Maximal Martingale Wasserstein Inequality

Benjamin Jourdain* Kexin Shao ${ }^{\dagger}$

October 12, 2023

Abstract

In this note, we complete the analysis of the Martingale Wasserstein Inequality started in [5] by checking that this inequality fails in dimension $d \geq 2$ when the integrability parameter ρ belongs to $[1,2)$ while a stronger Maximal Martingale Wasserstein Inequality holds whatever the dimension d when $\rho \geq 2$.

1 Introduction

The present paper elaborates on the convergence to 0 as $n \rightarrow \infty$ of $\inf _{M \in \Pi^{\mathrm{M}}\left(\mu_{n}, \nu_{n}\right)} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \mid y-$ $\left.x\right|^{\rho} M(d x, d y)$ with the Wasserstein distance $\mathcal{W}_{\rho}\left(\mu_{n}, \nu_{n}\right)$ when for each $n \in \mathbb{N}, \mu_{n}$ and ν_{n} belong to the set $\mathcal{P}_{\rho}\left(\mathbb{R}^{d}\right)$ of probability measures on \mathbb{R}^{d} with a finite moment of order $\rho \in[1,+\infty)$ and the former is smaller than the latter in the convex order. The convex order between $\mu, \nu \in \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)$ which is denoted $\mu \leq_{c x} \nu$ amounts to

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} f(x) \mu(d x) \leq \int_{\mathbb{R}^{d}} f(y) \nu(d y) \text { for each convex function } f: \mathbb{R}^{d} \rightarrow \mathbb{R} \tag{1}
\end{equation*}
$$

and, by Strassen's theorem [7], is equivalent to the non emptyness of the set of martingale couplings between μ and ν defined by

$$
\begin{aligned}
& \Pi^{\mathrm{M}}(\mu, \nu)=\left\{M(d x, d y)=\mu(d x) m(x, d y) \in \Pi(\mu, \nu) \mid \mu(d x) \text {-a.e., } \int_{\mathbb{R}^{d}} y m(x, d y)=x\right\} \text { where } \\
& \Pi(\mu, \nu)=\left\{\pi \in \mathcal{P}_{1}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right) \mid \forall A \in \mathcal{B}\left(\mathbb{R}^{d}\right), \pi\left(A \times \mathbb{R}^{d}\right)=\mu(A) \text { and } \pi\left(\mathbb{R}^{d} \times A\right)=\nu(A)\right\}
\end{aligned}
$$

The Wasserstein distance with index ρ is defined by

$$
\mathcal{W}_{\rho}(\mu, \nu)=\left(\inf _{\pi \in \Pi(\mu, \nu)} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{\rho} \pi(d x, d y)\right)^{1 / \rho}
$$

and we also introduce $\underline{\mathcal{M}}_{\rho}(\mu, \nu)$ and $\overline{\mathcal{M}}_{\rho}(\mu, \nu)$ respectively defined by

$$
\begin{equation*}
\underline{\mathcal{M}}_{\rho}^{\rho}(\mu, \nu)=\inf _{M \in \Pi^{\mathbb{M}}(\mu, \nu)} \int_{\mathbb{R}^{2 d}}|x-y|^{\rho} M(d x, d y), \overline{\mathcal{M}}_{\rho}^{\rho}(\mu, \nu)=\sup _{M \in \Pi^{\mathrm{M}}(\mu, \nu)} \int_{\mathbb{R}^{2 d}}|x-y|^{\rho} M(d x, d y) \tag{2}
\end{equation*}
$$

In dimension $d=1$, the optimization problems defining $\underline{\mathcal{M}}_{\rho}$ and $\overline{\mathcal{M}}_{\rho}$ are the respective subjects of [3] and [4] when $\rho=1$, while the general case $\rho \in(0,+\infty)$ is studied in [6].

The question of interest is related to the stability of Martingale Optimal Transport problems with respect to the marginal distributions μ and ν established in dimension $d=1$ in $[1,8]$ while

[^0]it fails in higher dimension according to [2]. A quantitative answer is given in dimension $d=1$ by the Martingale Wasserstein inequality established in [5, Proposition 1] for $\rho \in[1,+\infty)$,
\[

$$
\begin{equation*}
\exists \underline{C}_{(\rho, \rho), 1}<\infty, \forall \mu, \nu \in \mathcal{P}_{\rho}(\mathbb{R}) \text { with } \mu \leq_{c x} \nu, \underline{\mathcal{M}}_{\rho}^{\rho}(\mu, \nu) \leq \underline{C}_{(\rho, \rho), 1} \mathcal{W}_{\rho}(\mu, \nu) \sigma_{\rho}^{\rho-1}(\nu), \tag{3}
\end{equation*}
$$

\]

where the central moment $\sigma_{\rho}(\nu)$ of ν is defined by

$$
\sigma_{\rho}(\nu)=\inf _{c \in \mathbb{R}^{d}}\left(\int_{\mathbb{R}^{d}}|y-c|^{\rho} \nu(d y)\right)^{1 / \rho} \text { when } \rho \in[1,+\infty) \text { and } \sigma_{\infty}(\nu)=\inf _{c \in \mathbb{R}^{d}} \nu-\operatorname{ess}_{y \in \mathbb{R}^{d}}|y-c|
$$

The proposition also states that $\mathcal{W}_{\rho}(\mu, \nu)$ and $\sigma_{\rho}(\nu)$ have the right exponent in this inequality in the sense that for $1<s<\rho, \sup _{\substack{\mu, \nu \in \mathcal{P}_{\rho}(\mathbb{R}) \\ \mu \leq \leq_{x x}, \mu \neq \nu}} \frac{\underline{\mathcal{M}_{\rho}^{\rho}}(\mu, \nu)}{\mathcal{W}_{\rho}^{s}(\mu, \nu) \sigma_{\rho}^{\rho-s}(\nu)}=+\infty$. The generalization of (3) to higher dimensions d is also investigated in [5] where it is proved that for any $d \geq 2$,

$$
\underline{C}_{(\rho, \rho), d}:=\sup _{\substack{\mu, \nu \in \mathcal{P}_{\rho}\left(\mathbb{R}^{d}\right) \\ \mu \leq c x, \nu, \mu \neq \nu}} \frac{\mathcal{M}_{\rho}^{\rho}(\mu, \nu)}{\mathcal{W}_{\rho}(\mu, \nu) \sigma_{\rho}^{\rho-1}(\nu)}
$$

is infinite when $\rho \in\left[1, \frac{1+\sqrt{5}}{2}\right)$, while the one-dimensional constant $\underline{C}_{(\rho, \rho), 1}$ is preserved when μ and ν are products of one-dimensional probability measures or when, for X distributed according to μ, the conditional expectation of X given the direction of $X-\mathbb{E}[X]$ is a.s. equal to $\mathbb{E}[X]$ and ν is the distribution of $X+\lambda(X-\mathbb{E}[X])$ for some $\lambda \geq 0$. The present paper answers the question of the finiteness of $\underline{C}_{(\rho, \rho), d}$ when $\rho \in\left[\frac{1+\sqrt{5}}{2},+\infty\right)$ and $d \geq 2$, which remained open. It turns out that $\underline{C}_{(\rho, \rho), d}=+\infty$ for $d \geq 2$ when $\rho \in[1,2)$ while for $\rho \in[2,+\infty)$ the inequality (3) generalizes in any dimension d into a Maximal Martingale Wasserstein inequality with the left-hand side $\underline{\mathcal{M}}_{\rho}^{\rho}(\mu, \nu)$ replaced by the larger $\overline{\mathcal{M}}_{\rho}^{\rho}(\mu, \nu)$. We even replace conjugate exponents ρ and $\frac{\rho}{\rho-1}$ leading to the respective indices $\rho=\rho \times 1$ and $\rho=\frac{\rho}{\rho-1} \times(\rho-1)$ in the factors \mathcal{W} and σ in (3) by general conjugate exponents $q \in[1,+\infty]$ and $\frac{q}{q-1} \in[1,+\infty]$ leading to indices q and $\frac{q(\rho-1)}{q-1}$ (equal to $+\infty$ and $\rho-1$ when q is respectively equal to 1 and $+\infty)$ and define
with $\mathcal{W}_{\infty}(\mu, \nu)=\inf _{\pi \in \Pi(\mu, \nu)} \pi-\operatorname{ess} \sup _{(x, y) \in \mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|$. Since $\underline{\mathcal{M}}_{\rho} \leq \overline{\mathcal{M}}_{\rho}$, one has $\underline{C}_{(\rho, q), d} \leq$ $\bar{C}_{(\rho, q), d}$. These constants of course depend on the norm $|\cdot|$ on \mathbb{R}^{d} (even if we do not make this dependence explicit) but, by equivalence of the norms, their finiteness does not. Since the Euclidean norm plays a particular role, we will denote it by $\|\cdot\|$ rather than $|\cdot|$.
Theorem 1. (i) Let $\rho \in[1,2)$. For $q \in\left[1, \frac{1}{2-\rho}\right]$ (and even $q \in[1,+\infty]$ when $\rho=1$), one has $\underline{C}_{(\rho, q), 1} \leq K_{\rho}<+\infty$ where the constant K_{ρ} is studied in [5, Proposition 1] while, for $q \in[1,+\infty], \bar{C}_{(\rho, q), 1}=+\infty$ and $\underline{C}_{(\rho, q), d}=+\infty$ for $d \geq 2$.
(ii) Let $\rho \in[2,+\infty)$ and $q \in[1,+\infty]$. One has $\bar{C}_{(\rho, q), d}<+\infty$ whatever d. Moreover, when \mathbb{R}^{d} (resp. each \mathbb{R}^{d}) is endowed with the Euclidean norm, $\bar{C}_{(2, q), d}=2$ and $\sup _{d \geq 1} \bar{C}_{(\rho, q), d}<+\infty$.
Remark 2. - The fact that $\rho=2$ appears as a threshold is related to the equality $\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \| y-$ $x\left\|^{2} M(d x, d y)=\int_{\mathbb{R}^{d}}\right\| y\left\|^{2} \nu(d y)-\int_{\mathbb{R}^{d}}\right\| x \|^{2} \mu(d x)$ for $M \in \Pi^{M}(\mu, \nu)$ when $\mu, \nu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ are such that $\mu \leq_{c x} \nu$, which implies that when \mathbb{R}^{d} is endowed with the Euclidean norm

$$
\underline{\mathcal{M}}_{2}^{2}(\mu, \nu)=\overline{\mathcal{M}}_{2}^{2}(\mu, \nu)=\int_{\mathbb{R}^{d}}\|y\|^{2} \nu(d y)-\int_{\mathbb{R}^{d}}\|x\|^{2} \mu(d x)
$$

 since $\overline{\mathcal{M}}_{\rho} \leq \overline{\mathcal{M}}_{2}$.

2 Proof

The proof of Theorem 1 (ii) relies on the next lemma, the proof of the lemma is postponed after the proof of the theorem. In what follows, to avoid making distinctions in case $q \in\{1,+\infty\}$, we use the convention that for any probability measure γ and any measurable function f on the same probability space $\left(\int|f(z)|^{q} \gamma(d z)\right)^{1 / q}\left(\right.$ resp. $\left.\left(\left(\int|f(z)|^{\frac{q}{q-1}} \gamma(d z)\right)^{(q-1) / q},\left(\int|f(z)|^{\frac{q(\rho-1)}{q-1}} \gamma(d z)\right)^{(q-1) / q}\right)\right)$ is equal to $\gamma-\operatorname{ess} \sup _{z}|f(z)|$ (resp. $\left(\gamma-\operatorname{ess} \sup _{z}|f(z)|, \gamma-\operatorname{ess} \sup _{z}|f(z)|^{\rho-1}\right)$) when $q=+\infty$ (resp. $q=1$).

Lemma 3. Given $\rho \in[2,+\infty)$, there exist constants $\kappa_{\rho}, \tilde{\kappa}_{\rho} \in[0,+\infty)$ such that for all $d \geq 1$ and $x, y \in \mathbb{R}^{d}$,

$$
\begin{gather*}
\|x-y\|^{\rho} \leq \kappa_{\rho}\left((\rho-1)\|x\|^{\rho}+\|y\|^{\rho}-\rho\|x\|^{\rho-2}\langle x, y\rangle\right), \tag{4}\\
\|y\|^{\rho}-\|x\|^{\rho} \leq \tilde{\kappa}_{\rho}\|y-x\|\left(\|x\|^{\rho-1}+\|y\|^{\rho-1}\right) \tag{5}
\end{gather*}
$$

Remark 4. When $\rho=2$, then (4) holds as an equality with $\kappa_{\rho}=1$ while, by the Cauchy-Schwarz and the triangle inequalities,

$$
\|y\|^{2}-\|x\|^{2} \leq\langle y-x, y+x\rangle \leq\|y-x\| \times\|y+x\| \leq\|y-x\|(\|x\|+\|y\|)
$$

so that (5) holds with $\tilde{\kappa}_{\rho}=1$.
Proof of Theorem 1. (i) In dimension $d=1$, one has $\mathcal{M}_{1} \leq K_{1} \mathcal{W}_{1}$ with $K_{1}=2$ according to [5, Proposition 1] and we deduce that $\underline{C}_{(1, q), 1} \leq K_{1}$ for $q \in[1,+\infty]$ since $\mathcal{W}_{1} \leq \mathcal{W}_{q}$. Let now $\rho \in(1,2)$ and $q \in\left[1, \frac{1}{2-\rho}\right]$. One has $\frac{q(\rho-1)}{q-1} \geq 1$ since, when $q>1, \frac{q}{q-1}=1+\frac{1}{q-1} \geq 1+\frac{2-\rho}{\rho-1}=\frac{1}{\rho-1}$. For $\mu, \nu \in \mathcal{P}_{q \vee \frac{q(\rho-1)}{q-1}}(\mathbb{R})$ with respective quantile functions F_{μ}^{-1} and F_{ν}^{-1}, one has by optimality of the comonotonic coupling and Hölder's inequality

$$
\begin{aligned}
\mathcal{W}_{\rho}^{\rho}(\mu, \nu) & =\int_{0}^{1}\left|F_{\nu}^{-1}(u)-F_{\mu}^{-1}(u)\right| \times\left|F_{\nu}^{-1}(u)-F_{\mu}^{-1}(u)\right|^{\rho-1} d u \\
& \leq\left(\int_{0}^{1}\left|F_{\nu}^{-1}(u)-F_{\mu}^{-1}(u)\right|^{q} d u\right)^{1 / q}\left(\left(\int_{0}^{1}\left|F_{\nu}^{-1}(u)-F_{\mu}^{-1}(u)\right|^{\frac{q(\rho-1)}{q-1}} d u\right)^{\frac{q-1}{q(\rho-1)}}\right)^{\rho-1}
\end{aligned}
$$

Since, by the triangle inequality and $\mu \leq_{c x} \nu$, one has for $c \in \mathbb{R}$

$$
\begin{aligned}
\left(\int_{0}^{1}\left|F_{\nu}^{-1}(u)-F_{\mu}^{-1}(u)\right|^{\frac{q(\rho-1)}{q-1}} d u\right)^{\frac{q-1}{q(\rho-1)}} & \leq\left(\int_{0}^{1}\left|F_{\nu}^{-1}(u)-c\right|^{\frac{q(\rho-1)}{q-1}} d u\right)^{\frac{q-1}{q(\rho-1)}}+\left(\int_{0}^{1}\left|F_{\mu}^{-1}(u)-c\right|^{\frac{q(\rho-1)}{q-1}} d u\right)^{\frac{q-1}{q(\rho-1)}} \\
& \leq 2\left(\int_{0}^{1}\left|F_{\nu}^{-1}(u)-c\right|^{\frac{q(\rho-1)}{q-1}} d u\right)^{\frac{q-1}{q(\rho-1)}}
\end{aligned}
$$

we deduce by minimizing over the constant c that

$$
\mathcal{W}_{\rho}^{\rho}(\mu, \nu) \leq \mathcal{W}_{q}(\mu, \nu) \times 2^{\rho-1} \sigma_{\frac{q(\rho-1)}{q-1}}^{\rho-1}(\nu) .
$$

With this inequality replacing (30) in the proof of Proposition 1 [5] and the general inequality

$$
\int_{0}^{1}\left|F_{\nu}^{-1}(u)-F_{\mu}^{-1}(u)\right|\left|F_{\nu}^{-1}(u)-c\right|^{\rho-1} d u \leq \mathcal{W}_{q}(\mu, \nu)\left(\int_{0}^{1}\left|F_{\nu}^{-1}(u)-c\right|^{\frac{q(\rho-1)}{q-1}} d u\right)^{\frac{q-1}{q}}
$$

replacing the special case $q=\rho$ in the second equation p 840 in this proof, we deduce that $\mathcal{W}_{\rho}^{\rho}(\mu, \nu) \leq K_{\rho} \mathcal{W}_{q}(\mu, \nu) \sigma_{\frac{q(\rho-1)}{q-1}}^{\rho-1}(\nu)$.

To check that $\bar{C}_{(\rho, q), 1}=+\infty$ for $\rho \in[1,+\infty)$ and $q \in[1,+\infty]$, let us introduce for $n \geq 2$ and $z>0$,

$$
\begin{aligned}
\mu_{n, z} & =\frac{1}{2((n-1) z+1)}\left((1+z)\left(\delta_{1}+\delta_{n}\right)+2 z \sum_{i=2}^{n-1} \delta_{i}\right) \\
\text { and } \nu_{n, z} & =\frac{1}{2((n-1) z+1)}\left(\delta_{1-z}+\delta_{n+z}+z\left(\delta_{1}+\delta_{n}\right)+2 z \sum_{i=2}^{n-1} \delta_{i}\right) .
\end{aligned}
$$

This example generalizes the one introduced by Brückerhoff and Juillet in [2] which corresponds to the choice $z=1$. Since

$$
M_{n, z}=\frac{1}{2((n-1) z+1)}\left(\delta_{(1,1-z)}+z \delta_{(1,2)}+z \delta_{(n, n-1)}+\delta_{(n, n+z)}+z \sum_{i=2}^{n-1}\left(\delta_{(i, i-1)}+\delta_{(i, i+1)}\right)\right)
$$

belongs to $\Pi^{M}\left(\mu_{n, z}, \nu_{n, z}\right)$, we have

$$
\overline{\mathcal{M}}_{\rho}^{\rho}\left(\mu_{n, z}, \nu_{n, z}\right) \geq \int_{\mathbb{R} \times \mathbb{R}}|y-x|^{\rho} M_{n, z}(d x, d y)=\frac{(n-1) z+z^{\rho}}{(n-1) z+1} .
$$

On the other hand, by optimality of the comonotonic coupling $\mathcal{W}_{\rho}^{\rho}\left(\mu_{n, z}, \nu_{n, z}\right)=\frac{z^{\rho}}{(n-1) z+1}$ for $\rho \in[1,+\infty)$ and $\mathcal{W}_{\infty}\left(\mu_{n, z}, \nu_{n, z}\right)=z$. Last $\sigma_{\infty}\left(\nu_{n, z}\right)=\frac{n-1+2 z}{2}$ and, when $\rho \in[1,+\infty)$,

$$
\sigma_{\rho}^{\rho}\left(\nu_{n, z}\right)=\frac{1}{2^{\rho}((n-1) z+1)}\left((n-1+2 z)^{\rho}+z(n-1)^{\rho}+2 z \sum_{i=2}^{\left\lfloor\frac{n+1}{2}\right\rfloor}(n+1-2 i)^{\rho}\right)
$$

Let $\alpha \in[0,1)$. The sequence $n^{1-\alpha}$ goes to ∞ with n and for $\rho \in[1,+\infty)$ and $q \in[1,+\infty]$, we have

$$
\int_{\mathbb{R} \times \mathbb{R}}|y-x|^{\rho} M_{n, n^{-\alpha}}(d x, d y) \rightarrow 1, \mathcal{W}_{q}\left(\mu_{n, n^{-\alpha}}, \nu_{n, n^{-\alpha}}\right) \sim n^{\alpha \frac{(1-q)}{q}-\frac{1}{q}}
$$

and $\sigma_{\frac{q(\rho-1)}{\rho-1}}^{q-1}\left(\nu_{n, n^{-\alpha}}\right) \sim \frac{n^{\rho-1}}{2^{\rho-1}\left(1+\frac{q(\rho-1)}{q-1}\right)^{\frac{q-1}{q}}}$ where $\left(1+\frac{q(\rho-1)}{q-1}\right)^{\frac{q-1}{q}}=1$ by convention when $q=1$ so that

$$
\frac{\int_{\mathbb{R} \times \mathbb{R}}|y-x|^{\rho} M_{n, n^{-\alpha}}(d x, d y)}{\mathcal{W}_{q}\left(\mu_{n, n^{-\alpha}}, \nu_{n, n^{-\alpha}}\right) \sigma_{\frac{q(\rho-1)}{\rho-1}}^{\rho-1}\left(\nu_{n, n^{-\alpha}}\right)} \sim 2^{\rho-1}\left(1+\frac{q(\rho-1)}{q-1}\right)^{\frac{q-1}{q}} n^{\frac{q-1}{q} \alpha+\frac{1}{q}+1-\rho} .
$$

Let $\rho \in[1,2)$. For $q=1$, the exponent of n in the equivalent of the ratio is equal to $2-\rho>0$ so that the right-hand side goes to $+\infty$ with n. For $q \in(1,+\infty]$, we may choose $\alpha \in\left(\frac{q(\rho-1)-1}{q-1}, 1\right)$ (with left boundary equal to $\rho-1$ when $q=+\infty$) so that $\frac{q-1}{q} \alpha+\frac{1}{q}+1-\rho>0$ and the right-hand side still goes to $+\infty$ with n. Therefore $\bar{C}_{(\rho, q), 1}=+\infty$. To prove that $\underline{C}_{(\rho, q), d}=+\infty$ for $d \geq 2$ it is enough by [5, Lemma 1] to deal with the case $d=2$, in which we use the rotation argument in [2]. For $n \geq 2$ and $\theta \in(0, \pi), M_{n}^{\theta}$ defined as $\frac{1}{2\left((n-1) n^{-\alpha}+1\right)}$ times

$$
\begin{aligned}
& \delta_{\left((1,0),\left(1-n^{-\alpha} \cos \theta,-n^{-\alpha} \sin \theta\right)\right)}+n^{-\alpha} \delta_{((1,0),(1+\cos \theta, \sin \theta))}+n^{-\alpha} \delta_{((n, 0),(n-\cos \theta,-\sin \theta))} \\
& +\delta_{\left((n, 0),\left(n+n^{-\alpha} \cos \theta, n^{-\alpha} \sin \theta\right)\right)}+n^{-\alpha} \sum_{i=2}^{n-1}\left(\delta_{((i, 0),(i-\cos \theta,-\sin \theta))}+\delta_{((i, 0),(i+\cos \theta, \sin \theta))}\right)
\end{aligned}
$$

which is a martingale coupling between the image μ_{n} of $\mu_{n, n^{-\alpha}}$ by $\mathbb{R} \ni x \mapsto(x, 0) \in \mathbb{R}^{2}$ and its second marginal ν_{n}^{θ} which, as $\theta \rightarrow 0$, converges in any \mathcal{W}_{q} with $q \in[1,+\infty]$ to the image of $\nu_{n, n^{-\alpha}}$
by the same mapping. According to the proof of [2, Lemma 1.1], $\Pi^{M}\left(\mu_{n}, \nu_{n}^{\theta}\right)=\left\{M_{n}^{\theta}\right\}$ so that $\underline{\mathcal{M}}_{\rho}^{\rho}\left(\mu_{n}, \nu_{n}^{\theta}\right)=\int_{\mathbb{R}^{2} \times \mathbb{R}^{2}}|y-x|^{\rho} M_{n}^{\theta}(d x, d y)$ and

$$
\lim _{\theta \rightarrow 0} \frac{\mathcal{M}_{\rho}^{\rho}\left(\mu_{n}, \nu_{n}^{\theta}\right)}{\mathcal{W}_{q}\left(\mu_{n}, \nu_{n}^{\theta}\right) \sigma_{\frac{q(\rho-1)}{\rho-1}}^{\rho-1}\left(\nu_{n}^{\theta}\right)}=\frac{\int_{\mathbb{R} \times \mathbb{R}}|y-x|^{\rho} M_{n, n^{-\alpha}}(d x, d y)}{\mathcal{W}_{q}\left(\mu_{\left.n, n^{-\alpha}, \nu_{n, n^{-\alpha}}\right) \sigma_{\frac{q(\rho-1)}{\rho-1}}^{\rho-1}\left(\nu_{n, n^{-\alpha}}\right)} . . . ~ . ~\right.}
$$

With the above analysis of the asymptotic behaviour of the right-hand side as $n \rightarrow \infty$, we conclude that $\underline{C}_{(\rho, q), d}=+\infty$.
(ii) Now, let $\rho \in[2,+\infty)$ and $M \in \Pi^{M}(\mu, \nu)$. Applying Equation (4) in Lemma 3 for the inequality and then using the martingale property of M, we obtain that for $c \in \mathbb{R}^{d}$, we have

$$
\begin{align*}
\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} & \|x-y\|^{\rho} M(d x, d y)=\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\|(x-c)-(y-c)\|^{\rho} M(d x, d y) \\
& \leq \kappa_{\rho} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\left((\rho-1)\|x-c\|^{\rho}+\|y-c\|^{\rho}-\rho\|x-c\|^{\rho-2}\langle x-c, y-c\rangle\right) M(d x, d y) \\
& \left.=\kappa_{\rho}\left(\int_{\mathbb{R}^{d}}\|y-c\|^{\rho} \nu(d y)-\int_{\mathbb{R}^{d}}\|x-c\|^{\rho} \mu(d x)\right)\right) \tag{6}
\end{align*}
$$

Denoting by $\pi \in \Pi(\mu, \nu)$ an optimal coupling for $\mathcal{W}_{q}(\mu, \nu)$, we have using Equation (5) in Lemma 3 for the inequality

$$
\begin{align*}
\int_{\mathbb{R}^{d}}\|y-c\|^{\rho} \nu(d y) & -\int_{\mathbb{R}^{d}}\|x-c\|^{\rho} \mu(d x)=\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\left(\|y-c\|^{\rho}-\|x-c\|^{\rho}\right) \pi(d x, d y) \\
& \leq \tilde{\kappa}_{\rho} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\|y-x\|\left(\|x-c\|^{\rho-1}+\|y-c\|^{\rho-1}\right) \pi(d x, d y) \tag{7}
\end{align*}
$$

By the fact that all norms are equivalent in finite dimensional vector spaces, there exists $\lambda \in[1, \infty)$ such that for all $z \in \mathbb{R}^{d}$, we have

$$
\frac{\|z\|}{\lambda} \leq|z| \leq \lambda\|z\| .
$$

Therefore, using (6) and (7) for the second inequality, Hölder's inequality for the fourth, the triangle inequality for the fifth and $\mu \leq_{c x} \nu$ for the sixth, we get that for $c \in \mathbb{R}^{d}$,

$$
\begin{aligned}
\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} & |x-y|^{\rho} M(d x, d y) \leq \lambda^{\rho} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\|x-y\|^{\rho} M(d x, d y) \\
& \leq \kappa_{\rho} \tilde{\kappa}_{\rho} \lambda^{\rho} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\|x-y\|\left(\|x-c\|^{\rho-1}+\|y-c\|^{\rho-1}\right) \pi(d x, d y) \\
& \leq \kappa_{\rho} \tilde{\kappa}_{\rho} \lambda^{2 \rho} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|\left(|x-c|^{\rho-1}+|y-c|^{\rho-1}\right) \pi(d x, d y) \\
& \leq \kappa_{\rho} \tilde{\kappa}_{\rho} \lambda^{2 \rho} \mathcal{W}_{q}(\mu, \nu)\left(\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\left(|x-c|^{\rho-1}+|y-c|^{\rho-1}\right)^{\frac{q}{q-1}} \pi(d x, d y)\right)^{\frac{q-1}{q}} \\
& \leq \kappa_{\rho} \tilde{\kappa}_{\rho} \lambda^{2 \rho} \mathcal{W}_{q}(\mu, \nu)\left(\left(\int_{\mathbb{R}^{d}}|x-c|^{\frac{q(\rho-1)}{q-1}} \mu(d x)\right)^{(q-1) / q}+\left(\int_{\mathbb{R}^{d}}|y-c|^{\frac{q(\rho-1)}{q-1}} \nu(d y)\right)^{(q-1) / q}\right) \\
& \leq 2 \kappa_{\rho} \tilde{\kappa}_{\rho} \lambda^{2 \rho} \mathcal{W}_{q}(\mu, \nu)\left(\int_{\mathbb{R}^{d}}|y-c|^{q-\frac{q(\rho-1)}{q-1}} \nu(d y)\right)^{\frac{q-1}{q}} .
\end{aligned}
$$

By taking the infimum with respect to $c \in \mathbb{R}^{d}$, we conclude that the statement holds with $\bar{C}_{(\rho, q), d} \leq$ $2 \kappa_{\rho} \tilde{\kappa}_{\rho} \lambda^{2 \rho}$. Finally, let us suppose that \mathbb{R}^{d} is endowed with the Euclidean norm. Then we can choose $\lambda=1$, so that $\bar{C}_{(\rho, q), d} \leq 2 \kappa_{\rho} \tilde{\kappa}_{\rho}$ with the right-hand side not depending on d according to Lemma 3. Moreover, by Remark $4, \bar{C}_{(2, q), d} \leq 2$ and since for $\alpha \in[0,1)$,

$$
\lim _{n \rightarrow \infty} \frac{\overline{\mathcal{M}}_{2}^{2}\left(\mu_{n, n^{-\alpha}}, \nu_{n, n^{-\alpha}}\right)}{\sqrt{\mathcal{W}_{1}\left(\mu_{n, n^{-\alpha}}, \nu_{n, n^{-\alpha}}\right) \sigma_{\infty}\left(\nu_{n, n^{-\alpha}}\right)}}=2
$$

we have $\bar{C}_{(2, q), d}=2$.

Proof of Lemma 3. We suppose that $\rho>2$ since the case $\rho=2$ has been addressed in Remark 4.
Suppose $x \neq 0$ and $y \neq x$ and set $e=\frac{x}{\|x\|}$ and $z=\frac{\langle y, x\rangle}{\|x\|^{2}}$. The vector $\frac{y}{\|x\|}-z e$ is orthogonal to e and can be rewritten as ωe^{\perp} with $\omega \geq 0$ and $e^{\perp} \in \mathbb{R}^{d}$ such that $\left\|e^{\perp}\right\|=1$ and $\left\langle e, e^{\perp}\right\rangle=0$. One then has $\frac{y}{\|x\|}=z e+\omega e^{\perp}$ and since $y \neq x,(z, w) \neq(1,0)$.

The first inequality (4) divided by $\|x\|^{\rho}$ writes:

$$
\left((1-z)^{2}+\omega^{2}\right)^{\frac{\rho}{2}} \leq \kappa_{\rho}\left((\rho-1)+\left(z^{2}+\omega^{2}\right)^{\frac{\rho}{2}}-\rho z\right) .
$$

Let us define $\varphi(z, \omega)=\rho-1+\left(z^{2}+\omega^{2}\right)^{\frac{\rho}{2}}-\rho z=-\rho(z-1)-1+\left(1+2(z-1)+(z-1)^{2}+\omega^{2}\right)^{\frac{\rho}{2}}$ as the second factor in the right-hand side. Applying a Taylor's expansion at $t=0$ to $t \mapsto(1+t)^{\frac{\rho}{2}}$, we obtain

$$
\varphi(z, \omega)=\frac{\rho}{2} \omega^{2}+\frac{\rho}{2}(\rho-1)(z-1)^{2}+o\left((z-1)^{2}+\omega^{2}\right) .
$$

Since $\rho>2$, we conclude that

$$
\lim _{(z, \omega) \rightarrow(1,0)} \frac{\left((1-z)^{2}+\omega^{2}\right)^{\frac{\rho}{2}}}{\varphi(z, \omega)}=0
$$

As $|(z, \omega)| \rightarrow+\infty, \varphi(z, \omega) \sim\left(z^{2}+\omega^{2}\right)^{\frac{\rho}{2}} \sim\left((z-1)^{2}+\omega^{2}\right)^{\rho}$. Therefore,

$$
\lim _{|(z, \omega)| \rightarrow+\infty} \frac{\left((z-1)^{2}+\omega^{2}\right)^{\frac{\rho}{2}}}{\varphi(z, \omega)}=1 .
$$

The function $(z, w) \mapsto \frac{\left((z-1)^{2}+\omega^{2}\right)^{\frac{\rho}{2}}}{\varphi(z, \omega)}$ being continuous on $\mathbb{R}^{2} \backslash\{(1,0)\}$, we deduce that

$$
1 \leq \sup _{(z, \omega) \neq(1,0)} \frac{\left((z-1)^{2}+\omega^{2}\right)^{\frac{\rho}{2}}}{\varphi(z, \omega)}<+\infty
$$

Since when $x=0$ or $y=x$, (4) holds with κ_{ρ} replaced by 1 , we conclude that the optimal constant is $\kappa_{\rho}=\sup _{(z, \omega) \neq(1,0)} \frac{\left((z-1)^{2}+\omega^{2}\right)^{\frac{\rho}{2}}}{\varphi(z, \omega)}$.

For the second inequality (5), we can apply the same approach: divided by $\|x\|^{\rho}$, it writes

$$
\begin{gathered}
\left(z^{2}+\omega^{2}\right)^{\frac{\rho}{2}}-1 \leq \tilde{\kappa}_{\rho}\left((z-1)^{2}+\omega^{2}\right)^{\frac{1}{2}}\left(\left(z^{2}+\omega^{2}\right)^{\frac{\rho-1}{2}}+1\right) . \\
\text { As }(z, \omega) \rightarrow(1,0),\left(z^{2}+\omega^{2}\right)^{\frac{\rho}{2}}-1=\left(1+2(z-1)+(z-1)^{2}+\omega^{2}\right)^{\frac{\rho}{2}}-1 \sim \frac{\rho}{2}\left(2(z-1)+\omega^{2}\right) \\
\limsup _{(z, \omega) \rightarrow(1,0)} \frac{\left(z^{2}+\omega^{2}\right)^{\frac{\rho}{2}}-1}{\left((z-1)^{2}+\omega^{2}\right)^{\frac{1}{2}}\left(1+\left(z^{2}+\omega^{2}\right)^{\frac{\rho-1}{2}}\right)}=\limsup _{z \rightarrow 1} \frac{\rho(z-1)}{2|z-1|}=\frac{\rho}{2} .
\end{gathered}
$$

On the other hand,

$$
\lim _{|(z, \omega)| \rightarrow+\infty} \frac{\left(z^{2}+\omega^{2}\right)^{\frac{\rho}{2}}-1}{\left((z-1)^{2}+\omega^{2}\right)^{\frac{1}{2}}\left(1+\left(z^{2}+\omega^{2}\right)^{\frac{\rho-1}{2}}\right)}=1 .
$$

By continuity of the considered function over $\mathbb{R}^{2} \backslash\{(1,0)\}$, we deduce that

$$
\frac{\rho}{2} \vee 1 \leq \sup _{(z, \omega) \neq(1,0)} \frac{\left(z^{2}+\omega^{2}\right)^{\frac{\rho}{2}}-1}{\left((z-1)^{2}+\omega^{2}\right)^{\frac{1}{2}}\left(1+\left(z^{2}+\omega^{2}\right)^{\frac{\rho-1}{2}}\right)}<+\infty
$$

Since when $x=0$ or $y=x$, (5) holds with $\tilde{\kappa}_{\rho}$ replaced by 1 , we conclude that the optimal constant is $\tilde{\kappa}_{\rho}=\sup _{(z, \omega) \neq(1,0)} \frac{\left(z^{2}+\omega^{2}\right)^{\frac{\rho}{2}}-1}{\left((z-1)^{2}+\omega^{2}\right)^{\frac{1}{2}}\left(1+\left(z^{2}+\omega^{2}\right)^{\frac{\rho-1}{2}}\right)}$.

References

[1] J. Backhoff-Veraguas and G. Pammer. Stability of martingale optimal transport and weak optimal transport. Ann. Appl. Probab., 32(1):721-752, 2022.
[2] Martin Brückerhoff and Nicolas Juillet. Instability of martingale optimal transport in dimension $d \geq 2$. Electron. Commun. Probab., 27:Paper No. 24, 10, 2022.
[3] D. Hobson and M. Klimmek. Robust price bounds for the forward starting straddle. Finance and Stochastics, 19(1):189-214, 2015.
[4] D. Hobson and A. Neuberger. Robust Bounds for Forward Start Options. Mathematical Finance, 22(1):31-56, 2012.
[5] B. Jourdain and W. Margheriti. Martingale Wasserstein inequality for probability measures in the convex order. Bernoulli, 28(2):830-858, 2022.
[6] B. Jourdain and K. Shao. Non-decreasing martingale couplings. arXiv2305.00565, 2023.
[7] V. Strassen. The existence of probability measures with given marginals. Annals of Mathematical Statistics, 36(2):423-439, 1965.
[8] J. Wiesel. Continuity of the martingale optimal transport problem on the real line. Ann. Appl. Probab., to appear.

[^0]: *CERMICS, Ecole des Ponts, INRIA, Marne-la-Vallée, France. E-mail: benjamin.jourdain@enpc.fr - This research benefited from the support of the "Chaire Risques Financiers", Fondation du Risque.
 ${ }^{\dagger}$ INRIA Paris, 2 rue Simone Iff, CS 42112, 75589 Paris Cedex 12, France, Université Paris-Dauphine, Ecole des Ponts ParisTech. E-mail: kexin.shao@inria.fr. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 945322.

