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Abstract

In this note, we complete the analysis of the Martingale Wasserstein Inequality started in
[5] by checking that this inequality fails in dimension d > 2 when the integrability parameter p
belongs to [1,2) while a stronger Maximal Martingale Wasserstein Inequality holds whatever
the dimension d when p > 2.

1 Introduction

The present paper elaborates on the convergence to 0 as n — oo of infyremv,, ) fRded ly —
z|PM (dz,dy) with the Wasserstein distance W, (fin, v) when for each n € N, p,, and v, belong
to the set P,(RY) of probability measures on R? with a finite moment of order p € [1,+00) and
the former is smaller than the latter in the convex order. The convex order between p, v € P;(R?)
which is denoted u <., v amounts to

fl@) p(de) < f(y) v(dy) for each convex function f: R? — R, (1)
R4 R4

and, by Strassen’s theorem [7], is equivalent to the non emptyness of the set of martingale couplings
between p and v defined by

oM (p,v) = {M(dm,dy) = p(dx)m(z,dy) € I(p,v) | p(dz)-a.e., /Rd ym(z,dy) = :17} where
(p,v) = {7 € P1(RY x RY) | VA € B(RY), 7(A x RY) = pu(A) and 7(R? x A) = v(A)}.

The Wasserstein distance with index p is defined by

1/p
W) =t [ e u ataoan)
Rd xR4

well(p,v)

and we also introduce M ,(u1, v) and M, (u,v) respectively defined by

MP , V) = inf / x — yl|P M d.l?, d s Mp , V) = su / r — y|P M d:l?, dy).
—p(ﬂ ) Mt () Jpea | Y|P M ( Y) p(:“ ) . F()LW) - ‘ Y| ( Y)

In dimension d = 1, the optimization problems defining M , and ﬂp are the respective subjects
of [3] and [4] when p = 1, while the general case p € (0,+00) is studied in [6].

The question of interest is related to the stability of Martingale Optimal Transport problems
with respect to the marginal distributions p and v established in dimension d = 1 in [1, 8] while
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it fails in higher dimension according to [2]. A quantitative answer is given in dimension d = 1 by
the Martingale Wasserstein inequality established in [5, Proposition 1] for p € [1, +00),

3C (p 01 <00, YV, v € Pp(R) with p <ep v, Mb(p,v) < Q(p’p)’lwp(,u,u)og_l(y), (3)

where the central moment o,(v) of v is defined by

1/p
op(v) = inf (/ ly —c|? V(dy)) when p € [1,+00) and o (v) = inf v —esssup |y — c|.
ceR? \ JRrd ceRd yERE

The proposition also states that W,(u,v) and o,(v) have the right exponent in this inequality in
M (p,v)

m = +OO The generalization Of (3) to

the sense that for 1 < s < p, sup ,.ep,
P ca Vs, pFEY

higher dimensions d is also investigated in [5] where it is proved that for any d > 2,

My (wv)
Q(p7p)7d = sup .

—1
pwerpeh Wolk, v)op™ (v)
P ca Vs pFEY

is infinite when p € [1, 1+2\/5) , while the one-dimensional constant C'(,  ; is preserved when p

and v are products of one-dimensional probability measures or when, for X distributed according
to u, the conditional expectation of X given the direction of X —E[X] is a.s. equal to E[X] and v
is the distribution of X + A(X — E[X]) for some A > 0. The present paper answers the question of
the finiteness of C, ,) 4 when p € [1+2\/5, +00) and d > 2, which remained open. It turns out that
Cp.p).a = 00 for d > 2 when p € [1,2) while for p € [2, +00) the inequality (3) generalizes in any
dimension d into a Maximal Martingale Wasserstein inequality with the left-hand side Mz(,u, V)

replaced by the larger MZ(u, v). We even replace conjugate exponents p and ﬁ leading to the
respective indices p = p x 1 and p = ﬁ x (p — 1) in the factors W and o in (3) by general
q(p—1)

q—1

conjugate exponents ¢ € [1, +oo] and q%’l € [1, +o0] leading to indices ¢ and (equal to +o00

and p — 1 when g is respectively equal to 1 and +00) and define

P 4
My (p,v) —= M, (1, v)
[oF Yod = sup and C(, 4).q := sup ,
P a0y Wy, v)o” 0 (1) P 0y Wy, v)o” 70 (1)
wEP (,1yq ®D YVl a(p—1) mvEP (,_1yq R YVl a(p—1)
a1 q—1 V=T q—1
R calV, W FV ulcaV,uF#Y

With Wio (1, ) = infrer(u,) T — €8S8UP(, ) erixpra [T — yl. Since M, < M, one has C(,, ,y 4 <

€(p7q)7d. These constants of course depend on the norm |- | on R? (even if we do not make this
dependence explicit) but, by equivalence of the norms, their finiteness does not. Since the Euclidean
norm plays a particular role, we will denote it by || - || rather than |- |.

Theorem 1. (i) Let p € [1,2). For q € [1,%] (and even q € [1,400] when p = 1), one
has Q(pﬁq)yl < K, < +oo where the constant K, is studied in [5, Proposition 1] while, for
q €[1, 4], é(p,q),l = +00 and C(, ;.4 = +00 ford > 2.

(ii) Let p € [2,400) and q € [1,+0c]. One has C(, 4.4 < +00 whatever d. Moreover, when R
(resp. each R?) is endowed with the Euclidean norm, 6(2&)@ =2 and supy>, é(pyq)yd < +00.

Remark 2. o The fact that p = 2 appears as a threshold is related to the equality fRded lly —
2P M (dw,dy) = [ [9120(dy) — fou |22 0(da) for M € T (u,v) when p,v € Py(RY) are
such that p <., v, which implies that when R? is endowed with the Euclidean norm

M (p.v) = M5(0) = [ olPvids) = [ el ().

—2
M (p,v)
wveP, , a_ ®YH Wy(u,v)o_q_(v)
-1 a—1

p<caV,uFEV

e Forpe|[l,2), one has 6(p,q),d = 400 while sup < 5(2,(]),(1 < 400

since MP < M.



2 Proof

The proof of Theorem 1 (ii) relies on the next lemma, the proof of the lemma is postponed after the
proof of the theorem. In what follows, to avoid making distinctions in case ¢ € {1, +oo}, we use the
convention that for any probability measure v and any measurable function f on the same proba-

iy spce (111" o ((117175202) " (P a) ")

is equal to v —esssup, | f(2)| (resp. (y—esssup, |f(2)|,7—esssup, |f(2)[?~!)) when ¢ = +o0 (resp.
g=1).

Lemma 3. Given p € [2,400), there exist constants k,, R, € [0,+00) such that for all d > 1 and
z,y € RY,

lz = ylI” < 55 ((p = Dll2ll” + llyll” = plllI=> (@, y)) , (4)

~ —1 —1
loll” = el < Fglly — 2l (2P + ™) - (5)

Remark 4. When p = 2, then (4) holds as an equality with k, = 1 while, by the Cauchy-Schwarz
and the triangle inequalities,

Iyll> = ll=l” < (y — 2,y +2) < lly = 2|l x lly + [l < [ly — ] (|=[| + [lyl])
s0 that (5) holds with &, = 1.
Proof of Theorem 1. (i) In dimension d = 1, one has M; < K;W; with K; = 2 according to [5,
Proposition 1] and we deduce that C; ;) ; < K for g € [1, +-00] since W; < W,. Let now p € (1,2)
and q € [1,ﬁ]. One has q(qull) > 1 since, when ¢ > 1, q%’l =1+ ﬁ >1+ Qp_f’f = -1 For

P
W, v E quq(p—l) (R) with respective quantile functions Fu_l and F 1, one has by optimality of the
q—1

comonotonic coupling and Hélder’s inequality

1
- / IF7 (u) — B ()] % |Fy (w) — B ()P du

a(p—1) (I(qpil)
< ( / I () — P |qdu) ( / B )~ £ 0]
Since, by the triangle inequality and u <., v, one has for ¢ € R
g—1 q
1 N a(p=1) 1 a(p=1)
a( ) a( ) alp—1)
([ 1 - e < ( / - ) ([ 1w - o)
0 0
q—1
a(p—1) a(p—1)
<2</ Fone —c|q1du) ,

we deduce by minimizing over the constant ¢ that

Wi (s v) < We(p,v) x 2071500, (v).

q—1
With this inequality replacing (30) in the proof of Proposition 1 [5] and the general inequality

q—1

[ 1 = E e 0 — e < W ([ 10 - )

replacing the special case ¢ = p in the second equation p840 in this proof, we deduce that
—1
pr(ﬂv v) < Kqu(u, V)O'Z(pfl) (v).

q—1




To check that C, 4,1 = +00 for p € [1,400) and ¢ € [1,+00], let us introduce for n > 2 and
z >0,

Hn,z = m ((1 + Z) ((51 + 671) + 2z z_: 51)

n—1
1

This example generalizes the one introduced by Briickerhoff and Juillet in [2] which corresponds
to the choice z = 1. Since

n—1
1
Mo = =111 <5<1,1_2) +28(1,2) + 20(n,n-1) + Onntz) + 2 ; (0i,i—1) + 5(z‘,i+1>)>

belongs to IIM (u,, ., vp..), we have

_ n—1)z+ 2°

Mp n,zy Vn,z >/ _xpan dl‘,d :(7

p(lnz, Vnz) 2 RXRIy |” M, (d, dy) S

On the other hand, by optimality of the comonotonic coupling W/f(umz, Un,z) = ﬁ for

p € [1,400) and Weo (fin,z, Vn,2) = 2. Last 0oo(vn,-) = 2=5t22 and, when p € [1, +00),

L=
(n—1422)" +2(n—1)"+22 > (n+1—2i)
=2

1

O’Z(Vn,z) = m

Let o € [0,1). The sequence n'~® goes to co with n and for p € [1,+00) and ¢ € [1, +0o0], we
have

(A—q) 1

/ |y - zr‘p]\4n,n_‘1 (dxv dy) — ]-7 Wq(lj’n,n_“‘vyn,n_“) ~ na N a
RxR

a=1
and a’jal_l) (Vnp-a) ~ — — where (1 + quf_ll)) * =1 by convention when ¢ = 1 so
a—1

— 2p71(1+<1(qp:11))T

nP

that

-1
Wq(lu’n,n—a7yn,n_(’)o";(pfl) (anﬂ_a) 7= 1
q—1

q—1
foR |y - x|pMn,n*0‘(d1‘7dy) ~ op—1 (1 + Q(P - 1)) a n%gﬁ»%%»lfp.

Let p € [1,2). For ¢ = 1, the exponent of n in the equivalent of the ratio is equal to 2 — p > 0 so

that the right-hand side goes to +oo with n. For ¢ € (1, +o0], we may choose a € (q(pq__#, 1)

(with left boundary equal to p — 1 when ¢ = +00) so that q;—la + % +1—p > 0 and the right-hand

side still goes to +00 with n. Therefore é(p,q)’l = +o0. To prove that C(, ;y 4 = +o0 for d > 2 it

is enough by [5, Lemma 1] to deal with the case d = 2, in which we use the rotation argument in

[2]. For n > 2 and 6 € (0,7), M? defined as m times

6((1,0),(1—71*‘1 cos §,—n~*sin@)) + n_aé((l,O),(lJrcos 0,sin 0)) + n_a(s((n,O),(nfcos 0,— sin 0))
n—1

+ 0((n,0),(n+n-= cos B0~ sing)) T 1 " Z (8((4,0),(i—cos 6, — sin 8)) F 0((4,0),(i-+cos 0,5in 0)) )
=2

which is a martingale coupling between the image ji,, of fi, ,-o by R 3 z = (2,0) € R? and its
second marginal v¢ which, as § — 0, converges in any W, with ¢ € [1, +oc] to the image of Vp p—a



by the same mapping. According to the proof of [2, Lemma 1.1], TI™ (1, %) = {M?} so that
M (pins v3) = Jge e [y — #1P M) (da, dy) and

lim M, Vn) _ f]Rx]R ly — x| M, o (dz, dy)
—1 - — )
0=0 W (pin, v8) 0oy (V8)  Walknm—orVnn-)0,—1) (Vnn—o)
q—1 i

With the above analysis of the asymptotic behaviour of the right-hand side as n — oo, we conclude
that C', ;) 4 = +00.

(ii) Now, let p € [2,4+00) and M € IIM (u,v). Applying Equation (4) in Lemma 3 for the
inequality and then using the martingale property of M, we obtain that for ¢ € R?, we have

[ eyl Mdody) = [ =) (- ) M(da.dy)
R4 xR4 R? xR4

< ﬂp/ ((p =Dz =’ +lly —ell” = pllz = c||*"*(z — e,y — ) M(da,dy)
R? xR

= ([ o= clPvta) ~ [ o= clPutao)) ©)

Denoting by 7 € II(u,v) an optimal coupling for Wy (u, v), we have using Equation (5) in Lemma
3 for the inequality

/ ly — cllPv(dy) - / e — cll?u(da) = / (ly — ell® — |1z — c||?) w(de, dy)
Rd Rd Rd x R4

~ —1 —1
<ip [yl (el -l ™) m(dn,dy). Y
R4 x R4

By the fact that all norms are equivalent in finite dimensional vector spaces, there exists A € [1, 00)
such that for all z € R?, we have

B < ey < ape

Therefore, using (6) and (7) for the second inequality, Holder’s inequality for the fourth, the triangle
inequality for the fifth and p <., v for the sixth, we get that for ¢ € R,

[ sl sy < [ fa- gl Mdsdy)
R4 xR4 Rd xRd
~ -1 —1
<wiiX [ =yl (Jo el =l (o)
R4 xRd

<wioh? [ oyl (jo =y el ) nldr.dy)
R4 xR

g—1

q

< i W) ([ (le= e sy alaoay) )
X

~ 2 a(p—1) (a=1)/q a(p—1) (a=1)/q
< r 2 Wylu) ( ([ 1= uan) - ([ o5 )

~ a(p—1) Ta
< 2K, Rp A PWy (1, 1) (/Rd ly —¢| a7 y(dy)) .

By taking the infimum with respect to ¢ € R%, we conclude that the statement holds with 6( p.q),d <
2/$p/%p)\29 . Finally, let us suppose that R is endowed with the Euclidean norm. Then we can choose
A =1, so that C(, 4,4 < 2k,k, with the right-hand side not depending on d according to Lemma
3. Moreover, by Remark 4, 6(27q))d < 2 and since for « € [0, 1),

-2
li MZ(Nn,n*avyn,n*a)
1m

n—oo \/Wl (,un,n*ﬂ yVnn—« )O'OO(Vn,n*“)

:27

we have U(mm = 2. O



Proof of Lemma 3. We suppose that p > 2 since the case p = 2 has been addressed in Remark 4.

Suppose = # 0 and y # x and set e = ﬁ and z = % The vector ﬁ — ze is orthogonal to
e and can be rewritten as we® with w > 0 and e+ € R such that |e*| =1 and (e,et) = 0. One

then has HTyH = ze + wet and since y # , (z,w) # (1,0).
The first inequality (4) divided by ||z||” writes:

((1-2)? —|—w2)% < K, ((p— 1)+ (2* —|—w2)g —pz) .
Let us define p(2,w) = p—1+ (22 +w?) % —pz = —p(z—1) =1+ (1 +2(z — 1) + (2 — 1)? +w2)%
as the second factor in the right-hand side. Applying a Taylor’s expansion at t = 0 to ¢ — (1 —i—t)g,
we obtain

p(zw) = £? + £(p=1)(z = 1) + ol(z = 1)? + 7).

Since p > 2, we conclude that
1— 2)2 2\ 2
(-2
(z)=(1,0)  p(z,w)

=0.

As |(z,w)| = +00, p(z,w) ~ (22 + w?)% ~ ((z — 1)? + w?)”. Therefore,

1\2 2\ 2
(e Mk
|(z,w)| =400 o(z,w)

=1

(z=1)°+w>)%

The function (z,w) — 2(7,0)

being continuous on R? \ {(1,0)}, we deduce that

1< sup (-1 + uﬂ)% < +o0.
T (zw)£(1,0) p(z,w)

Since when z = 0 or y = x, (4) holds with &, replaced by 1, we conclude that the optimal constant
e (z=1)*+w?)8
18 Kp = SUP(z,w)#(1,0) p(z,w) :

For the second inequality (5), we can apply the same approach: divided by ||z||?, it writes

(22+w2)% -1<k%, ((271)2+w2)% ((22+w2)%1 +1).

L L
2 2

As (z,w) = (1,0), (22 + w?) —1~5(2(z-1) +w?)

e

—1=(1+2(z-1)+ (z—1)* + w?)
—1 pz—1) p

. (22 +«?) .
lim sup . — = limsup =—.
(z,w)—(1,0) ((z — 1)2 + w2)§ (1 4 (zz + w2)”T> 21 2|z - 1\ 2

On the other hand,

. (22 + wQ)% -1
lim - — =
zw)l=too (5 = 1)2 4 w2)? (1 b2+ uﬂ)%)

By continuity of the considered function over R? \ {(1,0)}, we deduce that

NI

2 2%
V1< sup (Z +w) 1

1 b1 < +00.
(2)2(1.0) (2 —1)2 + w?)? (1 (2 w2)7)

Since when z = 0 or y = z, (5) holds with &, replaced by 1, we conclude that the optimal constant
(z2+w2)§ —1
(=vrren)d (142 en) 7 )

Is Kp = SUD( 4)%(1,0) )
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