Maximal Martingale Wasserstein Inequality

Benjamin Jourdain*

Kexin Shao[†]

October 12, 2023

Abstract

In this note, we complete the analysis of the Martingale Wasserstein Inequality started in [5] by checking that this inequality fails in dimension $d \geq 2$ when the integrability parameter ρ belongs to [1,2) while a stronger Maximal Martingale Wasserstein Inequality holds whatever the dimension d when $\rho \geq 2$.

1 Introduction

The present paper elaborates on the convergence to 0 as $n \to \infty$ of $\inf_{M \in \Pi^M(\mu_n, \nu_n)} \int_{\mathbb{R}^d \times \mathbb{R}^d} |y - x|^{\rho} M(dx, dy)$ with the Wasserstein distance $\mathcal{W}_{\rho}(\mu_n, \nu_n)$ when for each $n \in \mathbb{N}$, μ_n and ν_n belong to the set $\mathcal{P}_{\rho}(\mathbb{R}^d)$ of probability measures on \mathbb{R}^d with a finite moment of order $\rho \in [1, +\infty)$ and the former is smaller than the latter in the convex order. The convex order between $\mu, \nu \in \mathcal{P}_1(\mathbb{R}^d)$ which is denoted $\mu \leq_{cx} \nu$ amounts to

$$\int_{\mathbb{R}^d} f(x) \, \mu(dx) \le \int_{\mathbb{R}^d} f(y) \, \nu(dy) \text{ for each convex function } f : \mathbb{R}^d \to \mathbb{R}, \tag{1}$$

and, by Strassen's theorem [7], is equivalent to the non emptyness of the set of martingale couplings between μ and ν defined by

$$\Pi^{\mathrm{M}}(\mu,\nu) = \left\{ M(dx,dy) = \mu(dx) m(x,dy) \in \Pi(\mu,\nu) \mid \mu(dx) \text{-a.e.}, \int_{\mathbb{R}^d} y \, m(x,dy) = x \right\} \text{ where }$$

$$\Pi(\mu,\nu) = \left\{ \pi \in \mathcal{P}_1(\mathbb{R}^d \times \mathbb{R}^d) \mid \forall A \in \mathcal{B}(\mathbb{R}^d), \ \pi(A \times \mathbb{R}^d) = \mu(A) \text{ and } \pi(\mathbb{R}^d \times A) = \nu(A) \right\}.$$

The Wasserstein distance with index ρ is defined by

$$\mathcal{W}_{\rho}(\mu,\nu) = \left(\inf_{\pi \in \Pi(\mu,\nu)} \int_{\mathbb{R}^d \times \mathbb{R}^d} |x - y|^{\rho} \, \pi(dx, dy)\right)^{1/\rho}$$

and we also introduce $\underline{\mathcal{M}}_{\rho}(\mu,\nu)$ and $\overline{\mathcal{M}}_{\rho}(\mu,\nu)$ respectively defined by

$$\underline{\mathcal{M}}_{\rho}^{\rho}(\mu,\nu) = \inf_{M \in \Pi^{\mathcal{M}}(\mu,\nu)} \int_{\mathbb{R}^{2d}} |x-y|^{\rho} M(dx,dy), \ \overline{\mathcal{M}}_{\rho}^{\rho}(\mu,\nu) = \sup_{M \in \Pi^{\mathcal{M}}(\mu,\nu)} \int_{\mathbb{R}^{2d}} |x-y|^{\rho} M(dx,dy).$$

$$(2)$$

In dimension d=1, the optimization problems defining $\underline{\mathcal{M}}_{\rho}$ and $\overline{\mathcal{M}}_{\rho}$ are the respective subjects of [3] and [4] when $\rho=1$, while the general case $\rho\in(0,+\infty)$ is studied in [6].

The question of interest is related to the stability of Martingale Optimal Transport problems with respect to the marginal distributions μ and ν established in dimension d=1 in [1, 8] while

^{*}CERMICS, Ecole des Ponts, INRIA, Marne-la-Vallée, France. E-mail: benjamin.jourdain@enpc.fr - This research benefited from the support of the "Chaire Risques Financiers", Fondation du Risque.

[†]INRIA Paris, 2 rue Simone Iff, CS 42112, 75589 Paris Cedex 12, France, Université Paris-Dauphine, Ecole des Ponts ParisTech. E-mail: kexin.shao@inria.fr. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 945322.

it fails in higher dimension according to [2]. A quantitative answer is given in dimension d = 1 by the Martingale Wasserstein inequality established in [5, Proposition 1] for $\rho \in [1, +\infty)$,

$$\exists \underline{C}_{(\rho,\rho),1} < \infty, \ \forall \mu, \nu \in \mathcal{P}_{\rho}(\mathbb{R}) \text{ with } \mu \leq_{cx} \nu, \ \underline{\mathcal{M}}_{\rho}^{\rho}(\mu,\nu) \leq \underline{C}_{(\rho,\rho),1} \mathcal{W}_{\rho}(\mu,\nu) \sigma_{\rho}^{\rho-1}(\nu), \tag{3}$$

where the central moment $\sigma_{\rho}(\nu)$ of ν is defined by

$$\sigma_{\rho}(\nu) = \inf_{c \in \mathbb{R}^d} \left(\int_{\mathbb{R}^d} |y - c|^{\rho} \, \nu(dy) \right)^{1/\rho} \text{ when } \rho \in [1, +\infty) \text{ and } \sigma_{\infty}(\nu) = \inf_{c \in \mathbb{R}^d} \nu - \operatorname{ess\,sup}_{y \in \mathbb{R}^d} |y - c|.$$

The proposition also states that $W_{\rho}(\mu, \nu)$ and $\sigma_{\rho}(\nu)$ have the right exponent in this inequality in the sense that for $1 < s < \rho$, $\sup_{\substack{\mu,\nu \in \mathcal{P}_{\rho}(\mathbb{R}) \\ \mu \leq cx\nu, \mu \neq \nu}} \frac{\mathcal{M}^{\rho}_{\rho}(\mu,\nu)}{\mathcal{M}^{s}_{\rho}(\mu,\nu)\sigma^{\rho-s}_{\rho}(\nu)} = +\infty$. The generalization of (3) to higher dimensions d is also investigated in [5] where it is proved that for any $d \geq 2$,

$$\underline{C}_{(\rho,\rho),d} := \sup_{\substack{\mu,\nu \in \mathcal{P}_{\rho}(\mathbb{R}^d) \\ \mu \leq_{r,r} \nu, \mu \neq \nu}} \frac{\underline{\mathcal{M}}_{\rho}^{\rho}(\mu,\nu)}{\mathcal{W}_{\rho}(\mu,\nu)\sigma_{\rho}^{\rho-1}(\nu)}$$

is infinite when $\rho \in [1, \frac{1+\sqrt{5}}{2})$, while the one-dimensional constant $\underline{C}_{(\rho,\rho),1}$ is preserved when μ and ν are products of one-dimensional probability measures or when, for X distributed according to μ , the conditional expectation of X given the direction of $X-\mathbb{E}[X]$ is a.s. equal to $\mathbb{E}[X]$ and ν is the distribution of $X+\lambda(X-\mathbb{E}[X])$ for some $\lambda\geq 0$. The present paper answers the question of the finiteness of $\underline{C}_{(\rho,\rho),d}$ when $\rho\in[\frac{1+\sqrt{5}}{2},+\infty)$ and $d\geq 2$, which remained open. It turns out that $\underline{C}_{(\rho,\rho),d}=+\infty$ for $d\geq 2$ when $\rho\in[1,2)$ while for $\rho\in[2,+\infty)$ the inequality (3) generalizes in any dimension d into a Maximal Martingale Wasserstein inequality with the left-hand side $\underline{\mathcal{M}}_{\rho}^{\rho}(\mu,\nu)$ replaced by the larger $\overline{\mathcal{M}}_{\rho}^{\rho}(\mu,\nu)$. We even replace conjugate exponents ρ and $\frac{\rho}{\rho-1}$ leading to the respective indices $\rho=\rho\times 1$ and $\rho=\frac{\rho}{\rho-1}\times(\rho-1)$ in the factors \mathcal{W} and σ in (3) by general conjugate exponents $q\in[1,+\infty]$ and $\frac{q}{q-1}\in[1,+\infty]$ leading to indices q and $\frac{q(\rho-1)}{q-1}$ (equal to $+\infty$ and $\rho-1$ when q is respectively equal to 1 and $+\infty$) and define

$$\underline{C}_{(\rho,q),d} := \sup_{\substack{\mu,\nu\in\mathcal{P}\\q\vee\frac{(\rho-1)q}{q-1}\\\mu\leq_{cx}\nu,\mu\neq\nu}} \frac{\underline{\mathcal{M}}_{\rho}^{\rho}(\mu,\nu)}{\mathcal{W}_{q}(\mu,\nu)\sigma_{\frac{q(\rho-1)}{q-1}}^{\rho-1}(\nu)} \text{ and } \overline{C}_{(\rho,q),d} := \sup_{\substack{\mu,\nu\in\mathcal{P}\\q\vee\frac{(\rho-1)q}{q-1}\\\mu\leq_{cx}\nu,\mu\neq\nu}} \frac{\overline{\mathcal{M}}_{\rho}^{\rho}(\mu,\nu)}{\mathcal{W}_{q}(\mu,\nu)\sigma_{\frac{q(\rho-1)}{q-1}}^{\rho-1}(\nu)},$$

with $W_{\infty}(\mu,\nu) = \inf_{\pi \in \Pi(\mu,\nu)} \pi - \operatorname{ess\,sup}_{(x,y) \in \mathbb{R}^d \times \mathbb{R}^d} |x-y|$. Since $\underline{\mathcal{M}}_{\rho} \leq \overline{\mathcal{M}}_{\rho}$, one has $\underline{C}_{(\rho,q),d} \leq \overline{C}_{(\rho,q),d}$. These constants of course depend on the norm $|\cdot|$ on \mathbb{R}^d (even if we do not make this dependence explicit) but, by equivalence of the norms, their finiteness does not. Since the Euclidean norm plays a particular role, we will denote it by $\|\cdot\|$ rather than $|\cdot|$.

- **Theorem 1.** (i) Let $\rho \in [1,2)$. For $q \in [1,\frac{1}{2-\rho}]$ (and even $q \in [1,+\infty]$ when $\rho = 1$), one has $\underline{C}_{(\rho,q),1} \leq K_{\rho} < +\infty$ where the constant K_{ρ} is studied in [5, Proposition 1] while, for $q \in [1,+\infty]$, $\overline{C}_{(\rho,q),1} = +\infty$ and $\underline{C}_{(\rho,q),d} = +\infty$ for $d \geq 2$.
- (ii) Let $\rho \in [2, +\infty)$ and $q \in [1, +\infty]$. One has $\overline{C}_{(\rho,q),d} < +\infty$ whatever d. Moreover, when \mathbb{R}^d (resp. each \mathbb{R}^d) is endowed with the Euclidean norm, $\overline{C}_{(2,q),d} = 2$ and $\sup_{d \geq 1} \overline{C}_{(\rho,q),d} < +\infty$.
- **Remark 2.** The fact that $\rho = 2$ appears as a threshold is related to the equality $\int_{\mathbb{R}^d \times \mathbb{R}^d} \|y x\|^2 M(dx, dy) = \int_{\mathbb{R}^d} \|y\|^2 \nu(dy) \int_{\mathbb{R}^d} \|x\|^2 \mu(dx)$ for $M \in \Pi^M(\mu, \nu)$ when $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$ are such that $\mu \leq_{cx} \nu$, which implies that when \mathbb{R}^d is endowed with the Euclidean norm

$$\underline{\mathcal{M}}_2^2(\mu,\nu) = \overline{\mathcal{M}}_2^2(\mu,\nu) = \int_{\mathbb{R}^d} \|y\|^2 \nu(dy) - \int_{\mathbb{R}^d} \|x\|^2 \mu(dx).$$

• For $\rho \in [1,2)$, one has $\overline{C}_{(\rho,q),d} = +\infty$ while $\sup_{\substack{\mu,\nu \in \mathcal{P}_{q\vee \frac{q}{q-1}}(\mathbb{R}^d)\\ \mu \leq cx\nu, \mu \neq \nu}} \frac{\overline{\mathcal{M}}_{\rho}^2(\mu,\nu)}{\overline{\mathcal{M}}_{q}(\mu,\nu)\sigma_{\frac{q}{q-1}}(\nu)} \leq \overline{C}_{(2,q),d} < +\infty$ since $\overline{\mathcal{M}}_{\rho} \leq \overline{\mathcal{M}}_{2}$.

2 Proof

The proof of Theorem 1 (ii) relies on the next lemma, the proof of the lemma is postponed after the proof of the theorem. In what follows, to avoid making distinctions in case $q \in \{1, +\infty\}$, we use the convention that for any probability measure γ and any measurable function f on the same probability space $\left(\int |f(z)|^q \gamma(dz)\right)^{1/q}$ (resp. $\left(\int |f(z)|^{\frac{q}{q-1}} \gamma(dz)\right)^{(q-1)/q}$, $\left(\int |f(z)|^{\frac{q(\rho-1)}{q-1}} \gamma(dz)\right)^{(q-1)/q}$) is equal to $\gamma - \operatorname{ess\,sup}_z |f(z)|$ (resp. $(\gamma - \operatorname{ess\,sup}_z |f(z)|, \gamma - \operatorname{ess\,sup}_z |f(z)|^{\rho-1})$) when $q = +\infty$ (resp. q = 1).

Lemma 3. Given $\rho \in [2, +\infty)$, there exist constants $\kappa_{\rho}, \tilde{\kappa}_{\rho} \in [0, +\infty)$ such that for all $d \geq 1$ and $x, y \in \mathbb{R}^d$,

$$||x - y||^{\rho} \le \kappa_{\rho} \left((\rho - 1) ||x||^{\rho} + ||y||^{\rho} - \rho ||x||^{\rho - 2} \langle x, y \rangle \right), \tag{4}$$

$$||y||^{\rho} - ||x||^{\rho} \le \tilde{\kappa}_{\rho} ||y - x|| \left(||x||^{\rho - 1} + ||y||^{\rho - 1} \right).$$
 (5)

Remark 4. When $\rho = 2$, then (4) holds as an equality with $\kappa_{\rho} = 1$ while, by the Cauchy-Schwarz and the triangle inequalities,

$$||y||^2 - ||x||^2 \le \langle y - x, y + x \rangle \le ||y - x|| \times ||y + x|| \le ||y - x|| (||x|| + ||y||)$$

so that (5) holds with $\tilde{\kappa}_{\rho} = 1$.

Proof of Theorem 1. (i) In dimension d=1, one has $\underline{\mathcal{M}}_1 \leq K_1 \mathcal{W}_1$ with $K_1=2$ according to [5, Proposition 1] and we deduce that $\underline{C}_{(1,q),1} \leq K_1$ for $q \in [1, +\infty]$ since $\mathcal{W}_1 \leq \mathcal{W}_q$. Let now $\rho \in (1,2)$ and $q \in [1, \frac{1}{2-\rho}]$. One has $\frac{q(\rho-1)}{q-1} \geq 1$ since, when q > 1, $\frac{q}{q-1} = 1 + \frac{1}{q-1} \geq 1 + \frac{2-\rho}{\rho-1} = \frac{1}{\rho-1}$. For $\mu, \nu \in \mathcal{P}_{q \vee \frac{q(\rho-1)}{q-1}}(\mathbb{R})$ with respective quantile functions F_{μ}^{-1} and F_{ν}^{-1} , one has by optimality of the comonotonic coupling and Hölder's inequality

$$\begin{split} \mathcal{W}^{\rho}_{\rho}(\mu,\nu) &= \int_{0}^{1} |F_{\nu}^{-1}(u) - F_{\mu}^{-1}(u)| \times |F_{\nu}^{-1}(u) - F_{\mu}^{-1}(u)|^{\rho - 1} du \\ &\leq \left(\int_{0}^{1} |F_{\nu}^{-1}(u) - F_{\mu}^{-1}(u)|^{q} du \right)^{1/q} \left(\left(\int_{0}^{1} |F_{\nu}^{-1}(u) - F_{\mu}^{-1}(u)|^{\frac{q(\rho - 1)}{q - 1}} du \right)^{\frac{q - 1}{q(\rho - 1)}} \right)^{\rho - 1}. \end{split}$$

Since, by the triangle inequality and $\mu \leq_{cx} \nu$, one has for $c \in \mathbb{R}$

$$\left(\int_{0}^{1} |F_{\nu}^{-1}(u) - F_{\mu}^{-1}(u)|^{\frac{q(\rho-1)}{q-1}} du\right)^{\frac{q-1}{q(\rho-1)}} \leq \left(\int_{0}^{1} |F_{\nu}^{-1}(u) - c|^{\frac{q(\rho-1)}{q-1}} du\right)^{\frac{q-1}{q(\rho-1)}} + \left(\int_{0}^{1} |F_{\mu}^{-1}(u) - c|^{\frac{q(\rho-1)}{q-1}} du\right)^{\frac{q-1}{q(\rho-1)}} \leq 2\left(\int_{0}^{1} |F_{\nu}^{-1}(u) - c|^{\frac{q(\rho-1)}{q-1}} du\right)^{\frac{q-1}{q(\rho-1)}},$$

we deduce by minimizing over the constant c that

$$\mathcal{W}_{\rho}^{\rho}(\mu,\nu) \leq \mathcal{W}_{q}(\mu,\nu) \times 2^{\rho-1} \sigma_{\frac{q(\rho-1)}{a-1}}^{\rho-1}(\nu).$$

With this inequality replacing (30) in the proof of Proposition 1 [5] and the general inequality

$$\int_0^1 |F_{\nu}^{-1}(u) - F_{\mu}^{-1}(u)||F_{\nu}^{-1}(u) - c|^{\rho - 1} du \le \mathcal{W}_q(\mu, \nu) \left(\int_0^1 |F_{\nu}^{-1}(u) - c|^{\frac{q(\rho - 1)}{q - 1}} du \right)^{\frac{q - 1}{q}},$$

replacing the special case $q = \rho$ in the second equation p840 in this proof, we deduce that $W_{\rho}^{\rho}(\mu,\nu) \leq K_{\rho}W_{q}(\mu,\nu)\sigma_{\frac{q(\rho-1)}{q-1}}^{\rho-1}(\nu)$.

To check that $\overline{C}_{(\rho,q),1}=+\infty$ for $\rho\in[1,+\infty)$ and $q\in[1,+\infty]$, let us introduce for $n\geq 2$ and z>0.

$$\mu_{n,z} = \frac{1}{2((n-1)z+1)} \left((1+z) \left(\delta_1 + \delta_n \right) + 2z \sum_{i=2}^{n-1} \delta_i \right)$$
 and
$$\nu_{n,z} = \frac{1}{2((n-1)z+1)} \left(\delta_{1-z} + \delta_{n+z} + z \left(\delta_1 + \delta_n \right) + 2z \sum_{i=2}^{n-1} \delta_i \right).$$

This example generalizes the one introduced by Brückerhoff and Juillet in [2] which corresponds to the choice z = 1. Since

$$M_{n,z} = \frac{1}{2((n-1)z+1)} \left(\delta_{(1,1-z)} + z\delta_{(1,2)} + z\delta_{(n,n-1)} + \delta_{(n,n+z)} + z\sum_{i=2}^{n-1} \left(\delta_{(i,i-1)} + \delta_{(i,i+1)} \right) \right)$$

belongs to $\Pi^M(\mu_{n,z},\nu_{n,z})$, we have

$$\overline{\mathcal{M}}_{\rho}^{\rho}(\mu_{n,z},\nu_{n,z}) \ge \int_{\mathbb{R}\times\mathbb{R}} |y-x|^{\rho} M_{n,z}(dx,dy) = \frac{(n-1)z + z^{\rho}}{(n-1)z + 1}.$$

On the other hand, by optimality of the comonotonic coupling $W_{\rho}^{\rho}(\mu_{n,z},\nu_{n,z}) = \frac{z^{\rho}}{(n-1)z+1}$ for $\rho \in [1,+\infty)$ and $W_{\infty}(\mu_{n,z},\nu_{n,z}) = z$. Last $\sigma_{\infty}(\nu_{n,z}) = \frac{n-1+2z}{2}$ and, when $\rho \in [1,+\infty)$,

$$\sigma_{\rho}^{\rho}(\nu_{n,z}) = \frac{1}{2^{\rho}((n-1)z+1)} \left((n-1+2z)^{\rho} + z(n-1)^{\rho} + 2z \sum_{i=2}^{\lfloor \frac{n+1}{2} \rfloor} (n+1-2i)^{\rho} \right).$$

Let $\alpha \in [0,1)$. The sequence $n^{1-\alpha}$ goes to ∞ with n and for $\rho \in [1,+\infty)$ and $q \in [1,+\infty]$, we have

$$\int_{\mathbb{R}\times\mathbb{R}} |y-x|^{\rho} M_{n,n^{-\alpha}}(dx,dy) \to 1, \ \mathcal{W}_q(\mu_{n,n^{-\alpha}},\nu_{n,n^{-\alpha}}) \sim n^{\alpha\frac{(1-q)}{q}-\frac{1}{q}}$$

and $\sigma_{\frac{q(\rho-1)}{q-1}}^{\rho-1}(\nu_{n,n^{-\alpha}}) \sim \frac{n^{\rho-1}}{2^{\rho-1}\left(1+\frac{q(\rho-1)}{q-1}\right)^{\frac{q-1}{q}}}$ where $\left(1+\frac{q(\rho-1)}{q-1}\right)^{\frac{q-1}{q}}=1$ by convention when q=1 so that

$$\frac{\int_{\mathbb{R}\times\mathbb{R}} |y-x|^{\rho} M_{n,n^{-\alpha}}(dx,dy)}{\mathcal{W}_{q}(\mu_{n,n^{-\alpha}},\nu_{n,n^{-\alpha}})\sigma_{\frac{q(\rho-1)}{q-1}}^{\rho-1}(\nu_{n,n^{-\alpha}})} \sim 2^{\rho-1} \left(1 + \frac{q(\rho-1)}{q-1}\right)^{\frac{q-1}{q}} n^{\frac{q-1}{q}\alpha + \frac{1}{q}+1-\rho}.$$

Let $\rho \in [1,2)$. For q=1, the exponent of n in the equivalent of the ratio is equal to $2-\rho>0$ so that the right-hand side goes to $+\infty$ with n. For $q\in (1,+\infty]$, we may choose $\alpha\in \left(\frac{q(\rho-1)-1}{q-1},1\right)$ (with left boundary equal to $\rho-1$ when $q=+\infty$) so that $\frac{q-1}{q}\alpha+\frac{1}{q}+1-\rho>0$ and the right-hand side still goes to $+\infty$ with n. Therefore $\overline{C}_{(\rho,q),1}=+\infty$. To prove that $\underline{C}_{(\rho,q),d}=+\infty$ for $d\geq 2$ it is enough by [5, Lemma 1] to deal with the case d=2, in which we use the rotation argument in [2]. For $n\geq 2$ and $\theta\in (0,\pi)$, M_n^θ defined as $\frac{1}{2((n-1)n^{-\alpha}+1)}$ times

$$\delta_{((1,0),(1-n^{-\alpha}\cos\theta,-n^{-\alpha}\sin\theta))} + n^{-\alpha}\delta_{((1,0),(1+\cos\theta,\sin\theta))} + n^{-\alpha}\delta_{((n,0),(n-\cos\theta,-\sin\theta))}$$

$$+ \delta_{((n,0),(n+n^{-\alpha}\cos\theta,n^{-\alpha}\sin\theta))} + n^{-\alpha}\sum_{i=2}^{n-1} \left(\delta_{((i,0),(i-\cos\theta,-\sin\theta))} + \delta_{((i,0),(i+\cos\theta,\sin\theta))}\right)$$

which is a martingale coupling between the image μ_n of $\mu_{n,n^{-\alpha}}$ by $\mathbb{R} \ni x \mapsto (x,0) \in \mathbb{R}^2$ and its second marginal ν_n^{θ} which, as $\theta \to 0$, converges in any \mathcal{W}_q with $q \in [1, +\infty]$ to the image of $\nu_{n,n^{-\alpha}}$

by the same mapping. According to the proof of [2, Lemma 1.1], $\Pi^M(\mu_n, \nu_n^{\theta}) = \{M_n^{\theta}\}$ so that $\underline{\mathcal{M}}_{\rho}^{\rho}(\mu_n, \nu_n^{\theta}) = \int_{\mathbb{R}^2 \times \mathbb{R}^2} |y - x|^{\rho} M_n^{\theta}(dx, dy)$ and

$$\lim_{\theta \to 0} \frac{\underline{\mathcal{M}}_{\rho}^{\rho}(\mu_n, \nu_n^{\theta})}{\mathcal{W}_q(\mu_n, \nu_n^{\theta}) \sigma_{\frac{q(\rho-1)}{q-1}}^{\rho-1}(\nu_n^{\theta})} = \frac{\int_{\mathbb{R} \times \mathbb{R}} |y-x|^{\rho} M_{n,n^{-\alpha}}(dx, dy)}{\mathcal{W}_q(\mu_{n,n^{-\alpha}}, \nu_{n,n^{-\alpha}}) \sigma_{\frac{q(\rho-1)}{q-1}}^{\rho-1}(\nu_{n,n^{-\alpha}})}.$$

With the above analysis of the asymptotic behaviour of the right-hand side as $n \to \infty$, we conclude that $\underline{C}_{(\rho,q),d} = +\infty$.

(ii) Now, let $\rho \in [2, +\infty)$ and $M \in \Pi^M(\mu, \nu)$. Applying Equation (4) in Lemma 3 for the inequality and then using the martingale property of M, we obtain that for $c \in \mathbb{R}^d$, we have

$$\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \|x - y\|^{\rho} M(dx, dy) = \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \|(x - c) - (y - c)\|^{\rho} M(dx, dy)
\leq \kappa_{\rho} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \left((\rho - 1) \|x - c\|^{\rho} + \|y - c\|^{\rho} - \rho \|x - c\|^{\rho - 2} \langle x - c, y - c \rangle \right) M(dx, dy)
= \kappa_{\rho} \left(\int_{\mathbb{R}^{d}} \|y - c\|^{\rho} \nu(dy) - \int_{\mathbb{R}^{d}} \|x - c\|^{\rho} \mu(dx) \right).$$
(6)

Denoting by $\pi \in \Pi(\mu, \nu)$ an optimal coupling for $W_q(\mu, \nu)$, we have using Equation (5) in Lemma 3 for the inequality

$$\int_{\mathbb{R}^d} \|y - c\|^{\rho} \nu(dy) - \int_{\mathbb{R}^d} \|x - c\|^{\rho} \mu(dx) = \int_{\mathbb{R}^d \times \mathbb{R}^d} (\|y - c\|^{\rho} - \|x - c\|^{\rho}) \pi(dx, dy)
\leq \tilde{\kappa}_{\rho} \int_{\mathbb{R}^d \times \mathbb{R}^d} \|y - x\| \left(\|x - c\|^{\rho - 1} + \|y - c\|^{\rho - 1} \right) \pi(dx, dy).$$
(7)

By the fact that all norms are equivalent in finite dimensional vector spaces, there exists $\lambda \in [1, \infty)$ such that for all $z \in \mathbb{R}^d$, we have

$$\frac{\|z\|}{\lambda} \le |z| \le \lambda \|z\|.$$

Therefore, using (6) and (7) for the second inequality, Hölder's inequality for the fourth, the triangle inequality for the fifth and $\mu \leq_{cx} \nu$ for the sixth, we get that for $c \in \mathbb{R}^d$,

$$\int_{\mathbb{R}^{d}\times\mathbb{R}^{d}} |x-y|^{\rho} M(dx,dy) \leq \lambda^{\rho} \int_{\mathbb{R}^{d}\times\mathbb{R}^{d}} ||x-y||^{\rho} M(dx,dy)$$

$$\leq \kappa_{\rho} \tilde{\kappa}_{\rho} \lambda^{\rho} \int_{\mathbb{R}^{d}\times\mathbb{R}^{d}} ||x-y|| \left(||x-c||^{\rho-1} + ||y-c||^{\rho-1} \right) \pi(dx,dy)$$

$$\leq \kappa_{\rho} \tilde{\kappa}_{\rho} \lambda^{2\rho} \int_{\mathbb{R}^{d}\times\mathbb{R}^{d}} |x-y| \left(|x-c|^{\rho-1} + |y-c|^{\rho-1} \right) \pi(dx,dy)$$

$$\leq \kappa_{\rho} \tilde{\kappa}_{\rho} \lambda^{2\rho} W_{q}(\mu,\nu) \left(\int_{\mathbb{R}^{d}\times\mathbb{R}^{d}} \left(|x-c|^{\rho-1} + |y-c|^{\rho-1} \right)^{\frac{q}{q-1}} \pi(dx,dy) \right)^{\frac{q-1}{q}}$$

$$\leq \kappa_{\rho} \tilde{\kappa}_{\rho} \lambda^{2\rho} W_{q}(\mu,\nu) \left(\left(\int_{\mathbb{R}^{d}} |x-c|^{\frac{q(\rho-1)}{q-1}} \mu(dx) \right)^{(q-1)/q} + \left(\int_{\mathbb{R}^{d}} |y-c|^{\frac{q(\rho-1)}{q-1}} \nu(dy) \right)^{(q-1)/q} \right)$$

$$\leq 2\kappa_{\rho} \tilde{\kappa}_{\rho} \lambda^{2\rho} W_{q}(\mu,\nu) \left(\int_{\mathbb{R}^{d}} |y-c|^{\frac{q(\rho-1)}{q-1}} \nu(dy) \right)^{\frac{q-1}{q}}.$$

By taking the infimum with respect to $c \in \mathbb{R}^d$, we conclude that the statement holds with $\overline{C}_{(\rho,q),d} \leq 2\kappa_\rho \tilde{\kappa}_\rho \lambda^{2\rho}$. Finally, let us suppose that \mathbb{R}^d is endowed with the Euclidean norm. Then we can choose $\lambda=1$, so that $\overline{C}_{(\rho,q),d} \leq 2\kappa_\rho \tilde{\kappa}_\rho$ with the right-hand side not depending on d according to Lemma 3. Moreover, by Remark 4, $\overline{C}_{(2,q),d} \leq 2$ and since for $\alpha \in [0,1)$,

$$\lim_{n \to \infty} \frac{\overline{\mathcal{M}}_2^2(\mu_{n,n^{-\alpha}}, \nu_{n,n^{-\alpha}})}{\sqrt{\mathcal{W}_1(\mu_{n,n^{-\alpha}}, \nu_{n,n^{-\alpha}})\sigma_{\infty}(\nu_{n,n^{-\alpha}})}} = 2,$$

we have $\overline{C}_{(2,q),d}=2$.

Proof of Lemma 3. We suppose that $\rho > 2$ since the case $\rho = 2$ has been addressed in Remark 4. Suppose $x \neq 0$ and $y \neq x$ and set $e = \frac{x}{\|x\|}$ and $z = \frac{\langle y, x \rangle}{\|x\|^2}$. The vector $\frac{y}{\|x\|} - ze$ is orthogonal to e and can be rewritten as ωe^{\perp} with $\omega \geq 0$ and $e^{\perp} \in \mathbb{R}^d$ such that $\|e^{\perp}\| = 1$ and $\langle e, e^{\perp} \rangle = 0$. One then has $\frac{y}{\|x\|} = ze + \omega e^{\perp}$ and since $y \neq x$, $(z, w) \neq (1, 0)$.

The first inequality (4) divided by $||x||^{\rho}$ writes

$$((1-z)^2 + \omega^2)^{\frac{\rho}{2}} \le \kappa_\rho \left((\rho - 1) + (z^2 + \omega^2)^{\frac{\rho}{2}} - \rho z \right).$$

Let us define $\varphi(z,\omega) = \rho - 1 + (z^2 + \omega^2)^{\frac{\rho}{2}} - \rho z = -\rho(z-1) - 1 + \left(1 + 2(z-1) + (z-1)^2 + \omega^2\right)^{\frac{\rho}{2}}$ as the second factor in the right-hand side. Applying a Taylor's expansion at t=0 to $t\mapsto (1+t)^{\frac{\rho}{2}}$. we obtain

$$\varphi(z,\omega) = \frac{\rho}{2}\omega^2 + \frac{\rho}{2}(\rho - 1)(z - 1)^2 + o((z - 1)^2 + \omega^2).$$

Since $\rho > 2$, we conclude that

$$\lim_{(z,\omega)\to(1,0)} \frac{((1-z)^2 + \omega^2)^{\frac{p}{2}}}{\varphi(z,\omega)} = 0.$$

As $|(z,\omega)| \to +\infty$, $\varphi(z,\omega) \sim (z^2 + \omega^2)^{\frac{\rho}{2}} \sim ((z-1)^2 + \omega^2)^{\rho}$. Therefore,

$$\lim_{|(z,\omega)|\to+\infty} \frac{((z-1)^2+\omega^2)^{\frac{\rho}{2}}}{\varphi(z,\omega)} = 1.$$

The function $(z,w)\mapsto \frac{((z-1)^2+\omega^2)^{\frac{\rho}{2}}}{\varphi(z,\omega)}$ being continuous on $\mathbb{R}^2\setminus\{(1,0)\}$, we deduce that

$$1 \le \sup_{(z,\omega) \neq (1,0)} \frac{((z-1)^2 + \omega^2)^{\frac{\rho}{2}}}{\varphi(z,\omega)} < +\infty.$$

Since when x = 0 or y = x, (4) holds with κ_{ρ} replaced by 1, we conclude that the optimal constant is $\kappa_{\rho} = \sup_{(z,\omega)\neq(1,0)} \frac{((z-1)^2 + \omega^2)^{\frac{\rho}{2}}}{\varphi(z,\omega)}$. For the second inequality (5), we can apply the same approach: divided by $||x||^{\rho}$, it writes

$$(z^{2} + \omega^{2})^{\frac{\rho}{2}} - 1 \leq \tilde{\kappa}_{\rho} \left((z - 1)^{2} + \omega^{2} \right)^{\frac{1}{2}} \left((z^{2} + \omega^{2})^{\frac{\rho - 1}{2}} + 1 \right).$$

$$\text{As } (z, \omega) \to (1, 0), \ \left(z^{2} + \omega^{2} \right)^{\frac{\rho}{2}} - 1 = \left(1 + 2(z - 1) + (z - 1)^{2} + \omega^{2} \right)^{\frac{\rho}{2}} - 1 \sim \frac{\rho}{2} \left(2(z - 1) + \omega^{2} \right)^{\frac{\rho}{2}}$$

$$\lim_{(z, \omega) \to (1, 0)} \frac{\left(z^{2} + \omega^{2} \right)^{\frac{\rho}{2}} - 1}{\left((z - 1)^{2} + \omega^{2} \right)^{\frac{\rho}{2}} \left(1 + (z^{2} + \omega^{2})^{\frac{\rho - 1}{2}} \right)} = \limsup_{z \to 1} \frac{\rho(z - 1)}{2|z - 1|} = \frac{\rho}{2}.$$

On the other hand,

$$\lim_{|(z,\omega)| \to +\infty} \frac{\left(z^2 + \omega^2\right)^{\frac{\rho}{2}} - 1}{\left((z-1)^2 + \omega^2\right)^{\frac{1}{2}} \left(1 + (z^2 + \omega^2)^{\frac{\rho-1}{2}}\right)} = 1.$$

By continuity of the considered function over $\mathbb{R}^2 \setminus \{(1,0)\}$, we deduce that

$$\frac{\rho}{2} \vee 1 \le \sup_{(z,\omega) \neq (1,0)} \frac{\left(z^2 + \omega^2\right)^{\frac{\rho}{2}} - 1}{\left((z-1)^2 + \omega^2\right)^{\frac{1}{2}} \left(1 + (z^2 + \omega^2)^{\frac{\rho-1}{2}}\right)} < +\infty.$$

Since when x = 0 or y = x, (5) holds with $\tilde{\kappa}_{\rho}$ replaced by 1, we conclude that the optimal constant is $\tilde{\kappa}_{\rho} = \sup_{(z,\omega) \neq (1,0)} \frac{(z^2 + \omega^2)^{\frac{\rho}{2}} - 1}{((z-1)^2 + \omega^2)^{\frac{1}{2}} \left(1 + (z^2 + \omega^2)^{\frac{\rho-1}{2}}\right)}.$

References

- [1] J. Backhoff-Veraguas and G. Pammer. Stability of martingale optimal transport and weak optimal transport. *Ann. Appl. Probab.*, 32(1):721–752, 2022.
- [2] Martin Brückerhoff and Nicolas Juillet. Instability of martingale optimal transport in dimension $d \geq 2$. Electron. Commun. Probab., 27:Paper No. 24, 10, 2022.
- [3] D. Hobson and M. Klimmek. Robust price bounds for the forward starting straddle. *Finance and Stochastics*, 19(1):189–214, 2015.
- [4] D. Hobson and A. Neuberger. Robust Bounds for Forward Start Options. *Mathematical Finance*, 22(1):31–56, 2012.
- [5] B. Jourdain and W. Margheriti. Martingale Wasserstein inequality for probability measures in the convex order. *Bernoulli*, 28(2):830–858, 2022.
- [6] B. Jourdain and K. Shao. Non-decreasing martingale couplings. arXiv2305.00565, 2023.
- [7] V. Strassen. The existence of probability measures with given marginals. *Annals of Mathematical Statistics*, 36(2):423–439, 1965.
- [8] J. Wiesel. Continuity of the martingale optimal transport problem on the real line. *Ann. Appl. Probab.*, to appear.