Martin Gjorgjevski 
  
Nicolas Keriven 
  
Simon Barthelmé 
  
Yohann De Castro 
  
The Graphical Nadaraya-Watson Estimator in Latent Position Models

Étant donné un graphe avec un sous-ensemble de noeuds étiquetés, nous sommes intéressés par la qualité de l'estimateur de la moyenne qui, pour un noeud non étiqueté, prédit la moyenne des observations de ses voisins étiquetés. Nous étudions rigoureusement les propriétés de concentration, les limites de variance et les limites de risque dans ce contexte. Bien que l'estimateur lui-même soit très simple, nous pensons que nos resultats contribueront à la compréhension théorique de méthodes plus sophistiquées telles que les réseaux de neurones de graphes.

Abstract -Given a graph with a subset of labeled nodes, we are interested in the quality of the averaging estimator which for an unlabeled node predicts the average of the observations of its labeled neighbours. We rigorously study concentration properties, variance bounds and risk bounds in this context. While the estimator itself is very simple we believe that our results will contribute towards the theoretical understanding of learning on graphs through more sophisticated methods such as Graph Neural Networks.

Introduction

Given a undirected graph on n + 1 vertices (e.g. nodes represent people) and adjacency matrix A = [a i,j ] (e.g. edges represent social relationships) where all but the (n + 1)-st node have measurementss y i (e.g. salary, living expenses, etc), the graph regression problem adresses prediction of the (continuous valued) measurement y n+1 of the remaining node. While there are various sophisticated designs of Graph Neural Networks [START_REF] Hamilton | Inductive representation learning on large graphs[END_REF][START_REF] Kipf | Semi-supervised classification with graph convolutional networks[END_REF][START_REF] Veličković | Graph attention networks[END_REF][START_REF] Xu | How powerful are graph neural networks[END_REF] which can tackle this problem, little has been done in terms of statistical analysis of any potential solution in the context where the graph is random. In this paper we will consider the simplest estimator, which for the missing label of node n + 1 is taking the average over all of its neighbours, i.e. 

To our knowledge, the statistical properties of this estimator have not been studied in the statistical or machine learning literature. In this article we seek to understand the properties of this estimator in a context when the graph is treated as random.

To conduct our analysis we will work with a random graph model known as Latent Position Model (LPM) [START_REF] Peter D Hoff | Latent space approaches to social network analysis[END_REF], where to each node one associates a latent position in space, and typically nodes that lie closer together in space the latent space are more likely to be linked. Due to the nature of this model, the estimator (1) will resemble the Nadaraya-Watson (NW) estimator, a popular regression estimator in the nonparametric estimation literature [START_REF] Alexandre | Introduction to Nonparametric Estimation[END_REF], which just averages measurements in a window centered at the location where signal prediction is to take place. For this reason we decide to title it the Graphical Nadaraya-Watson (GNW) estimator. There are two major differences between the NW and the GNW estimator. First, NW is more expressive in the sense that it comes with a tunable parameter (bandwidth) h n , which sets the size of the neighbourhood over which to average. For the GNW there is no tunable parameter, because neighbourhood size is imposed by the graph. Therefore, the performance of GNW depends on a latent bandwidth h n that is not user-chosen and determines connectivity patterns in the random graph.

We show that the GNW estimator is strongly related to a NW estimator with bandwidth h n . Surprisingly, despite the added randomness in the GNW estimator, its error is within a multiplicative constant of the NW error. In addition, our analysis holds in a regime where the graph is asymptotically almost sparse. Whereas most of the methods discussed in the literature require degree of logarithmic order i.e. d n ≥ C log(n) [START_REF] Lei | Consistency of spectral clustering in stochastic block models[END_REF][START_REF] Imbuzeiro | Concentration of the adjacency matrix and of the laplacian in random graphs with independent edges[END_REF], we show that the variance of GNW will converge to zero as soon as d n → ∞, covering almost all regimes of sparsity (excluding the bounded degree regime d n ≤ D).

Regression in the Latent Position Model 2.1 Background on the LPM

The Latent Position Model (LPM) [START_REF] Peter D Hoff | Latent space approaches to social network analysis[END_REF] is a generative model which samples a random graph on n nodes in two stages. First, a sample of n i.i.d. latent variables X i ∈ R d with density p is drawn. Second, for each pair of nodes i, j a Bernoulli variable with parameter k(X i , X j ) determines if there is an edge between nodes i and j. Here, k is a symmetric kernel on R d , taking values in [0, 1]. The edge generating Bernoulli variables are conditionally independent given the latent variables. Intuitively we are more likely to observe an edge between two nodes with positions that are similar with respect to k.

When k is a similarity kernel (e.g. radial basis function) as in the NW estimator (4), edges are likely to occur between nodes whose latent positions are nearby in the latent space. As an example, when k(x, z) = I(||x -z|| ≤ h), NW and GNW coincide. This is the random geometric graph [START_REF] Penrose | Random Geometric Graphs[END_REF]. By allowing for discontinous kernels, LPMs can instantiate a model with intrinsic community structure known as Stochastic Block Model (SBM) [START_REF] Holland | Stochastic blockmodels: First steps[END_REF]. Despite lack of attention to the graph regression problem, classification has been adressed in the context of LPMs [START_REF] Tang | Universally consistent vertex classification for latent positions graphs[END_REF], albeit using a spectral method while we use local averaging approach.

As large graphs in the real world tend to be sparse [START_REF] Albert | Statistical mechanics of complex networks[END_REF], a significant effort in the community detection literature is dedicated to understanding statistical properties of graphs with low expected degrees [START_REF] Peter | The method of moments and degree distributions for network models[END_REF][START_REF] Can | Sparse random graphs: regularization and concentration of the laplacian[END_REF][START_REF] Lei | Consistency of spectral clustering in stochastic block models[END_REF][START_REF] Imbuzeiro | Concentration of the adjacency matrix and of the laplacian in random graphs with independent edges[END_REF]. In such frameworks one considers asymptotic regimes where k n (x, z) = α n K(x, z) with K being a fixed kernel and α n → 0 as n → ∞. The scaling α n determines the sparsity of the graph where nα n is the expected degree of the graph, up to a multiplicative constant. The parameter α n is not user-chosen (and not userknown). In this sense, we will instead consider asymptotic regimes with

k n (x, z) = α n K x -z h n (2) 
where K : R d → [0, 1] is compactly supported, 0 < α n ≤ 1 and h n > 0, with α n , h n being parameters that are not userchosen. We emphasize again that the main difference between the setup for NW (4) and GNW (1) is the freedom to choose the bandwidth h n : this choice is up to the user for NW, for GNW it is not. As k n (x, z) ≤ α n , we see that smaller values of α n will generate sparser graphs. The benefit of Latent Position Models is that they allow us to perform graph analysis in the familiar setting of Euclidean geometry. We will use that correspondence to relate signal prediction of graphs to classical nonparametric regression.

Nonparametric Regression

The regression problem can be stated as estimating a regression function f : R d → R given noisy measurements

Y i = f (X i ) + ϵ i (3) 
where f : R d → R with ||f || ∞ ≤ B, ϵ i additive centered noise with finite variance. One is also given the data points X 1 , ..., X n which can be either deterministic (fixed design) or random i.i.d. samples from a distribution with density p (random design). A classical approach is the weighted average Nadaraya-Watson estimator [START_REF] Luc | The uniform convergence of the nadaraya-watson regression function estimate[END_REF][START_REF] Györfi | A Distribution-Free Theory of Nonparametric Regression[END_REF][START_REF] Alexandre | Introduction to Nonparametric Estimation[END_REF]]

fNW (x) = n i=1 Yik(x,Xi) n i=1 k(x,Xi) if n i=1 k(x, X i ) ̸ = 0 0 otherwise (4)
Here, k(x, z) = K x-z h depends on function K : R d → R and the bandwidth h which controls the scale on which the data is being averaged. This parameter needs to be chosen carefully, as too small values of h produce estimates of high variance, while too large values of h give highly biased estimators, an instance of the Bias-Variance tradeoff, a well known phenomenon in statistics. There are two main measures of statistical performance for NW (4), the pointwise and integrated risk. For a given point x ∈ R d , the pointwise risk is given by

R fNW (x), f (x) = E fNW (x) -f (x) 2 (5)
where the expectation is taken over the noise and the data points X 1 , ..., X n for the random design setting (only over the noise for the fixed design). It is also known as mean squared error (MSE). This metric is local in the sense that it only captures statistical information for a particular point. A metric that captures global statistical information is the integrated risk given by

R fNW , f = R fNW (x), f (x) p(x)dx (6) 
The integrated risk is also known as mean integrated squared error (MISE) and can be interpreted as the risk for a new random variable X with density p, independent from the data X 1 , ..., X n .

Framework and Outline

We observe a random graph with n + 1 nodes sampled according to a LPM and assume that for all nodes but the last there is a label of the form (3). Conditionally on node n + 1 having latent position x ∈ R d , we write a(x, X i ) for the indicator of an edge between the node n + 1 and node i. With this notation, the GNW estimator (1) becomes

fGNW (x) = n i=1 Yia(x,Xi) n i=1 a(x,Xi) if n i=1 a(x, X i ) ̸ = 0 0 otherwise (7) 
For x ∈ R d , we introduce the local expected degree d n (x) by

d n (x) = n R d k n (x, z)p(z)dz (8) 
which acts as local sample size. Indeed, d n (x) is the expected degree of node n + 1 given that its latent position is x. Finally, for x ∈ R d and f : R d → R bounded, we introduce the local averaging operator

b n (f, x) = f (z)kn(x,z)p(z)dz kn(x,z)p(z)dz if d n (x) > 0 0 otherwise (9) 
which can be considered as a biased version of f (x) (the sequence of operators b n (f, x) resembles an approximation of identity and under mild conditions on K and f discussed in Section 4 one has b n (f, x) → f (x) if h n → 0). Note that b n (f, x) does not depend on α n in (2). Similarly to the pointwise risk (5) of NW (4), we will consider the pointwise risk for GNW (7)

R fGNW (x), f (x) = E fGNW (x) -f (x) 2 (10) 
where the expectation is taken over all random variables appearing in the model (edge randomness, latent positions and noise), as well as the integrated risk

R fGNW , f = R fGNW (x), f (x) p(x)dx (11)
Our main result is a bound on the integrated risk [START_REF] Lei | Consistency of spectral clustering in stochastic block models[END_REF]. The approach taken in this paper is to bound [START_REF] Can | Sparse random graphs: regularization and concentration of the laplacian[END_REF] over the support of p and then to integrate the result. To this goal, we follow a bias-variance decomposition inspired approach by introducing the bias proxy

b n (x) = b n (f, x) -f (x) (12) 
and the variance proxy

v n (x) = E fGNW (x) -b n (f, x) 2 (13) 
We emphasize that the bias and variance proxies do not correspond to the standard notions of bias and variance of GNW and the standard bias-variance decomposition does not hold. Indeed, in Section 3, Proposition (1) we compute E[ fGNW (x)] explicitly. For simplicity we choose to work with the bias [START_REF] Imbuzeiro | Concentration of the adjacency matrix and of the laplacian in random graphs with independent edges[END_REF] and variance [START_REF] Penrose | Random Geometric Graphs[END_REF] proxies instead of the standard bias-variance decomposition. It can be shown that the bias and variance proxies are within O(e -2dn(x) ) of the true bias and variance [START_REF] Gjorgjevski | The graphical nadaraya watson estimator on latent position models[END_REF]. Moreover, for bounded functions f with ||f || ∞ ≤ B, we can replace the bias-variance decomposition by the inequality

R fGNW (x), f (x) ≤ min 2 b 2 n (x) + v n (x) , 4B 2 (14) 
Hence it suffices to provide bounds on the bias [START_REF] Imbuzeiro | Concentration of the adjacency matrix and of the laplacian in random graphs with independent edges[END_REF] and variance proxies [START_REF] Penrose | Random Geometric Graphs[END_REF]. As the variance proxy ( 13) can be treated in greater generality, we tackle it first in Section 3. The bias proxy [START_REF] Imbuzeiro | Concentration of the adjacency matrix and of the laplacian in random graphs with independent edges[END_REF] is treated in Section 4, along with the pointwise [START_REF] Can | Sparse random graphs: regularization and concentration of the laplacian[END_REF] and integrated [START_REF] Lei | Consistency of spectral clustering in stochastic block models[END_REF] risks.

Statistical properties of GNW

The main result of this section is a bound on the variance proxy (13) of order 1/d n (x). Additionally, we show that under bounded noise, fGNW (x) [START_REF] Peter D Hoff | Latent space approaches to social network analysis[END_REF] concentrates around b n (f, x) (9) with a rate that is exponentially decaying in d n (x) [START_REF] Holland | Stochastic blockmodels: First steps[END_REF]. Finally, we derive an explicit formula for E[ fGNW (x)] in terms of b n (f, x) and d n (x). Our key insight is the decoupling trick, a novel technique specialised for Bernoulli variables which introduces independence into the weights of GNW that otherwise are ratios of dependent variables. For proofs we refer to the extended version of this paper [START_REF] Gjorgjevski | The graphical nadaraya watson estimator on latent position models[END_REF].

Theorem 3.1 Suppose that f : R d → R with ||f || ∞ ≤ B and E[ϵ 2 1 ] = σ 2 . Then σ 2 1 -e -dn(x) 2 d n (x) ≤ v n (x) ≤ 261B 2 + 65σ 2 d n (x)
For the asymptotic analysis, it states that the variance proxy [START_REF] Penrose | Random Geometric Graphs[END_REF] tends to zero as soon as d n (x) → ∞. Conversely, for bounded degree graphs, in the presence of noise the variance proxy (13) stays bounded away from 0. With stronger assumptions on the distribution on the noise one can prove stronger concentration results, as given by the following Theorem. 

P | fGNW (x) -b n (f, x)| ≥ δ ≤ 6 exp(-Cd n (x))
Here, C > 0 depends on δ,B and σ, but not on the sample size n.

We conclude this section by a formula for E[ fGNW (x)]. Interestingly, for smooth kernels, an analogous explicit formula for E[ fNW (x)] is not available in the kernel regression literature.

Proposition 1 Suppose that ||f || ∞ ≤ B. Then E fGNW (x) = b n (f, x) 1 -(1 - d n (x) n ) n
4 Risk of GNW So far we have bounded the variance proxy [START_REF] Penrose | Random Geometric Graphs[END_REF] in terms of the local expected degree (8) (Theorem 3.1). In this section we bound the pointwise [START_REF] Can | Sparse random graphs: regularization and concentration of the laplacian[END_REF] and integrated [START_REF] Lei | Consistency of spectral clustering in stochastic block models[END_REF] risk. In view of the bound ( 14) to bound the risk [START_REF] Can | Sparse random graphs: regularization and concentration of the laplacian[END_REF] we need to bound the bias proxy [START_REF] Imbuzeiro | Concentration of the adjacency matrix and of the laplacian in random graphs with independent edges[END_REF], and we also need to understand the relationship between the degree d n (x) and the parameters α n and h n . These problems are addressed in Subsection 4.1. In order to bound the integrated risk [START_REF] Lei | Consistency of spectral clustering in stochastic block models[END_REF], we need to control the pointwise risk [START_REF] Can | Sparse random graphs: regularization and concentration of the laplacian[END_REF] uniformly over the support of the data distribution p. This problem is addressed in Subsection 4.2.

Bias bound and Pointwise risk of GNW

In the NW literature, it is standard to assume compactly supported kernels [START_REF] Györfi | A Distribution-Free Theory of Nonparametric Regression[END_REF][START_REF] Alexandre | Introduction to Nonparametric Estimation[END_REF], an assumption that we adopt as well.

Assumption 1 There exists M 1 , M 2 > 0 such that for all z ∈ R d we have 1 2

I (||z|| ≤ M 1 ) ≤ K(z) ≤ I (||z|| ≤ M 2 )
We denote the support of the measure induced by p with Q. In order to control the bias proxy [START_REF] Imbuzeiro | Concentration of the adjacency matrix and of the laplacian in random graphs with independent edges[END_REF], one needs a regularity assumption on f . We work under the assumption of Hölder continuity. For 0 < a ≤ 1 and L > 0, we say that f belongs in the Hölder class Σ (a, L) on Q if for all x, z ∈ Q, we have

|f (x) -f (z)| ≤ L||x -z|| a .
Assumption 2 There exist 0 < a ≤ 1, L > 0 and B > 0 such that f ∈ Σ (a, L) on Q and sup 

R fGNW (x), f (x) ≤ C 1 h 2α n + C 2 nα n h d n p 0 (x) (16) 
where C 1 , C 2 depend on the various parameters appearing in the assumptions, and are explicitly given in the extended version of this paper [START_REF] Gjorgjevski | The graphical nadaraya watson estimator on latent position models[END_REF].

Integrated risk of GNW

Finally, to bound the integrated risk (11) using Equation ( 16), one needs to deal with the quantity p 0 (x) [START_REF] Alexandre | Introduction to Nonparametric Estimation[END_REF] appearing in the expression. The simplest way to do this is to assume that for all x ∈ Q, we have p(x) ≥ p 0 . In that case one can take p 0 (x) ≡ p 0 in Equation ( 16), giving

R fGNW , f ≤ C 1 h 2α n + C 2 nα n h d n ( 17 
)
This rate is classical for the NW estimator (4) under uniform density assumption [START_REF] Györfi | A Distribution-Free Theory of Nonparametric Regression[END_REF][START_REF] Alexandre | Introduction to Nonparametric Estimation[END_REF]. One can get a slightly weaker rate for noncompactly supported densities p.

Assumption 4 There exist 0 < β ≤ 1 and L > 0 such that p ∈ Σ(β, L) and p 1/2 (x)dx < ∞ Theorem 4.3 Suppose that Assumptions 1, 2, 3, 4 hold. If

M 1 h n < r 0 , R fGNW , f ≤ C 1 nα n h d+β n + C 2 h min{2α,β/2} n where C 1 , C 2 depend on B, σ 2 , c 0 , d, α, β, M 1 , M 2 and L.
Typically one optimizes the rates in Equation ( 17) or Theorem 4.3. However, as the user has no control of h n , we provide a range of values of h n depending on nα n such that for Theorem 4.3 the integrated risk ( 11) is uniformly controlled over the class of regression functions and densities apperaing in the assumptions of 4.3. Set γ = min (2a, β). There exist values C 3 , C 4 > 0 depending on the various parameters apperaing in the assumptions (explicitly given in [START_REF] Gjorgjevski | The graphical nadaraya watson estimator on latent position models[END_REF]) such that if r ≤ γ d+β+γ , h n < min ( r0 M1 , 1) and

(nα n ) -1-r d+β ≤ C 3 h n ≤ (nα n ) -r γ (18) then R fGNW , f ≤ C 4 (nα n ) r (19) 
Note that for r = γ d+β+γ the bound in (19) is the strongest and the interval in (18) shrinks to a point.

Conclusion and perspectives

We showed that both the pointwise and integrated risk bounds of the risk of fGNW are similar to ones of the classical NW estimator. If α n and h n fall into the suitable range of values (i.e. h n → 0 and nα n h d n → ∞) then GNW will perform well. As GNW uses only one-hop neighbourhood information, it does not take advantage of the global graph structure, it would be interesting to compare it with graph spectral based regression estimators (such as graphical Kernel Ridge Regression). It would also be interesting to understand if estimating the latent positions could be statistically beneficial for estimation.
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 1 Figure 1 -Sampling a LPM: Left -generating uniformly 300 latent positions on [0, 1] 2 . Right: generating a graph with gaussian kernel k(x, y) = exp -||x-y|| 2 h 2
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 32 Suppose that f : R d → R is bounded with ||f || ∞ ≤ B and the noise variables satisfy |ϵ i | ≤ σ. Then

  x∈Q |f (x)| ≤ B Lemma 4.1 Suppose Assumptions 1 and 2 hold.

Assumption 3

 3 sup x∈Q |b n (f, x) -f (x)| ≤ LM a 2 h a nThe classical NW estimator (4) is known to perform poorly near the boundary of the support and in regions where the density function p is low. The following definition describes sets for which the boundary issue can be mitigated. We say that G ⊆ R d has (r 0 , c 0 )-measure-retaining property if for all x ∈ G and all r ≤ r 0 , m(G ∩ B r (x)) ≥ c 0 m (B r (x)),where m denotes Lebesgue measure on R d . There exist r 0 , c 0 > 0 such that Q has the (r 0 , c 0 )-measure-retaining property.
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 42 Suppose that Assumption 1, 3 hold.If M 1 h n < r 0 and x ∈ Q is such that inf z∈Q |x-z|≤M1hn p(z) ≥ p 0 (x) > 0 (15) Then 1 d n (x) ≤ C nα n h d n p 0 (x)where C depends on c 0 , M 1 and d.Combining Theorem 3.1 and Lemma 4.2, we see that if Assumptions 1 and 3 hold, then v n (x) ≤ C2 nαnh d n p0(x) . If, in addition Assumption 2 holds then, combining the last bound with Equation (14) and Lemma 4.1, we get
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