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Maximal Martingale Wasserstein Inequality

Benjamin Jourdain∗ Kexin Shao†

October 12, 2023

Abstract

In this note, we complete the analysis of the Martingale Wasserstein Inequality started in
[5] by checking that this inequality fails in dimension d ≥ 2 when the integrability parameter ρ
belongs to [1, 2) while a stronger Maximal Martingale Wasserstein Inequality holds whatever
the dimension d when ρ ≥ 2.

1 Introduction
The present paper elaborates on the convergence to 0 as n → ∞ of infM∈ΠM(µn,νn)

∫
Rd×Rd |y −

x|ρM(dx, dy) with the Wasserstein distance Wρ(µn, νn) when for each n ∈ N, µn and νn belong
to the set Pρ(Rd) of probability measures on Rd with a finite moment of order ρ ∈ [1,+∞) and
the former is smaller than the latter in the convex order. The convex order between µ, ν ∈ P1(Rd)
which is denoted µ ≤cx ν amounts to∫

Rd
f(x)µ(dx) ≤

∫
Rd
f(y) ν(dy) for each convex function f : Rd → R, (1)

and, by Strassen’s theorem [7], is equivalent to the non emptyness of the set of martingale couplings
between µ and ν defined by

ΠM(µ, ν) =

{
M(dx, dy) = µ(dx)m(x, dy) ∈ Π(µ, ν) | µ(dx)-a.e.,

∫
Rd
ym(x, dy) = x

}
where

Π(µ, ν) = {π ∈ P1(Rd × Rd) | ∀A ∈ B(Rd), π(A× Rd) = µ(A) and π(Rd ×A) = ν(A)}.

The Wasserstein distance with index ρ is defined by

Wρ(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
Rd×Rd

|x− y|ρ π(dx, dy)

)1/ρ

and we also introduceMρ(µ, ν) andMρ(µ, ν) respectively defined by

Mρ
ρ(µ, ν) = inf

M∈ΠM(µ,ν)

∫
R2d

|x− y|ρM(dx, dy), Mρ

ρ(µ, ν) = sup
M∈ΠM(µ,ν)

∫
R2d

|x− y|ρM(dx, dy).

(2)

In dimension d = 1, the optimization problems defining Mρ and Mρ are the respective subjects
of [3] and [4] when ρ = 1, while the general case ρ ∈ (0,+∞) is studied in [6].

The question of interest is related to the stability of Martingale Optimal Transport problems
with respect to the marginal distributions µ and ν established in dimension d = 1 in [1, 8] while

∗CERMICS, Ecole des Ponts, INRIA, Marne-la-Vallée, France. E-mail: benjamin.jourdain@enpc.fr - This re-
search benefited from the support of the “Chaire Risques Financiers”, Fondation du Risque.

†INRIA Paris, 2 rue Simone Iff, CS 42112, 75589 Paris Cedex 12, France, Université Paris-Dauphine, Ecole des
Ponts ParisTech. E-mail: kexin.shao@inria.fr. This project has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 945322.

1



it fails in higher dimension according to [2]. A quantitative answer is given in dimension d = 1 by
the Martingale Wasserstein inequality established in [5, Proposition 1] for ρ ∈ [1,+∞),

∃C(ρ,ρ),1 <∞, ∀µ, ν ∈ Pρ(R) with µ ≤cx ν, Mρ
ρ(µ, ν) ≤ C(ρ,ρ),1Wρ(µ, ν)σρ−1

ρ (ν), (3)

where the central moment σρ(ν) of ν is defined by

σρ(ν) = inf
c∈Rd

(∫
Rd
|y − c|ρ ν(dy)

)1/ρ

when ρ ∈ [1,+∞) and σ∞(ν) = inf
c∈Rd

ν − ess sup
y∈Rd

|y − c|.

The proposition also states that Wρ(µ, ν) and σρ(ν) have the right exponent in this inequality in
the sense that for 1 < s < ρ, sup µ,ν∈Pρ(R)

µ≤cxν,µ 6=ν

Mρ
ρ(µ,ν)

Ws
ρ(µ,ν)σρ−sρ (ν)

= +∞. The generalization of (3) to

higher dimensions d is also investigated in [5] where it is proved that for any d ≥ 2,

C(ρ,ρ),d := sup
µ,ν∈Pρ(Rd)
µ≤cxν,µ 6=ν

Mρ
ρ(µ, ν)

Wρ(µ, ν)σρ−1
ρ (ν)

is infinite when ρ ∈ [1, 1+
√

5
2 ) , while the one-dimensional constant C(ρ,ρ),1 is preserved when µ

and ν are products of one-dimensional probability measures or when, for X distributed according
to µ, the conditional expectation of X given the direction of X −E[X] is a.s. equal to E[X] and ν
is the distribution of X + λ(X −E[X]) for some λ ≥ 0. The present paper answers the question of
the finiteness of C(ρ,ρ),d when ρ ∈ [ 1+

√
5

2 ,+∞) and d ≥ 2, which remained open. It turns out that
C(ρ,ρ),d = +∞ for d ≥ 2 when ρ ∈ [1, 2) while for ρ ∈ [2,+∞) the inequality (3) generalizes in any
dimension d into a Maximal Martingale Wasserstein inequality with the left-hand side Mρ

ρ(µ, ν)

replaced by the larger Mρ

ρ(µ, ν). We even replace conjugate exponents ρ and ρ
ρ−1 leading to the

respective indices ρ = ρ × 1 and ρ = ρ
ρ−1 × (ρ − 1) in the factors W and σ in (3) by general

conjugate exponents q ∈ [1,+∞] and q
q−1 ∈ [1,+∞] leading to indices q and q(ρ−1)

q−1 (equal to +∞
and ρ− 1 when q is respectively equal to 1 and +∞) and define

C(ρ,q),d := sup
µ,ν∈P

q∨ (ρ−1)q
q−1

(Rd)

µ≤cxν,µ 6=ν

Mρ
ρ(µ, ν)

Wq(µ, ν)σρ−1
q(ρ−1)
q−1

(ν)
and C(ρ,q),d := sup

µ,ν∈P
q∨ (ρ−1)q

q−1

(Rd)

µ≤cxν,µ 6=ν

Mρ

ρ(µ, ν)

Wq(µ, ν)σρ−1
q(ρ−1)
q−1

(ν)
,

with W∞(µ, ν) = infπ∈Π(µ,ν) π − ess sup(x,y)∈Rd×Rd |x − y|. Since Mρ ≤ Mρ, one has C(ρ,q),d ≤
C(ρ,q),d. These constants of course depend on the norm | · | on Rd (even if we do not make this
dependence explicit) but, by equivalence of the norms, their finiteness does not. Since the Euclidean
norm plays a particular role, we will denote it by ‖ · ‖ rather than | · |.

Theorem 1. (i) Let ρ ∈ [1, 2). For q ∈ [1, 1
2−ρ ] (and even q ∈ [1,+∞] when ρ = 1), one

has C(ρ,q),1 ≤ Kρ < +∞ where the constant Kρ is studied in [5, Proposition 1] while, for
q ∈ [1,+∞], C(ρ,q),1 = +∞ and C(ρ,q),d = +∞ for d ≥ 2.

(ii) Let ρ ∈ [2,+∞) and q ∈ [1,+∞]. One has C(ρ,q),d < +∞ whatever d. Moreover, when Rd

(resp. each Rd) is endowed with the Euclidean norm, C(2,q),d = 2 and supd≥1 C(ρ,q),d < +∞.

Remark 2. • The fact that ρ = 2 appears as a threshold is related to the equality
∫
Rd×Rd ‖y−

x‖2M(dx, dy) =
∫
Rd ‖y‖

2ν(dy) −
∫
Rd ‖x‖

2µ(dx) for M ∈ ΠM (µ, ν) when µ, ν ∈ P2(Rd) are
such that µ ≤cx ν, which implies that when Rd is endowed with the Euclidean norm

M2
2(µ, ν) =M2

2(µ, ν) =

∫
Rd
‖y‖2ν(dy)−

∫
Rd
‖x‖2µ(dx).

• For ρ ∈ [1, 2), one has C(ρ,q),d = +∞ while supµ,ν∈P
q∨ q

q−1
(Rd)

µ≤cxν,µ 6=ν

M2
ρ(µ,ν)

Wq(µ,ν)σ q
q−1

(ν) ≤ C(2,q),d < +∞

since Mρ ≤M2.
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2 Proof
The proof of Theorem 1 (ii) relies on the next lemma, the proof of the lemma is postponed after the
proof of the theorem. In what follows, to avoid making distinctions in case q ∈ {1,+∞}, we use the
convention that for any probability measure γ and any measurable function f on the same proba-

bility space
(∫
|f(z)|qγ(dz)

)1/q (resp.
((∫

|f(z)|
q
q−1 γ(dz)

)(q−1)/q

,
(∫
|f(z)|

q(ρ−1)
q−1 γ(dz)

)(q−1)/q
)
)

is equal to γ−ess supz |f(z)| (resp. (γ−ess supz |f(z)|, γ−ess supz |f(z)|ρ−1)) when q = +∞ (resp.
q = 1).

Lemma 3. Given ρ ∈ [2,+∞), there exist constants κρ, κ̃ρ ∈ [0,+∞) such that for all d ≥ 1 and
x, y ∈ Rd,

‖x− y‖ρ ≤ κρ
(
(ρ− 1)‖x‖ρ + ‖y‖ρ − ρ‖x‖ρ−2〈x, y〉

)
, (4)

‖y‖ρ − ‖x‖ρ ≤ κ̃ρ‖y − x‖
(
‖x‖ρ−1

+ ‖y‖ρ−1
)
. (5)

Remark 4. When ρ = 2, then (4) holds as an equality with κρ = 1 while, by the Cauchy-Schwarz
and the triangle inequalities,

‖y‖2 − ‖x‖2 ≤ 〈y − x, y + x〉 ≤ ‖y − x‖ × ‖y + x‖ ≤ ‖y − x‖ (‖x‖+ ‖y‖)

so that (5) holds with κ̃ρ = 1.

Proof of Theorem 1. (i) In dimension d = 1, one has M1 ≤ K1W1 with K1 = 2 according to [5,
Proposition 1] and we deduce that C(1,q),1 ≤ K1 for q ∈ [1,+∞] sinceW1 ≤ Wq. Let now ρ ∈ (1, 2)

and q ∈ [1, 1
2−ρ ]. One has q(ρ−1)

q−1 ≥ 1 since, when q > 1, q
q−1 = 1 + 1

q−1 ≥ 1 + 2−ρ
ρ−1 = 1

ρ−1 . For
µ, ν ∈ P

q∨ q(ρ−1)
q−1

(R) with respective quantile functions F−1
µ and F−1

ν , one has by optimality of the
comonotonic coupling and Hölder’s inequality

Wρ
ρ (µ, ν) =

∫ 1

0

|F−1
ν (u)− F−1

µ (u)| × |F−1
ν (u)− F−1

µ (u)|ρ−1du

≤
(∫ 1

0

|F−1
ν (u)− F−1

µ (u)|qdu
)1/q

(∫ 1

0

|F−1
ν (u)− F−1

µ (u)|
q(ρ−1)
q−1 du

) q−1
q(ρ−1)

ρ−1

.

Since, by the triangle inequality and µ ≤cx ν, one has for c ∈ R(∫ 1

0

|F−1
ν (u)− F−1

µ (u)|
q(ρ−1)
q−1 du

) q−1
q(ρ−1)

≤
(∫ 1

0

|F−1
ν (u)− c|

q(ρ−1)
q−1 du

) q−1
q(ρ−1)

+

(∫ 1

0

|F−1
µ (u)− c|

q(ρ−1)
q−1 du

) q−1
q(ρ−1)

≤ 2

(∫ 1

0

|F−1
ν (u)− c|

q(ρ−1)
q−1 du

) q−1
q(ρ−1)

,

we deduce by minimizing over the constant c that

Wρ
ρ (µ, ν) ≤ Wq(µ, ν)× 2ρ−1σρ−1

q(ρ−1)
q−1

(ν).

With this inequality replacing (30) in the proof of Proposition 1 [5] and the general inequality

∫ 1

0

|F−1
ν (u)− F−1

µ (u)||F−1
ν (u)− c|ρ−1du ≤ Wq(µ, ν)

(∫ 1

0

|F−1
ν (u)− c|

q(ρ−1)
q−1 du

) q−1
q

,

replacing the special case q = ρ in the second equation p840 in this proof, we deduce that
Wρ
ρ (µ, ν) ≤ KρWq(µ, ν)σρ−1

q(ρ−1)
q−1

(ν).
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To check that C(ρ,q),1 = +∞ for ρ ∈ [1,+∞) and q ∈ [1,+∞], let us introduce for n ≥ 2 and
z > 0,

µn,z =
1

2((n− 1)z + 1)

(
(1 + z) (δ1 + δn) + 2z

n−1∑
i=2

δi

)

and νn,z =
1

2((n− 1)z + 1)

(
δ1−z + δn+z + z (δ1 + δn) + 2z

n−1∑
i=2

δi

)
.

This example generalizes the one introduced by Brückerhoff and Juillet in [2] which corresponds
to the choice z = 1. Since

Mn,z =
1

2((n− 1)z + 1)

(
δ(1,1−z) + zδ(1,2) + zδ(n,n−1) + δ(n,n+z) + z

n−1∑
i=2

(
δ(i,i−1) + δ(i,i+1)

))

belongs to ΠM (µn,z, νn,z), we have

Mρ

ρ(µn,z, νn,z) ≥
∫
R×R
|y − x|ρMn,z(dx, dy) =

(n− 1)z + zρ

(n− 1)z + 1
.

On the other hand, by optimality of the comonotonic coupling Wρ
ρ (µn,z, νn,z) = zρ

(n−1)z+1 for
ρ ∈ [1,+∞) and W∞(µn,z, νn,z) = z. Last σ∞(νn,z) = n−1+2z

2 and, when ρ ∈ [1,+∞),

σρρ(νn,z) =
1

2ρ((n− 1)z + 1)

(n− 1 + 2z)ρ + z(n− 1)ρ + 2z

bn+1
2 c∑
i=2

(n+ 1− 2i)ρ

 .

Let α ∈ [0, 1). The sequence n1−α goes to ∞ with n and for ρ ∈ [1,+∞) and q ∈ [1,+∞], we
have ∫

R×R
|y − x|ρMn,n−α(dx, dy)→ 1, Wq(µn,n−α , νn,n−α) ∼ nα

(1−q)
q − 1

q

and σρ−1
q(ρ−1)
q−1

(νn,n−α) ∼ nρ−1

2ρ−1(1+
q(ρ−1)
q−1 )

q−1
q

where
(

1 + q(ρ−1)
q−1

) q−1
q

= 1 by convention when q = 1 so

that ∫
R×R |y − x|

ρMn,n−α(dx, dy)

Wq(µn,n−α , νn,n−α)σρ−1
q(ρ−1)
q−1

(νn,n−α)
∼ 2ρ−1

(
1 +

q(ρ− 1)

q − 1

) q−1
q

n
q−1
q α+ 1

q+1−ρ.

Let ρ ∈ [1, 2). For q = 1, the exponent of n in the equivalent of the ratio is equal to 2− ρ > 0 so
that the right-hand side goes to +∞ with n. For q ∈ (1,+∞], we may choose α ∈

(
q(ρ−1)−1
q−1 , 1

)
(with left boundary equal to ρ− 1 when q = +∞) so that q−1

q α+ 1
q + 1−ρ > 0 and the right-hand

side still goes to +∞ with n. Therefore C(ρ,q),1 = +∞. To prove that C(ρ,q),d = +∞ for d ≥ 2 it
is enough by [5, Lemma 1] to deal with the case d = 2, in which we use the rotation argument in
[2]. For n ≥ 2 and θ ∈ (0, π), Mθ

n defined as 1
2((n−1)n−α+1) times

δ((1,0),(1−n−α cos θ,−n−α sin θ)) + n−αδ((1,0),(1+cos θ,sin θ)) + n−αδ((n,0),(n−cos θ,− sin θ))

+ δ((n,0),(n+n−α cos θ,n−α sin θ)) + n−α
n−1∑
i=2

(
δ((i,0),(i−cos θ,− sin θ)) + δ((i,0),(i+cos θ,sin θ))

)
which is a martingale coupling between the image µn of µn,n−α by R 3 x 7→ (x, 0) ∈ R2 and its
second marginal νθn which, as θ → 0, converges in any Wq with q ∈ [1,+∞] to the image of νn,n−α

4



by the same mapping. According to the proof of [2, Lemma 1.1], ΠM (µn, ν
θ
n) = {Mθ

n} so that
Mρ

ρ(µn, ν
θ
n) =

∫
R2×R2 |y − x|ρMθ

n(dx, dy) and

lim
θ→0

Mρ
ρ(µn, ν

θ
n)

Wq(µn, νθn)σρ−1
q(ρ−1)
q−1

(νθn)
=

∫
R×R |y − x|

ρMn,n−α(dx, dy)

Wq(µn,n−α , νn,n−α)σρ−1
q(ρ−1)
q−1

(νn,n−α)
.

With the above analysis of the asymptotic behaviour of the right-hand side as n→∞, we conclude
that C(ρ,q),d = +∞.

(ii) Now, let ρ ∈ [2,+∞) and M ∈ ΠM (µ, ν). Applying Equation (4) in Lemma 3 for the
inequality and then using the martingale property of M , we obtain that for c ∈ Rd, we have∫

Rd×Rd
‖x− y‖ρM(dx, dy) =

∫
Rd×Rd

‖(x− c)− (y − c)‖ρM(dx, dy)

≤ κρ
∫
Rd×Rd

(
(ρ− 1)‖x− c‖ρ + ‖y − c‖ρ − ρ‖x− c‖ρ−2〈x− c, y − c〉

)
M(dx, dy)

= κρ

(∫
Rd
‖y − c‖ρν(dy)−

∫
Rd
‖x− c‖ρµ(dx))

)
. (6)

Denoting by π ∈ Π(µ, ν) an optimal coupling for Wq(µ, ν), we have using Equation (5) in Lemma
3 for the inequality∫

Rd
‖y − c‖ρν(dy)−

∫
Rd
‖x− c‖ρµ(dx) =

∫
Rd×Rd

(‖y − c‖ρ − ‖x− c‖ρ)π(dx, dy)

≤ κ̃ρ
∫
Rd×Rd

‖y − x‖
(
‖x− c‖ρ−1

+ ‖y − c‖ρ−1
)
π(dx, dy). (7)

By the fact that all norms are equivalent in finite dimensional vector spaces, there exists λ ∈ [1,∞)
such that for all z ∈ Rd, we have

‖z‖
λ
≤ |z| ≤ λ‖z‖.

Therefore, using (6) and (7) for the second inequality, Hölder’s inequality for the fourth, the triangle
inequality for the fifth and µ ≤cx ν for the sixth, we get that for c ∈ Rd,∫

Rd×Rd
|x− y|ρM(dx, dy) ≤ λρ

∫
Rd×Rd

‖x− y‖ρM(dx, dy)

≤ κρκ̃ρλρ
∫
Rd×Rd

‖x− y‖
(
‖x− c‖ρ−1

+ ‖y − c‖ρ−1
)
π(dx, dy)

≤ κρκ̃ρλ2ρ

∫
Rd×Rd

|x− y|
(
|x− c|ρ−1

+ |y − c|ρ−1
)
π(dx, dy)

≤ κρκ̃ρλ2ρWq(µ, ν)

(∫
Rd×Rd

(
|x− c|ρ−1

+ |y − c|ρ−1
) q
q−1

π(dx, dy)

) q−1
q

≤ κρκ̃ρλ2ρWq(µ, ν)

((∫
Rd
|x− c|

q(ρ−1)
q−1 µ(dx)

)(q−1)/q

+

(∫
Rd
|y − c|

q(ρ−1)
q−1 ν(dy)

)(q−1)/q
)

≤ 2κρκ̃ρλ
2ρWq(µ, ν)

(∫
Rd
|y − c|

q(ρ−1)
q−1 ν(dy)

) q−1
q

.

By taking the infimum with respect to c ∈ Rd, we conclude that the statement holds with C(ρ,q),d ≤
2κρκ̃ρλ

2ρ. Finally, let us suppose that Rd is endowed with the Euclidean norm. Then we can choose
λ = 1, so that C(ρ,q),d ≤ 2κρκ̃ρ with the right-hand side not depending on d according to Lemma
3. Moreover, by Remark 4, C(2,q),d ≤ 2 and since for α ∈ [0, 1),

lim
n→∞

M2

2(µn,n−α , νn,n−α)√
W1(µn,n−α , νn,n−α)σ∞(νn,n−α)

= 2,

we have C(2,q),d = 2.
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Proof of Lemma 3. We suppose that ρ > 2 since the case ρ = 2 has been addressed in Remark 4.
Suppose x 6= 0 and y 6= x and set e = x

‖x‖ and z = 〈y,x〉
‖x‖2 . The vector y

‖x‖ − ze is orthogonal to
e and can be rewritten as ωe⊥ with ω ≥ 0 and e⊥ ∈ Rd such that ‖e⊥‖ = 1 and 〈e, e⊥〉 = 0. One
then has y

‖x‖ = ze+ ωe⊥ and since y 6= x, (z, w) 6= (1, 0).
The first inequality (4) divided by ‖x‖ρ writes:(

(1− z)2 + ω2
) ρ

2 ≤ κρ
(

(ρ− 1) +
(
z2 + ω2

) ρ
2 − ρz

)
.

Let us define ϕ(z, ω) = ρ−1+(z2 +ω2)
ρ
2 −ρz = −ρ(z−1)−1+

(
1 + 2(z − 1) + (z − 1)2 + ω2

) ρ
2

as the second factor in the right-hand side. Applying a Taylor’s expansion at t = 0 to t 7→ (1+ t)
ρ
2 ,

we obtain
ϕ(z, ω) =

ρ

2
ω2 +

ρ

2
(ρ− 1)(z − 1)2 + o((z − 1)2 + ω2).

Since ρ > 2, we conclude that

lim
(z,ω)→(1,0)

((1− z)2 + ω2)
ρ
2

ϕ(z, ω)
= 0.

As |(z, ω)| → +∞, ϕ(z, ω) ∼ (z2 + ω2)
ρ
2 ∼

(
(z − 1)2 + ω2

)ρ. Therefore,
lim

|(z,ω)|→+∞

((z − 1)2 + ω2)
ρ
2

ϕ(z, ω)
= 1.

The function (z, w) 7→ ((z−1)2+ω2)
ρ
2

ϕ(z,ω) being continuous on R2 \ {(1, 0)}, we deduce that

1 ≤ sup
(z,ω) 6=(1,0)

((z − 1)2 + ω2)
ρ
2

ϕ(z, ω)
< +∞.

Since when x = 0 or y = x, (4) holds with κρ replaced by 1, we conclude that the optimal constant

is κρ = sup(z,ω) 6=(1,0)
((z−1)2+ω2)

ρ
2

ϕ(z,ω) .
For the second inequality (5), we can apply the same approach: divided by ‖x‖ρ, it writes

(
z2 + ω2

) ρ
2 − 1 ≤ κ̃ρ

(
(z − 1)2 + ω2

) 1
2

(
(z2 + ω2)

ρ−1
2 + 1

)
.

As (z, ω)→ (1, 0),
(
z2 + ω2

) ρ
2 − 1 =

(
1 + 2(z − 1) + (z − 1)2 + ω2

) ρ
2 − 1 ∼ ρ

2

(
2(z − 1) + ω2

)
lim sup

(z,ω)→(1,0)

(
z2 + ω2

) ρ
2 − 1

((z − 1)2 + ω2)
1
2

(
1 + (z2 + ω2)

ρ−1
2

) = lim sup
z→1

ρ(z − 1)

2|z − 1|
=
ρ

2
.

On the other hand,

lim
|(z,ω)|→+∞

(
z2 + ω2

) ρ
2 − 1

((z − 1)2 + ω2)
1
2

(
1 + (z2 + ω2)

ρ−1
2

) = 1.

By continuity of the considered function over R2 \ {(1, 0)}, we deduce that

ρ

2
∨ 1 ≤ sup

(z,ω)6=(1,0)

(
z2 + ω2

) ρ
2 − 1

((z − 1)2 + ω2)
1
2

(
1 + (z2 + ω2)

ρ−1
2

) < +∞.

Since when x = 0 or y = x, (5) holds with κ̃ρ replaced by 1, we conclude that the optimal constant

is κ̃ρ = sup(z,ω) 6=(1,0)
(z2+ω2)

ρ
2−1

((z−1)2+ω2)
1
2

(
1+(z2+ω2)

ρ−1
2

) .
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