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ABSTRACT
This paper investigates a Bayesian model and a Markov chain Monte
Carlo (MCMC) algorithm for gene factor analysis. Each sample in
the dataset is decomposed as a linear combination of characteris-
tic gene signatures (also referred to as factors) following a linear
mixing model. To enforce the sparsity of the relative contribution
(called factor score) of each gene signature to a specific sample,
constrained Bernoulli-Gaussian distributions are elected as prior dis-
tributions for these factor scores. This distribution allows one to en-
sure non-negativity and full-additivity constraints for the scores that
are interpreted as concentrations. The complexity of the resulting
Bayesian estimators is alleviated by using a Gibbs sampler which
generates samples distributed according to the posterior distribution
of interest. These samples are then used to approximate the stan-
dard maximum a posteriori (MAP) or minimum mean square error
(MMSE) estimators. The accuracy of the proposed Bayesian method
is illustrated by simulations conducted on synthetic and real data.

Index Terms— Bayesian inference, MCMC methods, factor
analysis, gene expression data.

1. INTRODUCTION AND PROBLEM STATEMENT

Factor analysis methods aim at finding a decomposition of an obser-
vation matrix Y ∈ RG×N whose rows (resp. columns) correspond
to genes (resp. samples). Typically, in gene expression analysis,
the number N of samples is much less than the number G of genes.
Each observed sample vector yi (i = 1, . . . , N ) is assumed to sat-
isfy a linear mixing model (LMM)

yi =

R∑
r=1

mrai,r + ni (1)

where mr = [mr,1, . . . ,mr,G]T denotes the rth gene signature vec-
tor, also called factor, ai,r is the contribution (or factor score) of the
rth signature vector in the ith observed sample, R is the number of
gene signatures present in the chip and ni denotes a residual error.
In this paper, theR factors {mr}r=1,...,R are assumed to belong to a
library M of K gene signature vectors, therefore M ∈ RG×K with
K > R. Considering N samples, the model can be rewritten with
matrix notations

Y = MA + N

where Y = [y1, . . . ,yN ], A = [a1, . . . ,aN ] represents the factor
score matrix, M = [m1, . . . ,mK ] the factor loading matrix and
N = [n1, . . . ,nN ].

The proposed method studies the problem of gene factor anal-
ysis in a fully unsupervised framework, i.e, it estimates the factor
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score proportions and the gene signatures jointly. Note that the num-
ber of factors is determined directly from the data. The advantage
of the proposed method compared to other factor analysis meth-
ods, such as the nonparametric Bayesian factor analysis (NPBFA)
[1] or the Bayesian factor regression modeling (BFRM) [2], is that
it incorporates non-negativity constraints on the factor components
mk,1, . . . ,mk,G and the factor scores ai,1, . . . , ai,K , as well as a
full-additivity constraint for the factor scores, i.e.,

ai,k ≥ 0, i = 1, . . . , N, k = 1, . . . ,K,

K∑
k=1

ai,k = 1, i = 1, . . . , N,

mk,g ≥ 0, k = 1, . . . ,K, g = 1, . . . , G.

(2)

Such constraints are natural for non-negative data, such as gene ex-
pression measured as an abundance of molecular binding, and can
often lead to more straightforward interpretation of the factor load-
ings and scores. Note that the constraints (2) were used in [3] for
hyperspectral image unmixing. However, the approach adopted in
this paper differs from [3] since it enforces a sparsity constraint on
the factor scores.

As in other Bayesian factor analysis methods, the residual error
vector ni = [ni,1, . . . , ni,G]T is assumed to be an independent and
identically distributed (i.i.d.) zero-mean Gaussian sequence with co-
variance matrix Σ = σ2IG

ni|σ2 ∼ N
(
0G, σ

2IG
)

(3)

where IG is the identity matrix of dimension G×G and N (m,Σ)
denotes the Gaussian distribution with mean vector m and covari-
ance matrix Σ. The problem addressed in this paper consists of
estimating the factor loadings m1, . . . ,mK and the factor scores
a1, . . . ,aN jointly from the observed sample vectors y1, . . . ,yN .

This paper is organized as follows. Section 2 presents the
Bayesian factor analysis (BFA) model. Section 3 studies a Gibbs
sampler used for generating samples distributed according to the
posterior distribution associated to the BFA model. We illustrate
the proposed factor analysis method on both synthetic and real data,
presented in Section 4 and Section 5 respectively. Conclusions are
given in Section 6.

2. BAYESIAN MODEL

This section introduces the Bayesian model used to estimate the un-
known factor score vectors {ai}i=1,...,N and the factor signature
{mr}r=1,...,R under the constraints specified in (2). This model is
based on the likelihood of the observations and on prior distributions
for the unknown parameters.



2.1. Likelihood function

The LMM defined in (1) and the statistical properties of the resid-
ual error ni (3) lead to a conditionally Gaussian distribution for the
ith observed sample, i.e., yi|M,ai,Σ ∼ N (Mai,Σ). Thus, the
likelihood function of Y can be expressed as

f(Y|M,A, σ2) =
1

(2πσ2)GN/2
exp

[
−
∑N
i=1 ‖yi −Mai‖2

2σ2

]
(4)where ‖·‖ stands for the l2-norm.

2.2. Parameter priors

2.2.1. Factor loading prior

Due to the constraints in (2), the observed data yi, i = 1, . . . , N ,
lie in a simplex defined in a lower-dimensional subspace of RG−1

(of dimension K − 1) denoted as VK−1, with R ≤ K ≤ G.
This subspace can be identified with a standard dimension reduc-
tion method such as principal component analysis (PCA). Following
the approach in [3], instead of estimating the factor loadings mk

(k = 1, . . . ,K) in the observation space RG, we propose to esti-
mate their projections tk (k = 1, . . . ,K) onto VK−1. Let ȳ be the
empirical mean of the observed vectors and P the (K− 1)×G pro-
jection matrix onto VK−1, e.g., composed of appropriate eigenvec-
tors of the empirical covariance matrix of Y. The prior distributions
for the projected factors

tk = P(mk − ȳ) (5)

are modeled as multivariate normal distributions NTk

(
ek, s

2
kIk−1

)
truncated on the set Tk. The truncation on the set Tk (defined in [3])
ensures that all the components of the factor signatures are positive

{mk,g ≥ 0, ∀g = 1, . . . , G} ⇔ {tk ∈ Tk} . (6)

The mean vectors ek are fixed using available prior knowledge or,
as in [3], provided by an endmember extraction algorithm dedicated
to hyperspectral image analysis. The variance sk reflects the degree
of confidence given to this prior information (it will be fixed to a
large value in this paper). Assuming that the projected factors are a
priori independent, the joint prior distribution for T = [t1, . . . , tK ]

is f (T) =
∏K
k=1 f (tk).

2.2.2. Factor score prior

Consider a Gaussian distribution, with hidden mean zero and hidden
variance parameter α2. This distribution is truncated on the interval
[0, µ+] denoted as N[0,µ+](0, α

2) and its probability density func-
tion (pdf) can be expressed as [4]

ϕ[0,µ+](x) =
C√

2πα2
exp

(
− x2

2α2

)
1[0,µ+] (x) (7)

where µ+ is the right truncation bound, 1E (x) is the indicator func-
tion defined on E (i.e., 1E (x) = 1 if x ∈ E and 1E (x) = 0 if

x /∈ E). In (7), C =
[
Φ
(
µ+

α

)
− 1

2

]−1

is a normalization con-
stant, where Φ denotes the cumulative density function (cdf) of the
standard normal distribution. As it can be seen later, the truncation
on the interval [0, µ+] will be used to ensure the non-negativity and
full-additivity constraints of the factor scores.

From the LMM in (1), one can notice that only R < K factors
among the K contained in the library M are actually involved in the

mixture. In other words, most of the coefficients ai,k, k = 1, . . . ,K
equal zero. Consequently, a distribution that enforces sparsity should
be chosen as prior for the factor scores ai,k. Following the approach
in [5], the distribution in (7) is coupled with an atom at zero, leading
to a prior density mixture. More precisely, denote as ai,1:k−1 the
vector composed of the first k − 1 components of the factor score
vector ai. The following truncated Bernoulli-Gaussian distribution1

is chosen as prior distribution for the factor scores ai,1 and ai,k (k =
2, . . . ,K − 1)

ai,1 ∼ (1− wi)δ (ai,1) + wiN[0,1](0, α
2),

ai,k|ai,1:k−1 ∼ (1− wi)δ (ai,k) + wiN[0,µ+
i,k

]
(0, α2), (8)

where δ (·) is the Dirac function and wi is an unknown hyperparam-
eter which provides the prior probability of having a non-zero factor
score. To ensure the additivity constraint, the right truncation point
µ+
i,k is fixed to µ+

i,k = 1−
∑k−1
j=1 ai,j (k = 2, . . . ,K − 1) whereas

the last factor score is set to ai,K = µ+
i,K , 1−

∑K−1
k=1 ai,k. Finally,

the prior distribution for the score vector ai whose last element ai,K
has been fixed to µ+

i,K can be expressed as the recursion

f (ai) = f(ai,1)

[
K−1∏
k=2

f(ai,k|ai,1:k−1)

]
δ
(
ai,K − µ+

i,K

)
.

Assuming the score vectors ai (for i = 1, . . . , N ) are a priori in-
dependent from sample to sample, the joint prior distribution for the
factor score matrix A is f (A) =

∏N
i=1 f (ai).

2.2.3. Noise variance prior

A conjugate inverse-Gamma distribution with parameters ν/2 and
γ/2 is chosen as prior distribution for the noise variance

σ2|ν, γ ∼ IG
(ν

2
,
γ

2

)
. (9)

The shape parameter ν will be fixed to ν = 2 whereas the scale
parameter γ will be an adjustable hyperparameter (as in [3, 5]).

2.3. Hyper-parameter priors

Let Ψ = {w, γ} be the hyperparameter vector associated to the
model defined above, with w = [w1, . . . , wN ]T . The accuracy of
the proposed Bayesian estimation algorithm depends on the values of
these hyperparameters. The approach investigated here is to assign
these hyperparameters appropriate priors (also referred to as hyper-
priors) following hierarchical Bayesian inference.

More precisely, a uniform distribution on the set [0, 1] is chosen
as prior distribution for the mean proportion of non-zero score co-
efficients, i.e., wi ∼ U([0, 1]). Following [3, 5], a non-informative
Jeffreys’ prior is chosen as the prior distribution for the hyperparam-
eter γ, i.e., f(γ) ∝ 1

γ
1R+ (γ). Assuming that all the individual hy-

perparameters of this Bayesian model are statistically independent,
the full posterior distribution of the hyperparameter vector Ψ is

f(Ψ) = f(w)f(γ) ∝ 1

γ

N∏
i=1

1[0,1] (wi) 1R+ (γ) (10)

where ∝ stands for “proportional to”.

1Note that the dependence upon the hyperparameters wi and α2 is im-
plicit in the notation.



2.4. Posterior distribution

The joint posterior distribution of the unknown parameter vector
Θ = {T,A, σ2} and the hyperparameter vector Ψ = {w, γ} can
be computed as

f(Θ,Ψ|Y) ∝ f(Y|Θ)f(Θ|Ψ)f(Ψ) (11)
where f(Y|Θ) and f(Ψ) have been respectively defined in the
equations (4) and (10). Assuming a priori independence between
the individual parameters, the following prior is obtained

f(Θ|Ψ) = f(T)f(A|w, α2)f(σ2|ν, γ). (12)

3. GIBBS SAMPLER

This section proposes a Gibbs sampling strategy for generating
random samples (denoted by ·(`), where ` is the iteration index),
asymptotically distributed according to the joint posterior distribu-
tion defined in (11). This Markov chain Monte Carlo (MCMC) tech-
nique consists of generating sequences {T(`)}`=1,..., {A(`)}`=1,...,
{σ2(`)}`=1,... and {w(`)}`=1,... according to the conditional poste-
rior distributions, as detailed below (the interested reader is invited to
consult [3] for more details regarding the MCMC implementation).

3.1. Sampling from f(T|A, σ2,Y)

Sampling from the joint conditional f(T|A, σ2,Y) is achieved by
updating each column of T using Gibbs moves. Let denote T\k
the matrix T whose kth column has been removed. The posterior
distribution of tk is the following truncated multivariate Gaussian
distribution

tk|T\k,ak, σ2,Y ∼ NTk (τ k,Γk) (13)
where

Γk =
[∑N

i=1 a
2
i,kPΣ−1PT + 1

s2
k

IK
]−1

,

τ k = Γk
[∑N

i=1 ai,kPΣ−1εi,k + 1
s2

k
ek
]
,

εi,k = yi − ai,kȳ −
∑
j 6=k ai,kmj .

(14)

For more details on how we generate realizations from this truncated
distribution, see [3].

3.2. Sampling from f(A|w, σ2,Y)

Similarly, straightforward computations lead to the following poste-
rior distribution of each element of A
ai,k|wi, σ2,ai,\k,yi ∼ (1−w̃i,k)δ (ai,k)+w̃i,kN]0,µ+

i,k
[
(µi,k, η

2
i,k)

(15)
where ai,\k denotes the score vector ai whose kth element has been
removed and

w̃i,k =
ui,k

ui,k+(1−wi)
,

ui,k = wi
ηi,k

α
exp

(
µ2

i,k

2η2
i,k

)[
Φ

(
µ+

i,k
−µi,k

ηi,k

)
− Φ

(
−µi,k

ηi,k

)]
,

η2
i,k =

(
‖mk‖2
σ2 + 1

α2

)−1

,

µi,k = η2
i,k

(
mT

k ε\k

σ2

)
,

ε\k = yi −
∑K
j=1,j 6=k mjai,j .

Therefore, factor scores will be sampled from this Bernoulli-
truncated Gaussian distribution with parameters (w̃i,k, µi,k, η

2
i,k, µ

+
i,k).

3.3. Sampling from f(w|A)

Generating samples distributed according to f(w|A) can be achieved
using N Gibbs moves using (i = 1, . . . , N )

wi|ai ∼ B (1 + n1,i, 1 + n0,i) (16)
where n1,i = ]{k|ai,k 6= 0}, and n0,i = K − n1,i.

3.4. Sampling from f(σ2|M,A,Y)

Using (9) and (4), one can show that the conditional distribution
f(σ2|M,A,Y) is the following inverse-Gamma distribution

σ2|M,A,Y ∼ IG

(
GN

2
,

1

2

N∑
i=1

‖yi −Mai‖2
)
. (17)

4. SIMULATION RESULTS ON SYNTHETIC DATA

To illustrate the performance of the proposed unsupervised Bayesian
algorithm for gene expression factor analysis, simulations are con-
ducted on a synthetic dataset consisting of N = 128 observed sam-
ples and G = 256 gene expression levels. Each sample is composed
of exactly R = 4 factors, selected from K = 9 possible biological
pathways. The factor scores have been randomly generated accord-
ing to a Dirichlet distribution D(1, . . . , 1) and the observed vectors
are corrupted by an i.i.d. noise sequence.

The factor loading library M is unknown and must be estimated.
The hidden mean vectors ek (k = 1, . . . ,K) required for evaluating
the loading prior introduced in Section 2.2.1 are chosen as the PCA
projections of signatures previously identified by vertex component
analysis (VCA) [6]. The SNR has been fixed in this simulation to
SNR= 20 dB.

The MMSE estimates of the factor score vectors ai (i =
1, . . . , N ) and the projected factor loading vectors tk (k = 1, . . . ,K)
are approximated using the generated samples, as in [7]. The asso-
ciated MSEs for factor score vectors and factor loading vectors are
defined as

GMSE2
r =

1

N

N∑
i=1

(âi,r − ai,r)2 ,MSE2
r = ‖m̂r −mr‖2 (18)

for r = 1, . . . , R. The results are reported in Table 1 where the pro-
posed BeG method is compared to the unsupervised NPBFA method
[1], the Bayesian factor regression modeling (BFRM) proposed by
Carvalho et al. [2], the non-negative matrix factorization (NMF) [8]
and the PCA algorithm. The NMF and PCA methods have been run
for the actual number of factors to be estimated, i.e. R = 4. More-
over, due to the constraints of positivity and additivity, the linear
mixing solution of the BeG model is unique up to a permutation of
the factors, whereas for the other factor decomposition methods, a
re-scaling is also needed. The proposed Bayesian method exhibits
significantly better performance for these examples. This improved
accuracy can be attributed to the fact that the proposed method in-
corporates the non-negativity and sum-to-one constraints.

Table 1. MSEs of the estimates for the BeG, NPBFA, BFRM, NMF
and PCA methods.

BeG NPBFA BFRM NMF PCA

MSE2

(×103)

Factor 1 0.372 1.352 1.827 3.438 2.186
Factor 2 0.288 1.558 1.434 3.303 0.364
Factor 3 0.016 1.237 1.946 4.281 0.413
Factor 4 0.012 2.645 N/A 6.580 0.381

GMSE2

Factor 1 6.955 40.013 198.735 19.709 4.191
Factor 2 8.065 35.282 183.638 34.913 0.022
Factor 3 5.410 23.687 191.699 17.254 7.069
Factor 4 14.293 26.766 N/A 18.802 5.119

5. SIMULATION RESULTS ON REAL DATA

This section illustrates the proposed algorithm on a public dataset
described in [9]. This dataset consists of the gene expression levels



of N = 108 Affymetrix chips collected on six subjects, at five time
points: 0, 1, 2, 4 and 12 hours after the subjects have imbibed one of
four different beverages (alcohol, grape juice, water and red wine).

The BeG factor analysis is applied on the data with K = 9
factors whose loading spectra are shown in Fig. 1. Choosing K = 9
allows the dimensionality of the problem to be significantly reduced
while keeping a sufficient cumulative energy. The figure shows
the loading coefficients plotted over the G = 22283 gene indices
after reordering these indices so as to group together the dominant
genes in each factor. Specifically, the k-th sharp peak in the fig-
ure occurs at the gene index that has maximal loading in factor
k and genes to the right of this gene index up to the (k + 1)-st
peak also dominate in the k-th factor, but to a lesser degree. The
9 factors discovered are dominated by groups of genes of sizes
[5160, 3, 10045, 1455, 1315, 224, 147, 3352, 582].

Fig. 1. Factor loadings ranked by decreasing dominance.

The factor scores are shown in Fig. 2 for each of the 9 fac-
tors. For each factor, these scores are rendered as an image whose
columns index the 6 subjects and whose rows index the 5 time points
under each of the beverage treatments. Note from the images that
several of the factors are strongly associated with particular indi-
viduals, e.g., factor 5 (subject 5), factor 6 (subjects 1, 2), factor 7
(subjects 4, 6), and factor 9 (subjects 1, 3). Other factors are more
globally associated with treatment and time.

Fig. 2. Factors scores for each of the 9 factors.

Figure 3 shows how the factor scores can be used as features to
visualize the samples. In the figure the score vector for each sample
is mapped to a coordinate in the plane using euclidean multidimen-
sional scaling (MDS). Each sample is embedded with a color and
a size denoting the beverage treatment and the time stamp of each
sample. Note the interesting structure of the data in this MDS do-
main - the late-time courses of wine (blue) and grape juice (red) are
separated from each other possibly indicating dichotomous gene re-
sponse over the population of subjects.

Fig. 3. Chip cloud after demixing: alcohol = black, grape juice =
red, water = yellow, wine = blue.

6. CONCLUSIONS

This paper presented a Bayesian estimation algorithm for gene-
expression data. To ensure the positivity and the full-additivity of
the abundance vector, a constrained Bernoulli-Gaussian distribution
was chosen as a prior distribution for the factor scores. Due to
the complexity of the posterior distribution, a Gibbs sampler algo-
rithm was proposed to generate samples distributed according to
this posterior. Then, the MMSE and MAP estimator were computed
using these generated samples. The simulation results conducted on
synthetic and real data illustrated the performance of the proposed
Bayesian algorithm.
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