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We re-examine the problem of the dielectric response of highly polar liquids such as water in confinement between
two walls using a simple two-variable density functional theory involving number and polarisation densities. In
the longitudinal polarisation case where a perturbing field is applied perpendicularly to the walls, we show that
the notion of local dielectric constant, although ill-defined at a microscopic level, makes sense when a coarse-
graining over the typical size of a particle is introduced. The approach makes it possible to study the effective
dielectric response of thin liquid films of various thicknesses in connection to the recent experiments of [Fumagalli
et al. , Science, 2018, 360, 1339-1342], and to discuss the notion interfacial dielectric constant. We argue that the
observed properties as function of slab dimension, in particular the very low dielectric constants of the order of 2-3
measured for thin slabs of ∼ 1nm thickness do not highlight any special property of water but can be recovered for
a generic polar solvent having similar particle size and the same high dielectric constant. Regarding the transverse
polarisation case where the perturbing field is parallel to the walls, the associated effective dielectric constant as
a function of the slab dimension reaches bulk-like values at much shorter widths than in the longitudinal case.
In both cases, we find an oscillatory behaviour for slab thicknesses in the one nanometer range due to packing
effects.

I. INTRODUCTION

The dielectric constant is a macroscopic concept that re-
lates the linear response of the polarisation vector to the
Maxwell electric field1. The derivation of the dielectric con-
stant of bulk fluids from statistical mechanics principles has
a long history starting from the early works of Debye, On-
sager and Kirkwood2–4, with major advances leading to its
modern formulation in the 1970s5–8. The extension to in-
homogeneous liquids and the necessary conditions to define
a local, space-dependent dielectric constant ε(r) were given
by Nienhuis and Deutch5 and re-examined thirty years later
by Ballenegger and Hansen9. Such clear definition is crucial
for the implicit solvent models used ,e.g., in biomolecular
simulations to represent the aqueous surrounding medium
or for deriving effective electrostatic interaction models
based on space-dependent dielectric constants10. That
question led to a number of early works trying to char-
acterise ε(r) in the vicinity of biomolecules or membranes
using molecular dynamics (MD) simulations10–12. In 2005,
Ballenegger and Hansen presented the first MD simulations
of a model polar solvent in confinement between two repul-
sive walls in order to define a local ε(z) rigorously using
either linear response or a small perturbing electric field.13
For a perturbation perpendicular to the walls, they were led
to conclude that such ε(z) is ill-defined and "is not a useful
quantity near the walls". This pioneering work has initiated
a number of subsequent MD studies of water in confinement
or at interfaces using a realistic atomistic representation
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of both the solvent and the confining surfaces14–19. This
interest was revived recently by the experimental studies
of Fumagalli et al.20 who reported local capacitance mea-
surements for water confined between two atomically flat
walls separated by various distances down to 1 nanometer.
Their experiments were interpreted as revealing "the pres-
ence of an interfacial layer with vanishingly small polarisa-
tion", that translates into an "anomalously low dielectric
constant of confined water". Historically, the question of
the nature of the hydration layer close to an electrified inter-
face goes back to the early theories of Helmholtz and Stern
and has plagued the theory of electric double layers for elec-
trolytes at charged interfaces? . Already almost a century
ago, by analysing surface capacitance data, Stern demon-
strated that a thin interfacial layer exists at a solid-water
interface with a dielectric constant much reduced compared
to bulk water.? To our knowledge, there is no clear consen-
sus yet on the precise microscopic definition of this Stern
layer and on the value of the dielectric constant that should
be attributed to it. A proposed experimental reference for
aqueous solutions at ambient conditions is ε ' 7 instead of
ε ' 80 for the bulk? , an already small value in the absence
of extreme confinement.

The dielectric properties of interfacial and confined wa-
ter have been the subject of many recent simulation stud-
ies, including, e.g., refs.18,19,21–32. However, as already
stressed in the early work of ref.13, the convergence of con-
fined water dielectric properties by MD simulations is very
difficult to achieve. Recent developments have been de-
voted to more efficient methods to compute the dielectric
constant32, or to analytical theoretical approaches based
on a dielectric continuum theory (DCT)33 or a nonlocal
field theoretical approach34. Different explanations have
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been proposed for the observed reduction in the perpen-
dicular dielectric constant of confined water20. These in-
clude a dielectrically ’dead’ interfacial water layer caused by
orientational constraints imposed by the interface20,26,27,
the disruption of the water hydrogen-bond network at the
interface31, a dielectric boundary effect33, and an excluded
volume effect19,35.

Classical density functional theory (DFT) is a well-
founded, efficient theoretical approach to describe atomic
and molecular fluids at interfaces or in confinement; See
,e.g., Refs36? –41. In this article, we re-examine the problem
of the dielectric response of highly polar liquids such as wa-
ter in confinement between two walls using a two-variable
density functional theory, in terms of number and polari-
sation densities, that we have derived and used previously
for either a generic dipolar fluid42,43 or for water44,45. It is
a simplified version of the full molecular density functional
theory (MDFT) formalism that three of us have been de-
veloping for a number of years46–49. This simplicity (com-
bined with accuracy as will be seen) makes it possible first
to sort out the important physical variables, secondly to
derive analytical solutions and/or to provide instantaneous
numerical solutions that are exempted from the statisti-
cal noise inherent to molecular simulations, and this for as
many physical situations as desired. We note that a con-
nected DFT approach was recently applied to the study
of polarisation fluctuations in confined water; the coupling
of number and polarisation densities was not considered
explicitly, however, with an abrupt number density profile
introduced as input.35. Our goal is three-fold: 1) To repro-
duce at a much simpler level and to re-examine previous
MD results concerning the definition of a local (ill-defined)
longitudinal dielectric constant close to a wall or in confine-
ment and to extend this definition to that of a (well-defined)
locally coarse-grained dielectric constant. 2) To contribute
to the understanding of the experiments of Fumagalli et al.
and of the notion of "anomalously low dielectric constant"
of water in confinement. 3) More generally to provide a
theoretical foundation for describing quantitatively, at a
fully molecular level, surface-induced solvent structures, as
a consequence of the coupling between solvent density and
solvent polarisation, and in a form that can be incorporated
into commonly used mean field dielectric theories10.

The outline of the paper is as follows. Sec. II introduces
our two-variable, number and polarisation density free en-
ergy functional. It is applied in Sec. III to the microscopic
structure and longitudinal dielectric response of a model
Stockmayer fluid, having the same bulk dielectric constant
as water at similar density, in one-dimensional confinement
between two graphene-like surfaces. The response is stud-
ied as function of slab thickness from less than a nanometer
to micrometers. Sec. IV extends the study to a dipolar rep-
resentation of SPC/E water and to the transverse response
in addition to the longitudinal one. Sec. V concludes.

II. FREE-ENERGY FUNCTIONAL FOR A DIPOLAR LIQUID

Before discussing a more complete model of water later
on, and in order to distinguish generic dielectric proper-

ties from the specific water properties emerging from its
special H-bond structure, we start with an ersatz of wa-
ter, namely a Sockmayer fluid composed of Lennard-Jones
(LJ) particles embedding a permanent dipole µ, and whose
density and dielectric constant at ambient temperature are
similar to those of water. We take the parameters from
the early studies of Pollock and Alder50: σLJ = 3.024A

◦
,

εLJ = 1.87 kJ/mol, µ = 1.835D, ρ = 0.0289A
◦−3 or, in

dimensionless units, T∗ = kBT/εLJ = 1.35, ρ∗ = ρσ3
LJ =

0.8, µ∗ =
√
µ2/εLJσ3

LJ = 2. Those parameters yield a di-
electric constant ε = 80. They also correspond to a state
point considered by Ballenegger and Hansen when studying
the dielectric properties of the closely related dipolar-soft-
sphere model in confinement13. As shown in Refs42–45,51,
such dipolar liquid submitted to an external potential can
be described accurately by a grand-potential functional de-
pending on the local number density n(r) and local polari-
sation densityP(r). This functional is fixed by the chemical
potential of the bulk fluid at density n0. It can be decom-
posed into density and polarisation terms, F = Fn + FP ,
with the density term given by

Fn[n] = kBT

∫
dr

[
n(r) ln(

n(r)

n0
)− n(r) + n0

]
+

∫
drn(r)V0(r)

− kBT

2

∫
dr1dr2 ∆n(r1) cs(r12)∆n(r2) + FB [n(r)] (1)

where ∆n(r) = n(r)−n0. V0(r) represents the external LJ
potential exerted at point r. FB [n(r)] is the so called bridge
functional, that we take here as a hard-sphere (HS) bridge
functional based on fundamental measure theory52–54, us-
ing the Kierlik-Rosinberg scalar version55,56 and a refer-
ence HS diameter defined conventionally as dHS = σLJ(1+
0.298T ∗)/(1 + 0.3316T ∗+ 0.001048T ∗257. The polarization
part of the functional reads

FP [n,P] = kBT

∫
drn(r)× (2)(

ln

[
L−1(Ω(r))

sinh(L−1(Ω(r))

]
+ Ω(r)L−1(Ω(r))

)
−
∫
drP(r) ·E0(r)−

∫
dr1 P(r1) ·Eexc(r1)

with Ω(r) = P (r)/µn(r) and P (r) = |P(r)|. The first
term represents the ideal free energy for an ensemble of
non interacting dipoles submitted to an external electric
field; there L designates the Langevin function and L−1 its
inverse. E0(r) is the external electric field at point r. The
excess electric field Eexc(r1) is defined by

Eexc(r1) =
1

2

kBT

µ2

∫
dr2 [c∆(r12)P(r2)

+ cD(r12) (3r̂12 (P(r2) · r̂12)−P(r2))] (3)

where r̂12 = r12/r12. In eqs 1 and 3, cS(r), c∆(r), cD(r) rep-
resent the spherical and dipolar spherical-invariant projec-
tions of the angular-dependent direct correlation function
of the bulk liquid at density n0. Those functions are inputs
in the theory and are obtained from a preliminary simula-
tion of the bulk fluid. See Ref.42,45 for their behaviour in
direct and Fourier space.
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The equilibrium number density and polarisation density
are obtained by minimisation of the functional with respect
to both n(r) and P(r). Minimisation of FP with respect
to P(r) for a given n(r) gives

P (r) = µn(r)L(βµ|E0(r) + Eexc(r)|) (4)

This accounts for dipolar saturation at high local electric
fields. It does so at a fully microscopic level compared to the
coarse-grained dipolar Poisson approach of Berthoumieux
et al.58. For small external fields, the ideal free energy in
eq. 3 can be developed at dominant order in polarisation

F idP [n,P] =
1

2

∫
dr

P(r)2

αdn(r)
(5)

where αd = µ2/3kBT is the orientational polarizability of
a permanent dipole in a field. In that case, minimisation
yields a linear relation betweenP(r) and E0(r), with indeed
a nonlocal response function.

III. CONFINEMENT IN A ONE-DIMENSIONAL SLIT PORE

In order to mimic the experimental setup of Ref.20, as
well as to follow the simulation conditions of Ballenegger
and Hansen13, we consider a model of one-dimensional slit
pore composed of 2 graphene-like plates in the x-y- plane
separated by a distance h along z. As in Ref.13, the external
potential V0(z) exerted by the two walls results from the
x-y integration of a 3D-Lennard-Jones potential. It is of
the 9-3 type, with parameters pertinent to carbon-water
interactions

V0(z) =
4π

3
εw

[
σ9
w

15z9
+

σ9
w

15(h− z)9
− σ3

w

2z3
− σ3

w

2(h− z)3

]
(6)

with σw = 3.9A
◦

and εw = 2.6 kJ/mol. An external
electric field E0(z) is applied along the perpendicular z-
direction. For such a 1D-geometry, the polarisation field
is so-called longitudinal (i.e., aligned with the electric
field in q-space), and the two direct correlation functions
c∆(q), cD(q) (zeroth- and second-order Hankel transform
of c∆(r), cD(r), respectively) reduce in q-space to a single
longitudinal function cL(q) = c∆(q) + 2cD(q)45. The two
components of the functional F = Fn + FP of eqs 1-3 can
be written per surface area in the form

Fn[n] = kBT

∫
dz

[
n(z) ln(

n(z)

n0
)− n(z) + n0

]
− kBT

2

∫
dz1dz2 ∆n(z1) cS(z12)∆n(z2)

+

∫
dz n(z)V0(z) + FB [n(z)] (7)

FP [n, P ] = kBT

∫
dz n(z)×[

ln

(
L−1(Ω(z))

sinh(L−1(Ω(z))

)
+ Ω(z)L−1(Ω(z))

]
− 1

6αd

∫
dz1dz2 cL(z12)P (z1)Pz(z2)

−
∫
dz P (z)E0(z) (8)

cS(z), cL(z) are defined here as the inverse 1D Fourier
transforms of the 3D functions cS(q), cL(q). They are plot-
ted in Fig. 1. It should be noted that both are short range
and vanish beyond r ' 6A

◦
. This might be surprising

for the polarisation-polarisation contribution cL(z) since
dipole-dipole interactions are a-priori long-range. It is a
well-known fact, however, that for a longitudinal polarisa-
tion field, the long-range 1/r3 part of the dipolar tensor
disappears, and the Maxwell field is rigorously defined by
the local relation E(r) = E0(r) − 4πP(r). In other words
the dielectric displacement is equal to the external field,
D(r) = E0(r).

0 2 4 6 8 10 12 14
z (Å)

10

8

6

4

2

0

c S
(z

),
c L

(z
)(

Å
2 )

S
L

Figure 1. One-dimensional direct correlation functions for the
Stockmayer fluid model described in the text, and entering in
eqs 7-8

For a small perturbing field E0(z) and when n(z) is pro-
vided independently through the minimisation of eq. 7 only
(which amounts to neglecting the n-P coupling appearing
in the ideal term of eq. 8), the quadratic form of eq. 5 can
be used, turning the minimisation in P (z) to a linear alge-
bra problem that can be solved through matrix inversion.
In this linear regime, the nonlocal response can be written
in terms of the susceptibility χ0(z1, z2)

P (z1) =

∫
dz2 χ0(z1, z2) αdE0(z2) (9)

with

χ0(z1, z2) = n(z1)δ(z12) +
hL(z1, z2)

3
n(z1)n(z2) (10)

where the longitudinal, inhomogeneous pair distribution
function hL(z1, z2) relates to the bulk direct correla-
tion function cL(z12) through an inhomogeneous Ornstein-
Zernike (OZ) relation. See the supplementary information
(SI) for details. For a constant electric field E0(z) ≡ E0,
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the integration upon the second variable can be performed
and a local response function can be defined as

f(z) = 4πP (z)/E0 = 1− 1

ε⊥(z)
(11)

where ε⊥(z) stands for a local longitudinal dielectric con-
stant and formally

f(z1) = 4παdn(z1)

(
1 +

∫
dz2

hL(z1, z2)

3
n(z2)

)
(12)

Variants of this formula can be readily found in the
literature9, It explains how a local dielectric constant can
be defined even though the dielectric response function it-
self, given by χ0 or hL, is intrinsically non-local? . It is
seen that the inhomogeneous fluid density n(z) enters at
two places; the first one indicates that the local response
function should be zero where there is no particle, n(z) = 0.
The second one excludes the nonlocal contribution to the
polarisation response coming from region where the den-
sity is zero, n(z2) = 0. This nonlocal cut-off effect on the
polarisation response near the boundaries was pointed out
recently by Olivieri et al.19. Among several other worthy
remarks, it is justified in the SI that, since hL(z1, z2) is
short-ranged, the influence of the walls is expected to be
short-ranged too, and the bulk value of f(z) and ε⊥(z)
should be reached after only a few particle diameters from
the walls.

From now on, we depart from this linear algebra formu-
lation that implies matrix inversion. The results presented
next were obtained numerically by the joint minimisation
of the functional with respect to n(z) and P (z) in the pres-
ence of a small and constant external field E0 = 0.1 V/nm.
We have written a simple, dedicated Python code for that
purpose. For a discretisation of the fields over typically
N = 1024 points, the minimisation procedure is instanta-
neous on a laptop (less than a second).

Following the simulations of Ref.13, we first consider a
relatively wide slit of width h = 50A

◦
(16.5σLJ). We plot

the equilibrium density field n(z) as well as the response
function f(z) in reduced units in Fig. 2. Both present
strong structural oscillations up to 6 sigma from the walls.
These two curves appear very similar to the ones obtained
by Ballenegger and Hansen13 via MD– although their study
was mainly focused on the less polar case µ∗ = 1.2, the
simulations for µ∗ = 2 proving very hard to converge. In
Fig. 3-top, we plot the resulting inverse dielectric constant
1/ε⊥(z) that presents oscillations that span unphysical neg-
ative values up to ∼ 6σLJ from the walls. That leads Bal-
lenegger and Hansen to conclude that "ε⊥(z) is not a useful
quantity near the walls". Here we modulate that judge-
ment by recalling that standard electrostatics is by essence
a coarse grained theory, and that one should rather look at
a coarse-grained ε̃⊥(z) with a coarse-graining length of at
least the size of a particle (this approach was used in ref.13
to smoothen the dipolar fluctuations). Here, this can be
formalised by looking at a coarse-grained polarisation field,
defined for example using

P̃ (z) =

∫
dz′w(|z − z′|)P (z′) (13)

0 2 4 6 8 10 12 14 16
z/

0.0

0.5

1.0

1.5

2.0

2.5

n
* (

z)

0 2 4 6 8 10 12 14 16
z/

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

f(z
)

Figure 2. Top: Reduced density n∗(z) = n(z)σ3
LJ for a slab of

width h = 50A
◦
(16.5σLJ). Bottom: Local response function

f(z) = 4πP (z)/E0.

where the weight function w(z) is taken as a normalized
Gaussian function with standard deviation σP = λσLJ , λ
of order 1. A coarse-grained dielectric constant ε̃⊥(z) can
be defined from P̃ (z) exactly as in eq. 11. The inverse,
coarse-grained, dielectric constant 1/ε̃⊥(r) corresponding
to λ = 0.7 is plotted as function of distance in Fig. 3-top
together with the bare microscopic results. This quantity
now appears as a smooth curve that does remain strictly
positive, so that ε̃(r) itself is well defined and well behaved;
see Fig. 3-bottom. It presents two peaks at values higher
than in the bulk close to the walls; the main feature to
be retained, however, is that the bulk value is reached af-
ter a few particle diameters, at a distance where the mi-
croscopic polarisation still presents microscopic oscillations
(z ∼ 4 − 5σLJ), and that there are no long-range effects
induced by the walls on the local dielectric constant. We
note that the coarse-graining length σP should not be con-
sidered as fundamental quantity, but rather as an obser-
vation length scale. It might be linked also to the reso-
lution of the experiment that is realised. As soon as this
observation/resolution becomes comparable to the parti-
cle size, 1/ε̃⊥(z) and ε̃⊥(z) appear as locally well-defined,
positive quantities. As a rule of thumb, to keep a micro-
scopic character in our analysis, we choose σP large enough
to smooth the spurious behaviour of 1/ε(z) (or f(z)), but
small enough to have its overall microscopic behaviour un-
changed, in particular keeping a limited penetration into
the walls and an unaltered distance at which the bulk value
is reached. We find both conditions typically fulfilled for
0.6 ≤ λ ≤ 1; λ = 0.7 appears as a good compromise. The
variation of the results of Fig. 3 with the parameter λ is
illustrated in the SI. Increasing λ from 0.7 to 1 and beyond
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Figure 3. Top: Local inverse dielectric constant 1/ε⊥(z) in a slab
of width h = 50A

◦
(blue curve) and its coarse-grained version

1/ε̃⊥(z) obtained through eq. 13 with a coarse-graining length
σP = 0.7σLJ (violet curve). Bottom: Coarse-grained dielectric
constant ε̃⊥(z) whereas the corresponding microscopic ε⊥(z) is
ill-defined.

gives a more regular behaviour for ε̃⊥(z) but indeed a more
important smoothing of the boundaries. We argue in the
SI that, for modelling purposes, the fundamental quantity
to consider is rather the coarse-grained response f̃(z) that
is less sensitive to the choice of λ and can be modelled with
two inverted sigmoid-like curves, yielding smooth curves
when converted to ε̃⊥(z).

In Fig. 4 and 5, we plot the results corresponding to a
much narrower slab with h = 10A

◦
(∼ 3σLJ). It can be

seen that only two solvent layers are allowed in-between
the plates and that the density n(z) and the polarisation
density P (z) remain everywhere far from their bulk values.
The coarse-grained dielectric constant ε̃⊥(z) displayed in
Fig. 5 has a nice and smooth hat shape that reaches a
maximum value around 10 in the middle of the slab, again
far below the bulk value.

From the above findings, one can state that the very long
range effect, up to a micrometer, observed for the mea-
sured ε⊥ as function of slab thickness in Ref.20 cannot be
attributed to any long-range effect of the walls on the local
dielectric constant of the liquid. One should look rather
at some effective dielectric response of the whole slab to
the applied potential difference. For our slab model sub-
mitted to a constant external field (the so-called dielectric
box model of Ref.18) this can be measured by relating the
average polarisation in the slab to the field

P̄ (h) =
1

h

∫ h

0

P (z) =
1

4π

(
1− 1

ε̄⊥(h)

)
E0 (14)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
z/

0.0
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Figure 4. Same as Fig. 2 for a slab of width h = 10A
◦
.
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Figure 5. Same as Fig. 3 for a slab of width h = 10A
◦
.

which yields according to eq. 11

1

ε̄⊥(h)
=

1

h

∫ h

0

dz
1

ε⊥(z)
(15)

' 1

h

∫ h

0

dz
1

ε̃⊥(z)
(16)

The second equality holds for the coarse-grained dielectric
constant instead of the microscopic one if the the coarse-
graining length is such that P̃ (0) = P̃ (h) ' 0. The mi-
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croscopic expressions 14-15 remain the ones to be used in
the following. Expressing the total electrostatic energy of
the device, which includes the self-energy of the electric
field between the plates, writing the potential difference
between them as

∆Φ(h) = −
∫ h

0

dz E(z) = −
∫ h

0

dz
1

ε⊥(z)
E0 (17)

and equating this energy to 1/2C(h)∆φ(h)2 yields the ef-
fective capacitance

C(h) =
ε̄T (h)

4πh
(18)

with ε̄T (h) having the same definition as in eq. 15. Measur-
ing the average polarisation in the slab or the effective slab
capacitance are thus equivalent. When the plate-to-plate
distance h is large enough as in Fig. 3, one can divide the
device in three regions, two interfacial regions of width hi
and an intermediate bulk region of width h − 2hi where
ε⊥(z) ' εbulk. In that case, the choice of hi results in the
definition of an effective dielectric constant εi for the inter-
facial region through

1

εi
=

1

hi

∫ hi

0

dz
1

ε⊥(z)
(19)

and the resulting dielectric constant of the whole slab can
be written as

1

ε̄⊥(h)
= 2

hi
h

1

εi
+

(
1− 2

hi
h

)
1

εbulk
(20)

or alternatively

ε̄⊥(h) ' εbulk

1 + 2hi

h ( εbulk

εi
− 1)

(21)

Visual inspection of Fig. 3 leads to the choice hi ' 6σLJ
when looking at the bare 1/ε⊥(z), or hi ' 3σLJ when look-
ing at the coarse-grained curve 1/ε̃⊥(z). Here we can define
hi unambiguously as the value under which we find that the
approximation in eq. 20 departs from the exact integral in
eq. 15. This criterion gives us hi ' 9A

◦
, and εi ' 5. The

approximated formulas 20-21 match completely the model
of 3 capacitors in series that was used in Ref.20 to interpret
the experimental results, except that here hi, εi are not fit-
ting parameters but follow from a microscopic analysis. We
note that the final formulas proposed in the dielectric con-
tinuum theory approach of Cox and Geissler33 or in the
dividing surface model of Loche et al.25 amount in eq. 21
to reduce the interfacial width hi to the depletion length
where the fluid density is zero (roughly hi = 2A

◦
by inspec-

tion of Fig. 3) and to fix accordingly εi = 1.
The three separated capacitor picture expressed by

eq. 20-21 should not apply when h < 2hi, i.e., below
∼ 20A

◦
. In that case one has to resort merely to numerical

integration in eq. 15. For the h = 10A
◦

case, illustrated
in Figs 4-5, the numerical integral yields a slab-averaged
dielectric constant of ε̄⊥ = 2.3 ; this is a surprisingly small

value compared to the bulk, that is in line with the ex-
perimental findings for water. In Fig. 6, we have plotted
ε̄⊥(h) computed over the range 0 − 10nm, together with
the asymptotic formula 21 starting from the same micro-
scopic/nanoscopic distances up to the micrometer range.
We use the same log-log representation as in Ref.20 for di-
rect comparison. Although our curves correspond to a a
simplified water model embedded in a simplified slab (no
H-bonds, no electronic polarisation), the similarities with
the experimental results are striking. In particular we re-
cover the main feature pointed out by the experimental
work: the effective dielectric constant measured in slabs
with a thickness in the 1nm range is found around 2; this
was quoted as an "anomalously low dielectric constant of
confined water". Our theoretical work makes it possible to
bring some insight to the interpretation of the experimen-
tal results. Indeed the long range behaviour observed for
ε̄⊥(h) has no mystery since, in longitudinal conditions, the
measure of the average polarisation or capacitance yields
the integral of 1/ε⊥(z) which, since 1/εbulk � 1, gets its
main contribution from the boundaries. Very thick slabs
are required for the bulk to contribute. This is clear from
the slow hi/h convergence appearing in eq. 21. It should be
noted that this asymptotic formula using the values hi, εi
derived above works extremely well even in the h = 1nm
range, i.e., down to separation distances h < 2hi where it
should not! We can only attribute this to continuity that
allows the extrapolation of the curve on a limited range
below its validity. Note also that since εbulk/εi � 1, the
results essentially depend on the ratio hi/εi so that, on an
empirical ground, other choices of those parameters are pos-
sible to reproduce the average slab dielectric constant. In
particular one can take εi = 1 and hi = 9/5 = 1.8 , a value
very close to the one suggested in the dielectric continuum
theory (DCT) of Cox and Geissler33; see Fig. 6. There is in
fact much more in their analysis than considering this limit,
that amounts to model the solid-liquid interface as a step-
function. Their study points out the importance, as well as
the ambiguity, of locating the dielectric boundaries and of
defining properly the volume of the device, which contains
a molecular exclusion volume portion and one filled by the
liquid. Such ambiguity is present in our definition of the
device polarisation that involves its thickness h (eq. 14).
We have taken as a natural microscopic definition of h the
distance between the center of the surface atoms of each
plates, so that the integrated Lennard-Jones potential can
be defined as in eq. 6. Other experimental choices for h are
possible and the measure of the device thickness is also sub-
mitted to experimental uncertainties. The influence of this
uncertainty is illustrated in the SI. The observed trends are
in clear agreement with Ref.33. Although based on a simpli-
fied, step-wise, molecular representation of the solid-liquid
interface, the DCT approach does capture the essential bal-
ance between low and high dielectric constant volumes.

Finally, our results show a structuration due to molecular
stacking for thicknesses in the 0.6−1.2nm range, with two
clear peaks at h = 0.6 and 1nm and damped oscillations
beyond. This is in agreement with the sub-nanometer oscil-
latory behaviour observed by simulations by Jalali et al.28
for SPC/E water in tight confinement. The overall flat-
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tening of the curve around a value of 2 seems reminiscent,
within the error bars, of the plateau detected experimen-
tally in the 1nm region.

100 101 102

h (nm)

100

101

102

(h
)

cDFT
hi = 9, i = 5
hi = 1.8, i = 1

Figure 6. Effective dielectric constant computed using cDFT for
the model Stockmayer fluid embedded in a slab of width h as
function of h. The red solid curve corresponds to the asymptotic
formula 21 with the parameters determined in the text; it starts
at h = hi. The red dashed curve corresponds to the dielec-
tric continuum theory of Cox and Geissler33 or dividing surface
model of Loche et al.25 with εi = 1 and hi = 9/5 = 1.8 . These
curves can be compared with the experimental results reported
in Ref.20 for water in nano- to micrometric hBN slits.

IV. EXTENSION TO SPC/E WATER

To get even closer to water, although still at a dipo-
lar level, we extend the previous theory by introducing in
the functional the parameters and the cS(z), cL(z) direct
correlation functions corresponding to SPC/E water. We
take the simple weighted density approximation of Ref.49,59
for the bridge functional. Since the symmetry of water is
beyond that of a simple dipole, at least a supplementary
density-polarisation coupling has to be introduced in the
functional in the form45

F [n, P ] = Fn[n] + FP [n, P ] + FnP [n, P ] (22)

with

FnP [n, P ] = −kBT
µ

∫
dz1dz2 cnL(z12)∆n(z1)P (z2) (23)

This introduces the fact that a spontaneous polarisation
exists even in the slab with zero applied field. The cor-
responding polarisation profile is anti-symmetrical with re-
spect to the two walls and the integrated polarisation of the
sample is zero, as it should. This spontaneous polarisation
remains prominent when a small to moderate external field
is applied. See Fig. 7 for a large slab with h = 50A

◦
and

also Ref.48 where molecular density functional theory cal-
culations were performed with a molecular representation
of the electrodes and a constant voltage applied between
the electrodes rather than an external electric field.

On the other hand, the dielectric response f(z) =
4π(P (z) − P0(z))/E0, represented in Fig. 7, is perfectly

0 10 20 30 40 50
z (Å)

0.6

0.4

0.2

0.0

0.2

0.4

0.6

P(
z)

/n
0 (

De
by

e)

E0 = 0.5 V/nm
E0 = 0

0 10 20 30 40 50
z (Å)

0

1

2

3

4

5

f(z
)

Figure 7. Top: Polarisation in a slab of width h = 50 with
and without an applied external electric field. A spontaneous
polarisation exists due to the density/polarisation coupling of
eq. 23 which remains the dominant contribution at the inter-
faces when a field is applied. Bottom: The resulting response
function f(z) = 4π(P (z) − P0(z))/E0 which appears perfectly
symmetrical.

symmetrical. It appears less oscillatory and reaches the
bulk value more rapidly than in the Stockmayer case of
Fig. 3; this is a sign that the damping of spatial correla-
tions occurs more quickly in water than in a purely dipolar
liquid. In Fig. 8 this response is plotted in terms of the ill-
defined, local microscopic constant and of its well-defined
coarse-grained version.

We present in Fig. 9 the curve for ε̄⊥(h) which is very
similar to the one obtained for the Stockmayer solvent, so
that identical conclusions can be drawn. No specific prop-
erty of water emerges, beyond being a polar, molecular fluid
of high dielectric constant. This result is consistent with
the observation by MD simulations26 that confined polar
liquids like methanol, acetonitrile and dichloromethane ex-
hibit a dielectric constant reduction similar to that of water.
We further note that in our results the dielectric constant
reduction of confined water is reproduced by considering
exclusively the number and polarisation densities, without
requiring orientational constraints imposed by the inter-
face on the water molecules. We find an interfacial width
hi = 7.5A

◦
and an associated effective interfacial dielectric

constant εi = 3.9, to be compared to hi = 7.4 and εi = 2.1
determined experimentally by Fumagalli et al.20. hi ap-
pears slightly smaller for SPC/E than for the purely dipo-
lar fluid since, as we mentioned, the spatial correlations in
water are shorter range. Concordingly, we do observe oscil-
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Figure 8. Top: (Ill-defined) microscopic perpendicular dielec-
tric constant for SPC/E water in a slab of width h = 50A

◦

(in cyan) and its coarse-grained version with a coarse-graining
length σP = 2A

◦
(in violet). Bottom: Same for the parallel di-

electric constant when the field in applied parallel to the plates
(σP = 1.5A

◦
).

lations of ε̄⊥(h) around the value of 2 in the 0.6-1nm range
with a first minimum at 1.8 around h = 0.75nm and a sec-
ond higher minimum around h = 1nm; this is in agreement
with the simulation results of Ref.28. Indeed, those oscil-
lations are damped more quickly than in the Stockmayer
case.

Finally, although we are not aware of any experimental
results to compare with, we take the opportunity here to
study the transverse polarisation case, i.e., applying an ex-
ternal electric field in the transverse direction x parallel to
the plates. All the DFT formalism developed above remains
valid if the longitudinal direct correlation function cL(z) in
eq. 8 is replaced by the transverse one, cT (z) defined as
the inverse, 1D Fourier transform of c∆(q)− cD(q)45. The
density-polarisation coupling of eq. 23 vanishes in this case
and one resorts to the joint minimisation of the equiva-
lent of the functional in eqs.7-8 using cT (z). The response
function to a constant field E0 is defined in this case using

f(z) = 4πP (z)/E0 = ε‖(z)− 1 (24)

The picture is different from that in the longitudinal case
since the measure now concerns ε instead of 1/ε. As seen
in Fig. 8 for a 50A

◦
-slab, the resulting ε‖(z) does present

oscillations close to the boundaries but remains everywhere
positive and well-defined. This simple fact was empha-
sised in the early studies of Ballenegger and Hansen13

and confirmed by subsequent MD studies using molecular
solvents14,18,19,23–25. For a slab of thickness h, an effective
dielectric constant can be defined as

ε̄‖(h) =
1

h

∫ h

0

dz ε‖(z) (25)

If the slab is thick enough to distinguish two interfacial
regions from an intermediate bulk buffer, as illustrated in
Fig. 8, the following simple formula pertinent to 3 capaci-
tors in parallel can be inferred by decomposing the integral

ε̄‖(h) = εbulk

[
1− 2

hi
h

(1− εi
εbulk

)

]
(26)

with

εi =
1

hi

∫ hi

0

dz ε‖(z) (27)

Again εi is fixed by the choice of a reasonable hi. Using
the same unambiguous selection criterion as before (the
minimal hi that fulfil the asymptotic equation 26), we find
hi = 10A

◦
and εi ' 50, i.e., a much larger interfacial, ef-

fective value than in the perpendicular case. Besides it can
be seen in Fig. 9 that the bulk value is reached for slabs
of thickness h ' 10nm, thus much narrower rather than
∼ 500nm necessary for the perpendicular dielectric con-
stant. As for the out-of-plan polarisation case, a slight os-
cillatory behaviour of the in-plane dielectric constant ε̄‖(h)
is observed for thicknesses between 0.6 and 1nm but we
do not detect the drastic drop by two orders of magni-
tude that Hamid et al. found in their simulations around
h = 0.75nm, that they attribute to a freezing transition
occurring at that particular packing condition29.

Finally, let us mention that our DFT results are in overall
agreement with previous MD simulations14,16,18,19,23,25,26.
In particular Itoh and Sakuma16 have computed by MD
simulations the perpendicular and parallel effective di-
electric constants of three-dimensional graphite/SPCE-
water/graphite slabs of various sizes. In spite of our differ-
ent, simplified modelling of water and of the surface-water
interactions, the DFT results in Fig. 8 are in quantitative
agreement with theirs for the few slab geometries that they
explored.

V. CONCLUSIONS

In this work, we presented a simple two-variable, num-
ber/polarisation density functional theory describing the
microscopic structure of polar fluids at interfaces or in con-
finement, as well as their microscopic dielectric response
to external fields. For a given system geometry the nu-
merical solution is obtained instantaneously with a laptop
and compares very well with previous MD simulations of
closely related systems9,19. It provides at modest numerical
cost locally coarse-grained quantities that can further nour-
ish continuum Poisson-Boltzmann models. The approach
made it possible to model thin water films of various thick-
nesses and to mimic the experimental setup of Ref20. Our
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Figure 9. Effective dielectric constant for SPC/E water embed-
ded in a slab of width h as function of h. The blue dots are the
cDFT results for ε̄⊥(h) and the red solid curve correspond to
the asymptotic formula 21 with the parameters determined in
the text and down to h = hi. The blue triangles and cyan solid
curve are the same for ε̄‖(h).

modelling is indeed incomplete and neglects physical fea-
tures such as the precise chemical nature of the interface,
its three-dimensional roughness, and the electronic polaris-
ability of both the solid surfaces and the solvent. A main
conclusion, however, is that finding very low effective lon-
gitudinal dielectric constants of the order of 2-3 for water
in slabs of nanometer size through capacitance measure-
ments should not be a special property of water but is true
for any generic polar solvent having a high bulk dielectric
constant. Fig. 6 obtained for the Stockmayer solvent or
Fig. 9 for a dipolar representation of water present close
similarities with the experimental curve in Ref20. A sim-
ilar conclusion is reached in Ref.33 which follows a purely
macroscopic, electrostatics route. On the other hand the
definition of a local, space-dependent longitudinal dielectric
constant is found irrelevant at a microscopic level close to
the walls but can be inferred at a molecular coarse-grained
level with a smoothing length of the order of the size of
a solvent particle. This local dielectric constant is shown
to reach its bulk value after a short distance hi from the
slab walls, typically 10A

◦
for water. This clearly defines

a short-range interfacial solvent region with an effectively
low dielectric constant εi. Since in the longitudinal polari-
sation case the response concerns 1/ε rather than directly
ε, incorporating the intermediate bulk region with a 1/εbulk
contribution turns rigorously to a three-capacitors-in-series
model described by formula 20. Since the 1/εbulk is small,
the low dielectric constant interfacial regions dominate and
it requires large slab thicknesses for the bulk to contribute;
this explains the very slow increase of ε with slab thickness.
Our theoretical approach brings additional insight to this
simple, phenomenological capacitor model. 1) Although it
should not apply to slab width below 2hi, twice the interfa-
cial thickness, it does hold for shorter distances down to hi.
We take this as a continuity effect. 2) In our microscopic
analysis, the parameters hi can be defined unambiguously
from the microscopic structure and it fixes also the value
of the second parameter εi. Phenomenologically, since the

behaviour in eq. 20 depend essentially on the ratio hi/εi,
other choices of parameter couples are possible including
the extreme choice εi = 1 (See Fig. 6). 3) We do observe
an oscillatory behaviour, leading to an effective flattening
of the dielectric response around ε̄⊥(h) = 2 for slabs be-
low 1nm, a saturation effect that is reminiscent of the one
detected experimentally. In our case, we can relate this
non-monotonic behaviour to the interplay between polari-
sation response and hard-sphere packing when only one or
two layers of solvent particles are allowed in the slab.

We have also studied the complementary case of the
transverse response when the perturbing field is applied
parallel to the walls instead of perpendicular. In that case
the microscopic dielectric constant ε‖(z) is well-defined al-
though presenting some structural oscillations close to the
walls; those are smoothed out by coarse-graining over a par-
ticle dimension. A three-capacitors-in-parallel model de-
scribed by eq. 26 is found to apply for slabs above 1nm
and the overall, slab capacitance is found to reach the bulk
value for slab thickness on the order of 10nm, i.e., much
narrower than in the perpendicular case. The inferred in-
terfacial effective dielectric constant is also much higher.

Finally, let us mention that water in confinement can be
described at a much more refined molecular density func-
tional theory level using the full MDFT formalism and its
associated MDFT software that includes not only the dipo-
lar symmetry but all the higher multipolar symmetries and
makes it possible also to represent the surface-water inter-
action at a fully atomistic, 3D level48. Such calculations
are underway and will be presented in a forthcoming pub-
lication.
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