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Abstract:

This work addresses the stability analysis of sampled-data control systems subject to
variable sampling intervals and input saturation. From a hybrid system representation,
stability conditions based on quadratic timer-dependent Lyapunov functions are proposed.
Considering affine and generic polynomial timer-dependence, these conditions are cast in
semidefinite and sum-of-squares optimization problems to provide maximized estimates of
the region of attraction or to provide a lower bound for the maximum allowable intersampling
time considering a given set of admissible initial conditions.
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1 Introduction

With the spread of digital controllers and networked control in the industry, to the point that
one can suppress the word ”digital” without change of meaning, the literature has accumulated in
the last decades a great amount of publications concerning the subject of sampled-data systems
(SDS). One of the aspects of the SDS receiving considerable attention is the aperiodic sampling,
when there is no guarantee that the digital controller operates with a constant period between
samples (see [21] for a comprehensive overview). There is a number of different approaches that
have been proposed to address aperiodic SDS, each one with advantages and drawbacks. The
input delay approach models the sampling effect as a time-varying delay affecting the control in-
put and uses Lyapunov-Krasovskii functionals to derive stability conditions [14],[13]. Combining
the ideas of the delay approach and the lifting technique [2], the looped-functional approach [30]
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number ANR-18-CE40-0010.
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relaxes the need of positive definite functionals. Some studies have tackled the problem consider-
ing an uncertain discrete-time model and the use of convex embeddings of the transition matrix,
which results, in the case of aperiodic sampling, in an equivalent linear parameter-varying model
[15][20][8]. In [12], based on a partition of the interval of possible intersampling times and poly-
topic embeddings, set-induced polyhedral Lyapunov functions are used to certify the stability of
SDS. SDS can also be seen as impulsive systems [5] and cast in a hybrid system framework [17].

On the other hand, the input saturation, ubiquitous in real control systems, is a field of
study on its own. Different strategies have been developed over the years to study the stability,
stabilization and the anti-windup problems for systems with input saturation (see for instance
[23], [34], [36]). In particular, for closed-loop systems with saturating inputs, it may not be
possible to achieve the global stabilization of the origin [33]. In this case, it is relevant to
characterize estimates of the region of attraction to the origin (RAO). Until the turn of the
century and some years after, the early literature studied the RAO estimation problem in the case
of purely continuous or discrete-time systems (see [23], [34] and references therein). More recently,
with the growth of interest in the already mentioned networked control systems, some studies
have modified the basic approaches mentioned in the last paragraph to contemplate the analysis
of a sampled-data system subject to input saturation. In [31], the looped-functional approach
from [30] was combined with the generalized sector that applies to deadzone nonlinearities [34] to
obtain a method of stability analysis and stabilization, based on LMI-constrained optimization
problems. In [11] and [24], methods inspired in the approach of [12] and set-invariance results
have been proposed to compute estimates of the RAO based on quadratic Lyapunov functions.
In [10], considering the hybrid system framework proposed in [17] to represent the sampled-data
system, preliminary results to compute estimates of the RAO have been presented, where the
conditions are based on the application of Finsler’s Lemma and the use of quadratic functions
depending affinely on the timer variable.

In this paper, the stability analysis of linear systems subject to sampled-data control and
input saturation is revisited. Differently from the previous works mentioned above that deal
with the same problem ([31], [11] and [24]), we consider a formal hybrid system approach and
the framework proposed in [17]. In this case, the actual sampled-data closed-loop system is
represented by a linear flow and a nonlinear jump dynamics, which allows to model the evolution
of the states with a frozen control between two consecutive sampling instants and the impulsive
update of the control signal at the sampling instants. The state of the hybrid (impulsive) system
is composed by the plant states, the control inputs and an auxiliary timer variable, that counts
the time elapsed from the last sampling instant and that is reset to zero at the sampling instants.
Thus, using quadratic timer-dependent Lyapunov functions and a timer-dependent version of the
generalized sector relation proposed in [19], conditions to assess the local stability of the origin
of the closed-loop are formally stated along with a characterization of estimates of the RAO of
the resulting hybrid system. The link between this estimate, which regards the extended hybrid
system state space, and the one of the actual system, defined only by the states of the plant,
is established. In particular, it is shown that the level sets of the Lyapunov function for the
hybrid system with extended state lead to estimates of the RAO defined by piecewise quadratic
functions in the state space of the plant. The approach to obtain the conditions is different from
our previous preliminary work [10], leading to potentially less conservative ones. Furthermore,
considering not only an affine timer-dependence, but also a generic polynomial timer-dependence,
these conditions are cast in semidefinite and sum-of-squares optimization problems to provide
maximized estimates of the region of attraction or of the maximum allowable intersampling time
considering a given set of admissible initial conditions. Although the results focus mainly on the
regional stability, conditions for the certification of the global asymptotic stability of the origin
(when possible) can be straightforwardly obtained as particular cases.
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The paper is organized as follows. The problems of interest are stated in Section 2. The hybrid
system representation for the SDS and generic stability conditions are presented in Section 3.
Based on quadratic timer-dependent functions, infinite dimensional LMI conditions are proposed
in Section 4. Considering affine and generic polynomial timer-dependence, optimization problems
based on semidefinite and sum-of-squares programming are formulated in Section 5 to maximize
the region of attraction or the bound on the maximum allowable intersampling time. Numerical
examples illustrating the effectiveness of the approach and some concluding remarks are presented
in Sections 6 and 7, respectively.

Notation

N is the set of natural numbers, R is the set of real numbers, and R+ is the set of nonnegative
real numbers. The ith element of a vector v is denoted by v(i), the element in the ith row and j th
column of a matrix M is denoted by M(i,j), while M(i) denotes the ith row of M . Sn is the set of
symmetric matrices of size n, and for a symmetric matrix S ∈ Sn, S > 0 (S ≥ 0) means that S
is positive (semi) definite. Dn is the set of diagonal matrices of size n. M ′ denotes the transpose
of M . I denotes an identity matrix of appropriate size. |v| denotes either the Euclidean norm,
when x is a vector, or the absolute value, when v is a scalar.

2 Problem Formulation

Consider a continuous linear time-invariant plant:

ẋp(t) = Axp(t) +Bu(t) (1)

where xp ∈ Rnp is the state vector of the plant, u ∈ Rm is the input vector, A ∈ Rnp×np and
B ∈ Rnp×m.

We consider the following saturated sampled-data state feedback control law:

u(t) = sat(Kxp(tk)), ∀t ∈ [tk, tk+1) (2)

where the vector-valued function sat(·) : Rm → Rm accounts for normalized actuators amplitude
limitations:

sat(v)(i) = sign(v(i))min(|v(i)|, 1) ∀i = 1, · · · ,m (3)

The values tk, k ∈ N, are the sampling instants. By definition, we set t0 = 0. We consider an
aperiodic sampling policy and assume that the time interval between two successive sampling
instants, given by tk+1 − tk, is bounded as follows:

0 < τ ≤ tk+1 − tk ≤ τ . (4)

From the definition of the control law (2), we assume that the value of u(t) is kept constant (by
a zero-order holder) between two successive sampling instants and is updated at the sampling
instants.

Since the closed-loop system (1)-(2) is nonlinear, it may not be possible to guarantee the
global asymptotic stability of the origin (e.g. when A is not Hurwitz) [34]. Hence, it becomes
necessary to define a region of attraction of the origin.

Definition 1 (Region of attraction of the closed-loop system). Supposing that the control law
u(t) given in (2) ensures the asymptotic stability of the origin of the nonlinear closed-loop system
(1)-(2), the region of attraction of the origin (RAO) is defined as

Ra,0 = {ξ ∈ Rn : limt→∞xp(t) = 0 for xp(0) = ξ}
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From the setup above, we can state the following problems of interest:

P1. Given the closed-loop system (1)-(2) and the sampling interval limits τ and τ , estimate the
region of attraction to the origin x = 0 of the closed-loop sampled-data system.

P2. Given the closed-loop system (1)-(2), a set of admissible initial conditions X0 ∈ Rnp and
τ , estimate the upper bound τ such that, for all x(0) ∈ X0, the corresponding trajectories
xp(t) converge asymptotically to the origin.

To deal with the stability problems stated above, a hybrid (impulsive) system is used in the next
section as the framework for modeling the closed-loop system behavior [17].

3 Hybrid System Framework

3.1 Sampled-data system representation

The closed-loop system (1)-(2) can be represented in the hybrid system framework given in [17]

by a system H with state given by η ,

[
x
τ

]
, where x ,

[
xp
u

]
and τ ∈ R+ is a timer that counts

the time elapsed since the last sampling, as follows:

H


η̇ =

[
ẋ
τ̇

]
= F(η), ∀η ∈ C

η+ =

[
x+

τ+

]
= G(η), ∀η ∈ D

(5)

The sets C = Rn× [0, τ ] and D = Rn× [τ , τ ], with n = np+m, are the flow and the jump sets,
respectively, while the function F : Rh → Rh, with h = n+ 1, is the flow map and the function
G : Rh → Rh is the jump map. The functions F and G are defined from (1)-(2) as follows:

F(η) =

[
Afx

1

]
(6)

G(η) =

[
Ajx+Bjsat(Kjx)

0

]
(7)

with:

Af =

[
A B
0 0

]
, Aj =

[
I 0
0 0

]
, Bj =

[
0
I

]
, Kj =

[
K 0

]
.

The solutions of system H defined above are given by an hybrid arc η(t, k) ,

[
x(t, k)
τ(t, k)

]
with

hybrid domain dom η = ∪∞k=0([tk, tk+1], k). Note that the state variable τ is a timer that has
time derivative equal to one and is reset to zero at each jump instant (which corresponds to the
sampling instants), that is τ(t, k) , t−tk. Furthermore, x(t, k) , x(tk+τ) for t ∈ [tk, tk+1). The
system H satisfies the hybrid basic conditions (see [17], chapter 6): the sets C and D are closed
and the functions F and G are continuous. For any η(0, 0) ∈ C ∪D, the solution starting from
η(0, 0) is well posed and maximal. In particular, dom η(t, k) is complete and, from (4), without
Zeno behavior. Since we assume t0 = 0, it follows that τ(0, 0) = 0. Hence, we are interested in

the behavior of system (5) with respect to the initial conditions η(0, 0) =

[
x(0, 0)

0

]
=

[
x0
0

]
.
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3.2 Stability of the hybrid system

The notion of stability for system H is characterized by the stability of a closed set containing
the origin of the plant state space and the domain of the timer variable defined as follows:

A = {0} × [0, τ ].

In this case, the following definitions are considered.

Definition 2 (Distance to a closed set). Given a vector η ∈ Rh and a closed set A ⊂ Rh, the
distance of η to A is denoted |η|A and is defined by

|η|A = inf
y∈A
|η − y|.

Definition 3 (Local asymptotic stability). [17, p.139] Consider the hybrid system H. The set
A is said to be

a) locally stable for H if for every ε there exists δ such that every solution η to H with
|η(0, 0)|A ≤ δ satisfies |η(t, k)|A ≤ ε for all (t, k) ∈ dom η;

b) locally attractive for H if there exists µ such that every solution η to H with |η(0, 0)|A ≤ µ
is bounded and lim(t+k)→∞ |η(t, k)|A = 0.

c) locally asymptotically stable for H if it is both locally stable and locally attractive.

Definition 4 (Region of attraction of the hybrid system). [17, p.141] Once the set A is asymp-
totically stable for the system H, the region (or basin) of attraction of A is defined as

Ra,A = {ζ ∈ Rh : lim(t+k)→∞|η(t, k)|A = 0 for η(0, 0) = ζ}

In order to state a generic stability result, it is convenient to re-write the jump map (7) using
a deadzone vector-valued function defined as follows:

dz(v) = sat(v)− v (8)

that is, dz(v)(i) = sign(v(i))
(
1−max(|v(i)|, 1)

)
, i = 1, . . . ,m.

Hence, we have that

G(η) =

[
(Aj +BjKj)x+Bjdz(Kjx)

0

]
= Ãjη + B̃jdz(K̃jη) (9)

with

Ãj =

[
(Aj +BjKj) 0

0 0

]
, B̃j =

[
Bj
0

]
, K̃j =

[
Kj 0

]
.

The following Lemma is an extension of the generalized sector condition for deadzone non-
linearities introduced in [19]:

Lemma 1. Consider a vector function g̃j : Rh → Rm and a vector-dependent diagonal matrix
T : Rh → Dm×m. If

|K̃j(i)η − g̃j(i)(η)| ≤ 1, i = 1, · · · ,m (10)

then relation
r(T (η), g̃j(η)) = dz(K̃jη)′T (η)(dz(K̃jη) + g̃j(η)) ≤ 0 (11)

is verified for any matrix T (η) > 0.
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The next theorem follows from the results in [16, 17] and provides sufficient conditions to
ensure that A is locally asymptotically stable for the system H, along with a characterization of
an estimate of its region of attraction.

Theorem 1. If there exists a function V : Rh → R+, a vector function g̃j : Rh → Rm, a vector
dependent diagonal matrix T : Rh → Dm×m, class K∞ functions α1 and α2, and a positive
definite function ρ such that

α1(|η|A) ≤ V (η) ≤ α2(|η|A), ∀η ∈ (C ∪D) (12)

〈∇V (η),F(η)〉 ≤ −ρ(|η|A), ∀η ∈ C\A (13)

V (G(η))− V (η)− r(T (η), g̃(η)) ≤ −ρ(|η|A), ∀η ∈ D\A (14)

|K̃j(i)η − g̃j(i)(η)|2 ≤ 1

µ
V (η), ∀η ∈ D\A, i ∈ {1, · · · ,m} (15)

then

1. the set A is locally asymptotically stable for H.

2. for any initial condition η(0, 0) ∈ LV (µ) = {η ∈ Rh : V (η) ≤ µ}, it follows that
η(tk, k)→ A as (t+ k)→∞, that is LV (µ) ⊂ Ra,A.

Proof. Suppose that η(t0, 0) = η(0, 0) ∈ LV (µ). If condition (13) holds, it follows that

V (η(t, 0)) < V (η(0, 0)) ≤ µ, ∀t ∈ [0, t1]. (16)

On the other hand, if (15) and (14) are verified, one has that

|K̃j(i)η(t1, 0)− g̃j(i)(η(t1, 0))|2 ≤ 1

µ
V (η(t1, 0)) < 1, (17)

V (η(t1, 1))− V (t1, 0)− r(T (η(t1, 0)), g̃(η(t1, 0))) < −ρ(|η|A). (18)

Since (17) is verified, it follows from Lemma 1 that r(T (η(t1, 0)), g̃(η(t1, 0))) ≤ 0. Hence, from
(18) we conclude that

V (η(t1, 1)) < V (η(t1, 0)) (19)

The relation in (16) combined with (19), results that

V (η(t1, 1)) < V (η(t, 0)) ≤ V (η(0, 0)) ≤ µ, ∀t ∈ [0, t1].

Repeating the reasoning, we can generalize the relation above to:

V (η(tk+1, k + 1)) < V (η(t, k)) < V (η(tk, k)) ≤ µ, ∀t ∈ [tk, tk+1] (20)

for all (t, k) ∈ dom η.
From (12) and (20), it follows that for all η(0, 0) ∈ LV (µ̃), with µ̃ ≤ µ, there exist r1(µ̃) such

that |η(t, k)|A ≤ r1(µ̃) ≤ r1(µ), ∀(t, k). Furthermore, there exists r2(µ̃) such that |η(0, 0)|A ≤
r2(µ̃) implies that η(0, 0) ∈ LV (µ̃). Hence, for every ε ≥ r1(µ), we can conclude that |η(t, k)|A ≤ ε
provided |η(0, 0)|A ≤ r2(µ). On the other hand for every ε < r1(µ) there exists µ̃ such that
ε = r1(µ̃) and |η(t, k)|A ≤ ε provided |η(0, 0)|A ≤ r2(µ̃). Thus the local stability of A follows.

The local attractivity of A also comes directly from (12) and (20). Note that (20) im-
plies that lim(t+k)→∞V (η) = 0 provided that η(0, 0) ∈ LV (µ), which from (12) implies that
lim(t+k)→∞|η(t, k)|A = 0, which concludes the proof.
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Theorem 1 provides an estimate to the region of attraction of the set A (see Definition 4) of
the hybrid system (5), with F(η) and G(η) given in (6) and (9), respectively. Although this is
an equivalent representation of the closed-loop dynamics, it is worth noticing that it considers
an extended state space η composed by the plant states, the inputs and the timer. Hence, it is
important to formally characterize an estimate of the region of attraction to the origin of system
(1)-(2) (see Definition 1), which should be given in terms of the plant states xp. With this aim

recall that η(0, 0) =

[
x(0, 0)

0

]
and that x(0, 0) is given by

x(0, 0) =

[
xp(0)
u(0)

]
=

[
xp(0)

sat(Kxp(0))

]
.

We can therefore state the following Corollary that regards the regional stability of the original
sampled-data system (1)-(2).

Corollary 1. If the conditions of Theorem 1 are satisfied, the set

Lxp

V (µ) = {xp ∈ Rnp : V

 xp
sat(Kxp)

0

 ≤ µ}
is included in the region of attraction of the origin of the closed-loop system (1)-(2) , i.e. Lxp

V (µ) ⊂
Ra,0.

Proof. It follows directly from the fact that if xp(0) ∈ Lxp

V (µ) then η(0, 0) ∈ LV (µ). In this case,
from Theorem 1, we conclude that η(tk, k)→ A as (t+k)→∞, which implies that xp(tk, k)→ 0
as (t+ k)→∞ or, equivalently, xp(t)→ 0 as t→∞.

Remark 1. Theorem 1 and Corollary 1 focus on the regional stability characterization and
provide estimates of the region of attraction. In the case that the linear plant (1) is asymptotically
stable (i.e. it is Hurwitz), it may be possible to ensure the global asymptotic stability of A
(or equivalently, of the origin of the system (1)-(2)) depending on the admissible intersampling
interval [τ , τ ]. In fact, taking into account that the deadzone function globally satisfies the sector
relation [34]

r(T (η), K̃jη) = dz(K̃jη)′T (η)(dz(K̃jη) + K̃jη) ≤ 0, (21)

for any T (η) diagonal and positive definite, Theorem 1 can therefore be adapted to provide a
sufficient condition for the global asymptotic stability of A. In this case, it suffices to replace
condition (14) by:

V (G(η))− V (η)− r(T (η), K̃jη) ≤ −ρ(|η|A), ∀η ∈ D\A (22)

and condition (15) is no longer needed.
Note that the asymptotic stability of the plant is a necessary (but not sufficient) condition to

ensure the exponential global asymptotic stability of the origin under a saturating state feedback
control law (see [34] and references therein), which can be designed for instance to improve
performance and robustness.

4 Main results

Based on Theorem 1, which provides generic Lyapunov-based conditions, in this section we
derive testable conditions to assess the stability of the sampled-data closed-loop system and to
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address problems P1 and P2 stated in Section 2. With this aim, we consider a class of quadratic
timer-dependent (also named clock-dependent [7]) Lyapunov functions :

V (η) = V (x, τ) = x′P (τ)x = x′W−1(τ)x. (23)

Note that, if W (τ) is positive definite ∀τ ∈ [0, τ ], the quadratic form defined above satisfies
condition (12) of Theorem 1 with α2(|η|A) = λ|η|2A and α1(|η|A) = λ|η|2A, where λ and λ are,
respectively, the maximal and the minimal eigenvalue of P (τ) for τ ∈ [0, τ̄ ]. It should also be
noted that, as τ ∈ [0, τ̄ ], |η|2A = |x|2.

Hence, the following theorem providing linear matrix inequalities (LMI) conditions can be
stated.

Theorem 2. If there exist matrix functions W : [0, τ ] → Sn, Y : [0, τ ] → Rm×n and S :
[0, τ ]→ Dm that satisfy the following linear matrix inequalities

W (τ) > 0, ∀τ ∈ [0, τ ] (24)

W (τ)A′f +AfW (τ)− Ẇ (τ) < 0, ∀τ ∈ [0, τ) (25)W (τ) Y ′(τ) W (τ)(Aj +BjKj)
′

? 2S(τ) S(τ)B′j
? ? W (0)

 > 0, ∀τ ∈ [τ , τ ] (26)

[
W (τ) W (τ)K ′j(i) − Y

′
(i)(τ)

? 1

]
≥ 0, ∀τ ∈ [τ , τ ] , i = 1, · · · ,m (27)

then, considering P (τ) = W−1(τ), provided that xp(0) ∈ Lxp

P , where

Lxp

P , {xp ∈ Rnp :

[
xp

sat(Kxp)

]′
P (0)

[
xp

sat(Kxp)

]
≤ 1},

the trajectories of the closed-loop system (1)-(2), with (tk+1−tk) ∈ [τ , τ ], converge asymptotically
to the origin as t→ +∞.

Proof. From (24), it follows that W (τ) is nonsingular ∀τ ∈ [0, τ ]. Consider P (τ) = W−1(τ).

Taking into account that dP (τ)W (τ)
dτ = P (τ)dW (τ)

dτ + dP (τ)
dτ W (τ) = 0, Ẇ (τ) , dW (τ)

dτ τ̇ and the
fact that τ̇ = 1 for η ∈ C it follows that:

Ẇ (τ) = −W (τ)Ṗ (τ)W (τ). (28)

Left and right multiplying (25) by x′P (τ) and P (τ)x, respectively, it follows that

x′
(
P (τ)Af +A′fP (τ) + Ṗ (τ)

)
x < 0, ∀x ∈ Rn,∀τ ∈ [0, τ ] (29)

and thus (25) implies that condition (13) of Theorem 1 is satisfied with V (η) = x′P (τ)x.
Applying Schur’s complement to (27), it follows that:

W (τ)− (W (τ)K ′j(i) − Y
′
(i)(τ))(Kj(i)W (τ)− Y(i)(τ)) ≥ 0, (30)

∀τ ∈ [τ , τ ] , i = 1, ...,m

left and right multiplying (30) by x′P (τ) and P (τ)x, respectively, and definingGj(τ) = Y (τ)P (τ),
it follows that

x′(Kj(i) −Gj(i)(τ))′(Kj(i) −Gj(i)(τ))x ≤ x′P (τ)x, ∀τ ∈ [τ , τ ] , i = 1, ...,m (31)
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and thus, recalling that K̃j , [Kj 0] and η ,

[
x
τ

]
, we conclude from (31) that

|(K̃j(i) − G̃j(i)(τ))η|2 ≤ V (η), ∀τ ∈ [τ , τ ] , i = 1, ...,m (32)

with G̃j(τ) =
[
Gj(τ) 0

]
, which implies that condition (15) of Theorem 1 with g̃(η) = G̃j(τ)η

is satisfied with µ = 1.
Now, right and left-multiplying (26) by the matrix diag(P (τ), T (τ), I), with T (τ) = S(τ)−1,

it follows that (26) is equivalent toP (τ) G′j(τ)T (τ) (Aj +BjKj)
′

? 2T (τ) B′j
? ? W (0)

 > 0. (33)

Applying now the Schur’s complement to (33) and thus right and left multiplying by

[
x

dz(Kjx)

]
and its transpose, respectively, one gets[

x
dz(Kjx)

]′([
P (τ) G′j(τ)T (τ)
? 2T (τ)

]

−
[
(Aj +BjKj)

′

B′j

]
P (0)

[
(Aj +BjKj)

′

B′j

]′)[
x

dz(Kjx)

]
> 0

(34)

which implies that condition (14) of Theorem 1 is satisfied.
Hence, the satisfaction of conditions (24), (25), (26) and (27) imply the satisfaction of the

conditions of Theorem 11 with V (η) = x′P (τ)x and g̃(η) = G̃j(τ)η, which concludes the proof.

It should be noticed that the stability conditions provided by Theorem 2 result in infinite
dimensional LMIs. It is then important to consider particular structures for W (τ), S(τ) and
Y (τ) to obtain finite dimensional test conditions. This is done in the following subsections by
considering affine and polynomial dependences on τ [3].

4.1 Affine dependence on τ

In this subsection, the matrix functions W (τ), S(τ) and Y (τ) in Theorem 2 are considered
affinely dependent on τ . Generically, a matrix M(τ) is affine on τ if it can be expressed as

M(τ) = M0 + τM1, (35)

where M0 and M1 are constant matrices. Note that in this case, since P (τ) = W (τ)−1, the
Lyapunov function will present a rational dependence on τ . Lyapunov functions with affine
dependence on τ can be found in the literature, though more commonly in the non-inverted
form, where P (τ) is affine on τ instead of W (τ) [4], [1] and [22]. A previous result, considering
this type of candidate, can be found in [10]. Here we adopted the inversion of P (τ) because,
through convexity arguments, the stability conditions can be cast directly as true LMIs, that
is, without the need of fixing some scalar variables as in [10]. This candidate underpins the
development of the next theorem.

1Note that |η|A = |x| and since the LMIs (25) and (26) are strict, it is always possible to determine a scalar ρ̃
such that ρ(|η|A) = ρ̃|x|2.
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Theorem 3. If there exist matrices W0 ∈ Sn, W1 ∈ Sn, Y0, Y1 ∈ Rm×n, S0, S1 ∈ Dm that satisfy
the following LMIs

W0 > 0 (36)

W0 + τW1 > 0 (37)

W0A
′
f +AfW0 −W1 < 0 (38)

(W0 + τW1)A′f +Af (W0 + τW1)−W1 < 0 (39)(W0 + τW1) (Y0 + τY1)′ (W0 + τW1)(Aj +BjKj)
′

? 2(S0 + τS1) (S0 + τS1)B′j
? ? W0

 ≥ 0 (40)

(W0 + τW1) (Y0 + τY1)′ (W0 + τW1)(Aj +BjKj)
′

? 2(S0 + τS1) (S0 + τS1)B′j
? ? W0

 ≥ 0 (41)

[
(W0 + τW1) (W0 + τW1)K ′j(i) − (Y0(i) + τY1(i))

′

? 1

]
≥ 0, i = 1, · · · ,m (42)[

(W0 + τW1) (W0 + τW1)K ′j(i) − (Y0(i) + τY1(i))
′

? 1

]
≥ 0, i = 1, · · · ,m (43)

then, considering P (τ) = (W0 + τW1)−1, provided that xp(0) ∈ Lxp

P , where

Lxp

P , {xp ∈ Rnp :

[
xp

sat(Kxp)

]′
P (0)

[
xp

sat(Kxp)

]
≤ 1},

the trajectories of the closed-loop system (1)-(2), with (tk+1−tk) ∈ [τ , τ ], converge asymptotically
to the origin as t→ +∞.

Proof. Consider V (η) , x′W−1(τ)x, where W (τ) = W0 + τW1. Hence, since W (τ) is affine
on τ and τ ∈ [0, τ ], it follows that W (τ) can be expressed as a convex combination of W0 and
W0 + τW1, that is

W (τ) = λ0W0 + λ1(W0 + τW1)

with λ0 =
(

1− τ

τ

)
and λ1 =

τ

τ
. Thus, provided that (36) and (37) are verified, we conclude

that W (τ) > 0, ∀τ ∈ [0, τ ], i.e. (24) is satisfied. Applying now this same convex combination to
(38) and (39), we can conclude that these two matrix inequalities are equivalent to (25).

On the other hand, for τ ∈ [τ , τ ], W (τ) can be expressed by the following convex combination:

W (τ) = γ0(W0 + τW1) + γ1(W0 + τW1)

with γ0 =

(
τ − τ
τ − τ

)
and γ1 =

(
τ − τ
τ − τ

)
. Hence, applying this same convex combination to

(40)-(41) and to (42)-(43), we conclude that these pairs of matrix inequalities are equivalent to
(26) and (27), respectively, which concludes the proof.
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4.2 Polynomial dependence on τ

To reduce conservatism, we consider now W (τ), S(τ) and Y (τ) with a more generic polynomial
dependence on τ , characterized by a finite sum of monomials, or an univariate matrix polynomial
(UMP). Generically, a matrix M(τ) is expressed as an UMP of degree d as follows:

M(τ) =

d∑
i=0

Miτ
i = M0 + τM1 + · · ·+ τdMd. (44)

The degree of the polynomial above is denoted by deg(M(τ)) = d. When we choose deg(M(τ)) =
1, as in the last subsection, it is possible to write a finite number of stability conditions directly
as LMIs. When the stability conditions of Theorem 2 are written with deg(M(τ)) > 1, however,
this approach is not valid. The alternative is thus to use the sum of squares framework [25], [26],
[27].

A sum of squares decomposition of the UMP in (44) is given by

M(τ) = H ′(τ)H(τ). (45)

When a polynomial can be decomposed into a sum of squares, it is abbreviated here that the
polynomial is a sum of squares or, simply, that it is SOS. The idea employed here is that if a
UMP given by (44) is SOS, then it is semidefinite positive ∀τ .

The next theorem casts the inequalities of Theorem 2 in the sum-of-squares framework.

Theorem 4. If there exist matrix polynomials W : [0, τ ]→ Sn, Q1, Q2, Q3 and Q4 : [0, τ ]→ Sn,
Y : [0, τ ]→ Rm×n and S : [0, τ ]→ Dm and a scalar γ > 0 that satisfy the following conditions:

Q1(τ), Q2(τ), Q3(τ), Q4(τ) are SOS (46)

W (τ)− γI −Q1(τ)τ(τ − τ) is SOS (47)

−(W (τ)A′f +AfW (τ)− Ẇ (τ))− γI −Q2(τ)τ(τ − τ) is SOS (48)W (τ) Y ′(τ) W (τ)(Aj +BjKj)
′

? 2S(τ) S(τ)B′j
? ? W (0)

− γI −Q3(τ)(τ − τ)(τ − τ) is SOS (49)

[
W (τ) W (τ)K ′j(i) − Y

′
(i)(τ)

? 1

]
− Q4(τ)(τ − τ)(τ − τ) is SOS

i = 1, · · · ,m
(50)

then, considering P (τ) = W−1(τ), provided that xp(0) ∈ Lxp

P , where

Lxp

P , {xp ∈ Rnp :

[
xp

sat(Kxp)

]′
P (0)

[
xp

sat(Kxp)

]
≤ 1},

the trajectories of the closed-loop system (1)-(2), with (tk+1−tk) ∈ [τ , τ ], converge asymptotically
to the origin as t→ +∞.

Proof. If the conditions in (46) are verified, then

Q1(τ) ≥ 0, Q2(τ) ≥ 0, Q3(τ) ≥ 0, Q4(τ) ≥ 0, ∀τ.

Hence, noting that τ(τ − τ) ≥ 0 for τ ∈ [0, τ ], provided that Q1(τ) ≥ 0 ∀τ , and γ > 0, it follows
that (47) ensures that

W (τ) ≥ γI > 0 τ ∈ [0, τ ]. (51)
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Likewise, as Q2(τ) ≥ 0, ∀τ , the condition (47) implies that

−(W (τ)A′f +AfW (τ)− Ẇ (τ)) > 0,∀τ ∈ [0, τ ] (52)

and therefore (25) in Theorem 2 is verified.
On the other hand, as (τ − τ)(τ − τ) ≥ 0, ∀τ ∈ [τ , τ ] and Q3(τ), Q4(τ) ≥ 0, it follows that

(48) and (49) ensure (26) and (27) in Theorem 2, which concludes the proof.

The terms involving Qi(τ), i = 1, 2, 3, 4 in the conditions of Theorem 4 correspond in fact to
the application of the the Positivstellensatz [29] and can be seen as a generalized S-procedure
([35], Appendix A). Indeed, these terms are used to relax the validity of the LMIs in Theorem 2
only for τ ∈ [0, τ̄ ] or for τ ∈ [τ , τ̄ ] [6], [7].

5 Optimization problems

Theorems 3 and 4 provide conditions to assess the regional asymptotic stability of the origin of
the closed-loop system (1)-(2) and to address problems P1 and P2 stated in Section 2.

First of all, it should be noted that Lxp

P is a sub-level set of a piecewise quadratic function.
Indeed, depending on xp, the term sat(K(i)xp) can assume the value 1, −1 or K(i)xp, for i =

1, . . . ,m. This leads to 3m quadratic forms in xp for the function

[
xp

sat(Kxp)

]′
P (0)

[
xp

sat(Kxp)

]
,

each one associated to a region in the state space [18].
Regarding P1, the objective is to use the conditions given by Theorems 3 and 4 to obtain an

estimate of the RAO, described by Lxp

P , as large as possible considering a size criterion. To this
end, we can consider a piecewise quadratic shape set, described as follows

Lxp

I (ε) = {xp ∈ Rnp :

[
xp

sat(Kxp)

]′
I

[
xp

sat(Kxp)

]
≤ ε}. (53)

The idea is therefore to maximize the scaling factor ε such that Lxp

I ⊆ Lxp

P . Note that this
inclusion is satisfied if W0 − εI ≥ 0, since this implies that W−10 = P (0) ≤ ε−1I. Thus, a new
constraint given by W0 − εI ≥ 0 is considered and the problem P1 is posed as the optimization
problems (54) and (55) below, corresponding to the application of Theorems 3 and 4, respectively:

max ε

subject to: (54)

(36), (37), (38), (39), (40), (41), (42), (43)

and W0 − εI ≥ 0

max ε

subject to: (55)

(46), (47), (48), (49), (50)

and W0 − εI ≥ 0

Regarding problem P2, the set of admissible initial conditions X0 can be defined as a piecewise
quadratic shape set as follows:

X0 , Lxp

R = {xp ∈ Rnp :

[
xp

sat(Kxp)

]′
R

[
xp

sat(Kxp)

]
≤ 1}. (56)
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In this case, the inclusion of Lxp

R ⊆ L
xp

P holds if R−P (0) = R−W−10 ≥ 0, which is equivalently
expressed by the following LMI : [

R I
? W0

]
≥ 0. (57)

Then, to solve P2, we can consider the optimization problems (58) and (59) below, corresponding
to the conditions in Theorem 3 and 4, respectively:

max τ

subject to: (58)

(36), (37), (38), (39), (40), (41), (42), (43) and (57)

max τ

subject to: (59)

(46), (47), (48), (49), (50) and (57)

Observe that the constraints in (58) and (59) are not LMIs or SOS expressions if τ is considered
as a variable (i.e. if τ is not a priori given). Thus, to solve these two optimization problems, we
can consider an iterative bisection procedure, where in each step we fix τ and test an LMI or
SOS feasibility problem: if the problem is feasible we increase τ , otherwise we decrease it.

In the next section, some illustrative examples are provided. The problems (54) and (58) are
solved with SeDuMi [32], and the problems (55) and (59) with SOSTools [28].

6 Numerical examples

6.1 Example 1

Consider the system (1) and the control law (2) borrowed from [11], where:

A =

[
0 1
1 0

]
; B =

[
0
−5

]
; K =

[
2.6 1.4

]
; [τ , τ ] = [0.05, 0.1] . (60)

We address first the problem P1, regarding the determination of estimates of the RAO. In
this context, the optimization problem (54), regarding an affine dependence on the timer, is
solved and results in εmax = 0.0128. Before solving problem (55), which considers a polynomial
timer dependence, note that in this case (and also when solving optimization problem (59))
the degree of the polynomial matrices variables must be fixed a priori. In principle, with a
greater degree d, the results tend to be less conservative, that is, the final value of εmax tends
to be greater. Since an increase in d also entails a more complex problem from a numerical
perspective, the trade-off between conservatism and computational burden should be mindfully
balanced. Results of optimization problem (55) for different values of d are shown in Table 1. The
polynomial degrees in the column of d are respective to all polynomials of the SOS constraints,
meaning that deg(W (τ)) = deg(Y (τ)) = deg(S(τ)) = deg(τ2Qi(τ)) = d, and consequently that
deg(Qi(τ)) = d − 2 for i = 1, ..., 4. We can observe that, as expected, the use of a polynomial
dependence greatly improve the maximum value of ε, that is, larger estimates of the RAO are
obtained. On the other hand, there is little advantage in choosing d greater than 4 for this
system.

In Figure 1 the obtained estimates from problem (54) and (55) (with d = 4) are compared
to the ones obtained with the conditions of references [11], [31] and [10]. Regarding [11], the
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Table 1: Results of problem (55).
d εmax

2 1.183
4 1.694
6 1.701
8 1.701

method is applied with a number of interval partitions J = 27, and decrease factor λ = 0.98, as
in the numerical example of that paper. It can be observed that the estimate obtained from (54)
is relatively conservative, as expected. On the other hand, the one obtained with the matrices
with polynomial dependence on τ , that is from (55), are clearly less conservative than the ones
obtained from the conditions in [31] (which uses a looped-functional approach) and [10] (which
considers a hybrid system approach, but with different conditions). Furthermore, the estimate
obtained from (55) is slightly better than the one obtained with the approach in [11], with the
advantage that it is not necessary to search a good partition for the interval [τ , τ ]. The region of
linearity, which corresponds to the region where the control is not saturated, is colored in light
blue in the figure.

Figure 1: Estimates obtained from problem (55) (red), from [11] (black), from [31] (green), from
[10] (pink), and from problem (54) (blue). The region of linearity is colored in light blue.

6.2 Example 2

In this example, the problem P2 is tackled from the solution of (58) and (59) for system (1)-(2)
described with

A =

[
−0.25 1

1 −0.25

]
, B =

[
0
2

]
, K =

[
−1.5 −1

]
and τ = 0.05. (61)

For this problem, we define a set of admissible initial conditions X0, which is given by a piecewise
quadratic shape Lxp

R parameterized by a matrix R, as in (56).
Adopting again d = 4, the obtained results for P2 considering different values for matrix

R are shown in Figures 2 and 3, and in Table 2. As expected, the solution of problem (59),
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which is based on a polynomial dependence on τ , provides a higher bound for the maximum
admissible τ when compared to the one of problem (58), which is based on an affine dependence
on τ . Furthermore, for a larger region X0, a smaller value of τ is obtained. This characterizes
an expected trade-off between the RAO and the maximum bound on the intersampling interval.

Table 2: Results of problems (58) and (59) for different sets of admissible initial state, as defined
in (56)

R τ prob. (58) τ prob. (59)

4I 0.14 0.46
0.5I unfeasible 0.12

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
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-2

-1

0

1

2

3

x
(2

)

Figure 2: Lxp

R in purple, and Lxp

P obtained from (58) in blue, for R = 4I. The region of linearity
is colored in light blue.

7 Conclusion

In this work, a new method of stability analysis for linear plants subject to saturating sampled-
data control was proposed. Considering the hybrid systems framework in [17] and a quadratic
timer-dependent Lyapunov function, the stability conditions were first derived with matrices
having affine dependence on the timer, leading to LMI conditions, and then extended to the
case of polynomial dependence, leading to SOS conditions. In both cases, it was shown how
to incorporate these conditions in optimization problems to provide maximized estimates of the
RAO or of the maximum bound on the intersampling time for which it is possible to ensure that
a given set of admissible initial states is included in the RAO.

Compared to the looped functional approach [31], it has been shown that the proposed method
leads to less conservative results. Although the estimates obtained with the approach in [24] can
be in some cases better than the proposed one, it depends on the choice of a parameter λ, and
also a sufficiently fine partition of the possible intersampling interval is needed, leading in general
to a high number of LMIs and variables. On the other hand, the proposed approach allows to
compute both the estimate of the RAO or the maximum allowable intersampling time in a rather
direct way, without the need of iterative procedures.
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Figure 3: Lxp

R in purple, and Lxp

P obtained from (59) in red, for R = 0.5I. The region of linearity
is colored in light blue.

In the present work, only the stability analysis has been addressed, i.e. we have considered
that the control law has been previously designed. The extension of the proposed results to
address the synthesis of the control law aiming either at the maximization of the allowable inter-
sampling time or at the maximization of an estimate of the RAO has to be further investigated.
The challenge in this case is to obtain constant gains and keep the degrees of freedom intro-
duced by a timer-dependent Lyapunov function. Note that classical change of variables, applied
to the case of continuous or discrete-time cases [34], can not be used here without generating
timer-dependent gains. To overcome this issue, some preliminary results have been proposed in
[9].
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