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Introduction

The present paper elaborates on the convergence to 0 as n → ∞ of inf M ∈Π M (µn,νn) R d ×R d |y -x| ρ M (dx, dy) with the Wasserstein distance W ρ (µ n , ν n ) when for each n ∈ N, µ n and ν n belong to the set P ρ (R d ) of probability measures on R d with a finite moment of order ρ ∈ [1, +∞) and the former is smaller than the latter in the convex order. The convex order between µ, ν ∈ P 1 (R d ) which is denoted µ ≤ cx ν amounts to

R d f (x) µ(dx) ≤ R d f (y) ν(dy) for each convex function f : R d → R, (1) 
and, by Strassen's theorem [START_REF] Strassen | The existence of probability measures with given marginals[END_REF], is equivalent to the non emptyness of the set of martingale couplings between µ and ν defined by 

Π(µ, ν) = {π ∈ P 1 (R d × R d ) | ∀A ∈ B(R d ), π(A × R d ) = µ(A) and π(R d × A) = ν(A)}.
The Wasserstein distance with index ρ is defined by

W ρ (µ, ν) = inf π∈Π(µ,ν) R d ×R d
|x -y| ρ π(dx, dy)

1/ρ and we also introduce M ρ (µ, ν) and M ρ (µ, ν) respectively defined by

M ρ ρ (µ, ν) = inf M ∈Π M (µ,ν) R 2d |x -y| ρ M (dx, dy), M ρ ρ (µ, ν) = sup M ∈Π M (µ,ν) R 2d
|x -y| ρ M (dx, dy).

(

) 2 
In dimension d = 1, the optimization problems defining M ρ and M ρ are the respective subjects of [START_REF] Hobson | Robust price bounds for the forward starting straddle[END_REF] and [START_REF] Hobson | Robust Bounds for Forward Start Options[END_REF] when ρ = 1, while the general case ρ ∈ (0, +∞) is studied in [START_REF] Jourdain | Non-decreasing martingale couplings[END_REF].

The question of interest is related to the stability of Martingale Optimal Transport problems with respect to the marginal distributions µ and ν established in dimension d = 1 in [START_REF] Backhoff-Veraguas | Stability of martingale optimal transport and weak optimal transport[END_REF][START_REF] Wiesel | Continuity of the martingale optimal transport problem on the real line[END_REF] while it fails in higher dimension according to [START_REF] Brückerhoff | Instability of martingale optimal transport in dimension d ≥ 2[END_REF]. A quantitative answer is given in dimension d = 1 by the Martingale Wasserstein inequality established in [START_REF] Jourdain | Martingale Wasserstein inequality for probability measures in the convex order[END_REF]Proposition 1] 

for ρ ∈ [1, +∞), ∃C (ρ,ρ),1 < ∞, ∀µ, ν ∈ P ρ (R) with µ ≤ cx ν, M ρ ρ (µ, ν) ≤ C (ρ,ρ),1 W ρ (µ, ν)σ ρ-1 ρ (ν), (3) 
where the central moment σ ρ (ν) of ν is defined by

σ ρ (ν) = inf c∈R d R d |y -c| ρ ν(dy) 1/ρ when ρ ∈ [1, +∞) and σ ∞ (ν) = inf c∈R d ν -ess sup y∈R d |y -c|.
The proposition also states that W ρ (µ, ν) and σ ρ (ν) have the right exponent in this inequality in the sense that for

1 < s < ρ, sup µ,ν∈Pρ (R) µ≤cxν,µ =ν M ρ ρ (µ,ν) W s ρ (µ,ν)σ ρ-s ρ (ν) = +∞.
The generalization of (3) to higher dimensions d is also investigated in [START_REF] Jourdain | Martingale Wasserstein inequality for probability measures in the convex order[END_REF] where it is proved that for any d ≥ 2,

C (ρ,ρ),d := sup µ,ν∈Pρ(R d ) µ≤cxν,µ =ν M ρ ρ (µ, ν) W ρ (µ, ν)σ ρ-1 ρ (ν) is infinite when ρ ∈ [1, 1+ √ 5 
2 ) , while the one-dimensional constant C (ρ,ρ),1 is preserved when µ and ν are products of one-dimensional probability measures or when, for X distributed according to µ, the conditional expectation of X given the direction of X -E[X] is a.s. equal to E[X] and ν is the distribution of X + λ(X -E[X]) for some λ ≥ 0. The present paper answers the question of the finiteness of C (ρ,ρ),d when ρ ∈ [ 1+ We even replace conjugate exponents ρ and ρ ρ-1 leading to the respective indices ρ = ρ × 1 and ρ = ρ ρ-1 × (ρ -1) in the factors W and σ in (3) by general conjugate exponents q ∈ [1, +∞] and q q-1 ∈ [1, +∞] leading to indices q and q(ρ-1) q-1 (equal to +∞ and ρ -1 when q is respectively equal to 1 and +∞) and define

C (ρ,q),d := sup µ,ν∈P q∨ (ρ-1)q q-1 (R d ) µ≤cxν,µ =ν M ρ ρ (µ, ν) W q (µ, ν)σ ρ-1 q(ρ-1)
q-1 (ν) and C (ρ,q),d := sup µ,ν∈P q∨ (ρ-1)q q-1

(R d ) µ≤cxν,µ =ν M ρ ρ (µ, ν) W q (µ, ν)σ ρ-1 q(ρ-1) q-1 (ν) , with W ∞ (µ, ν) = inf π∈Π(µ,ν) π -ess sup (x,y)∈R d ×R d |x -y|. Since M ρ ≤ M ρ , one has C (ρ,q),d ≤ C (ρ,q),d .
These constants of course depend on the norm | • | on R d (even if we do not make this dependence explicit) but, by equivalence of the norms, their finiteness does not. Since the Euclidean norm plays a particular role, we will denote it by

• rather than | • |. Theorem 1. (i) Let ρ ∈ [1, 2). For q ∈ [1, 1 2-ρ ] (and even q ∈ [1, +∞] when ρ = 1), one has C (ρ,q),1 ≤ K ρ < +∞ where the constant K ρ is studied in [5, Proposition 1] while, for q ∈ [1, +∞], C (ρ,q),1 = +∞ and C (ρ,q),d = +∞ for d ≥ 2. (ii) Let ρ ∈ [2, +∞) and q ∈ [1, +∞]. One has C (ρ,q),d < +∞ whatever d. Moreover, when R d (resp. each R d ) is endowed with the Euclidean norm, C (2,q),d = 2 and sup d≥1 C (ρ,q),d < +∞.
Remark 2.

• The fact that ρ = 2 appears as a threshold is related to the equality

R d ×R d y - x 2 M (dx, dy) = R d y 2 ν(dy) - R d x 2 µ(dx) for M ∈ Π M (µ, ν) when µ, ν ∈ P 2 (R d ) are such that µ ≤ cx ν, which implies that when R d is endowed with the Euclidean norm M 2 2 (µ, ν) = M 2 2 (µ, ν) = R d y 2 ν(dy) - R d
x 2 µ(dx).

• For ρ ∈ [1, 2), one has C (ρ,q),d = +∞ while sup µ,ν∈P q∨ q q-1

(R d ) µ≤cxν,µ =ν M 2 ρ (µ,ν) Wq(µ,ν)σ q q-1 (ν) ≤ C (2,q),d < +∞ since M ρ ≤ M 2 .

Proof

The proof of Theorem 1 (ii) relies on the next lemma, the proof of the lemma is postponed after the proof of the theorem. In what follows, to avoid making distinctions in case q ∈ {1, +∞}, we use the convention that for any probability measure γ and any measurable function f on the same probability space |f (z)| q γ(dz)

1/q (resp. |f (z)| q q-1 γ(dz) (q-1)/q , |f (z)| q(ρ-1)
q-1 γ(dz)

(q-1)/q ) is equal to γ -ess sup z |f (z)| (resp. (γ -ess sup z |f (z)|, γ -ess sup z |f (z)| ρ-1
)) when q = +∞ (resp. q = 1).

Lemma 3. Given ρ ∈ [2, +∞), there exist constants κ ρ , κρ ∈ [0, +∞) such that for all d ≥ 1 and x, y ∈ R d , x -y ρ ≤ κ ρ (ρ -1) x ρ + y ρ -ρ x ρ-2 x, y , (4) 
y ρ -x ρ ≤ κρ y -x x ρ-1 + y ρ-1 . ( 5 
)
Remark 4. When ρ = 2, then (4) holds as an equality with κ ρ = 1 while, by the Cauchy-Schwarz and the triangle inequalities,

y 2 -x 2 ≤ y -x, y + x ≤ y -x × y + x ≤ y -x ( x + y ) so that (5) holds with κρ = 1. Proof of Theorem 1. (i) In dimension d = 1, one has M 1 ≤ K 1 W 1 with K 1 = 2 according to [5,
Proposition 1] and we deduce that

C (1,q),1 ≤ K 1 for q ∈ [1, +∞] since W 1 ≤ W q . Let now ρ ∈ (1, 2) and q ∈ [1, 1 2-ρ ]. One has q(ρ-1) q-1 ≥ 1 since, when q > 1, q q-1 = 1 + 1 q-1 ≥ 1 + 2-ρ ρ-1 = 1 ρ-1 . For µ, ν ∈ P q∨ q(ρ-1) q-1 (R) with respective quantile functions F -1 µ and F -1
ν , one has by optimality of the comonotonic coupling and Hölder's inequality

W ρ ρ (µ, ν) = 1 0 |F -1 ν (u) -F -1 µ (u)| × |F -1 ν (u) -F -1 µ (u)| ρ-1 du ≤ 1 0 |F -1 ν (u) -F -1 µ (u)| q du 1/q   1 0 |F -1 ν (u) -F -1 µ (u)| q(ρ-1)
q-1 du q-1 q(ρ-1)

  ρ-1 .
Since, by the triangle inequality and µ ≤ cx ν, one has for c ∈ R

1 0 |F -1 ν (u) -F -1 µ (u)| q(ρ-1)
q-1 du q-1 q(ρ-1)

≤ 1 0 |F -1 ν (u) -c| q(ρ-1)
q-1 du q-1 q(ρ-1)

+ 1 0 |F -1 µ (u) -c| q(ρ-1) q-1 du q-1 q(ρ-1) ≤ 2 1 0 |F -1 ν (u) -c| q(ρ-1) q-1 du q-1 q(ρ-1)
, we deduce by minimizing over the constant c that

W ρ ρ (µ, ν) ≤ W q (µ, ν) × 2 ρ-1 σ ρ-1 q(ρ-1) q-1 (ν).
With this inequality replacing (30) in the proof of Proposition 1 [START_REF] Jourdain | Martingale Wasserstein inequality for probability measures in the convex order[END_REF] and the general inequality

1 0 |F -1 ν (u) -F -1 µ (u)||F -1 ν (u) -c| ρ-1 du ≤ W q (µ, ν) 1 0 |F -1 ν (u) -c| q(ρ-1)
q-1 du q-1 q , replacing the special case q = ρ in the second equation p840 in this proof, we deduce that

W ρ ρ (µ, ν) ≤ K ρ W q (µ, ν)σ ρ-1 q(ρ-1) q-1 (ν).
To check that C (ρ,q),1 = +∞ for ρ ∈ [1, +∞) and q ∈ [1, +∞], let us introduce for n ≥ 2 and z > 0,

µ n,z = 1 2((n -1)z + 1) (1 + z) (δ 1 + δ n ) + 2z n-1 i=2 δ i and ν n,z = 1 2((n -1)z + 1) δ 1-z + δ n+z + z (δ 1 + δ n ) + 2z n-1 i=2 δ i .
This example generalizes the one introduced by Brückerhoff and Juillet in [START_REF] Brückerhoff | Instability of martingale optimal transport in dimension d ≥ 2[END_REF] which corresponds to the choice z = 1. Since

M n,z = 1 2((n -1)z + 1) δ (1,1-z) + zδ (1,2) + zδ (n,n-1) + δ (n,n+z) + z n-1 i=2 δ (i,i-1) + δ (i,i+1)
belongs to Π M (µ n,z , ν n,z ), we have

M ρ ρ (µ n,z , ν n,z ) ≥ R×R |y -x| ρ M n,z (dx, dy) = (n -1)z + z ρ (n -1)z + 1 .
On the other hand, by optimality of the comonotonic coupling

W ρ ρ (µ n,z , ν n,z ) = z ρ (n-1)z+1 for ρ ∈ [1, +∞) and W ∞ (µ n,z , ν n,z ) = z. Last σ ∞ (ν n,z ) = n-1+2z 2 and, when ρ ∈ [1, +∞), σ ρ ρ (ν n,z ) = 1 2 ρ ((n -1)z + 1)   (n -1 + 2z) ρ + z(n -1) ρ + 2z n+1 2 i=2 (n + 1 -2i) ρ   .
Let α ∈ [0, 1). The sequence n 1-α goes to ∞ with n and for ρ ∈ [1, +∞) and q ∈ [1, +∞], we have

R×R |y -x| ρ M n,n -α (dx, dy) → 1, W q (µ n,n -α , ν n,n -α ) ∼ n α (1-q) q -1 q and σ ρ-1 q(ρ-1) q-1 (ν n,n -α ) ∼ n ρ-1
2 ρ-1 (1+ q(ρ-1) q-1 )

q-1 q

where 1 + q(ρ-1) q-1 q-1 q = 1 by convention when q = 1 so that

R×R |y -x| ρ M n,n -α (dx, dy) W q (µ n,n -α , ν n,n -α )σ ρ-1 q(ρ-1) q-1 (ν n,n -α ) ∼ 2 ρ-1 1 + q(ρ -1) q -1 q-1 q n q-1 q α+ 1 q +1-ρ .
Let ρ ∈ [1, 2). For q = 1, the exponent of n in the equivalent of the ratio is equal to 2 -ρ > 0 so that the right-hand side goes to +∞ with n. For q ∈ (1, +∞], we may choose α ∈ q(ρ-1)-1 q-1 , 1

(with left boundary equal to ρ -1 when q = +∞) so that q-1 q α + 1 q + 1 -ρ > 0 and the right-hand side still goes to +∞ with n. Therefore C (ρ,q),1 = +∞. To prove that C (ρ,q),d = +∞ for d ≥ 2 it is enough by [START_REF] Jourdain | Martingale Wasserstein inequality for probability measures in the convex order[END_REF]Lemma 1] to deal with the case d = 2, in which we use the rotation argument in [START_REF] Brückerhoff | Instability of martingale optimal transport in dimension d ≥ 2[END_REF]. For n ≥ 2 and θ ∈ (0, π), M θ n defined as

1 2((n-1)n -α +1) times δ ((1,0),(1-n -α cos θ,-n -α sin θ)) + n -α δ ((1,0),(1+cos θ,sin θ)) + n -α δ ((n,0),(n-cos θ,-sin θ)) + δ ((n,0),(n+n -α cos θ,n -α sin θ)) + n -α n-1 i=2 δ ((i,0),(i-cos θ,-sin θ)) + δ ((i,0),(i+cos θ,sin θ))
which is a martingale coupling between the image µ n of µ n,n -α by R x → (x, 0) ∈ R 2 and its second marginal ν θ n which, as θ → 0, converges in any W q with q ∈ [1, +∞] to the image of ν n,n -α by the same mapping. According to the proof of [2, Lemma 1

.1], Π M (µ n , ν θ n ) = {M θ n } so that M ρ ρ (µ n , ν θ n ) = R 2 ×R 2 |y -x| ρ M θ n (dx, dy) and lim θ→0 M ρ ρ (µ n , ν θ n ) W q (µ n , ν θ n )σ ρ-1 q(ρ-1) q-1 (ν θ n ) = R×R |y -x| ρ M n,n -α (dx, dy) W q (µ n,n -α , ν n,n -α )σ ρ-1 q(ρ-1) q-1 (ν n,n -α ) .
With the above analysis of the asymptotic behaviour of the right-hand side as n → ∞, we conclude that C (ρ,q),d = +∞.

(ii) Now, let ρ ∈ [2, +∞) and M ∈ Π M (µ, ν). Applying Equation (4) in Lemma 3 for the inequality and then using the martingale property of M , we obtain that for c ∈ R d , we have

R d ×R d x -y ρ M (dx, dy) = R d ×R d (x -c) -(y -c) ρ M (dx, dy) ≤ κ ρ R d ×R d (ρ -1) x -c ρ + y -c ρ -ρ x -c ρ-2 x -c, y -c M (dx, dy) = κ ρ R d y -c ρ ν(dy) - R d x -c ρ µ(dx)) . (6) 
Denoting by π ∈ Π(µ, an optimal coupling for W q (µ, ν), we have using Equation ( 5) in Lemma 3 for the inequality

R d y -c ρ ν(dy) - R d x -c ρ µ(dx) = R d ×R d ( y -c ρ -x -c ρ ) π(dx, dy) ≤ κρ R d ×R d y -x x -c ρ-1 + y -c ρ-1 π(dx, dy). (7) 
By the fact that all norms are equivalent in finite dimensional vector spaces, there exists λ ∈ [1, ∞) such that for all z ∈ R d , we have z λ ≤ |z| ≤ λ z .

Therefore, using ( 6) and [START_REF] Strassen | The existence of probability measures with given marginals[END_REF] for the second inequality, Hölder's inequality for the fourth, the triangle inequality for the fifth and µ ≤ cx ν for the sixth, we get that for c ∈ R d ,

R d ×R d |x -y| ρ M (dx, dy) ≤ λ ρ R d ×R d
x -y ρ M (dx, dy)

≤ κ ρ κρ λ ρ R d ×R d x -y x -c ρ-1 + y -c ρ-1 π(dx, dy) ≤ κ ρ κρ λ 2ρ R d ×R d |x -y| |x -c| ρ-1 + |y -c| ρ-1 π(dx, dy) ≤ κ ρ κρ λ 2ρ W q (µ, ν) R d ×R d |x -c| ρ-1 + |y -c| ρ-1 q q-1 π(dx, dy) q-1 q ≤ κ ρ κρ λ 2ρ W q (µ, ν) R d |x -c| q(ρ-1)
q-1 µ(dx)

(q-1)/q + R d |y -c| q(ρ-1)
q-1 ν(dy)

(q-1)/q ≤ 2κ ρ κρ λ 2ρ W q (µ, ν) R d |y -c| q(ρ-1)
q-1 ν(dy)

q-1 q

.

By taking the infimum with respect to c ∈ R d , we conclude that the statement holds with C (ρ,q),d ≤ 2κ ρ κρ λ 2ρ . Finally, let us suppose that R d is endowed with the Euclidean norm. Then we can choose λ = 1, so that C (ρ,q),d ≤ 2κ ρ κρ with the right-hand side not depending on d according to Lemma 3. Moreover, by Remark 4, C (2,q),d ≤ 2 and since for α ∈ [0, 1),

lim n→∞ M 2 2 (µ n,n -α , ν n,n -α ) W 1 (µ n,n -α , ν n,n -α )σ ∞ (ν n,n -α ) = 2,
we have C (2,q),d = 2.

Proof of Lemma 3. We suppose that ρ > 2 since the case ρ = 2 has been addressed in Remark 4. Suppose x = 0 and y = x and set e = x x and z = y,x x 2 . The vector y x -ze is orthogonal to e and can be rewritten as ωe ⊥ with ω ≥ 0 and e ⊥ ∈ R d such that e ⊥ = 1 and e, e ⊥ = 0. One then has y x = ze + ωe ⊥ and since y = x, (z, w) = (1, 0). The first inequality (4) divided by x ρ writes:

(1 -z) 2 + ω 2 ρ 2 ≤ κ ρ (ρ -1) + z 2 + ω 2 ρ 2 -ρz . Let us define ϕ(z, ω) = ρ-1+(z 2 +ω 2 ) ρ 2 -ρz = -ρ(z -1)-1+ 1 + 2(z -1) + (z -1) 2 + ω 2 ρ 2
as the second factor in the right-hand side. Applying a Taylor's expansion at t = 0 to t →

(1 + t) ρ 2 , we obtain ϕ(z, ω) = ρ 2 ω 2 + ρ 2 (ρ -1)(z -1) 2 + o((z -1) 2 + ω 2 ).
Since ρ > 2, we conclude that

lim (z,ω)→(1,0) ((1 -z) 2 + ω 2 ) ρ 2 ϕ(z, ω) = 0. As |(z, ω)| → +∞, ϕ(z, ω) ∼ (z 2 + ω 2 ) ρ 2 ∼ (z -1) 2 + ω 2 ρ . Therefore, lim |(z,ω)|→+∞ ((z -1) 2 + ω 2 ) ρ 2 ϕ(z, ω) = 1. The function (z, w) → ((z-1) 2 +ω 2 ) ρ 2 ϕ(z,ω)
being continuous on R 2 \ {(1, 0)}, we deduce that

1 ≤ sup (z,ω) =(1,0) ((z -1) 2 + ω 2 ) ρ 2
ϕ(z, ω) < +∞.

Since when x = 0 or y = x, (4) holds with κ ρ replaced by 1, we conclude that the optimal constant is κ ρ = sup (z,ω) =(1,0) ((z-1) 2 +ω 2 ) ρ 2 ϕ(z,ω)

. For the second inequality (5), we can apply the same approach: divided by x ρ , it writes

z 2 + ω 2 ρ 2 -1 ≤ κρ (z -1) 2 + ω 2 1 2 (z 2 + ω 2 ) ρ-1 2 + 1 .
As (z, ω) → (1, 0), z 2 + ω 2 < +∞.

Since when x = 0 or y = x, (5) holds with κρ replaced by 1, we conclude that the optimal constant is κρ = sup (z,ω) =(1,0) (z 2 +ω 2 ) ρ 2 -1

((z-1) 2 +ω 2 ) 1 2
1+(z 2 +ω 2 )

ρ-1 2

.

Π

  M (µ, ν) = M (dx, dy) = µ(dx)m(x, dy) ∈ Π(µ, ν) | µ(dx)-a.e., R d y m(x, dy) = x where

√ 5 2 ,

 2 +∞) and d ≥ 2, which remained open. It turns out that C (ρ,ρ),d = +∞ for d ≥ 2 when ρ ∈ [1, 2) while for ρ ∈ [2, +∞) the inequality (3) generalizes in any dimension d into a Maximal Martingale Wasserstein inequality with the left-hand side M ρ ρ (µ, ν) replaced by the larger M ρ ρ (µ, ν).

ρ 2 - 2 ρ 2 - 1 ∼ ρ 2 2 (z - 1 ) + ω 2 z 2 + ω 2 ρ 2 - 1 ((z - 1 ) 2 + ω 2 ) 1 2 1 + (z 2 + ω 2 )z 2 + ω 2 ρ 2 - 1 ((z - 1 ) 2 + ω 2 ) 1 2 1 + (z 2 + ω 2 ) 2 = 1 .

 222121222211222222211222221 1 = 1 + 2(z -1) + (z -1) 2 + ωBy continuity of the considered function over R 2 \ {(1, 0)}, we deduce that

ρ 2 - 1 ((z - 1 ) 2 + ω 2 ) 1 2 1 + (z 2 + ω 2 )
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