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1. Introduction
The late Miocene and the early Pliocene are marked by a major event recognized in deep-sea sediments called 
the Late Miocene Biogenic Bloom (LMBB). This event is characterized by high rates of opal accumulation from 
diatoms and radiolarians and high rates of calcite accumulation from calcareous nannofossils and planktonic 
foraminifera (e.g., Bolton et al., 2022; Dickens & Owen, 1999; Diester-Haass et al., 2005; Drury et al., 2021; 
Farrell et al., 1995; Grant & Dickens, 2002; Lyle & Baldauf, 2015). A comprehensive review of the temporal 
and geographical aspects of the LMBB would help to better understand the causes of this event and its impact 
on the carbon cycle. The LMBB event, first described by Farrell et al. (1995), has been recovered in multiple 
sites of the world ocean (Figure 1), but its timing is heterogeneous across the sites and its signature in the data 
record has been identified from a variety of different proxies. Farrell et al. (1995) define the LMBB based on an 
increase in biogenic deposits (CaCO3, biogenic silica [opal], and nannofossils) between 6.7 and 4.5 million years 
ago (Ma) in the Eastern Equatorial Pacific Ocean, and interpret this increase to be related to increased biological 
productivity. The Eastern Equatorial Pacific region was also studied by Lyle and Baldauf (2015) who observed 
the LMBB between 8 and 4.5 Ma, marked by long periods of high opal and CaCO3 deposition. Records from the 
same region, with better resolution and updated age models, were used by Lyle et al. (2019) to estimate the end 
of the event at about 4.4 Ma, at a time of major decrease in sedimentation rate. Outside of the East Equatorial 
Pacific, Grant and Dickens (2002) identified the LMBB event in the southwestern Pacific Ocean, where it takes 
the form of an increase in CaCO3 mass accumulation between 9 and 3.8 Ma with a maximum around 5 Ma. L. 
Zhang et al. (2009) identified the LMBB in records from the South China Sea that exhibit increased mass accu-
mulation of CaCO3 and opal between 12 and 6 Ma. In the Atlantic Ocean, Diester-Haass et al. (2005) identified 
the LMBB in three different regions. In the North Atlantic, CaCO3 mass accumulation rate (MAR) and benthic 
foraminiferal accumulation rates reached a maximum at 5 Ma. This maximum was observed earlier in records 
from the tropical ocean (around 6 Ma) and the South Atlantic Ocean (around 8.2 Ma). In the South Atlantic (ODP 
site 208-1264), Drury et al. (2021) studied the evolution of CaCO3 MAR at orbital resolution. The onset of the 
LMBB is detected at 7.8 Ma and the end at 3.3 Ma with an optimum between 7 and 6.4 Ma. Records from lower 
productivity regions in the Atlantic and Indian Oceans have also been used to identify the LMBB (Hermoyian & 
Owen, 2001). By measuring the rate of mass accumulation of phosphorus, they found a signature of the LMBB 
with peak productivity around 4–5 Ma. In the Indian Ocean, an increase in productivity between 9 and 3.5 Ma 
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was identified by Dickens and Owen  (1999) which is reflected in an increase in CaCO3 mass accumulation 
as  well as the spatial expansion of the Oxygen Minimum Zone. Nevertheless, Lübbers et al. (2019) suggest a 
much earlier onset of the LMBB in the Indian Ocean at 11.2 Ma based on an increase in Log (Ba/Ti) associated 
with a change in sediment color from red to green.

This increase in biogenic sedimentation is coeval with significant changes in the global climate system. Although 
the land-sea distribution has been quasi-stable since the late Miocene, the configuration of several major seaways 
evolved during this period: the Central American Seaway underwent restriction (O’Dea et al., 2016), the Bering 
Seaway opened (Gladenkov & Gladenkov,  2004), and the Indonesian Seaway underwent progressive restric-
tion (Kuhnt et  al., 2004), all of which likely triggered major changes in oceanic circulation (e.g., Brierley & 
Fedorov, 2016). Alongside these paleogeographic changes, global cooling occurred at the end of the Miocene, 
associated with an increase in the meridional sea surface temperature gradient (Herbert et al., 2016; Martinot 
et al., 2022). The global decrease in temperature is probably driven by a significant drop in the partial pressure of 
CO2 in the atmosphere (pCO2) from about 600 ppm in the middle Miocene to about 400 ppm in the early Pliocene 
(e.g., Rae et al., 2021). The establishment of a small permanent ice on Greenland is also inferred during the late 
Miocene (Bierman et al., 2016; Helland & Holmes, 1997; John & Krissek, 2002). The expansion of deserts may 
also be contemporary with this period (Schuster et al., 2006; Z. Zhang et al., 2014), although recent data from the 
tropical Atlantic margin highlight that the Sahara desert already existed 11 Ma ago (Crocker et al., 2022). Vege-
tation on land also underwent significant changes with the rise to dominance of plants using C4 photosynthesis 
at the detriment of plants using C3 photosynthesis (Cerling et al., 1997; Tauxe & Feakins, 2020). Some of these 
changes have been suggested as possible triggering mechanisms for the LMBB.

Two hypotheses, not incompatible with each other, have been proposed to explain the origin of the LMBB. This 
event could result from (a) an increase in nutrient supply from the continents to the oceans (e.g., Filippelli, 1997; 
Gupta et  al.,  2004; Hermoyian & Owen,  2001; Pisias et  al.,  1995) or (b) a redistribution of nutrients in the 
ocean due to a reorganization of oceanic circulation (e.g., Dickens & Owen, 1999; Farrell et al., 1995; Pisias 
et al., 1995).

An increase in nutrient supply is usually attributed either to enhanced weathering or to a shift in vegetation cover. 
A late uplift pulse in the Tibetan Plateau region (C. Wang et al., 2014) could have been responsible for intensifica-
tion of the Indian monsoon and the increase in continental weathering during the late Miocene (Clift et al., 2020; 
Filippelli, 1997; Holbourn et al., 2018; Yang et al., 2019). This hypothesis is supported by the global increase 
in Ca and Si fluxes to the ocean (Pisias et al., 1995). Hermoyian and Owen (2001) also suggest that the uplift 
of the Andes at 8 Ma caused orographic precipitation and increased sediment flux to the Atlantic Ocean (Curry 
et al., 1995). An increase in nutrient supply from the continents could also be explained by an intensification of 
trade winds at the end of the Miocene, associated with the increase in latitudinal temperature gradient as well 
as a widespread continental aridification (Diester-Haass et al., 2006; Dobson et al., 2001; Herbert et al., 2016; 
Hovan, 1995). A further hypothesis also suggests that the global spread of C4 plants in the late Miocene would 
have resulted in the input of siliceous phytoliths into the ocean reservoir and may have played a role in increasing 
productivity by reducing silica limitation (Cortese et al., 2004; Pound et al., 2012).

The alternative hypothesis is the redistribution of nutrients caused by changes in oceanic circulation. Based on 
microfossil and δ 13C studies, Berger et al. (1993) suggested that an amplification of North Atlantic Deep Water 
(NADW; Wright & Miller, 1996) brought more nutrients into the Pacific Ocean, although Farrell et al. (1995) 
rather suggest no temporal link between NADW evolution and the LMBB. The restriction of the Central Amer-
ican Seaway may have played a role in the redistribution of nutrients by changing oceanic circulation patterns 
(Farrell et al., 1995; Pisias et al., 1995). Diester-Haass et al. (2002) also suggest that a change in the vertical distri-
bution of nutrients could result from an intensification of the global ocean circulation forced by an intensification 
of trade winds or by an increase in latitudinal temperature gradient (caused by the global decrease in pCO2 and 
the growth of polar ice sheets).

While the initiation of the LMBB has been widely discussed in the literature (e.g., Dickens & Owen, 1999; 
Diester-Haass et al., 2002, 2006; Farrell et al., 1995; Reghellin et al., 2022), the termination of the event has been 
the subject of only a limited number of studies. Farrell et al. (1995) observe a distinct and permanent shift in the 
location of the maximum opal MAR at 4.4 Ma synchronous with the end of the LMBB. The authors attribute 
this shift to the final closure of the Central American Seaway that prevented surface water from being exchanged 
between the Atlantic and Pacific Oceans. More recently, Karatsolis et al. (2022) link the end of the LMBB with 
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a decrease in insolation due to a particular orbital configuration. This drop 
in insolation would have caused a reduction in hydrological cycle intensity 
and therefore a decrease in continental weathering and nutrient supply to the 
ocean.

Because most published work on the LMBB focuses on specific cores where 
the event is recorded, we know where the bloom is present but not where 
it is potentially not expressed. A global overview of the event is therefore 
lacking. We therefore systematically compiled all available/published pale-
oceanographic records (from Deep Sea Drilling Project [DSDP], Oceanic 
Drilling Program [ODP], Integrated Ocean Drilling Program [IODP], and 
International Ocean Discovery Program [IODP]), that inform on sediment 
accumulation during the late Miocene to early Pliocene time period. This 
compilation contains records of sedimentation rates as well as accumulation 
rates of CaCO3, opal, and terrigenous material and provides a thorough anal-
ysis of the spatial and temporal distribution of the LMBB.

2. Methods
We compiled oceanographic data from DSDP, ODP, and IODP expeditions 
that cover the late Miocene and early Pliocene. Data mining was performed 
by automatically collecting the Pangaea data sets that correspond to the 
selected time interval and that have at least one of the following variables: 
sedimentation rate, dry bulk density, MAR, CaCO3 accumulation rate, bSiO2 
accumulation rate (biogenic SiO2), %CaCO3, %bSiO2. The compilation was 
then improved by manually adding data sets absent from Pangaea but rele-
vant to our study. The data compilation contains 154 data sets (122 are from 
Pangaea) from 118 different ocean drilling sites (Table 1). We assumed that 
in each publication, one site represents one data set, which means that in a 
publication there are as many sites as data sets. There can therefore be several 
data sets per publication but also several data sets per site if several publica-
tions have studied the site in question. In contrast to Karatsolis et al. (2022) 
who choose to focus on high-resolution records only, we here choose a less 
selective approach because even lower resolution data sets or data sets that 
show no signature of the LMBB can help us understand its origin.

The data sets were manually labeled by two different person to indicate 
whether they contained the LMBB signature. The LMBB signature is defined 
as an increase (in carbonate or biogenic opal MAR or sedimentation rate) 
followed by a decrease to a pre-event level and occurring during the late 
Miocene to early Pliocene (Dickens & Owen, 1999). The results are split into 
four categories as follows: (a) “No,” if the data set shows no LMBB signature; 

(b) “BB,” if the LMBB is clearly identifiable; (c) “Co,” if the occurrence of the LMBB is controversial, that is, in 
case an increase in biogenic production can be identified but the timing is not consistent with the LMBB definition. 
This label is also used for data sets that show potential traces of the LMBB but that could be classified as “BB” or 
“No” depending on the person performing the evaluation; (d) “In,” if there are not enough data before or after the 
interval of interest to robustly identify an increase followed by a decrease (“In” standing for “inconclusive,” Figure 
S4 in Supporting Information S1). In the latter case, we cannot conclude whether the LMBB is present in the data 
set. The variables used to define the label are detailed for each data set in Table S1. Sites were also labeled accord-
ing to the labels of the associated data sets. In cases where there were multiple data sets for a single site, the label 
was assigned based on all data sets considered together; in case there was a contradiction between data set labels, 
the label of the data set with the highest temporal resolution was chosen. The interpretations and conclusions of the 
original publications have not been taken into account to keep a homogeneity in the labeling criteria.

As the data sets have age-depth models calibrated on different time scales (Berggren et al., 1985, 1995; Gradstein 
et al., 2004, 2012, 2020; Palike et al., 2006), we re-calibrated every single age-depth model to the Gradstein 

Figure 1. At the top, figure adapted from Steinthorsdottir et al. (2021). 
Evolution of major seaways configuration during the late Miocene and 
Pliocene (Gladenkov & Gladenkov, 2004; Kuhnt et al., 2004; O’Dea 
et al., 2016), C4 grassland expansion (Tauxe & Feakins, 2020), Antarctica and 
Greenland Ice sheet (GIS) evolution (Bierman et al., 2016; Cook et al., 2013), 
and East Asian monsoon intensification (Holbourn et al., 2018). Bottom, 
compilation of some publications related to the LMBB. Stages acronyms: 
Mess. (Messinian), Zancl. (Zanclean), Pia. (Piacenzian), G. (Gelasian), and C. 
(Calabrian).
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et al. (2020) time scale to be able to perform a temporal comparison of the data sets. This step was performed using 
the Neptune Sandbox Berlin database (Renaudie et al., 2020) and NSB Companion software (Renaudie, 2019), 
following a procedure similar to the one in Dutkiewicz and Müller (2022).

In addition, a geographical and temporal averaging system was implemented to plot time series. For a given 
oceanic basin (Pacific, Atlantic, and Indian) and a given variable, all values of the corresponding data sets were 
grouped and segmented into 500 kyr bins to obtain a single time series. This segmentation implies that the values 
of the bins are dated at ±250 kyr. 500 kyr was chosen because many data sets—in particular Lyle (2003)—had 
a resolution of 500 kyr. In each bin, data were averaged in two different ways: (a) The “same weight” average 
where each data set is averaged individually before being averaged together. With this method, each data set will 
have the same weight in a bin, regardless of its resolution; (b) The “resolution weight” average where data sets 
are directly averaged together. With this average, the more data a data set contains in a given bin, the more weight 
it will have in determining the final average value.

We then tried to identify potential oceanographic similarities between sites where the LMBB is present or 
absent. To do so, we used information from an ocean biogeochemical simulation for the late Miocene from 
Sarr et  al.  (2022). This simulation using late Miocene/early Pliocene paleogeography was performed with 
the IPSL-CM5A2 Earth System model (Sepulchre et al., 2020) coupled with the PISCES-v2 model (Aumont 

Table 1 
Source of the Data Used for the Compilation

Publication Number of data sets Variables present in these data sets

Breza (1992) 1 Sed rate

Diester-Haass et al. (2004) 2 Acc rate CaCO3

Diester-Haass et al. (2005) 3 Sed rate, Acc rate CaCO3, CaCO3, DBD

Diester-Haass et al. (2006) 4 Sed rate, MAR, Acc rate CaCO3, CaCO3

Drury et al. (2021) 1 Sed rate, CaCO3, Acc rate CaCO3, MAR, DBD

Dutkiewicz and Müller (2021) 16 Acc rate CaCO3, DBD, CaCO3, Sed rate

Farrell and Janecek (1991) 1 Sed rate, Acc rate CaCO3, CaCO3, DBD

Farrell et al. (1995) 11 Sed rate, Acc rate CaCO3, CaCO3, DBD

Gardner et al. (1986) 2 Sed rate, MAR, Acc rate CaCO3, CaCO3

Grant and Dickens (2002) 1 Acc rate CaCO3, CaCO3

Hayward et al. (2010) 1 Sed rate

Hermoyian and Owen (2001) 5 Sed rate, DBD

Janecek (1985) 2 Sed rate, MAR, DBD

Lyle et al. (1995) 11 Sed rate, Acc rate CaCO3, CaCO3

Lyle (2003) 57 Sed rate, MAR, Acc rate CaCO3, CaCO3, DBD

Lyle et al. (2019) 7 Sed rate, MAR, CaCO3, DBD, bSiO2

D. W. Müller et al. (1991) 1 Sed rate, MAR, Acc rate CaCO3, DBD

Pälike et al. (2012) 4 Sed rate, MAR, CaCO3, DBD, Acc rate CaCO3

Peterson and Backman (1990) 3 MAR, Acc rate CaCO3, CaCO3

Si and Rosenthal (2019) 13 CaCO3, MAR, Acc rate CaCO3, Sed rate

Stax and Stein (1993) 4 MAR

Wagner (2002) 1 Sed rate, MAR

R. Wang et al. (2004) 1 Acc rate opal, bSiO2

Winkler (1999) 1 Sed rate, MAR, Acc rate CaCO3, CaCO3

L. Zhang et al. (2009) 1 Sed rate, MAR, DBD

Note. Sed rate: Sedimentation rate. Acc rate: Accumulation rate. MAR: Mass Accumulation Rate. DBD: Dry Bulk Density. 
A more detailed table can be found in Table S1.
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et al., 2015). PISCES-v2 is a biogeochemical model that simulates marine ecosystems (including diatoms, nano-
phytoplankton, microzooplankton, and mesozooplankton) and major biogeochemical cycles. We here used the 
organic productivity by phytoplankton. Organic productivity is a good indicator of the area of higher productivity 
from calcareous and siliceous phytoplankton and zooplankton. In this model, phytoplankton growth is limited 
by the availability of nutrients (phosphorus, nitrogen, iron, and silica), by light, and by water temperature (see 
Aumont et al., 2015, for detailed equations). To superimpose the position of the sites on the simulation outputs, 
we recalculated the paleocoordinates of each site at 10 Ma using the GPlates software (Qin et al., 2012) and the 
plate rotation model from R. D. Müller et al. (2019), Cao et al. (2022), and Young et al. (2019) with the Torsvik 
et  al.  (2019) correction applied for the Pacific. In the following, the paleocoordinates will only be used for 
comparison with model outputs.

A table with the following information for each data set is available in Table S1 and on SEANOE (Pillot, 2023): 
site number, data set label, site label, publication, elevation, site coordinates, site paleocoordinates (10  Ma), 
available variables, variables used for labeling, the time scale used in the original publication, and the web link 
to the original data set.

3. Results
3.1. Geographical Analysis of the Compilation

Among the 118 sites, the LMBB is present at 21 sites (BB), while 33 other sites remain controversial (Co). The 
LMBB is not present in 45 of the sites (No) and its presence is inconclusive for 19 of the sites (In). The LMBB 
is identified in both the Pacific, Atlantic, and Indian Oceans (sites labeled “BB” and “Co,” Figure 2). Most of the 
sites with an LMBB are localized at mid and low latitudes, suggesting that the LMBB is either absent or has not 
been recovered in the Southern or in Arctic Oceans. The LMBB has been identified (certainly or controversially) 
in all the sites from the northern part of the Indian Ocean. The presence of the LMBB in the Pacific and Atlantic 
Oceans is very heterogeneous. In some areas, sites with an LMBB signature and without an LMBB signature 
are very close geographically, such as in the Eastern Equatorial Pacific (i.e., DSDP site 85-572 and ODP site 
138-850 or ODP sites 138-852 and 138-853). The controversial sites have a more homogeneous distribution in 
terms of latitude.

The spatial distribution of sites where the LMBB has been clearly identified follows the same pattern as those 
where the presence of LMBB is controversial. There are only three sites that show a clear LMBB signature in 
the Atlantic basin, one in the Indian basin and all the remaining ones are located in the Pacific basin. Most of the 
LMBB sites are located in the low latitudes (between 30°S and 30°N; Figures 2a, 3d and 3e), except for ODP site 
145-883 which is located in the northern Pacific.

In the Atlantic Ocean, areas where LMBB is clearly identifiable (off the American coastlines at 5°N–40°E and 
off the African coastlines at 30°S–4°W) are also areas where there are sites with no LMBB evidenced. Most of 
the isolated sites are sites without an LMBB signature and are located around the Mid-Atlantic Ridge. There is, 
however, a controversial presence of the LMBB at three isolated and open-ocean sites (ODP site 162-982, ODP 
site 177-1088, and DSDP site 73-519).

In the Pacific Ocean, the LMBB signature is present off the coast of Australia, in the northern area of the Tasman 
Sea and also in the northern part of the Pacific Ocean. The LMBB is also mainly present in the eastern equato-
rial part, although there are also many sites without signature of the LMBB in this area. The Eastern Equatorial 
Pacific has a high concentration of sites with many of them showing the presence of the LMBB. Sites with an 
LMBB signature are mainly located between 5°N and 5°S, while the sites without an LMBB signature are a few 
degrees further north and further south (except for DSDP site 85-572).

In the Indian Ocean, the presence of the LMBB is in most cases controversial but one site clearly records it in 
the western tropical area, near the Seychelles archipelago (ODP site 115-707). In the southern Indian Ocean, the 
compilation has only two sites and they do not show any evidence of the LMBB. The remaining sites do not have 
enough data to conclude.

3.2. Statistical Analysis of Compilation

The present-day water depth of the sites where the LMBB is absent ranges between 1,000 and 5,000 m with a 
large proportion of sites around 3,500 m (Figure 3f). The depth of the sites where the LMBB is present is mainly 
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between 1,500 and 4,000 m. The average depth of sites where the LMBB is present (3,236 m) is almost equal to 
that of sites where the LMBB is absent (3,225 m). This suggests that, on a global scale, the geographic distri-
bution of sites where the LMBB is unambiguously identified may not be biased by site depth. Though we are 
aware that bathymetry has likely evolved since the late Miocene, we think that using the drilling elevation is more 
meaningful at global scale than using paleobathymetry reconstruction, which has a poor resolution. We note that 

Figure 2. (a) Present-day coastlines with dots showing the modern positions of the 118 labeled sites. (b) Distribution of labels for the 154 data sets, with the absolute 
value in brackets. (c) Distribution of labels for the 118 sites, with the absolute value in brackets. “In”—Inconclusive; “No”—No LMBB; “Co”—Controversial LMBB; 
and “BB”—LMBB is present.
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at some particular places, where the bathymetric feature has a likely young vertical deformation history, it might 
bias the interpretation.

The simulated paleoproductivity at sites where an LMBB signature is visible is 0.66  g/m 2/day on average 
(Figure 3g). Although most of the sites are located in areas of high simulated palaeoproductivity (>0.7 g/m 2/
day—e.g., East Equatorial Pacific and Southeast Atlantic Ocean), the LMBB is also identified in some olig-
otrophic areas (<0.3 g/m 2/day—e.g., North Pacific, South Pacific Gyre; Figure S3 in Supporting Information S1). 
For sites where the LMBB is absent, the average simulated palaeoproductivity is 0.48 g/m 2/day. However, two 
groups can be distinguished, one around 0.25 g/m 2/day and one around 0.75 g/m 2/day (Figure 3g, G1 and G2). A 
group around 0.75 g/m 2/day also emerged in controversial sites (Figure 3g, G3).

To estimate the possible impact of continental nutrient inputs, the distance between each site paleolocation and 
the nearest paleocoastline was calculated (Figure 3h). Most of the sites with no LMBB signature were located 
less than 2,000 km from the nearest coastline (on average 1,650 km) with fivvve sites at more than 4,000 km. In 
contrast, most of the sites labeled “BB” were located between 100 and 3,000 km from the nearest coastline (on 
average 1,922 km). Concerning the distances to the nearest coastline of the sites labeled “Co,” the distribution is 
as wide as for the sites labeled “BB,” ranging from 100 to 3,000 km away from the nearest coastline (on average 
1,543 km). A map with the plotted distances is available in Figure S5 in Supporting Information S1.

Figure 3. (a–c) Box plot calculated on the data sets (each point represents a data set). (d–i) Box plot calculated on the sites 
(each point represents a site). “No”— No LMBB; “Co”— Controversial LMBB; and “BB”—LMBB is present. (a) Data set 
resolution in number of data per million years. The data set from Drury et al. (2021) is not shown because it is out of range 
(24,800 data/Myr). (b) Signal length (Myr). (c) Site numbers with program names. (d) Absolute modern latitude values in 
degrees. (e) Absolute paleolatitude (10 Ma) values in degrees. (f) Depth of sites in meters. (g) Integrated primary productivity 
value by phytoplankton from a late Miocene simulation in g/m 2/day (from Sarr et al., 2022) retrieved with the paleocoordinates. 
(h) Distance between the paleocoordinates of the sites and the nearest coast in the late Miocene simulation (m).
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3.3. Temporal Analysis of the Compilation

We also looked at the synchronicity of the event between different oceanic basins using time series that we 
computed following the procedure described in Section 2 (Figure 4). The values indicated hereafter are those 
of the “resolution weight” average of the data sets (meaning that data sets with better resolution have a higher 
weighting in the average). This average was chosen because it gives a stronger signal. However, the signals 
obtained with the two averages have the same trends. The CaCO3 accumulation rate was chosen because this vari-
able is present in many data sets and has often been used to label data sets as “BB” or “Co.” In the Atlantic Ocean, 
the signal was constructed from 12 different data sets labeled “BB” or “Co,” with a maximum of 1,639 data 
and a minimum of 153 in one bin. On this time series, CaCO3 accumulation rate increases since 15 ± 0.25 Ma 
with a strong increase around 7.5 ± 0.25 Ma (+15.3 g/m 2/y). The maximum is reached around 7 ± 0.25 Ma 
(34.1 g/m 2/y) and then there is a decrease that starts around 6.5 ± 0.25 Ma and ends around 2 ± 0.25 Ma. In the 
Indian Ocean, the signal was constructed from four different data sets labeled “BB” or “Co,” with a maximum of 
51 data and a minimum of 2 in a bin. There is an increase around 7.5 ± 0.25 Ma (+10 g/m 2/y) with a maximum 
around 7 ± 0.25 Ma (20.5 g/m 2/y) than a decrease around 5.5 ± 0.25 Ma. In the Pacific Ocean, the signal was 
constructed from 46 data sets labeled “BB” or “Co,” with a maximum of 620 data and a minimum of 45 in one 
bin. There is an increase in the rate of CaCO3 accumulation from 10 ± 0.25 Ma with a more abrupt increase 

Figure 4. CaCO3 accumulation rate from “BB” and “Co” labeled data sets for the three oceanic basins. Red, yellow, and blue lines represent “same weight” average 
(light color) and “resolution weight” average (dark color), respectively, for each basin. The light gray lines represent the raw data used to calculate the average. Below 
each graph, we show the number of data sets used to calculate the average for each 500 kyr time bin (top line), and the number of data averaged (bottom line). The 
same figure with only the “BB” labeled sites can be found in Figure S1 in Supporting Information S1. The standard deviations and outliers are shown in Figure S2 in 
Supporting Information S1. The averaged values for the three basins and the standard deviations are available in Table S2.

 25724525, 2023, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022PA

004564 by C
ochrane France, W

iley O
nline L

ibrary on [20/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Paleoceanography and Paleoclimatology

PILLOT ET AL.

10.1029/2022PA004564

9 of 17

around 7.5 ± 0.25 Ma (+31.4 g/m 2/y). The maximum is around 7 ± 0.25 Ma (44.5 g/m 2/y) with a decrease until 
2 ± 0.25 Ma. The comparison shows that the phase of increasing CaCO3 accumulation rate around 7.5 ± 0.25 Ma 
is synchronous between the three oceanic basins. The synchronicity of the end of the event is less distinct, with 
the decrease in biogenic sediment accumulation being more abrupt in the Pacific Ocean than in the Atlantic and 
Indian Oceans. The time series with just data sets labeled “BB” follow the same trends (Figure S1 in Supporting 
Information S1).

4. Discussion
4.1. Compilation Biases and Limitations

Several biases need to be highlighted to evaluate the limitations of this compilation before discussing its contri-
bution to the mechanistic understanding of the LMBB. To label the data sets, it was necessary to establish criteria 
that defined the LMBB. These criteria—described in Section 2—are based on the literature but are not necessar-
ily shared by all authors, which makes it difficult to quantitatively and unequivocally identify the LMBB. Early 
studies defined the event in a specific region depending on local parameters and a bias may come from applying 
this definition globally. Indeed, the compilation showed that there was significant heterogeneity between data 
sets, which making a “global” definition difficult to apply. Observational biases are also present because the 
labeling of data sets relied on manual classification, as an automatic evaluation would have been too complicated 
due to the definition bias exposed previously. The “Co” label was created for this purpose.

An important bias may come from the sampling of the data compilation. Indeed, a non-negligible proportion of 
the data sets comes from studies focusing specifically on the LMBB, which therefore published data where the 
LMBB signature was visible. This potential bias toward record showing a clear LMBB signal, likely artificially 
decreases the number of data set without the LMBB signature. The DSDP program contains mostly sites with 
“No” labeled data sets, but the ODP program contains sites with data sets that are quite well distributed among 
the labels. The IODP program does not contain any sites with “No” labeled data sets (Figure 3c). Regarding 
dissolution effects, it is possible that depth plays a role in the presence or absence of the LMBB signature in the 
records. Although there seems to be no effect of depth on a global scale (Figure 3f), this could be the case locally. 
For example, for sites on the Walvis Ridge, ODP site 208-1264 (labeled “BB”) is much shallower than ODP 
sites 208-1262, 208-1265, and 208-1266 (labeled “No”). Dissolution bias at global scale is however difficult to 
evaluate due to the carbonate compensation depth (CCD), which varied geographically (being different among 
basins, Berger & Winterer, 1975) and temporally (Dutkiewicz & Müller, 2022). In addition, the spatial distribu-
tion of sites included in the compilation is very heterogeneous. The majority of the compilation constitutes sites 
located in the Pacific Ocean (65%), while only 26% of the sites are located in the Atlantic Ocean and 9% in the 
Indian Ocean (Figure 2c). Very few sites are located at high latitudes (3.4% above 50°N and 2.5% below 50°S), 
or in the gyres of the South and North Pacific and of the North Atlantic oceans. This results in a geographically 
biased view of the LMBB as we lack information on the large-scale extension of the event. There is also tempo-
ral heterogeneity, as not all data sets cover exactly the same time interval. Many of them do indeed not cover 
the entire LMBB time interval. This heterogeneity may prevent a proper temporal analysis of the compilation 
(Figure 3b). Finally, some data sets come from studies with an orbital resolution and astronomical timescale 
(Drury et al., 2021), while others have only a few data points for a time window of several millions of years 
(Lyle, 2003). However, this resolution heterogeneity does not seem to impact labeling (Figure 3a): sites with an 
identified LMBB do not have a better resolution than the sites without an LMBB signature. These potential biases 
must be kept in mind when interpreting the data compilation.

Regarding the temporal interpretation of the compilation, it is important to consider that on the 500 kyr bins, there 
is an uncertainty of ±250 kyr, which is significant for the evaluation of timing relative to other events.

4.2. Does the Compilation Provide Support for Any of the LMBB Hypotheses Proposed in the 
Literature?

Despite the potential biases discussed above, our compilation has a worldwide coverage which opens the discus-
sion on the origin of the LMBB. The compilation shows that the LMBB is globally distributed but is not expressed 
at all sites. Two hypotheses have been suggested in the literature to explain the existence of the event: (a) a global 
increase in the supply of nutrients to ocean basins through changes in continental weathering (Filippelli, 1997) 
and/or (b) a major redistribution of nutrients in the oceans (Farrell et al., 1995).
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The spatial heterogeneity of the LMBB in the data compilation could be an element that supports the scenario of 
a change in nutrient supply from the continents. If this hypothesis is correct, the LMBB signal should be visible 
at some sites (close to nutrient input from the continents) and not at others (isolated from these inputs) or at least, 
its impact should be reduced with the increased distance from the source and without a specific local to regional 
effect of transfer from oceanic currents or winds. However, the compilation of data also showed the global nature 
of this event and a “local” cause such as the Himalayan uplift cannot produce a rise in productivity on a global 
scale without redistribution, or if it did, it would have been homogeneous for areas at a great distance from the 
source (i.e., in the Atlantic Ocean). Furthermore, sites in the data compilation that are located in the South China 
Sea (ODP sites 184-1143 and 184-1146), thus directly affected by the East Asian monsoon system, do not show 
a clear LMBB signal. Calculations of the distances of the sites from the nearest paleocoastline show that the 
LMBB is not present in areas particularly close to the coastline compared to areas where the LMBB appears to 
be absent, which partly contradicts this scenario. Nevertheless, it is important to consider that there can be local 
changes in the location of inputs that affect a particular site. For example, proximity of river outlet that changes its 
flow over time or shifting rainfall patterns. There is also evidence of micronutrient supply by dust fluxes which, 
due to wind, can be transported a long distance from their source (Diester-Haass et al., 2006; Hovan, 1995). 
This wind-driven dust supply is particularly important as it is related to the cooling and aridification of the late 
Miocene (Herbert et al., 2016; Pound et al., 2012). However, our data compilation cannot highlight an increase in 
dust flux during this time interval. Moreover, the nutrient input would be then restricted to areas downwind of the 
arid and desert regions which is not clearly the case in our records. Karatsolis et al. (2022) suggest an end of the 
LMBB at 4.6–4.4 Ma related to a decrease in insolation which in turn would have caused a reduction in hydrolog-
ical cycle intensity and continental weathering. Our compilation shows a significant decline in carbonate-related 
productivity in the Pacific Ocean at this time, although it does not appear to correspond to the end of the LMBB. 
Moreover, there is no decline observed at this time in the Indian and Atlantic Oceans. Furthermore, the hypothesis 
of a particular orbital configuration as a trigger for the end of the LMBB is incompatible with our results because 
we show a slow and continuous decline of carbonate accumulation in the terminal part of the LMBB. This slow 
decrease started as soon as the maximum was reached, around 7–6.5 ± 0.25 Ma.

Regarding the nutrient redistribution hypothesis, the Eastern Equatorial Pacific is an interesting case study as it 
has been widely discussed in the LMBB literature (Farrell et al., 1995; Lyle et al., 2019; Reghellin et al., 2022). 
Our compilation shows that sites with an LMBB signature cluster between 6°N and 5°S and between 90°W and 
127°W (Figure 5). The LMBB signature is present at eight sites (plus three controversial ones) and is absent at 
DSDP site 85-572. A closer look at the data for DSDP site 85-572 shows that there is a decrease in productivity 
from 10 Ma and then an increase from 5 Ma to a peak at 3.5 Ma. This site has not been labeled “BB” because 
instead of having an increase in productivity at the end of the Miocene, there is a decrease and the peak is 
reached at the moment when the “LMBB period” is over. The presence of this site without an LMBB might 
either be due to an error (in the definition of the event or in the interpretation of the signal) or to a particular 
geographical reason that remains undetermined. Without considering DSDP site 85-572, we observe that the 
sites where the LMBB is present were much closer to the Equator 10 Ma ago, which suggests an influence of 
equatorial upwelling on the increase in productivity (Lyle et al., 2019). Reghellin et al. (2022) suggested that 
the equatorial upwelling band was less parallel to the equator during the event and had a reduced spatial extent. 
Moreover, upwelling in this area appears to be strongest between 6.5 and 4.5 Ma, based on alkenone analyses 
from ODP sites 130-806 and 138-850 (Y. G. Zhang et al., 2017). These observations, which are in agreement 
with the compilation, support the scenario of nutrient redistribution as a driver of the LMBB. This redistribution 
may be a consequence of the closure of the Central American Seaway, which would result in the intensification 
of upwelling in the Eastern Equatorial Pacific, strongly increasing the surface nutrient concentration and thus 
primary productivity (Schneider & Schmittner, 2006). The Southeast Atlantic Ocean (around 30°S and 10°E) has 
also been studied in the context of the LMBB (Diester-Haass et al., 2004; Drury et al., 2021). In this area, the 
link between the LMBB and upwelling is more difficult to discern. Generally, sites, where the LMBB is present, 
are areas where simulated paleoproductivity is high (>0.5 g/cm 2/day; Figure 5) with the exception of ODP site 
208-1264 (which is nonetheless the site with the highest resolution), which is in an area of low productivity 
(<0.4 g/cm 2/day) closely surrounded by five sites with no LMBB recorded. Sites without the LMBB are gener-
ally in areas of low simulated paleoproductivity with the exception of ODP site 75-530 and DSDP site 40-362 (for 
these sites, the hypothesis of redistribution remains open to discussion). The calculation of simulated palaeopro-
ductivity for each site (Figure 3d) shows that on average, the LMBB signature is mostly recorded at sites located 
in areas of high productivity (e.g., upwelling areas). This is consistent with a scenario of intensification of ocean 
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circulation which can change the intensity of upwelling and induce a change in the vertical distribution of nutri-
ents (Diester-Haass et al., 2002). Nutrient redistribution means that a transfer of nutrients from some geographic 
regions toward others (Dickens & Owen,  1996). This would be consistent with the heterogeneous nature of 
LMBB in the data compilation. But according to this model, some sites should show a decline in productivity. 
However, if there was an increase in overall nutrient input, it could mask this decline. Considering the low influ-
ence of depth on carbonate accumulation rates compiled here (Figure 3h), the fact that no productivity decreases 
are observed in the data compilation argues against the nutrient redistribution hypothesis.

An alternative scenario would be to consider an increase in nutrients on a global scale without (a) a redistribu-
tion (with an increase of productivity in some regions compensated by a decrease elsewhere) and (b) increase 
in continental inputs. This increase in nutrients could come from the generalized intensification of upwelling 
systems. This intensification could have two origins, an intensification of the wind regime or an increase in 

Figure 5. Integrated primary productivity by phytoplankton in g/m 2/day for the late Miocene (simulation output is from Sarr et al., 2022) with dots showing the 
paleo-positions (10 Ma) of the labeled sites. The black line at the end of each point indicates the present-day position of the site. A global figure can be found in Figure 
S3 in Supporting Information S1. Gray—Inconclusive; Blue—No LMBB; Purple—Controversial LMBB; and Red—LMBB is present.
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deep water formation at high latitudes. The end of the Miocene is marked by a significant global cooling due to 
a decrease in the CO2 level and a strengthening of the temperature gradient between the equator and the poles 
(Herbert et al., 2016; Martinot et al., 2022). The strengthening of this gradient leads to more air mass movement 
in the atmosphere and thus to an intensification of the Walker and Hadley cells (Kamae et al., 2011). Trade wind 
intensification is one consequence of this atmospheric reorganization, evidence of which has been observed in 
marine sediments (Hovan, 1995). The intensification of trade winds causes an increase in upwelling by Ekman 
pumping, especially in the equatorial Pacific (Bjerknes,  1969; Shankle et  al.,  2021) and results in increased 
productivity (Diester-Haass et al., 2006; Y. G. Zhang et al., 2017; Huguet et al., 2022). The late Miocene is also 
a period when the thermohaline circulation dominated by NADW and Antarctic Bottom Water became perennial 
(Poore et al., 2006). In general, NADW formation is thought to have intensified from the Miocene to the present 
day but its evolution is difficult to quantify (Poore et al., 2006). There are many factors that could have increased 
NADW production/strength in the late Miocene. For example, the decrease in CO2 levels (Rae et al., 2021) in 
the late Miocene may have intensified NADW production (Bradshaw et al., 2015) as well as the transition from 
a mid-Miocene to present-day geography (Herold et al., 2012). NADW may also be enhanced by the closure of 
the Central America Seaway (Nisancioglu et al., 2003; Schneider & Schmittner, 2006; Sepulchre et al., 2014), 
thought to have occurred during the Miocene (Montes et al., 2015). Bierman et al. (2016) showed that a small ice 
sheet might have existed on Greenland over the past 7.5 Ma. An ice sheet on Greenland can lead to an intensifica-
tion of NADW, through atmospheric forcing (Pillot et al., 2022). Finally, NADW production also varied with the 
depth of the Greenland Scotland Ridge, which had phases of uplift and subsidence in the late Miocene (Hossain 
et al., 2020; Poore et al., 2006; Wright & Miller, 1996). Increased deep water formation results in the intensifi-
cation of overturning cells (such as the AMOC) and therefore intensified upwelling systems. Kiel et al. (2023) 
observe a large negative excursion in neodymium isotope values (from shark tooth enamel in southern Peru) 
around 8–7 Ma, which they attribute to the northward spread of Antarctic intermediate waters causing increased 
upwelling in this region. Following the same logic, a decrease in NADW production could have caused the end 
of the LMBB. The opening of the Bering Seaway in the early Pliocene (Gladenkov & Gladenkov, 2004), which 
according to modeling work could have caused a weakening of the AMOC (Brierley & Fedorov, 2016), could 
potentially have been linked to the end of the LMBB. The mechanisms put forward in this last hypothesis are not 
incompatible with the mechanisms of the other two hypotheses discussed in the previous paragraphs.

4.3. Speculation on the Link Between the Beginning of the LMBB and the Late Miocene Carbon Isotope 
Shift

The new data compilation confirms that there is a synchronicity between the onset of the LMBB and the Late 
Miocene Carbon Isotope Shift (LMCIS) (Drury et al., 2017; Keigwin, 1979; Westerhold et al., 2020) for the 
three oceanic basins, a synchronicity that has already been discussed in the literature (Dickens & Owen, 1999; 
Diester-Haass et al., 2005; Grant & Dickens, 2002). This approximately 1‰ negative shift in benthic foraminife-
ral δ 13C extends from 7.5 to 6.7 Ma and corresponds to the last major carbon cycle perturbation in Earth's history 
(Steinthorsdottir et  al.,  2021). The period of the δ 13C shift (7.5–6.7  Ma) corresponds to the most important 
phase of increasing productivity in the compilation and the productivity maximum (approx. 500 kyr; Figure 6). 
However, the isotopic shift lasts less than 1 million year and δ 13C never returns to its initial state, whereas the 
LMBB lasts several million years and biogenic sediment accumulation returns to a pre-event state. The causes 
of the LMCIS shift are still poorly understood. It may result from a global shift in δ 13CDIC (Bickert et al., 2004; 
Hodell et al., 2001) caused by fractionation of organic matter in surface waters (Bickert et al., 2004) or a change in 
continental carbon flux (Du et al., 2022). This change may have been caused by the rapid expansion of C4 plants 
between 8 and 6 Ma (Cerling et al., 1997), although this hypothesis appears to be temporally inconsistent (Drury 
et al., 2017; Tauxe & Feakins, 2020). The LMCIS may also have originated from a global high productivity 
event in the surface ocean (Diester-Haass et al., 2005; Grant & Dickens, 2002). The link between the LMBB and 
LMCIS supposes that the input of nutrients from the continents would produce a peak in dissolution and there-
fore a decrease in δ 13C values of dissolved inorganic carbon (Berger, 1981; Bickert et al., 2004; Diester-Haass 
et al., 2005), yet this hypothesis is not consistent with our compilation, which shows no dissolution event. The 
LMCIS could also be a consequence of a change in global ocean circulation, in particular the contribution of 
NADW, which would result in a greater difference in δ 13C between deep waters from the north and those from 
the south (Butzin et al., 2011; Crichton et al., 2021; Hodell & Venz-Curtis, 2006; Poore et al., 2006; Thomas 
& Via, 2007). Considering the timing of the LMCIS (7.5–6.7 Ma), this hypothesis would support the NADW 
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intensification scenario for the origin of the LMBB. In this case, the LMCIS would not be a consequence of the 
LMBB but a parallel consequence of a common cause.

5. Conclusion
Our data compilation confirms that expressions of the LMBB are present at many different locations but in a 
very heterogeneous way. We also show that the LMBB signature is absent from many sites. The compilation 
also shows that for the three oceanic basins, productivity strongly increases around 7.5 ± 0.25 Ma, peaks around 
7 ± 0.25 Ma and then decreases until it reaches a pre-event state around 3.5 ± 0.25 Ma. To explain the origin 
of the LMBB, the scenarios of increased nutrient input to the oceans and a redistribution of nutrients in the 

Figure 6. Top to bottom: Atmospheric pCO2 reconstructions (ppm) from boron isotopes and alkenone δ 13C compiled in Rae 
et al. (2021). SST anomaly stacks for different latitudinal bands from Herbert et al. (2016). Megasplice benthic δ 13C evolution 
(‰) from Westerhold et al. (2020). CaCO3 accumulation rate from “BB” and “Co” labeled data sets for the three ocean 
basins (Figure 4).
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ocean cannot be ignored, although some aspects of our findings do not support these hypotheses. However, the 
compilation shows that the sites where the LMBB is recorded are mainly located in areas where there is a high 
productivity regime (i.e., upwelling systems). We propose that the most likely hypothesis to explain the onset and 
peak of the LMBB is a global increase in upwelling intensity due to an increase in wind strength or an increase 
in deep water formation, ramping up global ocean circulation. These increases may have been the result of major 
tectonic or climatic changes at the end of the Miocene, such as the restriction of the Central American Seaway, the 
general decrease in temperature and CO2 levels, subsidence of the Greenland-Scotland Ridge or the establishment 
of the Greenland ice sheet. In future work, the forcing factors at the origin of the LMBB could be identified using 
a set of simulations from a coupled ocean/atmosphere model with late Miocene paleogeography and integrating 
a marine biogeochemistry module.

Data Availability Statement
All data used in this study have been previously published. However, because of the reevaluation of age-depth 
models, all data sets as used in this study have been deposited on SEANOE (Pillot, 2023). The metadata and the 
original citations are available for each data set in Table S1 and on SEANOE (Pillot, 2023). The time series of all 
variables in all data sets are also available in this repository.
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