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Influence of contextual elements on the spatial modelling of atmospheric
cadmium accumulated by mosses
Jérémy Lamouroux, Caroline Meyer, Sébastien Leblond, Isabelle Albert 

Since the 1960s, terrestrial mosses have been used for monitoring studies of trace element deposits. The BRAMM network monitors these elements in rural areas, under tree cover, using
monospecific moss samples evenly spread across the territory. Investigating metal accumulation in mosses with contextual elements provides valuable insights for policymakers.
This study focuses on regional cadmium (observed cd ϵ [0.03;1.16] μg/g) deposition and the production of spatial distribution maps. We compare cd accumulation with several contextual elements in
445 French forested sites separated according to bioclimatic zones. Contextual elements used are the concentration of the cd in the atmosphere and cd deposition modelled by EMEP, type of moss
sampling, type of forest cover, distance to road, and land use defined by Corine Land Cover. This gives us a total of 30 covariates.
We use linear models if no spatial effects are present in the area. Otherwise, we use kriging models or enhance the linear model by incorporating a spatial random effect using the Stochastic Partial
Differential Equations (SPDE) method, which considers spatial correlation. Our results show that the significant contextual elements differ according to the bioclimatic zones. The principal objective is
to produce spatial models in which the coefficients linking moss concentration and contextual elements will be calculated according to defined geographical areas.

We consider an AIC selection on Xi=1…30 with covariates chosen by the
experts to avoid correlations between them. The backward-forward
selection gives us conserved covariates Xi=1…n with n the number of
covariates selected in each biogeographical zone or all over France.
For each covariate:
• α is the intercept
• βi is the estimated coefficient of covariates Xi
• εi is the white noise iid
We define the log-log model as:

log(log(1.5/Y)) = α + Xiβ + εi

This model was chosen to restrict maximum predictions to 1.5.

Our model with spatial effects:
 log(log(1.5/Y(s)) = μ(s) + ω(s) + ε(s)

With:
• μ(s) = X(s)β
• ε(s) the white noise iid ; E(ε(s)) = 0, Var(ε(s)) = τ², cov(ε(s), ε(s’)) = 0
• ω(s) the second order mean process stationary, i.e., mean-zero process independent of the white 

noise process, i.e., E(ω(s)) = 0, Var(ω(s)) = σ², cov(ω(s), ω(s’)) = σ²ρ(s,s’; φ), where ρ is a valid two-
dimensional correlation function

➢ Letting μ(s) = β0 + β1x(s), write ω(s) = β0(s). 
➢ Then β0(s) can be interpreted as a random spatial adjustment at location s to the overall intercept β0. 
➢ We can define ෨β0(s) = β0 + β0(s) as a random intercept process. 

We use a SPDE approach to add spatiality in our model. He consits to representing a continuous spatial 
process, i.e., a Gaussian Fields (GF) using a discretely indexed spatial random process, i.e., Gaussian 
Markov Random Fields (GMRF).

The SPDE is given by:
                                              (κ²- Δ)α /2(τξ(s)) = ω(s)
With: 
• s ϵ ℝd

• Δ is the laplacian
• α controls smoothness
• Κ > 0 is the scale parameter
• Τ controls the variance
• ξ(s) a GF
•  ω(s) is a gaussian spatial white noise process
The solution of this SPDE is the stationary gaussian 
Fields (B) ξ(s) all over France with 6 covariates and a Matèrn covariance function.

Data used and covariates selected
• 445 samples of mosses for France and 6 

covariates selected by the AIC criterion, the 
model (E) contains spatial correlation 
based on the Moran index

Biogeographical zone (A) and covariates 
selected by the AIC criterion models (D) have 
no spatial correlation based on the Moran 
index:
• 220 mosses for the atlantic zone and 

7 covariates 
• 147 mosses for the continental zone and 

10 covariates
• 49 mosses for the mediterranean zone and 

19 covariates
• 29 mosses for the mountain zone and 

20 covariates

Model all over France (E) & Prediction of cd 
concentration from the spatial model (F)

Our proposed analysis consists of four steps to determine the most accurate variable for explaining the concentration of cd in mosses across France, specifically focusing on the bryologist's
perspective. The D model allows us to explore the diversity of inputs within different regions of France. We aim to develop a unified model (E model) that encompasses the entire country,
considering the spatial correlation of mosses (F model). We employed a model incorporating a spatial intercept and 6 covariates (selected by the AIC criterion of the linear model) to achieve this F
model. The 6 covariates include buffers with a radius of 5km around urban and industrial areas, 1km around crops, 10km around marine regions, and air and soil concentration values from physical
models. Our analysis involved comparing the results of this spatial model with those of a log-log linear model. The spatial model effectively incorporates spatial smoothing, allowing an
understanding and interpretation of the spatial variation in cd concentration. On the other hand, the E model lacks spatial smoothing, potentially disregarding significant spatial patterns. In addition to
considering spatial correlation in the intercept, the subsequent step was to account for spatial correlation in the β coefficients.

Conclusion and Perspectives

We use INLA R package 
and deviance information 
criterion (DIC) to predict cd 
and compare our models 
with 6 covariates.

• Figure E, application of 
the constrained model 
all over France without 
considering the spatial 
correlation

• Figure F, posterior mean 
of the predicted 
response variable

The model’s predicted values across the whole territory of France (E) exhibit a range of 0 to 0.70 μg/g,
whereas the spatial model (F) yields values ranging from 0 to 0.45 μg/g. The DIC indicates a significant
enhancement in results by including a spatial intercept, with values of 218.60 for model E and 150.79 for
model F. These findings demonstrate the efficacy of incorporating a spatial intercept to improve the
accuracy of our predictions across France.
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Results

Ordinary Kriging (C) & Region-specific models (D)

Predictive values obtained through kriging without covariates fall within the
range of 0 to 0.35 μg/g, whereas the range for the D map lies between 0 and 1.5
μg/g (values constrained by the model). The log-log model demonstrates
enhanced predictions for the high cd values (observed cd ϵ [0.03;1.16] μg/g).
Region-specific models provide regionally specific information by selecting
covariates that differ from one region to another. However, more observations
per region could improve the model performance.
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