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A Fixed-lag Particle Filter for the Joint
Detection/Compensation of Interference Effects In
GPS Navigation

Audrey Giremus, Jean-Yves Tourner8gnior Member, IEEENd Arnaud Doucet

Abstract—Interferences are among the most penalizing error they are one of the most penalizing sources of error, along
sources in Global Positioning System (GPS) navigation. Sarf  with multipaths, in GPS navigation.
many effort has been devoted to developing GPS receivers mor  |ntarfarence mitigation has been an active research topic

robust to the radio-frequency environment. Contrary to previous f RE interf iqinate diff t
approaches, this paper does not aim at improving the estimain or many years. Interierences  originate irom artreren

of the GPS pseudo-distances between the mobile and the Gpssources and can take different forms such as wideband noise,
satellites in the presence of interferences. As an alterniae, continuous waves, pulsed noise or frequency hopping. 8peci
we propose to model interference effects as variance jumps attention has been paid to designing receiver enhancements
affecting the GPS measurements which can be directly detesd to discriminate the GPS signal from parasite signals. Con-

and compensated at the level of the navigation algorithm. e Hi | hes include filtering in the th d .
the joint detection/estimation of the interference errors and ventional approaches Include fiitering In the three domains

motion parameters is a highly non linear problem, a particle 1-€. spatial, temporal and frequential [32]. Filtering che
filtering technique is used. An original particle filter is developed applied at different stages of the receiver. Pre-filterifghe

to improve the detection performance while ensuring a good GPS signals has proved efficient against out-of-band inter-

accuracy of the positioning solution. ferences. However, filters with a sharp cutoff are difficolt t
Index Terms—GPS navigation, interferences, particle filtering, design at high frequencies [31]. Another solution congigts
smoothing, hypothesis test. narrowing the bandwidth of the tracking loop filters. Thus,

the robustness to interferences is improved but the toteran
of the receiver to high dynamics is decreased. To obviate
. INTRODUCTION this limitation, external aiding to the receiver can be used

Irst developed in the eighties for military purposes, thi can be provided for instance by inertial navigation syste

global positioning system (GPS) is used nowadays in(NS) which are immune to the navigation RF environment.
variety of applications ranging from the most stringent oné/iore precisely, by providing prior estimates of the line-of
such as civil aviation to mass-market mobile phone positign sight distances between the_ receiver and the satel_llteS, IN
services. GPS is a radionavigation system which relies 80w one to remove dynamic stress from the tracking loop
radio-frequency (RF) signals emitted by a constellation &l- AS & complement to these approaches, multiple antenna
satellites. As a consequence, it is vulnerable to RF intéirays have been paid lately a lot of attention. The prircipl
ferences. These interferences can severely impair nasigatl© medify the antenna pattern by setting to zero the assumed
accuracy and even result in a temporary loss of the Ggections of interference sources. For that purpose, tadap
service. beamforming and high resolution finding methods are used

More precisely, GPS is based on direct-sequence spre%ﬂ' A comprehensive review of existing design solutioaa ¢
spectrum coding. By exploiting the correlation properigs P€ found in [17]. _ ,
the sequences spreading the satellite signals, GPS reseiveUnlike the above-mentioned methods, our purpose is not to
can acquire and track their propagation delays. Then, fogfihance the GPS signal SNR but to compensate directly for
times of transmission allow one to compute the three spatigferference effects at the level of the navigation algwnit In
coordinates of the receiver as well as its clock offset witifiiS Way, the structure of GPS receiver can be left unchanged

respect to a reference time. A consequence of interferdéaced NUS: our study considers low power interferences which do

to decrease the signal to noise ratio (SNR) of the GPS sighgt result in a receiver loss of lock but still degrade the

and thereby to increase the uncertainty on the delay estimafi@vigation solution. To our knowledge, it is the first time
If the SNR is reduced below the receiver tracking threshol§!/C @n approach is applied to mitigate RF perturbations.

the receiver loses its ability to obtain measurements frioen to/Milar techniques have been developed in the civil awmtio
satellites. As these interferences are moreover unpeddést COmmunity to monitor the integrity of the GPS measurements.
However, the so-called fault detection and exclusion (FDE)

A. Giremus is with the University of Bordeaux, IMS-LAPS-UM&218, algorithms [7] [18] [29] are intended to _cope with blE_iS or mm
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J.-Y. Tourneret is with the University of Toulouse, IRIT-BREIHT-TESA, jumps [5] In addition they generally make the assumption
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e-mail: arnaud@ism.ac.jp. sion. Our contribution is threefold. First, our algorithms i



dedicated to variance jump detection. Second, it can handlbere,
several corrupted measurements at a time. Finally, instéad
excluding the faulty measurements, we estimate the value of
the observathn NOIS€ varance in the presence of 'nter.@& reference for the motion, here the Earth Centered Earth
so as not to discard useful information to solve the positign -
) ; : : L7 Fixed (ECEF} frame,
problem. Jointly detecting the variance jumps and estimyati & v 5T o .
. . ; oS0 e pf = [af,yr, 2f]" is composed of the position coordi-
their values together with the dynamics of the mobile is a oh :
. . : . . nates of thek!" satellite,
highly non linear problem. Therefore, we consider in this . . .
: ) ...~ e b is the GPS receiver clock offset with respect to the
paper a fully Bayesian approach based on particle filtering .
: : GPS reference tinfe
(PF). By noting that several consecutive GPS measurements ; . . . .
. : o w;(k) is a white Gaussian random variable (RV) with
are usually affected by a given source of interferences, we . .
. ) . variance unity,
consider a fixed-lag PF (FLPF) smoother to ease interference b, = [¢,(1) &,(n,)] is a vector composed of the
detection. Indeed, FLPF have the advantage of delaying the ¢ .— "tl 207ty : P
T : . variances of the measurement noise.
estimation to make use of information from near future ob-
servations as outlined in [30]. It should be noted that such alt should be noted that only the receiver clock offset is
strategy has already proved useful to address the problerrestimated since the satellite drift with respect to GPS tisne
multipath in GPS navigation [15]. With the same concern farsually well-modelled and compensated. Thus, the problem a
performance, we propose several modifications to a standhg&nd is to estimate the positigny and the observation noise
PF algorithm. Basically, PF consist of propagating a set wfriance¢, from the set of collected measuremeits.; =
possible solutions to the estimation problem, called psi {Y'1,..., Y} with possiblyl > . This paper assumes that the
Each of them is assigned a weight approximately proportionglue of a pseudorange noise variance directly dependseon th
to its posterior probability. In this paper, a suboptimal n- absence/presence of interferences affecting the measotem
alytically tractable distribution is proposed to sampletiples Either they evolve slowly or they change abruptly under the
conditional on near future observations. In addition, thierp influence of a nearby parasite RF emitter. To apply a Bayesian
probability for a variance jump is adjusted so as to favor @proachprior stochastic models describing the dynamics of
minimal delay between two consecutive detections and thile unknown GPS navigation parameters are required. They
prevent false alarms. Finally, removal of non relevantipkes are described in the next section.
is sped up by penalizing them on the basis of an hypothesis
test.
The remainder of the paper is organized as follows. Section [1l. BAYESIAN MODELING
Il presents the GPS navigation model in the presence of
interferences. Section Il is dedicated to the Bayesianetiog This section describes the dynamic models assigned to the
of the problem. Section IV details the proposed PF famknown parameters. In addition to estimating the dynamics
navigation in the presence of interferences. We emphaseze bf the mobile and the variance of the observation noise, a
different improvements introduced with regards to a ctasi discrete-valued latent proce$a, },- , indicating the presence
PF. Finally, simulation results illustrate the performamt the of variance jumps is introduced. More precisely, each compo
approach in section V. Conclusions are reported in section Vient of this vector is associated with one of the pseudorange
measurements collected at the current time\ straightfor-
I. GPSMEASUREMENT MODEL ward approach then consists of assigning two possible salue

GPS receivers compute the position of a mobile by triaf 1S components: one value indicating an abrupt change
gulation from distance measurements to satellites of knoh € noise variance and the other value standing for a
locations. These satellite to receiver ranging are congpufSloW variance variation. However, we consider herein a more

by multiplying the estimated propagation delays of satellireﬁ”?d model taking into accouptior knowl_edge of the GPS
signals by the speed of light = 3 x 108 m/s. They nominal performance level. Assuming no interference and no

are called pseudoranges to account for various errors stighitirath, the variance of the GPS measurement noise can be
as synchronization offsets between the satellite and vecejaPproximately determined as a function of the class of th& GP

clocks or additional delays due to the propagation of tHgceiver and the constellation geometry with respect torthe
GPS signal through the ionosphere and troposphereYLet bile such as the satellite elevation angles. Recommentdatio
be the observation vector at timewhich is composed of of the radio technical commission for aeronautics (RTCA) to

the pseudoranges associated to the satellites trackedeby Rt&in the one-sigma GPS pseudorange error are given in [1].

receiver (denoted hereafter SV for satellite in view). lie th10 take advantage of this information, we adopt the follayvin

following, the subscript refers to the*” time step. We denote
asn, the dimension of this vector which can vary over time 1The ECEF system of coordinates is centered at the mass centbe
as a function of the relative geometry of the receiver arfd'th, hence the name Earth-Centered. The z-axis is definbdirg parallel

. th _ to the earth rotational axes, pointing towards north. Tlraxis-intersects the
satellites. Thet"™* component ofy’;, for k =1,... ) Ty takes sphere of the earth at the Greenwhich meridian and the yleedsin the

the form equatorial plane.
the GPS reference time is monitored by a set of clocks at thenal@l

Yi(k) = |p, = prll + b + v/ ¢y (k)we (k) (1) observatory

p, = [:Et,yt,zt]T represents the 3 position coordinates
of the mobile in the system of coordinates chosen as a



definition for thek!” componentk = 1,.. ., ny) Of vectorA,2 where the variance$, andS, are related to the Allan variance

e X(k) = 0 if there is no variance jump on theth parameters as presented in [8]. Let = p?,ﬁf,bt,dt
pseudorange at timg i.e., if ¢, (k) and ¢,_,(k) take stands for the state vector containing the mobile motion
close values, parameters. We denote ag the dimension of this state vector.

From a probabilistic point of view, (2) and (4) are equivalen

o A(k) = 1if there is a variance jump due to interferenceg,

on thek'" pseudorange at timg p(@e|mi_1) = N (ze; Fai_1, Q) (5)

« \(k) = 2 if there is a variance jump coinciding with theWhere NV (z; Fz, 1, Q) denotes a Gaussian density of ar-

disappearance of all interference sources at time gument xz;, mean Fz;; and covariance matrix. The
Further on, we denote a& = {A’} the set of matrices F* and @ are block-diagonal matrices such that

=1,....n A — i c — H T c :
possible values for the indicator vector, Whose cardinal % p diag F7, F°) and Q diag(BP(B?)",Q°), with
A — 3™ P)* the transpose oB?.
A= ' By introducing the state vector, the observation equatidn (
can be rewritten

A. Motion model
Yi(k) = by (@) + /b, (k)we (k) (6)

The choice of the motion model depends on the dynamics of
the mobile equipped with the GPS receiver. Classical modeVbere
assume that one of the derivatives of the position coordiat h¥(x,) = ||p, — pl|| + bs (7)
such as the acceleration or the jerk, is zero on averageghenc
can be represented as a white noise with a given variance. TheVariance model

reader interested in the derivation of such models is referr In the same manner as in [3] and [23], we assign a conjugate

to [19]. We consider herein a2order model correspondingyerse gammaZ(G) prior to the components of the variance
to a velocity on average uniform with occasional bursts Q;ectorqs
t

acceleration. In this case, the velocjly of the mobile needs
to be estimated jointly with its position and the resultingdal  @:(k)|®;_1 (k). Ae(k) ~ZG (@, (k); o (Ae(k)) , B (Ae(k))  (8)
is

where
P \_( L TxIi\(p_, O Iy \ p o b
(5 )=Cor "0 ) M i o @ 290 = g e (<) T @
—_————— —_———
e By with T'(.) the Gamma function anflz+ (x) the indicator func-

wherev? is a unit variance white Gaussian noige,is the tion onR*. Using anZg prior is a convenient choice since
time interval between two consecutive GPS measuremeliitts the conjugate distribution of the variance of a Gaussia
(classically 1 s) and, is the standard deviation of the mobiledistribution. In other words, in a Bayesian setting, whemev
acceleration. an Zg prior is selected for the variance, the corresponding
posterior distribution is also an Inverse-Gamma distribution.
In the sequel, this property makes it easier to define efficien
. ] ] ~ proposal distributions for the navigation states and vaea
The GPS receiver clock is a crystal oscillator which IBarameters. The values of the hyperparametes, (k)) and

not very accurate compared to satellite clocks. Usuallg, ﬂB (A:(k)) are adjusted as a function ok (k) to enforce the
evolution of its error with respect to GPS time is describgd ti‘ollowing characteristics for th&g distribution.

a2 orderdmodel rheprehsentlng db(f)th the clock bias and plrlft . Casel (A(k) = 0): the ZG distribution has a small
(corresponding to the phase an requency error respb;()tl_ve standard deviationZ¢ and a meanZ9 equal tog,_, (k).
by random walks. Leb; andd; denote the bias and the drift Thus. we set

at timet, respectively. They satisfy the following equation ’

B. Receiver clock model

o(0) = (g’ /o57)" +2
bt _ 1 T btfl +,Uc (3) 76
d )~ Lo 1 dy_1 t BO) = pp”(a(0) —1).
e e Case2 (A(k) = 1): the ZG distribution is heavy-

tailed with a first inflection point slightly higher than the

nominal value of the GPS noise variance and a second

B [0l (v)7] SbT—i—gd%S ng; @) inflection point set to the maximal value before the
SdT7 ST receiver Io_ss of I_ock. L_efmln a_ndImax denote_thg smaller

and the higher inflection points of thHeG distribution.

Q° By denotingr = Imin/Imax, We obtain the following

3A similar Markovian model with two possible states was idtroed in [21] definition for theZg parameters
for detecting LOS and NLOS events for the localization of ifeterminals. a(l) — ((r 4 1)/(7‘ _ 1))2
However, the proposed three state Markovian model allowsestfidescription
of interference effects in GPS navigation. B() = 2naxr(r+1)/(r—1)%

In this equationp§ is a white Gaussian noise such that




o Case3 (A\i(k) = 2): the ZG distribution is peaky with a
meanu3¢ equal to the nominal value of the GPS obser-,~ ™
vation noise variance and a very small standard deviatioi v |

029. Therefore, as for cask the ZG parameters are set ~---
to
o2) = (uz%/039)" +2
B2) = mpo(a(2)-1). "Xy Non Obs@rvables
The exact values of the means, standard deviations and 3 Observables
inflection points of theseZG distributions are provided in
section V.

D. Indicat . Fig. 1. Directed Acyclic Graph (DAG) illustrating the deplemcies between
- Indicator prior the model parameters and the GPS observations. The fixechgiara appear

The components of the vectox, are assumed priori as dashed boxes.
independent and have the following discrete distribution

PA(k) =0 Agu_r(k)] = 1—1~ (10) IV. FIXED-LAG PARTICLE SMOOTHER

PA(k) =1 Aou1(k)] = yue(k) (11) In ordert_o mitig_aFe interfer(_ences in GPS n_avi_gation, we pro
PA(k) = 2Pou 1 (k)] = (1 — (k) (12) pose to estimate jointly the discrete-valued indicatotwes,

T and continuous-valued parameters such as the mobile motion
where ~ is the probability that a variance jump occurs andtates and the observation noise variance, i.e. estitkate-
(k) is the probability that this variance jump coincides with 7. In a Bayesian framework, all inference is based on
interferences. The probability is seta priori whereas the theposteriordistribution of the unknown parameters given the
value of i, (k) varies depending whether th&' pseudorange set of available observations, expresseg &S..|Y 1..) with
is corrupted by interferences or not. More precisely, in thgt _ LXgJ\;[

absence of interferences, the only possibility is an mmeaEf methods well-suited to perform the estimation of the Fybr

In vanance gt(k.) = 1). On the c.ontrary, in the Presence okiate vectorSy... They approximate the target distribution by
interferences, either they can disappear or the varianne 8, empirical distribution

switch to a different value if the RF environment changes

(u:(k) = 0.5). To adjust the probability:;(k), we introduce N ; ; N ;

additional Bernoulli random variable;(k)},_, ,, which P(So:4|Y 1) = Zwt5 (So:t — Sbu) Zwt =1 (17)
=1 =1

T
and So.: = (So,...,S:). PFs are a class

sees Tl

satisfy
. . where ¢ is the Dirac delta function. The weights! and
e/(k) = 1in the presence of interferences  (13j¢ support points Sy, (referred to as particles) are
€(k) = 0 otherwise (14) classically obtained by applying sequentially the impoc&
. . . sampling (IS) technique. Ideally, the particles should &m-s
These Bernoulli random variables evolve with the vecigr pled directly from the target distribution (So.|Y 1.¢), and
as follows : . . . . .
. assigned equal weights. Since it is usually impossible to
e—1(k) if X(k) =0 samplep (So.|Y 1.;), they are drawn instead from a proposal
e(k) = 1 if A(k) =1 (15) distribution 7 (So.¢|Y'1.¢), called importance distribution [4]
0 if Ae(k) =2 [16]. Then, the weights are used to correct the discrepancy
The probabilityy, (k) is finally defined as betweenp and
: B , S6.1Y 1.0
— 1 if etfl(k) =0 wt o M 18
e (k) = { 0.5 otherwise (16) T (S0:41Y 1:0) (18)

It should be noted that the way the value;qfk) is selected Where o’ means ‘proportional to’. A sequential formulation
makes\, (k) dependent ol (k), hence the expression ofof IS allows one to leave the previous particle, ; un-
the transition probabilities in equations (10)-(12). changed by only simulating at time step

_ The Bay_esian model defined _in thi_s section is summarized Si (St|SgJ:t71’ Yia). (19)
in Fig.1 which presents the relationships between the reiffe

unknown parameters. The evolution of the navigation arihen, the importance weights can be updated using
variance statesX; de_pends on the indicatpr vectay which . . p (YtISi)p (Silsé:t,l)

also evolves. The discrete-valued vectpris used to finely Wy X Wy_y —

tune theprior distribution of A;. The aim of the algorithm F(Stl‘S’O:tflelit)
developed in the next section is to estimate accurately tbafortunately, these algorithms are known to experience de
hidden stateX ; from the GPS measuremerls even though generacy issues so that after a few iterations, all but one
the variance noise may be switching. particle have negligible normalized weights. To overcome

(20)



this inherent limitation, a selection step is introducedolth Then, a combination of deterministic and random propagatio
consists of resampling the set of particles according teethe schemes yields at time
timated empirical distribution. The reader is invited tosalt

[14] for more details. p(Sot [Yi) = (27)
A. Estimation objectives o N _ A .
] J_ ) ) wi?é | Soe — < S, X3 A = A
t 0:t—1 t t
Several realizations are necessary to obtain a good estima- = =} —_—

tion of the variance of a stochastic process, hence we peopos Ch

to use near future measurements to detect and estimate the o o

variance jumps. The so-called fixed lag PF (FLPF) aims #here the discrete-valued part§f’, i.e., A;”, is the;'" ele-
estimating a time the distributionp (So.¢|Y 1..+1 ), with a lag ment of the sef\ and the contmuous-val‘ued p_aY_ti"J |s‘drawn
L > 0. For that purpose, we first compute an approximatidrom an importance distribution (XtIng,l, A=A, Yt)

of the smoothing distribution whose choice is discussed later. The importance weights
N . are equal to
ﬁ(SO:t+L|Y1:t+L) = sz+L5 (SO:t+L - Sf);tJrL) . (21) o
=1 i b (Sg:t|Yl:t)
The distribution of interest is then obtained by margiratian wy” = (28)

NIy '
N Q0 (XO:t|AO:t7 Yl:t)

P(So4[Yiusr) =D wiisd(Soe—So.) - (22) From Bayes'rule, we obtain
=1
The estimation of the parameters of interest is achieved Q.5 i N Ad i
follows N ﬁfSO:JYM) X p (Ytht )p (Xt [Ap? =AY, t—l)
i i LI AT\ i, _
E [ XY 1:441] ~ Zw,§+LX§. (23) x P P‘t A |)‘0:t—1} p (So:t—1|Y1.tég)-
1=1

Finally, the detection of a variance jump affecting thé_ In addition, the considered importance distribution can be
pseudorange is based on the posterior change probability decomposed in the following manner

PF = P[X(k)#0|Y1.041] o o -
N | 7 (XENG Y1) o 7 (XIS AT Y) (30)
~ wiyr |1 =06 (Ai(k))] . (24) id i
; oo | (i (®)] X (Xo:t—1|)‘0£z:—1aY1:t—l) :
B. Particle propagation strategy Thus, by combining (29) and (30), the weights appearing in

It is well-known that the choice of the importance distri§27) are equal to

bution is a critical issue to design efficient PF algorithms.

To generate samples in interesting regions of the stateespac wy? o KPP (M= A g, ] iy (31)
i.e., corresponding to a high likelihogd(Y;|S:), a natural | hare

strategy consists of taking into account information from

the most recent observations. Thus, the optimal importance (Yt|X§’j)p (th'ajp\?ﬂ’ — AJ',SLI)
distribution in the sense that it minimizes the varianceh&f t K,/ = — . (32)
importance weights has been introduced in [33] 7T (X;i’JISLl, A=A, Yt)

™ (8elS0:4-1, Y1) =P (S|S0, Ye). (25 When using a fixed-lag PF to enhance variance jump detection,
However, this distribution is usually analytically inttable the deterministic approach proposed in [22] can be extended
and sub-optimal approximations based on extended Kalmfanobtain the approximated smoothing distribution
filter [4] or more recently unscented Kalman filter [10]
schemes are used. The problem at hand requires samphi§o:t+2|Y 1:e41) = (33)
from a high-dimensional state spaRé= x R™t x n, involving N . . .
both discrete-valued and continuous-valued parametetsid Y _ > w4 (SO:H-L - {Sé:t_l, Xyl A = A‘]})
context, an efficient sampling scheme consisting of sinmgat J€5, i=1

the continuous states while exploring exhaustively thesindes . Y . .
values of the discrete states was proposed in [22]. Assume™jere S is the set of(L + 1)-uplets.J = (jo, ..., jr) with

_ i ith i
time ¢t—1 the following approximation of the target distribution’’ € {0,...,ma 1}. referr}ng to thej;™ possible \_/alue of
. . vector,. More preciselyA” = (A, ..., A’"). In this case,
is available . ;
N the smoothing weights are computed as
ﬁ(SO:t71|Y1:t71) = E wi_lls (SO:tfl - Sé;t_1> . (26) i,J

wpdy KL P [N = AN el 34)

i=1



where 3) Extrapolation,

Ky = ¢y, =¢p7, fori=1,....L.
Y XZJ) (XZJ LA V- AJz) The proposal distributions corresponding to steps 1) and 2)
zl;[op( il X)) P XIS A are described hereafter.

(35)

x (Xiif+L|S§_1,)\t;t+L _ AJ’Y&HL) 1_) Varjance paramgter_ simulationUsing B.ayes’ rule, the
optimal importance distribution for the variance paranste

The main advantage of this approach is that there is no riskn be decomposed as

to discard useful information as when drawing one particle i i i ;

out of then, possibilities for vector\;. However,gthe galion in Pzt Xia Mt = Apy Yierr) (38)

performance should be balanced with the increased computa-  « p (Yt:t+L|wii'Z+L, qbt) P (¢t|¢>§',17 A7 = A-j) :

tional complexity. Each particle at time— 1 results inn’ ™ _ _ _

offsprings (instead of one for usual PF implementationgjera The prior of the variance vector components is &g-

the propagation step, the total number of particles amaontsdistribution. In addition, seen as a function of vectlyr, the

N x n¥*! hence increases exponentially with the lagTo likelihood functionp (Yt:t+L|m1;i+La ¢)t) takes the form of

keep the computational cost reasonable, we propose to limiproduct ofZG-distributions up to a proportional constant. It

the paths to consider for vectdy; by taking advantage of the follows that the observation noise variances at timean be

sparseness of variance jump events. When detecting variagenerated independently as

jumps at timet, it can be assumed that no jump occurs during i Y i

time interval[t + 1,¢ + L], which isa priori the most probable i (k) ~IG (¢t(k)’ a;” (k). By (k)) (39)

event. Therefore, the sum in equation (33) can be restricted,;ore theZG parameters are given by

the sequencea), ; = A) whereA) = (A7,0,...,0), with

t:t+4 ~1,7 j
j =1,...,ny, yielding to the following approximation ayl(k) = a (A (k) + (L +1)/2 (40)
N 30 (1) — j i
P(Sou+rlY 1:e41) = (36) (k) =8 (A (k)) AL (R). (1)
ny N _ . . . In (41), the increment in therior value of parametep,
Zzwzflé (SO:t+L - {X?J:t_l,Xf;;ZH, Aiter = AZ)}) . denoted aboveAs;’(k), is equal, up to a proportionality
j=1i=1 constant, to the estimation of the measurement noise ea&ian
This strategy was proved to be efficient for multipath mitigdom L + 1 consecutive observations
tion in [15]. Its consequences on the estimation of variance s,

.. .. 2
jumps are discussed in section IV dedicated to simulation AS;7 (k) = 3 Z (Yt+l(k) —hy, (fvﬂl)) . (42)
results. 1=0
2) Motion parameter simulationThe proposal distribution
C. Proposal distribution for the continuous states for the motion parameters can theoretically be obtained by

. : . marginalizing the joint distribution of the continuouststs
The uncertainty on the measurement noise variance after a

jump imposes to select a non informateor distribution as p(xy.¢ | X' 1, Ay = Aé, Yiiirn) = (43)
in section 1. It is thus important to integrate informatifsom ; i
the GPS measurements to sample relevant variance values. As /¢ p (”’t:tJrLa @\ X1, Ay = Ag, Yt:t+L) depy.

discussed beforehand, the optimal proposal is given by ) ‘ )
Using Bayes’ rule to compute (43), the following result can

D (Xt:t+L|X§,1, )\i’;erL =A), Yt:t+L) . (37) be obtained
This distribution is non standard and cannot be sampled from  p(@s:e+ 0| X} 1. Ay = A Y rirr) (44)
efficiently. Thus we introduce a proposal distribution whis . ny o —ai (k)
an approximation of (37) but still preserves informatioonfr o< p (wt:t+L|iBL1) H (@’J (k))
the measurements. First, given the assumption that nonaria k=1

jump occurs _during time interva{t_ +1, t+ L],_the variance This distribution is not easy to simulate. However, an aatir
can be considered constant during this period. ThereforeGaussian approximation can be used instead as detailed in

is sufficient to simulatep, and then set, ;, = ¢, for [ = appendix A. Using this approximation, we simulate the motio
1,..., L. Particle propagation can thus be performed in threectors, forl = 0,..., L, according to
steps.

imulati i - b A=A Y ) mid 2
1) Simulation of the mobile motion parameters, P&t 15 A Yir) = N(@eps myyy, 59Y))

Ty~ (wt:t+L|X§71a Nl = A, Yt:t+L) . . . .
i,J i,7 1 i3
2) Simulation of the variance vecta,, Yy = ((erl) (Dt ) Hn+ Q)

2,7 2,7 T 2,7 _ J ,] 2,7 —1 2% 2y 2y 1,3
¢t ~ T (¢t|mt;t+L7 thlv At:t+L - AO, Yt:t+L) . mt_H = Et+l (Q Fwt+l—1 + (Dt ) (Ht-H) AYH—I) .

where



In these equationsl{f;fl is the matrix of the partial derivativesirrelevant particles whenever a variance jump is detecsd a

of vectorial functionh,; evaluated inz; ., = Fz’, . follows
o S\ B o
Furthermore, B . B al (UiﬁL) L if A =0 (51)
D = diag (V;’J) (45) g !
oy’ oc wy, otherwise. (52)
with the components of the vectd,” defined as In expression (51)3 is a penalizing factorq > 1). Then, the
i i i -1 resampling is performed in two steps. Fird{, particles are
Vil (k) = B(A (k) (a(A (k) + L/2) . (46) sampled with replacement out of thé x n, according the

auxiliary weightSai’j. Unfortunately, the generated particles
are not distributed anymore according to an approximatfon o
AY =Y — hep(Fay!, ) + HY Feyl, . (47) the filtering distributionp (S¢.:|Y 1.:) as requi_red to procee_d

to next step of the PF. Hence, they are assigned new weights

to remedy this problem. Thus, the proposed resampling pro-
D. Algorithmic enhancements cedure is the following.

1) Hypothesis testAfter the propagation step, the number Fori =1,..., N, a new particleS; is drawn out of the
of particles in the FLPF is multiplied bys**. Therefore, NV x na particlesS;’ (i = 1,...,N andj = 1,...,n)
a selection procedure has to be used to keep the numbe@ggording to the multinomial distribution with probabigs
particles constant. Two different approaches can be applie:’- Then, assuming vecto§;*? is selected, the particle
The simplest one consists of selecting tNebest particles S assigned the weighto; oc w}?/a? to make sure an

among theN x nk*! ones. As an alternative, sampling witr@Pproximation ofp (So.;[Y'1.) is obtained before proceeding

replacement according to the smoothing weighfg, could [ the nextiteration. . -

be employed. A more efficient strategy is proposed here.In this way, the variability of PF weights is artificially
Indeed, estimating the variance of a stochastic process i§eguced by enforcing the removal of the particles that ase le
challenging issue when the number of available realizatiolkely to survive at the next time steps. Furthermore, ditec
is limited. In our case. ifL. is small. the detection of a ©f small variance jumps and estimation of their amplitudes i

variance jump may not be clear cut. Thus, it may take a feffiProved even with a small lag and a reasonable number
time steps before the majority of the particles indicate tff particles. , .

presence of interferences. The longer it takes, the latger t 2) Dynamic prior probabilities: This section presents an
position estimation error. To bypass this limitation aneréby extension O_f the prop_osed FLPF Wh'_Ch aims at preventing
improve the tracking ability of our algorithm, we propose tfalse detections of variance jumps which can severely impai

help particle selection by applying a hypothesis test wita t the estimation of the mobile motion parameters. In section
following hypotheses [, the vectorsA; are assumed time-independent for the sake

19 no variance ium of simplicity. However, as already pointed out in the work
* o ce Jump, of De Cambry [9] dedicated to the off-line segmentation of
« H;: variance jump. stochastic signals, this assumption can lead to closetitaisc
According to Bayesian decision theory, hypotheHi$ is  of changes in the signal model hence to an over-segmentation
accepted if the following inequality is satisfied To prevent false detections, De Cambry introduces a minimal
P[H1|Y1-t L] duration constraint. Similarly, we could restrict the sdt o
to—'+ >T, (48) possible offsprings of the parent particle§,_; by enforcing
PHP|Y 141 a minimal delay between too consecutive variance jumps.
whereT;, is a threshold depending on the probability of fals&lthough this approach allows one to reduce the computation

alarm of the test. Theosterior probabilitiesP [HZIYLHL}, complexity, it turns out to be difficult to set the minimal dgl
for i = {0,1}, can be directly approximated from the pendeed, it depends both on the mobile velocity and the number

smoothing weights of interference sources in the navigation environment. As a
alternative, we propose to adjust the value of the variamogp|

Finally, we have

N nx . e . . .
0 N i i prior probability v as a increasing function of the elapsed
PHP|Y1.441] ~ E E wil0(A) (49)  time since the last jump. More precisely, the following ride
i=1 j=1
L 0 adopted
PH!|Y1441] = 1=P[H)|Y144L]. (50)

t—t

occ

(k) = exp Kl + ;(k)) 1n(%n)] (53)

At that stage, the most straightforward use of the statistic

test rgsulting from (48) consists Qf discarding all the iols  \\here the superscriptrefers to the'” particle,k corresponds
standmg for the wrong hypothesis. However, the convergeng ine itk component of the observation vector angl is
properties of the PF would be lost. We propose a mOfge maximum value allowed for the probabilitie§(k). Here

flexible strategy allowing the algorithm to recover from & (k) is the last time particle indicated a variance jump,
wrong decision. The idea is to resample the particles a@u@rdn 4t is

to auxiliary weights as advocated in [20]. These resampling 4

; . ! 1291 Pl bee(k) = max{u < t|X, (k) =1} . (54)
weights are derived from the smoothing weights by penajizin



Initialization

For particles: = 1,..., N,
- sample the motion parametets) ~  (xo),
— sample the variance vect@s, ~ 7 (¢g).

Iterations
fort=1,2,...,
— for particles: = 1,..., N and indicator vectot\; values; =
1,...,n4,
* up_date prior probabilities of the indicator particlgs; (k) and
vi(k), fork=1,...,ny,

* sample the motion parameters according to the suboptlmalgmax

distribution
4,7 i 4,7 _AJ
Tiiyr T (wt:t+L|Xt717At:t+L = AO’ Yt:t+L> ’
* sample the variance parameters
1,5 1, i 1, — AJ
t YT (¢t|mt:t+L’ Xi_1 Ay = Aps Yt=t+L> )

* extrapolation: forl =1,...,L, ¢t+z = ¥ i
* Compute the importance Welghtszil for l =0,...,L.
— Smoothed state estimation

N ny

Z Z wt+Lwt

i=1j=1
N ny

ZZ“’HL

1=17=1

¢, =

— Selection procedure
* Perform the hypothesis test

P[HNY 1:441]

> Ty7?
PHNY vaq] ="

* Dependmg on the selected hypothesis, compute the regagmpl

weights oy’ .

associated to thd** and 2"? in-view satellites (they are

referred to as PR and PR2 in the sequel) have been corrupted

by an additive white noise from time instasit to time instant

167 for satellitel and from time instant00 to time instan200

for satellite2. The standard deviations of these interferences

have been chosen so that the overall additive noise does not

result in a loss-of-lock of the receiver. Therefore, thédieing

rule-of-thumb has been applied (see [17] for more details):

d, whereomay refers to the maximum tolerable value
of the measurement noise standard deviation dni the

correlator spacing. A classical value for the correlat@cépg

is % chip of the PRN code, hen® m when considering GPS

signals dedicated to civil users. Thus, the maximum value of

the standard deviation of the simulated measurement neise i

32.33 m. As aresult, the measurement noise standard deviation

in the presence of interferences has been sébtm for the

1%t pseudorange ang0 m for the 2"¢ pseudorange. Finally,

the motion model standard deviation is takewas= 0.1 m/s®

and the clock variance parameters satiSfy= 10~° > and

Sy=3x1071 &,

B. Simulation results

The performance analysis is conducted in several steps.
First, we study the ability of the FLPF to detect variance
jumps. For that purpose, we compare the estimatesterior
probability that a variance jump has occurred with a thrésho
according to equation (48). Then, we evaluate the accuracy
of both the measurement noise variance and the position
coordinate estimates in the presence of interferenceallfin

* Draw N particles out ofN x n, according to the resampling we study the influence of different algorithmic settingstsas

weights. They are denoteS., = {z}.,, b, A, } for i =
1,...,N.

TABLE |
SUMMARY OF THE PROPOSED FIXEBLAG PARTICLE FILTER.

V. APPLICATION TO A GPSNAVIGATION SCENARIO

A. Simulation settings

Several simulations have been conducted to illustrate the
performance of the proposed algorithm. We first consider a

trajectory of200 samples (with a sampling periéll. = 1 s)
corresponding to a nearly uniform motion with a velocityl 6f
m/s. All along this trajectory, the actual distances betwie

the parameters of therior distributions and the deterministic
exploration strategy. All the results have been obtained by
averagings0 Monte Carlo runs corresponding to different re-
alizations of the measurement noise. For comparison paspos
we have implemented two algorithms in addition to the FLPF
« a fixed-lag smoothing particle filter based on the same
Bayesian model and using the test-triggered resampling,
but with a random exploration of the discrete-valued
states. It should be noted that, for the continuous-valued
states, the same proposal distribution as the one presented
in section |V is used to propagate the particles.
« afixed-lag extended Kalman smoother, denoted hereafter
FL-EKF, which is coupled with an innovation based hy-
pothesis test to detect the variance jumps. More precisely,

vehicle and the satellites of the GPS constellation hava bee
computed on the basis of GPS almanac files. The latter provide
us with the latest upgrades of the satellite orbital paramet
values so that we can infer the satellite positions in the ECE
frame of coordinates. Then, we have degraded these ideal
pseudoranges by adding both the receiver clock bias, gedera
according to state model (3), and the measurement noise. The
standard deviation of this noise has been adjusted acgprdin
to RTCA recommendations [1]. Thus it slightly varies over
time as a function of the in-view satellite elevation angles
The so-called nominal value of the standard deviation is
denoted hereafter? (k) for the k*" satellite at timet. Finally,

to simulate the presence of interferences, the pseudosange

among the different algorithms published in the literature
we have implemented the state augmentation smoother
which was first proposed by Biswas and Mahalanabis
[6] for its numerical stability. The detection of variance
jumps is carried out by applying a 2-CUSUM scheme
as expressed in [24]. By denoting gs: the Kalman
innovation associated to thi#* GPS measurement at time

t, the CUSUM statistics are updated as follows

Oi-!_t max(0, Ci-!_t—l) + (Tliz,t -0),
C;t min(O,Cftfl) + (771'215 +0O),

(55)
(56)

with the initial valuesC;' v =Cip =0, andC is a
threshold which determlnes the sensmvny of the CUSUM



test to small variance jumps. The absolute values of these Pseudorange
statistics are compared to a threshdld to detect the 25
variance jumps. Then, a generalized likelihood ratio is
used, as presented in [28], to estimate both their times
of occurrence and their amplitudes. Finally, the newly
estimated values of the GPS measurement noise variance
are fed back to the Kalman smoother.

The behavior of the FLPF partly depends on the tuning of
different parameters such as the number of partiéesnd
the detection threshold. Their values, as well as the vadfies = oo 0 500
the 2-CUSUM scheme, are given in table Il for the proposed time (s)

simulation results. As for th&g prior distribution parameters, Pseudorange

they need to be adjusted on-line since they depend both on the
previous value of the measurement noise variance and on the
elevation angle of the satellite. For tifé¢ particle and thé:*"
pseudorange at time we apply the formula given in section

[l with the following parameter values

o Case 1AL(k) =0): 029 =1 manduZ9 = ¢}_, (k).

« Case 2 Ai(k) = 1): the lowest inflexion point is set to
Imin = 122, which is slightly superior to the nominal
variance of the GPS measurement noise. Tteone is
set t0Imax = 32.33% which is the maximum value before
loss-of-lock. ) . )

. Case 3 Ai(K) = 2) 039 = 1 m andui® = op(k), b oraenornumber of detecions over 1 Monte Cato funs o
i.e., the nominal value of the measurement noise standard

= = N
o 5 o
: T :

Number of detections

(%))
T

OCJ

= = N N
o (%3 (=] o
T T T

Number of detections

ol
T

:1?? . WM‘ﬁﬂﬂ;’?

100
time (s)

o

0 50

deviation for thek!" satellite at timet. Changepoints t=67s| t=100s | t=167s
We also study the influence of the ldgby varying its value. = (PRD) (PR2) (PRD)

n Detection delay (s) —-3.5 -5 1.4
Number of particles N = 250 E’ Standard deviation (s 2.3 1.9 3.4
Penalizing factor B=2 =
Detect?on threshold (FLPF) T, =1 I Detection delay (s) -1 19 21
Detection threshold (CUSUM) T, = 20000 3‘?’ Standard deviation (s} 2.7 2.1 3.8
Sensitivity parameter (CUSUM) C' = 100

TABLE Il

TABLE I

MEAN DETECTION DELAY AND STANDARD DEVIATION OF THE DETECTION
FLPFAND CUSUMPARAMETERS

DELAY IN S FOR DIFFERENT CHANGEPOINTS AND DIFFERENT VALUES P
THE LAG L.

1) Variance jump detectionFig. 2 shows the number of
detections at each time step over the Monte Carlo runs.
For that purpose, we apply the Bayesian hypothesis test (48)s and variance when considering changepoint estimation
with a thresholdT};, = 1 (maximuma posteriorirule) and However, better results are obtained with a lag= 8 for
we setL = 8. We can observe that almost all the detectiorgstimating the variance jump amplitudes as shown in the next
are located at the vicinity of the actual variance changeppi Section.
which are indicated by vertical dashed lines. However, due t 2) Variance estimation:Fig. 3 shows the average of the
the fixed-lag smoothing, the variance jumps may be detectedPF measurement noise standard deviation estimates ob-
a few time steps before they actually occur. To study thained from50 Monte Carlo runs. Different values of the
influence of the lag, we have computed the statistics of theg L have been considered to emphasize the benefits of
detection delay for different values df indicated in table smoothing. It can be noted that the estimated curve that best
[ll. The results obtained wit. = 2 have not been reportedfits the actual value of the standard deviation is obtained fo
because the missed and false detections were too numerbus 8. However, due to smoothing, the value of the estimated
to compute significant statistics. Broadly speaking, thghr standard deviation starts increasing a few time steps &efor
the lag, the higher the bias in the estimated changepoihé actual changepoint. With a lay = 5, the FLPF tends
because the detection occurs systematically before thmlacto slightly overestimate the value of the standard dewatio
changepoint. Conversely, the standard deviation of thecdetafter the jump but still achieves a good trade-off between
tion delay decreases with because the detection becomeaccuracy and computational complexity. On the contrarih wi
less sensitive to the measurement noise. It should be notetbo small value of the lagl{= 2), the proposed algorithm
that a lagL = 5 seems to offer a good compromise betweetioes have enough information from the measurements to
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counterbalance the vagywmior distribution assigned to the and the approximate credible intervals, defined by twice the

variance value in the presence of a jump. In this case, th&FLE&stimated standard deviation of the estimation error, lier t

yields too high values of the standard deviation. Therefdme FL-EKF and the FLPF. The FLPF credible intervals are more

to the uncertainty on the variance jump amplitude, smogthiin agreement than the FL-EKF ones with the corresponding

turns out to be necessary to properly track the variancesvalpositioning errors. Thus, an additional advantage of tre pr
posed approach is to provide interesting uncertainty nreasu
for the positioning errors along the trajectory. Furtherenave

Pseudorange
15
60
Esol Interferences
Q [
3 o
(7] '
E :
[ i
530
5 f -----------------------------
5200 !
5 ;
3 100 :
L 1 N I VOO
0 ‘ ‘
0 50 100 150 200
time (s)
Pseudorangé 00 50 ~100 150 200
time (s)
100 :
£ ' Fig. 4. RMSEs for the position estimation. Plain line : FLEBfted line :
§ 80 : FL-EKF. Vertical dashed lines: variance changepoints.
8 .
g
g 60
e TABLE IV
g2 .0 . i . | RMSES (M) FOR THE X,Y AND Z COORDINATES WITH DIFFERENT LAGS
E e e (1) : WITHOUT THE HYPOTHESIS TEST(2) : WITH THE HYPOTHESIS TEST
g 20p (a) Positioning errors with respect to the true mobile timjgy.
? L=80 | L=8@ | L=5@ | =20
00 56 ] 160 150 200 X axis 5.04 4.40 5.24 10.43
time (s) y axis 5.26 4.68 5.53 10.52
z axis 7.65 6.93 7.81 14.9

Fig. 3. Average of the FLPF measurement noise standard tieviéstd)

estimates, computed fros0 MC runs. Plain line: actual values, dotted line: (b) Positioning errors with respect to the mean of the fixeg la

L = 8, dashed lineZ = 5, dashdot line:L = 2. distribution.
L=8D [ r=8@ [ L=5@ ]1L=2
X axis 4.46 4.32 5.24 8.96
3) Positioning error: In order to appreciate the interest of yaxis | 4.82 4.85 5.43 9.20
Z axis 7.40 7.31 8.17 13.19

the proposed algorithm in term of positioning error, Fig. 4
shows the root mean square error (RMSE) between the true
position of the mobile and the estimates obtained with theave studied the influence of both the lag and the hypothesis
FLPF and the FL-EKF using the same ldg= 8. Before test on the positioning error. Table IV(a) reports the RMSEs
the appearance of the interferences, the FL-EKF RMSEs #oethe z, y andz coordinates for different values of the ldg
slightly inferior to that of the FLPF, most presumably due tThe lowest RMSEs are obtained with the lag= 8. For this
the limited number of particles used in the FLPF implementgalue, using the hypothesis test clearly allows one to reduc
tion. On the contrary, after the appearance of the intemfa¥s, the estimation error. The same remark holds foe= 5 and
the FLPF yields the lowest RMSEs. When comparing both = 2 but the RMSE in the absence of hypothesis test have not
algorithms, it appears that the FPLF positioning error caseen reported in the table for the sake of brevity. By spagdin
be locally decreased up t6 meters with respect to theup the removal of non relevant particles after a variancgjum
FL-EKF. A closer analysis shows that the 2-CUSUM teshe hypothesis test improves the variance estimation durin
timely detects the jumps. However, their amplitudes may hike time intervals associated to interferences.
poorly estimated, which in return degrades the navigatiates Finally, to take into account that we compute an approxiomati
estimates. Furthermore, the gain in accuracy achievedthdéth of the means of the smoothing distribution and not the exact
FLPF is expected to be more significant for longer interfeeenvalues of the hidden Markov chaifX;}:>o, we have also
periods. evaluated the RMSEs between the algorithm estimates and
Another way of comparing the different navigation algothe estimates obtained by running a reference particle filte
rithms consists of computing Bayesian confidence inteyvaissing 100,000 particles. These errors are provided in table
or so-called credible intervals [25], for the differentiesites. 1V(a). They are very close to the RMSEs reported in table
Fig. 5 shows the x-coordinate estimation error versus tinié(b), which ensures that the exact position coordinates of
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the mobile coincide with the means of the smoothiogterior 30

distribution. ;
25¢ i Interferences 1
FL-EKF i
20 E
f Interferences i
E 100
S
@
2 of
S
101 % 50 100 150 200
time(s)
2% 50 | 100 150 200
time (s) Fig. 6. Positioning RMSEs for the combined determinissioffom explo-
ration scheme (plain line) and the fully random scheme (gddime).
FLPF
10 ;
Interferences Thus, most of the time90% of the time in the simulation),
T only N particles of the combined deterministic/random PF are
£ actually useful for the estimation, which should be comgare
S to nearly N x n) for the standard PF. Conversely, at each
2 changepoint, the number of particles indicating the vaxan
§ . : shift is far more important when considering in a systematic
2 _10 : 1 manner all the indicator vector possible values.
[e] H . . .
o ; Finally, to make the analysis complete, it should be noted
-15 ; 1 that the computational complexity between the compareatalg
: rithms is not strictly equivalent. The resampling step, chhis
-20, 50 7100 150 200 quite demanding, involves onliy particles for the combined
time (s) deterministic/random PF againt x n, for the fully random

Fig. 5. Positioning error (plain line) and 95% confidence msifor the algorithm. To conclude, the combined deterministic/rando
FL-EKF and the FLPF. The variance changepoints are indichtevertical ~ strategy is more efficient for detecting the presence offiete
dashed lines. ences. However, a fully random strategy might be considered

o _ . if we are only interested in positioning errors.
4) Deterministic versus random exploratioRollowing re-

sults previously published in the litterature [22] [27] [1@e Changepoints I—67s | t=100s | {=167s

have favored a deterministic scheme for the exploratiomef t (PR1) (PR2) (PR1) ‘
discrete-valued states. In order to study the relevancaisf t Combined

approach, we have also implemented the proposed algorithm deterec;)'}gsrt:ﬁ/g?]ndom 50 18 10 ‘
with a random evolution of all the unknown parameters. Since Random

ny offsprings are considered per particle for the determimist exploration 42 39 42 ‘
technique, the fully random scheme is implemented with TABLE V

N x ny particles so that the overall number of particles useUMBER OF GOOD DETECTIONS OVERS0 MONTE CARLO RUNS FOR THE
for the estimation is the same. DIFFERENT CHANGEPOINTS

Table V presents the number of good detections over
50 Monte Carlo runs for the different variance jumps. As
expected, the exhaustive exploration technique outpeda o .
fully random approach when dealing with the estimation &f- Sensitivity to parameter tuning
the discrete-valued indicator vectdf. However, this resultis  Fig. 7 investigates the robustness of the FLPF with respect
somewhat counterbalanced by the positioning RMSEs whitt some user-chosen parameters. First of all, the frequency
are plotted in Fig. 6. It appears that the RMSEs of thef the variance jumps is determined by the parametein
fully random PF are slightly inferior to that of the combinedhe considered simulation setting, the actual valueyois
random/deterministic PF. This last result can be explaaged 0.01. Fig. 7a) depicts the positioning RMSEs obtained by
follows. The combined random/deterministic PF allocates cmnsidering different values of in the FLPF implementation.
fixed number of particlesV to each scenario: slow evolutionThese RMSEs are computed by averaging the positioning
of the noise variance or abrupt jump. Since the variancésshiérror over50 Monte Carlo runs and over th200 points of
are rare events which have a smptior probability, most the mobile trajectory. Unsurprisingly, the minimum errer i
of the standard PF particles correspond to tte scenario. obtained when using the true value of However, varyingy
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a) Sensitivity to the parameter that purpose, interferences were modeled as variance jumps
s ‘ affecting the GPS measurements. A particle filtering atbani
was then proposed to estimate these variance jumps jointly
11k 1 with the vehicle motion. In order to improve the variance
jump detection, several alternatives to the classicaliglart
filter were introduced. First, the sparsity of interfereneeas
10.5¢ 1 taken into account to perform smoothing while preserving
a reasonable computational complexity. Second, an efficien
proposal distribution was introduced to capture the infation
brought by the current measurements when simulating the
particles. Finally, an hypothesis test was introduced at th
9501 5os b1 ool ou level of the resampling step to accelerate the removal of

' y (logarithmic scale) ' ' irrelevant particles. The performance of the so-called FFLP
b) Sensitivity to the nominal variance of the GPS noise Was validated on simulated data. _ _

We are currently investigating the following extensions.
First, this study assumed that interferences corruptirey th
different pseudoranges were not correlated. This hypisthes
makes easier the definition of indicatpriors but may be
restrictive in some practical applications. An alternativould
be to consider that measurements resulting from a set of
satellites located in the same direction are likely to eiqrere
interferences at the same time. For that purpose, cooakti
between the components of; should be introduced, e.g.
by defining appropriateprior distributions for this vector.
Improving detection by exploiting the correlation between

RMSE (m)

101 b

11 12 Multiple measurements has already shown interestingtsesul

in other contexts such as the joint segmentation of multiple
Fig. 7. Positioning RMSEs for different tuning of the FLPFrgiaeters. ~ IMe Series [12] [11] We think this strategy can also be wisef
for navigation applications.

Bs 0,9

QR

does not impact significantly the FLPF performance, propabl APPENDIXA
due to the deterministic exploration strategy. PROPOSAL DISTRIBUTION

Then, it is worth studying the sensitivity of the algorithm t 15 4nnendix derives the proposal distribution of the mo-
the parameters of theg distributions assigned to the variancgy;ja motion parameters used in the proposed particle filgri

states. When considering tBeases presented in section “"Calgorithm. As mentioned in section IV, the optimal proposal

it appears that thprior distribution is relatively non informa- jistribution (in the sense that it minimizes the variancehef
tive in case2. On the contrary, in cases and 3, the shape pg importance weights) is

of the varianceprior distributions is directly impacted by the N _

nominal GPS noise standard deviation, denatf(k) for the D (mt;t+L|X§_1, )\;‘jﬂ = A}, Yt:HL) ) (57)
k" pseudorange at time Fig 7b) illustrates the robustnessof =~ = . , o

the FLPF with regards to an imperfect knowledgeoti(k). This distribution can be obtained by marginalization atofes
This figure shows the RMSEs obtained with different values of i i _ AJd

«, Whi(g:h is the ratio between the true value of the observation P (mt:HL'Xt_l’ A = Ao, Yt:HL) 58)
noise _standard d(_eviation .and the value. _cor_lsidered .in the _ /p (wt;t+L,¢t|X§_1,)\§§{+L — Aé’yt:HL) dep,.

FLPF implementation. Again, the best positioning accuiacy

achieved by using the true value of th&(k) (corresponding Then, by applying several times Bayes' rule, the joint dis-
to o = 1). Although this parameter appears to impact moteibution of the continuous states can be decomposed in the
significantly the FLPF thary, the proposed algorithm seemdollowing manner

quite robust to uncertainties. In addition, it should beedot ; i ,

that a too erroneous value of*(k) would be detected as a P ("’t:tﬂ’ Dl X1 i r, = Aé’Yt:tJrL)

variance jump. Thus, its influence on the RMSE would be i i ij
Jump X P (Y puqr|Triqr, ) p (wt:t+L|wt71) p (gbthbtflv At J)

attenuated.
TG (9uR):a (), B (R)
VI. CONCLUSION O<p(wt;t+L|w§,1) i
This paper addressed the problem of mitigating RF inter- k=1 (Bti’j(k))at (&)
ferences in GPS navigation. Contrary to existing approsiche N N
the proposed algorithm directly compensated for the iaterf where the expressions 6t (k) andBZ"J (k) are given by (40)
ences effects at the level of the navigation algorithm. Fand (41). It should be noted that, in the above decomposition

(59)
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we have considered that the variance remains constahntfor of (64). For that purpose, we perform a local linearization

0,...,L. of the GPS observation equation so as to express, up to a
By integrating out the variance states, we can obtain @noportionality constant, the functiofy(x;+;) as a Gaussian

analytical expression of the optimal proposal distribmtio  distribution with regards tec;4;. This linearization leads to

i Wi _ AJ ~ 4, 0,J 4,
p (mt:t+L|Xt_17 At:t—Q—L = AOa Yt:t+L) hi (wt-ﬁ-l) =~ hyyy (Fmt+l_1) + Ht+l (wt-H - Fwt+l—1)

—ay? (k) for i = 0,...,L, wherez,,, is the actual motion vector
) and H,/, refers to the matrix of the partial derivatives of
the functionh,; with respect to the components af,;,

Ny . 5
i irj evaluated inf'z,/,_,.
O(p(wt:tﬂlwt_l) HTt (k) (60) We can take advantage of this linearization to rewrite

o p (Brapr|Ti_s) H (BZ’j(k)

k=1

h=1 fi(xyy) as follows
where )
_Za(Aj(k))+L+l fk( ) (Ayzil(/ﬂ) — HZ:gl(k, :)mt+l>
B u(k) 2 t (Lt1) = €Xp | — i,j
Tk = (14—t 2 61 Vil (k)
2 where H" (k,:) stands for thek! row of matrix H/,.
ZL (Y (k) — hF (@ )) t+1 t+1
W(k) = 1=0 \ 7 t+l ¢4\t Thus, it becomes possible to simulate the motion veetdy
t N 28(A7 (k) ' according to the Gaussian distribution
20 (A7 (k))+L ; i y
T (T4 |St—1’)‘tZtJrl’wt’J'rlfl’Yl:H‘l) (66)

T/ (k), as defined in (61), takes the form of a Student o
distribution with 2« (A7 (k)) + L degrees of freedom, which =N (iBt+l; myl, Eiil)
is evaluated inu/’(k). Student distributions are centered
symmetric and bell-shaped distributions similar to Gaassi 1
distributions. However, their tails are heavier. The higheyii _ ( i \7 (g " g

N I (Ht+l) (Dt ) Hy +@Q
the degree of freedom, the closer the Student distribution
to a Gaussian distribution. To derive a Gaussian proposal; ; i _ i il N\T i
distribution for the mobile motion vector, we propose her@ltil = Et’JZl (Q 1Fwtil71 + (Dt"j) (Htfz) AYtiz)
to approximatel},”’ (k) as follows

with mean and covariance matrix defined as

where D)7 = diag(Vf;’j) and

. uiJ k)2
Ty (k) = exp | ———— i ij ij g i
Nezs 2 AY(, = Yo = hoy (Fayi ) - H P, .
L (Y (k) — bt ’
» oxp >oico (Yigu(k) = hiyy (Teqa) (62) ACKNOWLEDGMENT
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