + 1.
To show the sharpness of Theorem 1.7, we consider the following proposition.

Proposition 3.2. There exist connected graphs

G 1 , G 2 of order n such that dem(G 1 -e) - dem(G 1 ) = 2 and dem(G 2 ) -dem(G 2 -e) = 2.
Proof. Firstly, we consider the graph

G 1 (|V (G 1 )| = n ≥ 8) with vertex set V (G 1 ) = {v i |1 ≤ i ≤ n -8} ∪ {u i |1 ≤ i ≤ 8} and edge set E(G 1 ) = {u i v i | 1 ≤ i ≤ 8} ∪ {u i u i+1 | 1 ≤ i ≤ 7} ∪ {v i v i+1 | 1 ≤ i ≤ 7} ∪ {u 1 u 8 } ∪ {u 1 u 5 } ∪ {v 1 v 8 } ∪ {v 1 v 9 } ∪ {v i v i+1 | 9 ≤ i ≤ n -9}. Let G * 8 = G b (G 1 )
. Obviously, G * 8 is the base graph of G 1 , which is obtained by removing the all edge in the edge set {v

1 v 9 } ∪ {v i v i+1 | 9 ≤ i ≤ n -9}. The graphs G *
8 and G * 8 -u 1 u 5 are shown in Figure 3 and Figure 4, respectively. 

v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 Figure 3: dem(G * 8 ) = 6 v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 Figure 4: dem(G * 8 -u 1 u 5 ) = 8 Let M 1 = {u 2 , u 4 , v 3 , v 6 , u 7 , v 8 }. Note that {u 1 u 5 , u 5 v 5 , u 2 v 2 , u 2 u 1 , u 2 u 3 } ⊆ EM (u 2 ), {v 1 u 1 , u 4 u 3 , u 4 u 5 , u 4 v 4 } ⊆ EM (u 4 ), {v 3 u 3 , v 2 v 3 , v 4 v 3 , v 5 v 4 , v 2 v 1 } ⊆ EM (v 3 ), {v 8 v 1 , u 8 v 8 , v 8 v 7 } ⊆ EM (v 8 ), {u 7 u 8 , u 8 u 1 , u 6 u 7 , u 6 u 5 , u 7 v 7 } ⊆ EM (u 7 ) and {v 5 v 6 , v 6 v 7 , u 6 v 6 } ∈ EM (v 6 ). Therefore, E(G * 8 ) = ∪ x∈M 1 EM (x),
∈ (N (u i ) ∪ N (v i )) \ {u i , v i }, we have d G-u i v i (w, u i ) = d G (w, u i ) and d G-u i v i (w, v i ) = d G (w, v i ),
G 1 -u 1 u 5 ) -dem(G 1 ) = dem(G * 8 -u 1 u 5 ) - dem(G * 8 ) = 8 -6 = 2, as desired. v 1 v 2 v 3 v 4 v 5 v 6 Figure 5: dem(G ′ 6 ) = 4 v 1 v 2 v 3 v 4 v 5 v 6 Figure 6: dem(G ′ 6 -v 3 v 4 ) = 2 Next, we consider the graph G 2 (|V (G 2 )| = n ≥ 6) with vertex set V (G 2 ) = {v i | 1 ≤ i ≤ n} and edge set E(G 2 ) = {v 1 v 2 , v 3 v 4 , v 5 v 6 , v 1 v 3 , v 1 v 5 , v 2 v 4 , v 2 v 6 , v 3 v 5 , v 4 v 6 }∪{v i v i+1 | 6 ≤ i ≤ n-1}. Let G ′ 6 be the base graph of G 2 , that is, G b (G 2 ) = G ′ 6 .
The graphs G ′ 6 and G ′ 6 -v 1 v 3 , are shown in Figure 5 and Figure 6, respectively. From Observation 1.1, dem

(G 2 ) = dem(G ′ 6 ). Take M ′ 1 = {v 2 , v 3 , v 4 , v 5 }. Note that {v 1 v 2 , v 6 v 2 , v 4 v 2 } ⊆ EM (v 2 ), {v 1 v 3 , v 5 v 3 , v 4 v 3 } ⊆ EM (v 3 ), {v 6 v 4 } ⊆ EM (v 4 ), {v 5 v 1 , v 6 v 5 } ⊆ EM (v 5 ), and hence E(G ′ 6 ) = ∪ x∈M ′ 1 EM (x), it follows that M ′ 1 is a DEM set of G ′ 6 , and hence dem(G ′ 6 ) ≤ |M ′ 1 | = 4. Let M ′ be a DEM set of G ′ 6
with the minimum cardinality. For the edge

v 2i-1 v 2i (1 ≤ i ≤ 3) and w ∈ (N (v 2i-1 ) ∪ N (v 2i )) \ {v 2i-1 v 2i }, we have d G-v 2i-1 v 2i (w, v 2i-1 ) = d G (w, v 2i-1 ) and d G-v 2i-1 v 2i (w, v 2i ) = d G (w, v 2i ), and so v 2i-1 v 2i / ∈ EM (w). From Proposition 3.1, the edge v 2i-1 v 2i (1 ≤ i ≤ 3) is monitored by the vertex in {v 2i-1 , v 2i }, and hence M ′ ∩ {v 2i-1 , v 2i } ̸ = ∅ (1 ≤ i ≤ 3). All sets M ′ ∈ V (G ′ 6 ) with |M ′ | = 3 are shown in Table 1. Therefore, all sets M ′ with |M ′ | = 3 are not DEM sets of G ′
6 , and hence dem(G ′ 6 ) ≥ 4. Therefore, we have dem(G ′ 6 ) = 4.

M ′ E(G ′ 6 ) -∪ x∈M ′ EM (x) v 1 , v 3 , v 6 v 2 v 4 v 1 , v 4 , v 5 v 2 v 6 v 1 , v 4 , v 6 v 3 v 5 v 2 , v 3 , v 5 v 4 v 6 v 2 , v 3 , v 6 v 1 v 5 v 2 , v 4 , v 5 v 1 v 3 v 1 , v 3 , v 5 v 2 v 6 , v 2 v 4 , v 4 v 6 v 2 , v 4 , v 6 v 1 v 3 , v 1 v 5 , v 3 v 5
Table 1. The edges are not monitored by M ′ (|M ′ | = 3).

For the graph

G ′ 6 -v 3 v 4 , let M 3 = {v 2 , v 5 }. Note that {v 1 v 2 , v 6 v 2 , v 4 v 2 , v 1 v 3 } ⊆ EM (v 2 ) and {v 5 v 1 , v 6 v 5 , v 3 v 5 , v 6 v 4 } ⊆ EM (v 5 ). Since E(G ′ 6 -v 3 v 4 ) = ∪ x∈M 3 EM (x), it follows that M 3 is a DEM set of G ′ 6 , and hence dem(G ′ 6 -v 3 v 4 ) ≤ 2. Since G ′ 6 -v 3 v 4 is not a tree, it follows from Theorem 1.2 that dem(G ′ 6 -v 3 v 4 ) ≥ 2. Therefore, dem(G ′ 6 -v 3 v 4 ) = 2. It follows from Observation 1.1 that dem(G 2 ) -dem(G 2 -v 3 v 4 ) = dem(G ′ 6 ) -dem(G ′ 6 -v 3 v 4 ) = 4 -2 = 2, as desired.
The friendship graph, F r(n), can be constructed by joining n copies of the complete graph K 3 with a common vertex, which is called the universal vertex of F r(n). Next, we give the proof of Theorem 1.8.

Proof of Theorem 1.8: Let k, i be integers with 1 ≤ i ≤ k. The graph G i is obtained by iteratively adding an edge u i v i to the graph G i-1 . Without loss of generality, let G 0 be the graph with

V (G 0 ) = {c} ∪ {u j | 1 ≤ j ≤ k} ∪ {v j | 1 ≤ j ≤ k} and E(G 0 ) = {cu j , cv j | 1 ≤ j ≤ k}, and G i be the graph with V (G i ) = V (G i-1 ) and E(G i ) = E(G i-1 ) ∪ {u i v i }, where 1 ≤ i ≤ k. Since G 0 is a tree, it follows from Theorem 1.2 that dem(G 0 ) = 1. Note that the base graph of G 1 is a complete graph K 3 . From Observation 1.1 and Theorem 1.3, we have dem(G 1 ) = dem(K 3 ) = 2. Let G = G i , where 2 ≤ i ≤ k. Then G b = F r(i). Let M = {u t | 1 ≤ t ≤ i}. From Theorem 1.1, we have {u t v t , cu t | 1 ≤ t ≤ i} ⊆ ∪ x∈M EM (x). Since 2 = d G (u 1 , v t ) ̸ = d G-cvt (u 1 , v t ) = 3 for 2 ≤ t ≤ i, it follows that cv t ∈ EM (u 1 ) for 2 ≤ t ≤ i. Suppose that t = 1. Since 2 = d G (u 2 , v 1 ) ̸ = d G-cv 1 (u 2 , v 1 ) = 3, it follows that cv 1 ∈ EM (u 2 )
, and hence E(G) ⊆ ∪ x∈M EM (x), and so dem(G) ≤ i. Let M be a DEM set of G with the minimum cardinality. Note that

(N (u j ) ∪ N (v j )) \ {u j , v j } = {c}. Since d G (c, u j ) = d G-u j v j (c, u j ) and d G (c, v j ) = d G-u j v j (c, v j ) it follows that u j v j /
∈ EM (c), where 1 ≤ j ≤ k. From Proposition 3.1, the edge u j v j is only monitored by u j or v j , and hence M ∩{u j , v j } ̸ = ∅ for 1 ≤ j ≤ k, Therefore, dem(G) ≥ i, and so dem(G) = i. Thus, there exists a graph sequence

{G i | 0 ≤ i ≤ k}, with e(G i ) -e(G 0 ) = i and V (G i ) = V (G j ) for 0 ≤ i, j ≤ k, such that dem(G i+1 ) -dem(G 0 ) = i, where 1 ≤ i ≤ k -1.

Foucaud et al. obtained the following result about DEM numbers of P ℓ

1 P ℓ 2 .
Theorem 3.2. [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF] Let ℓ 1 and ℓ 2 be two integers with ℓ ≥ 2 and ℓ 2 ≥ 2. Then

dem (P ℓ 1 P ℓ 2 ) = max{ℓ 1 , ℓ 2 }
In the end of this section, we give the proof of Corollary 1.10. Proof of Corollary 1.10: For any tree T n , T n + e 1 is an unicyclic graph and T n + {e 1 , e 2 } is a tricyclic graph. From Theorems 1.2 and 1.9, we have dem(T n + e 1 ) = dem(T n ) + 1 = 2 and 2 ≤ dem(T n + {e 1 , e 2 }) ≤ 3. Let T 1 n be a path with vertex set {v 1 , 

• • • , v n } and edge set {v i v i+1 | 1 ≤ i ≤ n -1},
≤ i ≤ n, since d T 2 n +{e 2 1 ,e 2 2 } (v 2 , v i ) = 2 and d T 2 n +{e 2 1 ,e 2 2 }-v 1 v i (v 2 , v i ) ̸ = 2, it follows that v 1 v i ∈ EM (v 2 ). In addition, v 1 v 2 , v 2 v 3 , v 1 v 5 ∈ EM (v 2 ) and v 1 v 3 , v 1 v 4 , v 4 v 5 ∈ EM (v 4 ),

The effect of deleted vertex

A kipas K n with n ≥ 3 is the graph on n + 1 vertices obtained from the join of K 1 and P n , where

V ( K n ) = {v 0 , v 1 , • • • , v n } and E( K n ) = {v 0 v i | 1 ≤ i ≤ n} ∪ {v i v i+1 | 1 ≤ i ≤ n -1}. Proposition 4.1. For n ≥ 7, we have dem( K n ) = ⌊n/2⌋. Proof. Let P n be the subgraph of K n with vertex set {v i | 1 ≤ i ≤ n} and edge set {v i v i+1 | 1 ≤ i ≤ n -1}.
First, we prove that dem( K n ) ≥ ⌊n/2⌋. Let M be a DEM set of K n with the minimum cardinality. For any vertices v i , v j ∈ V ( K n ), we have

d Kn (v i , v j ) =    1, if i = 0 or j = 0 or |i -j| = 1; 2, if 1 ≤ i, j ≤ n and |i -j| ≥ 2.
For any edge

v i v i+1 (2 ≤ i ≤ n-2), we have (N G (v i ) ∪ N G (v i+1 ))\{v i , v i+1 } = {v i-1 , v 0 , v i+2 }. S- ince d G (v i , v 0 ) = d G-v i v i+1 (v i , v 0 ) = 1, d G (v i+1 , v 0 ) = d G-v i v i+1 (v i+1 , v 0 ) = 1, d G-v i v i+1 (v i , v i-1 ) = d G (v i , v i-1 ) = 1, d G-v i v i+1 (v i+1 , v i-1 ) = d G (v i+1 , v i-1 ) = 2, d G-v i v i+1 (v i+1 , v i+2 ) = d G (v i+1 , v i+2 ) = 1, and d G-v i v i+1 (v i , v i+2 ) = d G (v i , v i+2 ) = 2, it follows that v i v i+1 / ∈ EM (v i+2 ) ∪ EM (v i-1 ) ∪ EM (v 0 ). From Proposition 3.1, the edge v i v i+1 can only be monitored by the vertex in {v i , v i+1 }. Similarly, the edge v i v i+1 is only monitored by the vertex in {v i , v i+1 }, where i = 1, n-1. There- fore, M ∩ {v i , v i+1 } ̸ = ∅ for 1 ≤ i ≤ n -1, that is, M is a vertex cover set of P n . Note that the vertex covering number of G is β(G). Since β(P n ) = ⌊n/2⌋, it follows that dem( K n ) ≥ ⌊n/2⌋. Next, we prove that dem( K n ) ≤ ⌊n/2⌋. Let M = {v i | i ≡ 0 (mod 2), 1 ≤ i ≤ n}. For any edge e ∈ E(P n ) ∪ {v 0 v i | i ≡ 0 (mod 2), 1 ≤ i ≤ n}, it follows from Theorem 1.
1 that e is monitored by the vertex in M . In addition, for any edge v 0 v i ∈ {v 0 v i | i ≡ 1 (mod 2), 1 ≤ i ≤ n}, since n ≥ 7, it follows that there exists j such that d G (v i , v j ) = 2 and d G-v 0 v i (v i , v j ) = 3, where j = i + 3 for 1 ≤ i ≤ n -4 and j = 2 for n -3 ≤ i ≤ n, and hence v 0 v i ∈ EM (v j ). Since any edge v 0 v i ∈ E( K n ) can be monitored by the vertex in M , it follows that dem( K n ) ≤ ⌊n/2⌋, and hence dem(

K n ) = ⌊n/2⌋.
Proof of Theorem 1.11 Note that K 2k+2 = K 1 ∨ P 2k+2 , where V (K 1 ) = {v 0 }. From Theorem 1.2, we have dem(P 2k+2 ) = 1. From Lemma 4.1, we have dem( K 2k+2 ) = k + 1, and hence dem(

K 2k+2 ) -dem( K 2k+2 -v 0 ) = dem( K 2k+2 ) -dem(P 2k+2 ) = k. Let G 1 = K 2k+2 and H 1 = P 2k+2 . Then dem(G 1 ) -dem(H 1 ) = dem( K 2k+2 ) -dem(P 2k+2 ) = k, where H 1 is not a spanning subgraph of G 1 .
Let G 2k+3 be a graph with vertex set

V (G 2k+3 ) = {u i | 1 ≤ i ≤ k + 1} ∪ {v i | 0 ≤ i ≤ k + 1} and edge set E(G 2k+3 ) = {v 0 u i | 1 ≤ i ≤ k + 1} ∪ {u i v i | 1 ≤ i ≤ k + 1}. Obviously, we have G 2k+3 \ v 0 ∼ = (k + 1)K 2 . From Observation 3.1 and Theorem 1.3, we have dem(G 2k+3 -v 0 ) = dem((k + 1)K 2 ) = (k + 1) dem(K 2 ) = k + 1. Since G 2k+3 is a tree, it follows from Theorem 1.2 that dem(G 2k+3 ) = 1, and hence dem(G 2k+1 \ v 0 ) -dem(G 2k+1 ) = k. Let G 2 = G 2k+1 and H 2 = (k + 1)K 2 . Then dem(H 2 ) -dem(G 2 ) = dem((k + 1)K 2 ) -dem(G 2k+1 ) = k, where H 2 is not a spanning subgraph of G 2 , as desired.
Note that G 2k+3 \ v 0 ∼ = (k + 1)K 2 is disconnected graph. For the connected graphs, we can also show that there is a connected subgraph H such that dem(H) -dem(G) can be arbitrarily large; see Theorem 4.2.

The conical graph C(ℓ, k) is a graph obtained by taking adjacency from a center vertex c to the first layer of Cartesian product of P ℓ and C k , where ℓ ≥ 1 and k ≥ 3.

Let the vertex set

V (C(ℓ, k)) = {c} ∪ {u j i | 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ} and the edge set E(C(ℓ, k)) = (∪ ℓ i=1 E(C i )) ∪ (∪ k i=1 E(P i )), where E(C i ) = {u i k u i 1 } ∪ {u i j u i j+1 | 1 ≤ j ≤ k -1} (1 ≤ i ≤ ℓ), E(P i ) = {cu 1 i } ∪ {u j i u j+1 i | 1 ≤ j ≤ ℓ -1} (1 ≤ i ≤ k).
The conical graph C(3, 8) is shown in Figure 7. 

|EM (v) ∩ E(C n )| =    n -1, if n is odd n -2, if n is even. Proof. Let G = C n be cycle with V (G) = {v i | 1 ≤ i ≤ n} and E(G) = {v i v i+1 | 1 ≤ i ≤ n -1} ∪ {v n v 1 }. Without loss of generality, let v = v 1 . Suppose that n is odd and e 1 = v ⌊n/2⌋+1 v ⌊n/2⌋+2 . Since d G (v 1 , v ⌊n/2⌋+1 ) = d G-e 1 (v 1 , v ⌊n/2⌋+1 ) and d G (v 1 , v ⌊n/2⌋+2 ) = d G-e 1 (v 1 , v ⌊n/2⌋+2 ), it follows that e 1 / ∈ EM (v 1 ). For any e ∈ {v i v i+1 | 1 ≤ i ≤ ⌊n/2⌋}, since d G (v 1 , v i+1 ) ̸ = d G-e (v 1 , v i+1 ), it follows that e ∈ EM (v 1 ). For any e ∈ {v i v i+1 | ⌊n/2⌋ + 2 ≤ i ≤ n -1}, since d G (v 1 , v i ) ̸ = d G-e (v 1 , v i ), it follows that e ∈ EM (v 1 ). It follows from Theorem 1.1 that v n v 1 ∈ EM (v 1 ). Therefore, EM (v 1 ) = {v 1 v 2 , v 2 v 3 , • • • , v ⌊n/2⌋ v ⌊n/2⌋+1 , v 1 v n , v n v n-1 , • • • , v ⌊n/2⌋+3 v ⌊n/2⌋+2 }, and hence |EM (v) ∩ E(C n )| = n -1. Similarly, if n is even, then |EM (v) ∩ E(C n )| = n -2.
Theorem 4.1. For k ≥ 9 and ℓ ≥ 2, we have

dem(C(ℓ, k)) =    ∑ ℓ i=1 ⌈k/(4i -2)⌉, if ℓ ≤ a k ; ∑ a k i=1 ⌈k/(4i -2)⌉ + 2(ℓ -a k ), if ℓ ≥ a k + 1,
where

a k = ⌊k/4 + (1 + (-1) k+1 )/8⌋. Proof. Let G = C(ℓ, k) with V (G) = {c} ∪ {u j i | 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ} and E(G) = (∪ ℓ i=1 E(C i )) ∪ (∪ k i=1 E(P i )), where E(C i ) = {u i k u i 1 } ∪ {u i j u i j+1 | 1 ≤ j ≤ k -1}, E(P i ) = {cu 1 i } ∪ {u j i u j+1 i | 1 ≤ j ≤ ℓ -1}. Let M be a DEM set of G with M = dem(C(ℓ, k)). Fact 2. For any vertex v ∈ V (C i ), we have |EM (v) ∩ E(C i )| =          4i -2, if 1 ≤ i ≤ a k ; k -2, if k is even and i ≥ a k + 1; k -1, if k is odd and i ≥ a k + 1.
and

|EM (v) ∩ E(C j )| = 0, where 1 ≤ j ̸ = i ≤ ℓ. Furthermore, we have |EM (c) ∩ E(C i )| = 0.
Proof. For any vertices u i s , u i t ∈ V (C i ), where 1 ≤ s, t ≤ k and 1 ≤ i ≤ ℓ, since there exists a path u i s . . . , u 

u i t from u i s to u i t : Type 1: If d C i (u i s , u i t ) ≥ 2i, then P u i s u i t = u i s . . . , u 1 s cu 1 t . . . u i-1 t u i t ; Type 2: If d C i (u i s , u i t ) < 2i, then the shortest path P u i s u i t ⊑ C i , where C i is subgraph of G. Therefore, d G (u i s , u i t ) = min{2i, d C i (u i s , u i t )}. Suppose that 1 ≤ i ≤ a k . For s -2i + 1 ≤ t ≤ s -1, since d C i (u i s , u i t ) < 2i, it follows that d G (u i s , u i t ) = min{2i, d C i (u i s , u i t )} = d C i (u i s , u i t ), and hence d G (u i s , u i t u i t+1 ) = d C i (u i s , u i t+1 ). Thus, d G (u i s , u i t u i t+1 ) = d G-u i t u i t+1 (u i s , u i t u i t+1 ) and d G-u i t u i t+1 (u i s , u i t ) > d C i (u i s , u i t+1 ) + 1 = d G (u i s , u i t )
, and so u i t u i t+1 ∈ EM (u i s ). Similarly, for any edge

u i t u i t+1 ∈ E(C i ), where s ≤ t ≤ s + 2i -2, since d G (u i s , u i t+1 )) ̸ = d G-u i t u i t+1 (u i s , u i t+1 ), it follows that u i t u i t+1 ∈ EM (u i s ). Therefore, {u i t u i t+1 | s -2i + 1 ≤ t ≤ s + 2i -2} ⊆ EM (u i s )
, where the subscripts are taken modulo k, that is,

u i k+1 = u i 1 . For any u i j u i j+1 ∈ E(C i )- ( {u i t u i t+1 | s -2i + 1 ≤ t ≤ s + 2i -2} ∪ {u i s-2i u i s-2i-1 , u i s+2i+1 u i s+2i } ) , since d(u i s , u i j ) = d(u i s , u i j+1 ) = 2i and d G-u i j u i j+1 (u i s , u i j ) = d G-u i j u i j+1 (u i s , u i j+1 ) = 2i, it follows that u i j u i j+1 / ∈ EM (u i ). In addition, let e 1 = u i s-2i u i s-2i-1 and e 2 = u i s+2i-1 u i s+2i . Then, d G (u i s , e 1 ) = d G (u i s , u i s-2i-1 ) = 2i and d G (u i s , e 2 ) = d G (u i s , u i s+2i-1 ) = 2i. Since d G-e 1 (u i s , u i s-2i ) = d G (u i s , u i s-2i ) = 2i and d G-e 2 (u i s , u i s+2i ) = d G (u i s , u i s+2i ) = 2i, it follows that e 1 , e 2 / ∈ EM (u i ), and hence |EM (u i s ) ∩ E(C i )| = |{u i t u i t+1 | s -2i + 1 ≤ t ≤ s + 2i -2}| = 4i -2 for any vertex u i s ∈ V (C i )
, where the subscripts are taken modulo k.

Suppose that i ≥ a k + 1. For i ≥ a k + 1 and 1 ≤ s, t ≤ k, if u i s , u i t ∈ V (C i ), then d G (u i s , u i t ) = d C i (u i s , u i t ). For any cycle C i with length k, if k is even, then it follows from Lemma 4.1 that |EM (v) ∩ E(C i )| = k -2. If k is odd, then it follows from Lemma 4.1 that |EM (v) ∩ E(C i )| = k -1, as desired.
For any vertex u i s ∈ V (C i ) and any edge e = u j m u j m+1 ∈ E(C j ), where 1

≤ j ̸ = i ≤ ℓ and 1 ≤ m ≤ k, since d G-e (u i s , u j m ) = d G (u i s , u j m ) and d G-e (u i s , u j m+1 ) = d G (u i s , u j m+1 ), it follows that e / ∈ EM (u i s ), and hence |EM (u i s ) ∩ E(C j )| = 0. For any edge e 3 = u i s u i s+1 ∈ E(C i ), we have d G (c, u i s ) = d G (c, u i s+1 ) = i, and hence d G-e 3 (c, u i s ) = d G-e 3 (c, u i s+1 ) = i, and so e 3 / ∈ EM (c). Therefore, |EM (c) ∩ E(C i )| = 0. Suppose that ℓ ≥ a k + 1. Since e(C i ) = k, it follows from Fact 2 that |M ∩ E(C i )| ≥ 2 for a k + 1 ≤ i ≤ ℓ and |M ∩ E(C i )| ≥ ⌈k/(4i -2)⌉ for 1 ≤ i ≤ a k , and so dem(G) ≥ ∑ a k i=1 ⌈k/(4i -2)⌉ + 2(ℓ -a k ). Let M = ∪ i=k i=1 M i ,
where

M i =    {u i j | 1 ≤ j ≤ k, j ≡ 1 mod (4i -2)}, if i ≤ a k ; {u i 1 , u i ⌈k/2⌉ }, if a k + 1 ≤ i ≤ ℓ.
Therefore, e ∈ ∪ x∈M i EM (x) ⊆ ∪ x∈M EM (x) for any edge e ∈ E(C i ), where 1 ≤ i ≤ ℓ. It suffices to prove that e ∈ ∪ x∈M EM (x) for each edge in E(P i ), where 1 ≤ i ≤ k. For some vertex u 1 i ∈ M 1 and any u 1 j ∈ V (G), where 1 ≤ i ̸ = j ≤ k, if j ∈ {1, 2, . . . , i -3, i + 3, . . . , k}, where the subscripts are taken modulo n,

then d G (u 1 i , u 1 j ) ̸ = d G-cu 1 j (u 1 i , u 1 j ), and hence cu 1 j ∈ EM (u 1 i ). Similarly, for 1 ≤ t ≤ ℓ -1, since d G (u 1 i , u t j ) ̸ = d G-u t j u t-1 j (u 1 i , u t j ) for j ∈ {1, 2, . . . , i - 3, i + 3, . . . , k}, it follows that u t j u t-1 j ∈ EM (u 1 i ), and hence EM (u 1 i ) = {u 1 i u 1 i+1 , u 1 i u 1 i-1 , cu 1 i } ∪ {cu 1 j | j ∈ {1, 2, . . . , i-3, i+3, . . . , k}}∪{u p-1 j u p j | 2 ≤ p ≤ ℓ-1, j ∈ {1, 2, . . . , i-3, i+3, . . . , k}}. Without loss of generality, let u 1 1 ∈ M . Then ∪ i∈{1,4,...,k-2} E(P i ) ⊆ EM (u 1 1 ). Since EM (u 1 i ) = {u 1 i u 1 i+1 , u 1 i u 1 i-1 , cu 1 i } ∪ {cu 1 j | j ∈ {1, 2, . . . , i -3, i + 3, . . . , k}} ∪ {u p-1 j u p j | 2 ≤ p ≤ ℓ -1, j ∈ {1, 2, . . . , i-3, i+3, . . . , k}} and k ≥ 9, it follows that E(P 2 ) ⊆ EM (u 1 k-3 ), E(P 3 ) ⊆ EM (u 1 k-3 ), E(P 2 ) ⊆ EM (u 1 k-2 ), E(P 3 ) ⊆ EM (u 1 k-2 ), E(P k ) ⊆ EM (u 1 3
) and E(P k-1 ) ⊆ EM (u 1 3 ) For any edge e ∈ E(P i ), where i ∈ {2, 3, k, k -1}, if k is even, then e ∈ EM (u 1

3 )∪EM (u 1 k-3 ); if k is odd, then e ∈ EM (u 1

3 )∪EM (u 1 k-2 ). Therefore, e ∈ ∪ x∈M EM (x) for any e ∈ E(P i ), where 1 ≤ i ≤ k, and so dem(G) ≤ ∑ a k i=1 ⌈k/(4i -2)⌉+2(ℓ-a k ). Thus, dem(G) = ∑ a k i=1 ⌈k/(4i -2)⌉+ 2(ℓ -a k ). For ℓ ≤ a k , it is similar to the case that ℓ ≥ a k + 1, as desired. Let G = C(2, t) and H 1 = C(2, t)\v, where t ≥ 8. From Theorem 1.12, dem(H 1 ) ≥ dem(G). Note that G is not tree, it follows from Theorem 1.2 that dem(G) ≥ 2. Let H 2 be a tree satisfying H 2 ⊑ G. From Theorem 1.2, we have dem(H 2 ) = 1, and hence dem(H 2 ) ≤ dem(G), and so Corollary 4.4 holds. 

G. If u, v ∈ {v 1 , v 2 , v 3 }, then uv ∈ E(G), a contradiction. Thus, u / ∈ {v 1 , v 2 , v 3 } or v / ∈ {v 1 , v 2 , v 3 }. Without loss generality, suppose that u / ∈ {v 1 , v 2 , v 3 }. If d G (u) = 1, then |N (u)| = 1. Let N (u) = {w}.
Since the subgraph induced by the edge set EM (u) and EM (v) are the spanning trees of G, it follows that uw ∈ EM (u) ∩ EM (v), which contradicts to the fact that EM (u) ∩ EM (v) = ∅. Therefore, d G (u) ≥ 2. Since the subgraph induced by the edge set EM (v) is a spanning tree of G, it follows that there exists a vertex u 1 ∈ N (u) such that uu 1 ∈ EM (v). From Theorem 1.1, we have uu 1 ∈ EM (u), and hence uu 1 ∈ EM (u) ∩ EM (v), which contradicts to the fact that EM (u) ∩ EM (u) = ∅.

From Claim 2, we have

|E| ≤ 2n -6. Furthermore, let G = (n -2)K 1 ∨ K 2 with ver- tex set V (G) = {v i | 1 ≤ i ≤ n} and edge set E(G) = {v 1 v 2 } ∪ {v 1 v i , v 2 v i |3 ≤ i ≤ n}. Then, dem(G) = 2. Let E = {v 1 v i , v 2 v i | 4 ≤ i ≤ n} ⊆ E(G). From Observation 3.1, dem(G -E) = dem(K 3 ) +(n -1) dem(K 1 ) = 2,
and hence there exists an edge set E 1 such that dem(G -E) = 2 and |E| = 2n -6, as desired.

In the end of this section, we give the proof of Theorem 1.14 as follows. 

Proof of Theorem 1.14: Let

G = K n with vertex set {v i | 1 ≤ i ≤ n} and edge set {v i v j | 1 ≤ i < j ≤ n}. Let T be a spanning tree in K n . For any edge uv ∈ E(T ) and vertex w ∈ ((N G (u) ∪ N G (v)) \ {u, v}) ∩ V (T ), we have d G (w, u) = d G (w, v) = 1 and d G-uv (w, u) = d G-uv (w, v) = 1,
≤ β(T ) ≤ ⌊ n 2 ⌋. Suppose that T = S n with vertex set {v i | 1 ≤ i ≤ n} and edge set E(S n ) = {v 1 v i | 2 ≤ i ≤ n}.
Then {v 1 } is the vertex cover set of S n , and hence β(T ) = 1, and so the lower bound is sharp. Suppose that T = P n with vertex set {v i | 1 ≤ i ≤ n} and edge set 

E(P n ) = {v i v i+1 | 1 ≤ i ≤ n -1}. Then, {v i | i 0 (mod 2), 1 ≤ i ≤ n} is a
of G. Let M 1 ⊆ V (H) be a restrict-DEM set of H in G with |M 1 | = dem(G| H ). Let M = (V (G) -V (H)) ∪ M 1 . We will prove that dem(G) ≤ |M |. For any edge uv ∈ E(G), if u or v in V (G) -V (H), then it follows from Theorem 1.
1 that e is monitored by the vertex in V (G) \ V (H). For any edge e ∈ E(H), since M 1 is a restrict-DEM set, it follows that e is monitored by the vertex in M 1 , and hence 

M is a DEM set in G. Since |M | = |M 1 | + (|V (G)| -|V (H)|) = |V (G)| -|V (H)| + dem(G| H ), it follows that dem(G) ≤ |M | = dem(G| H ) + (|V (G)| -|V (H)|), and so dem(G) -dem(G| H ) ≤ (|V (G)| -|V (H)|). Furthermore, let G = K n and H = K m (3 ≤ m ≤ n). From Theorem 1.3, dem(G) = n -1. For any uv ∈ E(H) and w ∈ (N (u) ∪ N (v)) \ {u, v}, we have d G (w, u) = d G (w, v) = 1 and d G-uv (w, u) = d G-uv (w, v) = 1,
| Km ) ≥ β(K m ) = m-1. From Theorem 1.5, dem(K n | Km ) ≤ β(K m ) = m-

Perturbation results for some known graphs

Firstly, we study the change of DEM numbers for some well-known graphs when any edge (or vertex) of the graph is deleted. The following corollary is immediate, which imply that there exist graphs G and edge e such that dem(G) > dem(G -e) and dem(G) = dem(G -e). (ii) Let G = K n . From Theorem 1.3, we have dem(G) = n -1 and dem(G -uv) ≤ n -2 for any edge uv ∈ E(G). Then, we prove that dem(G -uv) ≥ n -2. Suppose that 5.2 Whether the DEM set is still applicable? Foucaud et al. proved in [10] that the problem DEM SET is N P -complete. For any graph G, a natural question is whether the original DEM set can monitor all edges if some edges or vertices in G are delated. We design the Algorithm 1 and the time complexity is polynomial. The algorithm of how to compute the edge set EM (x) from G was given by Yang et al. in [START_REF] Yang | On the distance-edge-monitoring numbers of graphs[END_REF], and is based on the breadth-first spanning tree algorithm, which time complexity is polynomial. Hence the time complexity of Algorithm 1 is polynomial.

Deleting one edge or vertex from some known graphs

Let N V i (G) = {v | d G (v) = i, v ∈ V (G)}

Conclusion

In this paper, we have studied the effect of deleting edges and vertices in a graph G on the DEM number. We obtained that dem(G -e) -dem(G) ≤ 2 for any graph G and e ∈ E(G). Furthermore, the bound is sharp. In addition, we can find a graph H and v ∈ V (H) such that dem(H \ v) -dem(H) can be arbitrarily large. This fact gives an answer to the monotonicity of the DEM number. This means that there exist two graphs H and G such that H ⊑ G and dem(H) ≥ dem(G).

It is interesting to consider the following problems for future work.

(1) It is interesting to characterize the graphs dem(H) ≥ dem(G) if H ⊑ G.

(2) For a graph G and E ⊆ E(G), what is the maximum value of |E| such that dem(G) = dem(G -E)?

(3) For any ϵ > 0, whether the ratio dem(G) dem(H) ≤ ϵ holds, where H is an induced subgraph of G.

In addition, it would be interesting to study distance-edge monitoring sets in further standard graph classes, including pyramids, Sierpińki-type graphs, circulant graphs, graph products, or line graphs. In addition, characterizing the graphs with dem(G) = n -2 would be of interest, as well as clarifying further the relation of the parameter dem(G) to other standard graph parameters, such as arboricity, vertex cover number and feedback edge set number.
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 2 Figure 2: The graph K[START_REF] Dall'asta | Exploring networks with traceroute-like probes: Theory and simulations[END_REF][START_REF] Ji | Erdős-Gallai-type problems for distance-edgemonitoring numbers[END_REF] 

  follows that the distance from z to x or y is not changed after removing the edge e 1 in G -e, which means that d G-{e,e 1 } (y, z) = d G-e (y, z) and d G-{e,e 1 } (x, z) = d G-e (x, z). If d G (e 1 , z) = d G (x, z), then the edge e lies on every z -y geodesic in G for z ∈ M and xy ∈ EM (z) in G, otherwise there exists z * ∈ M and xy ∈ EM (z * ) such that e does not appear in z * -y geodesic in G, that is d G-e (x, z * ) = d G (x, z * ) and d G-{e,e 1 } (x, z * ) ̸ = d G (x, z * ), which contradicts to the fact that M is not the DEM set of graph G -e. Claim 1. If a geodesic in G from z to y traverses the edge e in the order u, v, then each geodesic in G from z to y traverses e in the order u, v. Proof. Assume, to the contrary, that there exists two z -y geodesics P g 1 and P g 2 , where P g 1 = z . . . uv . . . y and P g 2 = z . . . vu . . . y. The z-y geodesic P g 1 implies that d(u, v)+d(v, y) = d(u, y), and the z -y geodesic P g 2 implies that d(v, u) + d(u, y) = d(v, y), and hence d(u, v) = 0, a contradiction.
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 741 Figure 7: The conical graph C(3, 8)

Theorem 4 . 2 .Corollary 4 . 3 .Proof of Theorem 1 . 12 :

 4243112 For any positive integer k ≥ 9, there exists a connected graph G such that such that dem(G \ v) -dem(G) = ⌊k/2⌋ -⌈k/6⌉,where v ∈ V (G). Proof. Let G = C(2, k), where ℓ = 2 and k ≥ 5. Note that G \ v 0 = C k K 2 . From Theorem 3.1, we have dem(G \ v 0 ) = dem(C k K 2 ) = k. From Theorem 4.1, we have dem(C(2, k)) = ∑ 2 i=1 ⌈k/(4i -2)⌉ = ⌈k/2⌉ + ⌈k/6⌉, and hence dem(G -v) -dem(G) = k -⌈k/2⌉ -⌈k/6⌉ = ⌊k/2⌋ -⌈k/6⌉, as desired. Let G = C(ℓ, k) and H = C k P ℓ . FromTheorems 4.1 and 3.1, if ℓ ≫ k, then dem(G)/ dem(H) ≈ 1. From Theorems 4.1 and 3.1, if k = 402 and ℓ = 100, then dem(G)/ dem(H) ≈ 0.561453. There exist two graphs H and G such thatdem(G) dem(H) ≈ 0.561453, where H is an induced subgraph of G. Let G = K 2k+2 . From Proposition 1.11, there exists a vertex u ∈ V (G) such that dem(G) -dem(G \ u) = k. Note that G \ u = P 2k+2 is a connected graph. In addition, let H = C(2, t), k = ⌊t/2⌋ -⌈t/6⌉ and v ∈ V (H). From Theorem 4.2, we have dem(C(2, t) \ v) -dem(C(2, t)) = k, where C(2, t) \ v = C t K 2 is a connected graph.In fact, G \ v is a subgraph of G. From Theorem 1.12, for any positive integer k ≥ 3, there exists a graph G such that dem(G \ v) -dem(G) ≥ k.

Corollary 4 . 4 . 2 :Observation 4 . 1 .Claim 2 .

 442412 There exists a connected graph G and two non-spanning subgraphs H 1 , H 2 ⊑ G such that dem(H 1 ) ≥ dem(G) and dem(H 2 ) ≤ dem(G).Proof of Proposition 1.For any graph G with order n and G \ v with at least one edge, we have dem(G) ≤ n -1 and dem(G \ v) ≥ 1, and hence dem(G) -dem(G \ v) ≤ n -2. Furthermore, let G = K 3 , then dem(G) -dem(G \ v) = n -2, and hence the upper bound is sharp. Conversely, since dem(G) -dem(G \ v) = n -2, it follows that dem(G) = n -1 and dem(G \ v) = 1. From Theorem 1.2, G \ v is a tree. Suppose that |V (G)| ≥ 4. Since dem(G) = n -1, it follows from Theorem 1.2 that G = K n , and hence G \ v = K n-1 which contradicts to the fact that G \ v is a tree. Suppose that |V (G)| ≤ 3. Since dem(G) = n -1, it follows that G = K n , where n ≤ 3. If G = K 2 , then G \ v = K 1 ,which contradicts to the fact that G \ v contains at least one edge. Therefore, G = K 3 , as desired. Next, we consider the subgraph H of G. If H is a proper subgraph of G satisfying dem(H) ≤ dem(G), then what is the relation between H and G? A natural question is what is the maximum number of edges we can delete from G without changing the number of distanceedge monitoring? We give a partial answer as follows.The base graph G b is a subgraph of G with dem(G) = dem(G b ). Therefore, we can obtain the following result, which give a lower bound for the edge set E such that dem(G) = dem(G -E). For any graph G, letE 1 = E(G) -E(G b ). If dem(G) = dem(G -E) and G -E is a connected graph with order at least 2, then |E| ≥ |E 1 |. Furthermore, the bound is sharp. Proof of Theorem 1.13: Let E ⊆ E(G) satisfying dem(G) = dem(G -E) and M = {u, v} be a DEM set of G with |M | = dem(G) = 2. From Theorem 1.4, we have |EM (u)| ≤ n -1 and |EM (v)| ≤ n -1. If uv ∈ E(G), then e(G) ≤ 2(n -1) -1. Since dem(G) = dem(G -E) = 2, it follows from Theorem 1.2 that G -E must contain a cycle, and hence |E| ≤ 2(n -1) -1 -3 = 2n -6. Suppose that uv ̸ ∈ E(G). If |EM (u) ∩ EM (u)| ≥ 1, then |E| ≤ 2n -6, which is similar to the case that uv ∈ E(G). If EM (u) ∩ EM (v) = ∅,it follows from Theorem 1.4 that e(G) ≤ 2(n -1). Since dem(G -E) = 2, it follows from Theorem 1.2 that G -E must contain a cycle, and hence |E| ≤ 2(n -1) -3 = 2n -5. Furthermore, we give the following claim. |E| ≤ 2n -6. Proof. Assume, to the contrary, that |E| = 2n -5. Since dem(G -E) = 2, it follows from Theorem 1.2 that G -E = C 3 . Without loss of generality, let V (G -E) = {v 1 , v 2 , v 3 }. In addition, from Theorem 1.4, the subgraph induced by the edge set EM (u) and EM (v) are the spanning trees of

  and hence uv / ∈ EM (w). From Proposition 3.1, any edge uv ∈ E(T ) is only monitored by u or v, and hence dem(K n | T ) ≥ β(T ). From Theorem 1.5, dem(K n | T ) ≤ β(T ), and hence dem(K n | T ) = β(T ). Since T is tree with order n, it follows that T is a bipartite graph. Without loss of generality, letV (T ) = U ∪ V (|U | ≤ |V |), which is a bipartite partition of V (T ). From the pigeonhole principle, we have |U | ≤ ⌊ n 2 ⌋.For any uv ∈ E(T ), we have {u, v} ∩ U ̸ = ∅, and hence β(T ) ≤ ⌊ n 2 ⌋. In addition, T contains at least one edge, and hence β(T ) ≥ 1, and so 1

1 ,

 1 and hence dem(K n | Km ) = m-1. Therefore, dem(G) -dem(G| H ) = (n -1) -(m -1) = |V (G)| -|V (H)|, as desired.

Corollary 5 . 1 .

 51 andN E a,b (G) = {uv | uv ∈ E(G), d G (u) = a, d G (v) = b}. Note that E(P n ) = N E 1,2 (P n ) ∪ N E 2,2 (P n ). If e ∈ N E 1,2 (P n ), then dem (P n -e) = 1,and hence dem (P n ) -dem (P n -e) = 0. If e ∈ N E 2,2 (P n ), then dem (P n -e) = 2, and hence dem (P n ) -dem (P n -e) = -1. These arguments imply that the following Corollary 5.1 holds. Let P n be a path of order n, where n ≥ 2. For any e ∈ E(P n ), we havedem(P n -e) =    dem(P n ), if e ∈ N E1,2 (P n ); dem(P n ) + 1, if e ∈ N E 2,2 (P n ). Foucaud et al. obtained the following result about DEM numbers of complete bipartite graph K ℓ 1 ,ℓ 2 . Theorem 5.2. [10] Let ℓ 1 and ℓ 2 be two integers with ℓ ≥ 1 and ℓ 2 ≥ 1. Then dem (K ℓ 1 ,ℓ 2 ) = min{ℓ 1 , ℓ 2 }

Corollary 5 . 3 .

 53 Let n ≥ 3 be an integer. Then,(i) for any edge e ∈ E(C n ), dem(C n -e) = dem(C n ) -1 = 1; (ii) for any edge e ∈ E(K n ), dem(K n -e) = dem(K n ) -1 = n -2; (iii) for any edge e ∈ E(K n,n ), dem(K n,n -e) = dem(K n,n ) = n.Proof. (i) From Theorem 1.2, we have dem(C n -e) = dem(P n ) = 1. Since dem(C n ) = 2, it follows that dem(C n -e) = dem(C n ) -1 = 1.

1 . 1 M 1 ←

 111 WHETHER THE DEM SET IS STILL APPLICABLE? Instance: A graph G = (V, E), an edge e ∈ E(G) and a DEM set M of G. Question: Whether M is still a DEM set for the graph G -e? Given a graph G, a DEM set M , and an edge e ∈ E(G), our goal is to determine whether the original DEM set M is still valid in the resulting graph G -e. The algorithm is shown in Algorithm Algorithm The algorithm for determining M is or not monitor set for G -e Input: A graph G, M ⊆ V (G) and e ∈ E(G);Output: E(G -e) ⊆ ∪ x∈M EM (x) is TRUE or FALSE; 1: M 1 ← E(G -e) 2: for each vertex v ∈ M do 3: M 1 -EM (v) 4: if M 1 = ∅ then return E(G -e) ⊆ ∪ x∈M EM (x)is TRUE; 5: else return E(G -e) ⊆ ∪ x∈M EM (x) is FALSE;

Theorem 1.13. Let

  Moreover, the equality holds if and only if G is K 3 . G be a connected graph with order n ≥ 4 and dem

  = 5, and so dem(G * 8 ) ≥ 6. Therefore, dem(G * 8 ) = 6. Since G * 8 -u 1 u 5 ∼ = C 8 P 2 , it follows from Theorem 3.1 that dem(G * 8 -u 1 u 5 ) = dem(C 8 P 2 ) = 8. It follows from Observation 1.1 that dem(

and hence u i v i / ∈ EM (w). From Proposition 3.1, the edge u i v i (2 ≤ i ≤ 8 and i ̸ = 5) is only monitored by {u i , v i }, and hence M ∩ {u i , v i } ̸ = ∅ for 2 ≤ i ≤ 8 and i ̸

  = dem(P 2 P 3 ) = 3. Let T 2 n be a star with vertex set {v 1 , • • • , v n } and edge set {v1 v i | 2 ≤ i ≤ n}. Take e 2 1 = v 2 v3 and e 2 2 = v 4 v 5 . Then there exists a cycle v 1 v 2 v 3 v 1 in graph T 2 n + {e 2 1 , e 2 2 }. From Theorem 1.2, dem(T 2 n + {e 2 1 , e 2 2 }) ≥ 2. Let M = {v 2 , v 4 }. For any edge v 1 v i , where 6

	the base graph of T 1 n + {e 1 1 , e 1 2 } is P 2 P 3 . From Observation 1.1 and Theorem 3.2, we have
	dem(T 1 n + {e 1 1 , e 1 2 })

where n ≥ 6. Let e 1 1 = v 1 v 6 and e 1 2 = v 2 v 5 . It clear that

  minimum vertex cover set of P n , and hence β(T ) = ⌊ n 2 ⌋, and so the upper bound is sharp.

Similar to Theorem 1.14, we have below Corollary 4.5. Corollary 4.5. Let H be a subgraph of G with |V (H)| = p. Then,

1 ≤ dem(G| H ) ≤ p -1.

Furthermore, the bounds are sharp.

Theorem 4.6. If H is an induced subgraph of graph G, then dem(G) -dem(G| H ) ≤ |V (G)| -|V (H)|.

Moreover, If both G and H are complete graph, then the bound is sharp.

Proof. For any graph G and H, where H is an induced subgraph

  and hence uv / ∈ EM (w). From Proposition 3.1, any edge uv ∈ E(H) is only monitored by u or v, and hence dem(K n
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There exists graphs G and v

The following corollary shows that there exist graphs G such that dem(G) > dem(G -v).

Corollary 5.4. Let n ≥ 3 be an integer. For any v ∈ v(G), we have

Proposition 5.1. Let P n be a path with vertex set

, where n ≥ 5. For any v ∈ V (P n ), we have