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A Fixed-lag Particle Filter for the Joint
Detection/Compensation of Interference Effects in

GPS Navigation
Audrey Giremus, Jean-Yves Tourneret,Senior Member, IEEEand Arnaud Doucet

Abstract—Interferences are among the most penalizing error
sources in Global Positioning System (GPS) navigation. So far,
many effort has been devoted to developing GPS receivers more
robust to the radio-frequency environment. Contrary to previous
approaches, this paper does not aim at improving the estimation
of the GPS pseudo-distances between the mobile and the GPS
satellites in the presence of interferences. As an alternative,
we propose to model interference effects as variance jumps
affecting the GPS measurements which can be directly detected
and compensated at the level of the navigation algorithm. Since
the joint detection/estimation of the interference errors and
motion parameters is a highly non linear problem, a particle
filtering technique is used. An original particle filter is developed
to improve the detection performance while ensuring a good
accuracy of the positioning solution.

Index Terms—GPS navigation, interferences, particle filtering,
smoothing, hypothesis test.

I. I NTRODUCTION

F Irst developed in the eighties for military purposes, the
global positioning system (GPS) is used nowadays in a

variety of applications ranging from the most stringent ones
such as civil aviation to mass-market mobile phone positioning
services. GPS is a radionavigation system which relies on
radio-frequency (RF) signals emitted by a constellation of
satellites. As a consequence, it is vulnerable to RF inter-
ferences. These interferences can severely impair navigation
accuracy and even result in a temporary loss of the GPS
service.

More precisely, GPS is based on direct-sequence spread-
spectrum coding. By exploiting the correlation propertiesof
the sequences spreading the satellite signals, GPS receivers
can acquire and track their propagation delays. Then, four
times of transmission allow one to compute the three spatial
coordinates of the receiver as well as its clock offset with
respect to a reference time. A consequence of interferencesis
to decrease the signal to noise ratio (SNR) of the GPS signal
and thereby to increase the uncertainty on the delay estimates.
If the SNR is reduced below the receiver tracking threshold,
the receiver loses its ability to obtain measurements from the
satellites. As these interferences are moreover unpredictable,
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they are one of the most penalizing sources of error, along
with multipaths, in GPS navigation.

Interference mitigation has been an active research topic
for many years. RF interferences originate from different
sources and can take different forms such as wideband noise,
continuous waves, pulsed noise or frequency hopping. Special
attention has been paid to designing receiver enhancements
to discriminate the GPS signal from parasite signals. Con-
ventional approaches include filtering in the three domains,
i.e. spatial, temporal and frequential [32]. Filtering canbe
applied at different stages of the receiver. Pre-filtering of the
GPS signals has proved efficient against out-of-band inter-
ferences. However, filters with a sharp cutoff are difficult to
design at high frequencies [31]. Another solution consistsof
narrowing the bandwidth of the tracking loop filters. Thus,
the robustness to interferences is improved but the tolerance
of the receiver to high dynamics is decreased. To obviate
this limitation, external aiding to the receiver can be used.
It can be provided for instance by inertial navigation systems
(INS) which are immune to the navigation RF environment.
More precisely, by providing prior estimates of the line-of-
sight distances between the receiver and the satellites, INS
allow one to remove dynamic stress from the tracking loop
[2]. As a complement to these approaches, multiple antenna
arrays have been paid lately a lot of attention. The principle is
to modify the antenna pattern by setting to zero the assumed
directions of interference sources. For that purpose, adaptive
beamforming and high resolution finding methods are used
[26]. A comprehensive review of existing design solutions can
be found in [17].

Unlike the above-mentioned methods, our purpose is not to
enhance the GPS signal SNR but to compensate directly for
interference effects at the level of the navigation algorithm. In
this way, the structure of GPS receiver can be left unchanged.
Thus, our study considers low power interferences which do
not result in a receiver loss of lock but still degrade the
navigation solution. To our knowledge, it is the first time
such an approach is applied to mitigate RF perturbations.
Similar techniques have been developed in the civil aviation
community to monitor the integrity of the GPS measurements.
However, the so-called fault detection and exclusion (FDE)
algorithms [7] [18] [29] are intended to cope with bias or ramp
errors whereas interferences more likely result in variance
jumps [5]. In addition, they generally make the assumption
of a single faulty measurement at a time to perform exclu-
sion. Our contribution is threefold. First, our algorithm is
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dedicated to variance jump detection. Second, it can handle
several corrupted measurements at a time. Finally, insteadof
excluding the faulty measurements, we estimate the value of
the observation noise variance in the presence of interferences
so as not to discard useful information to solve the positioning
problem. Jointly detecting the variance jumps and estimating
their values together with the dynamics of the mobile is a
highly non linear problem. Therefore, we consider in this
paper a fully Bayesian approach based on particle filtering
(PF). By noting that several consecutive GPS measurements
are usually affected by a given source of interferences, we
consider a fixed-lag PF (FLPF) smoother to ease interference
detection. Indeed, FLPF have the advantage of delaying the
estimation to make use of information from near future ob-
servations as outlined in [30]. It should be noted that such a
strategy has already proved useful to address the problem of
multipath in GPS navigation [15]. With the same concern for
performance, we propose several modifications to a standard
PF algorithm. Basically, PF consist of propagating a set of
possible solutions to the estimation problem, called particles.
Each of them is assigned a weight approximately proportional
to its posterior probability. In this paper, a suboptimal but an-
alytically tractable distribution is proposed to sample particles
conditional on near future observations. In addition, the prior
probability for a variance jump is adjusted so as to favor a
minimal delay between two consecutive detections and thus
prevent false alarms. Finally, removal of non relevant particles
is sped up by penalizing them on the basis of an hypothesis
test.

The remainder of the paper is organized as follows. Section
II presents the GPS navigation model in the presence of
interferences. Section III is dedicated to the Bayesian modeling
of the problem. Section IV details the proposed PF for
navigation in the presence of interferences. We emphasize the
different improvements introduced with regards to a classical
PF. Finally, simulation results illustrate the performance of the
approach in section V. Conclusions are reported in section VI.

II. GPSMEASUREMENT MODEL

GPS receivers compute the position of a mobile by trian-
gulation from distance measurements to satellites of known
locations. These satellite to receiver ranging are computed
by multiplying the estimated propagation delays of satellite
signals by the speed of lightc = 3 × 108 m/s. They
are called pseudoranges to account for various errors such
as synchronization offsets between the satellite and receiver
clocks or additional delays due to the propagation of the
GPS signal through the ionosphere and troposphere. LetY t

be the observation vector at timet which is composed of
the pseudoranges associated to the satellites tracked by the
receiver (denoted hereafter SV for satellite in view). In the
following, the subscriptt refers to thetth time step. We denote
asnt the dimension of this vector which can vary over time
as a function of the relative geometry of the receiver and
satellites. Thekth component ofY t, for k = 1, . . . , ny takes
the form

Y t(k) = ‖pt − pk
t ‖+ bt +

√
φt(k)wt(k) (1)

where,

• pt = [xt, yt, zt]
T represents the 3 position coordinates

of the mobile in the system of coordinates chosen as a
reference for the motion, here the Earth Centered Earth
Fixed (ECEF)1 frame,

• pk
t =

[
xk
t , y

k
t , z

k
t

]T
is composed of the position coordi-

nates of thekth satellite,
• bt is the GPS receiver clock offset with respect to the

GPS reference time2,
• wt(k) is a white Gaussian random variable (RV) with

variance unity,
• φt = [φt(1), . . . ,φt(ny)] is a vector composed of the

variances of the measurement noise.

It should be noted that only the receiver clock offset is
estimated since the satellite drift with respect to GPS timeis
usually well-modelled and compensated. Thus, the problem at
hand is to estimate the positionpt and the observation noise
varianceφt from the set of collected measurementsY 1:l =
{Y 1, . . . ,Y l} with possiblyl ≥ t. This paper assumes that the
value of a pseudorange noise variance directly depends on the
absence/presence of interferences affecting the measurement.
Either they evolve slowly or they change abruptly under the
influence of a nearby parasite RF emitter. To apply a Bayesian
approach,prior stochastic models describing the dynamics of
the unknown GPS navigation parameters are required. They
are described in the next section.

III. B AYESIAN MODELING

This section describes the dynamic models assigned to the
unknown parameters. In addition to estimating the dynamics
of the mobile and the variance of the observation noise, a
discrete-valued latent process{λt}t≥0 indicating the presence
of variance jumps is introduced. More precisely, each compo-
nent of this vector is associated with one of the pseudorange
measurements collected at the current timet. A straightfor-
ward approach then consists of assigning two possible values
to its components: one value indicating an abrupt change
in the noise variance and the other value standing for a
slow variance variation. However, we consider herein a more
refined model taking into accountprior knowledge of the GPS
nominal performance level. Assuming no interference and no
multipath, the variance of the GPS measurement noise can be
approximately determined as a function of the class of the GPS
receiver and the constellation geometry with respect to themo-
bile such as the satellite elevation angles. Recommendations
of the radio technical commission for aeronautics (RTCA) to
obtain the one-sigma GPS pseudorange error are given in [1].
To take advantage of this information, we adopt the following

1The ECEF system of coordinates is centered at the mass centerof the
earth, hence the name Earth-Centered. The z-axis is defined as being parallel
to the earth rotational axes, pointing towards north. The x-axis intersects the
sphere of the earth at the Greenwhich meridian and the y-axislies in the
equatorial plane.

2the GPS reference time is monitored by a set of clocks at the USnaval
observatory
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definition for thekth component (k = 1, . . . , ny) of vectorλt
3

• λt(k) = 0 if there is no variance jump on thekth

pseudorange at timet, i.e., if φt(k) and φt−1(k) take
close values,

• λt(k) = 1 if there is a variance jump due to interferences
on thekth pseudorange at timet,

• λt(k) = 2 if there is a variance jump coinciding with the
disappearance of all interference sources at timet.

Further on, we denote asΛ =
{
Λj
}
j=1,...,nΛ

the set of
possible values for the indicator vector, whose cardinal is
nΛ = 3ny .

A. Motion model

The choice of the motion model depends on the dynamics of
the mobile equipped with the GPS receiver. Classical models
assume that one of the derivatives of the position coordinates,
such as the acceleration or the jerk, is zero on average, hence
can be represented as a white noise with a given variance. The
reader interested in the derivation of such models is referred
to [19]. We consider herein a 2nd-order model corresponding
to a velocity on average uniform with occasional bursts of
acceleration. In this case, the velocityṗt of the mobile needs
to be estimated jointly with its position and the resulting model
is
(

pt

ṗt

)
=

(
I3 T × I3
03 I3

)

︸ ︷︷ ︸
Fp

(
pt−1

ṗt−1

)
+

(
σvT

2

2 × I3
σvT × I3

)

︸ ︷︷ ︸
Bp

v
p
t (2)

wherev
p
t is a unit variance white Gaussian noise,T is the

time interval between two consecutive GPS measurements
(classically 1 s) andσv is the standard deviation of the mobile
acceleration.

B. Receiver clock model

The GPS receiver clock is a crystal oscillator which is
not very accurate compared to satellite clocks. Usually, the
evolution of its error with respect to GPS time is described by
a 2nd order model representing both the clock bias and drift
(corresponding to the phase and frequency error respectively)
by random walks. Letbt anddt denote the bias and the drift
at time t, respectively. They satisfy the following equation

(
bt
dt

)
=

(
1 T
0 1

)

︸ ︷︷ ︸
F c

(
bt−1

dt−1

)
+ vc

t . (3)

In this equation,vc
t is a white Gaussian noise such that

E
[
vc
t(v

c
t)

T
]
=

(
SbT + Sd

T 3

3 Sd
T 2

2

Sd
T 2

2 SdT

)

︸ ︷︷ ︸
Qc

(4)

3A similar Markovian model with two possible states was introduced in [21]
for detecting LOS and NLOS events for the localization of mobile terminals.
However, the proposed three state Markovian model allows a finest description
of interference effects in GPS navigation.

where the variancesSb andSd are related to the Allan variance

parameters as presented in [8]. Letxt =
[
pT
t , ṗ

T
t , bt, dt

]T

stands for the state vector containing the mobile motion
parameters. We denote asnx the dimension of this state vector.
From a probabilistic point of view, (2) and (4) are equivalent
to

p (xt|xt−1) = N (xt;Fxt−1, Q) (5)

whereN (xt;Fxt−1, Q) denotes a Gaussian density of ar-
gument xt, mean Fxt−1 and covariance matrixQ. The
matrices F and Q are block-diagonal matrices such that
Ft = diag(F p, F c) and Qt = diag(Bp(Bp)T , Qc), with
(Bp)T the transpose ofBp.

By introducing the state vector, the observation equation (1)
can be rewritten

Y t(k) = hk
t (xt) +

√
φt(k)wt(k) (6)

where
hk
t (xt) = ‖pt − pk

t ‖+ bt (7)

C. Variance model

In the same manner as in [3] and [23], we assign a conjugate
inverse gamma (IG) prior to the components of the variance
vectorφt

φt(k)|φt−1(k),λt(k)∼IG(φt(k);α (λt(k)) , β (λt(k))) (8)

where

IG (x; a, b) =
ba

Γ(a)
x−a−1 exp

(
− b

x

)
IR+(x) (9)

with Γ(.) the Gamma function andIR+(x) the indicator func-
tion on R

+. Using anIG prior is a convenient choice since
it is the conjugate distribution of the variance of a Gaussian
distribution. In other words, in a Bayesian setting, whenever
an IG prior is selected for the variance, the corresponding
posterior distribution is also an Inverse-Gamma distribution.
In the sequel, this property makes it easier to define efficient
proposal distributions for the navigation states and variance
parameters. The values of the hyperparametersα (λt(k)) and
β (λt(k)) are adjusted as a function ofλt(k) to enforce the
following characteristics for theIG distribution.

• Case1 (λt(k) = 0): the IG distribution has a small
standard deviationσIG

0 and a meanµIG
0 equal toφt−1(k).

Thus, we set

α(0) = (µIG
0 /σIG

0 )2 + 2

β(0) = µIG
0 (α(0)− 1).

• Case 2 (λt(k) = 1): the IG distribution is heavy-
tailed with a first inflection point slightly higher than the
nominal value of the GPS noise variance and a second
inflection point set to the maximal value before the
receiver loss of lock. LetImin andImax denote the smaller
and the higher inflection points of theIG distribution.
By denoting r = Imin/Imax, we obtain the following
definition for theIG parameters

α(1) = ((r + 1)/(r − 1))
2

β(1) = 2Imaxr(r + 1)/(r − 1)2.
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• Case3 (λt(k) = 2): the IG distribution is peaky with a
meanµIG

2 equal to the nominal value of the GPS obser-
vation noise variance and a very small standard deviation
σIG
2 . Therefore, as for case1, theIG parameters are set

to

α(2) = (µIG
2 /σIG

2 )2 + 2

β(2) = µIG
2 (α(2)− 1).

The exact values of the means, standard deviations and
inflection points of theseIG distributions are provided in
section V.

D. Indicator prior

The components of the vectorλt are assumeda priori
independent and have the following discrete distribution

P [λt(k) = 0|λ0:t−1(k)] = 1− γ (10)

P [λt(k) = 1|λ0:t−1(k)] = γµt(k) (11)

P [λt(k) = 2|λ0:t−1(k)] = γ (1− µt(k)) (12)

whereγ is the probability that a variance jump occurs and
µt(k) is the probability that this variance jump coincides with
interferences. The probabilityγ is set a priori whereas the
value ofµt(k) varies depending whether thekth pseudorange
is corrupted by interferences or not. More precisely, in the
absence of interferences, the only possibility is an increase
in variance (µt(k) = 1). On the contrary, in the presence of
interferences, either they can disappear or the variance can
switch to a different value if the RF environment changes
(µt(k) = 0.5). To adjust the probabilityµt(k), we introduce
additional Bernoulli random variables{ǫt(k)}k=1,...,nt

which
satisfy

ǫt(k) = 1 in the presence of interferences (13)

ǫt(k) = 0 otherwise. (14)

These Bernoulli random variables evolve with the vectorλt

as follows

ǫt(k) =





ǫt−1(k) if λt(k) = 0
1 if λt(k) = 1
0 if λt(k) = 2.

(15)

The probabilityµt(k) is finally defined as

µt(k) =

{
1 if ǫt−1(k) = 0
0.5 otherwise.

(16)

It should be noted that the way the value ofµt(k) is selected
makesλt(k) dependent onλ0:t−1(k), hence the expression of
the transition probabilities in equations (10)-(12).

The Bayesian model defined in this section is summarized
in Fig.1 which presents the relationships between the different
unknown parameters. The evolution of the navigation and
variance statesXt depends on the indicator vectorλt which
also evolves. The discrete-valued vectorǫt is used to finely
tune theprior distribution of λt. The aim of the algorithm
developed in the next section is to estimate accurately the
hidden stateXt from the GPS measurementsY t even though
the variance noise may be switching.

ǫt−1

γγ

ǫt

λt−1 λt

Y t−1 Y t

Xt−1 Xt Non Observables

Observables

Fig. 1. Directed Acyclic Graph (DAG) illustrating the dependencies between
the model parameters and the GPS observations. The fixed parameters appear
as dashed boxes.

IV. F IXED-LAG PARTICLE SMOOTHER

In order to mitigate interferences in GPS navigation, we pro-
pose to estimate jointly the discrete-valued indicator vector λt

and continuous-valued parameters such as the mobile motion
states and the observation noise variance, i.e. estimateXt =
[xT

t ,φ
T
t ]

T . In a Bayesian framework, all inference is based on
theposteriordistribution of the unknown parameters given the
set of available observations, expressed asp (S0:t|Y 1:t) with

St =
[
XT

t ,λ
T
t

]T
andS0:t = (S0, . . . ,St). PFs are a class

of methods well-suited to perform the estimation of the hybrid
state vectorS0:t. They approximate the target distribution by
an empirical distribution

p̂ (S0:t|Y 1:t) =
N∑

i=1

wi
tδ
(
S0:t − Si

0:t

)
,

N∑

i=1

wi
t = 1 (17)

where δ is the Dirac delta function. The weightswi
t and

the N support pointsSi
0:t (referred to as particles) are

classically obtained by applying sequentially the importance
sampling (IS) technique. Ideally, the particles should be sam-
pled directly from the target distributionp (S0:t|Y 1:t), and
assigned equal weights. Since it is usually impossible to
samplep (S0:t|Y 1:t), they are drawn instead from a proposal
distribution π (S0:t|Y 1:t), called importance distribution [4]
[16]. Then, the weights are used to correct the discrepancy
betweenp andπ

wi
t ∝

p
(
Si

0:t|Y 1:t

)

π
(
Si

0:t|Y 1:t

) (18)

where ‘∝’ means ‘proportional to’. A sequential formulation
of IS allows one to leave the previous particlesSi

0:t−1 un-
changed by only simulating at time stept

Si
t ∼ π

(
St|Si

0:t−1,Y 1:t

)
. (19)

Then, the importance weights can be updated using

wi
t ∝ wi

t−1

p
(
Y t|Si

t

)
p
(
Si

t|Si
0:t−1

)

π
(
Si

t|Si
0:t−1,Y 1:t

) . (20)

Unfortunately, these algorithms are known to experience de-
generacy issues so that after a few iterations, all but one
particle have negligible normalized weights. To overcome



5

this inherent limitation, a selection step is introduced which
consists of resampling the set of particles according to thees-
timated empirical distribution. The reader is invited to consult
[14] for more details.

A. Estimation objectives

Several realizations are necessary to obtain a good estima-
tion of the variance of a stochastic process, hence we propose
to use near future measurements to detect and estimate the
variance jumps. The so-called fixed lag PF (FLPF) aims at
estimating a timet the distributionp (S0:t|Y 1:t+L), with a lag
L > 0. For that purpose, we first compute an approximation
of the smoothing distribution

p̂ (S0:t+L|Y 1:t+L) =

N∑

i=1

wi
t+Lδ

(
S0:t+L − Si

0:t+L

)
. (21)

The distribution of interest is then obtained by marginalization

p̂ (S0:t|Y 1:t+L) =
N∑

i=1

wi
t+Lδ

(
S0:t − Si

0:t

)
. (22)

The estimation of the parameters of interest is achieved as
follows

E [Xt|Y 1:t+L] ≃
N∑

i=1

wi
t+LX

i
t. (23)

Finally, the detection of a variance jump affecting thekth

pseudorange is based on the posterior change probability

P k
t = P [λt(k) 6= 0|Y 1:t+L]

≃
N∑

i=1

wi
t+L

[
1− δ

(
λi
t(k)

)]
. (24)

B. Particle propagation strategy

It is well-known that the choice of the importance distri-
bution is a critical issue to design efficient PF algorithms.
To generate samples in interesting regions of the state space,
i.e., corresponding to a high likelihoodp (Y t|St), a natural
strategy consists of taking into account information from
the most recent observations. Thus, the optimal importance
distribution in the sense that it minimizes the variance of the
importance weights has been introduced in [33]

π
(
St|Si

0:t−1,Y t

)
= p

(
St|Si

0:t−1,Y t

)
. (25)

However, this distribution is usually analytically intractable
and sub-optimal approximations based on extended Kalman
filter [4] or more recently unscented Kalman filter [10]
schemes are used. The problem at hand requires sampling
from a high-dimensional state spaceRnx×R

nt×nΛ involving
both discrete-valued and continuous-valued parameters. In this
context, an efficient sampling scheme consisting of simulating
the continuous states while exploring exhaustively the possible
values of the discrete states was proposed in [22]. Assume at
time t−1 the following approximation of the target distribution
is available

p̂(S0:t−1|Y 1:t−1) =

N∑

i=1

wi
t−1δ

(
S0:t−1 − Si

0:t−1

)
. (26)

Then, a combination of deterministic and random propagation
schemes yields at timet

p̂ (S0:t |Y 1:t) = (27)

nΛ∑

j=1

N∑

i=1

wi,j
t δ


S0:t −




Si

0:t−1,X
i,j
t ,λi,j

t = Λj

︸ ︷︷ ︸
S

i,j
t






 .

where the discrete-valued part ofS
i,j
t , i.e.,λi,j

t , is thejth ele-
ment of the setΛ and the continuous-valued partX

i,j
t is drawn

from an importance distributionπ
(
Xt|Si

t−1,λ
i,j
t = Λj ,Y t

)

whose choice is discussed later. The importance weightswi,j
t

are equal to

wi,j
t =

p
(
S

i,j
0:t|Y 1:t

)

π
(
X

i,j
0:t|λi,j

0:t,Y 1:t

) . (28)

From Bayes’rule, we obtain

p
(
S

i,j
0:t|Y 1:t

)
∝ p

(
Y t|X i,j

t

)
p
(
X

i,j
t |λi,j

t = Λj ,Si
t−1

)

× P
[
λ
i,j
t = Λj |λi

0:t−1

]
p
(
S

i,j
0:t−1|Y 1:t−1

)
.

(29)

In addition, the considered importance distribution can be
decomposed in the following manner

π
(
X

i,j
0:t|λi,j

0:t,Y 1:t

)
∝ π

(
X

i,j
t |Si

t−1,λ
i,j
t ,Y t

)
(30)

× π
(
X

i,j
0:t−1|λi,j

0:t−1,Y 1:t−1

)
.

Thus, by combining (29) and (30), the weights appearing in
(27) are equal to

wi,j
t ∝ Ki,j

t P
[
λt = Λj |λi

0:t−1

]
wi

t−1 (31)

where

Ki,j
t =

p
(
Y t|X i,j

t

)
p
(
X

i,j
t |λi,j

t = Λj ,Si
t−1

)

π
(
X

i,j
t |Si

t−1,λt = Λj ,Y t

) . (32)

When using a fixed-lag PF to enhance variance jump detection,
the deterministic approach proposed in [22] can be extended
to obtain the approximated smoothing distribution

p̂ (S0:t+L|Y 1:t+L) = (33)

∑

J∈SJ

N∑

i=1

wi,J
t+Lδ

(
S0:t+L −

{
Si

0:t−1,X
i,J
t:t+L,λ

i,J
t:t+L = ΛJ

})

whereSJ is the set of(L + 1)-upletsJ = (j0, . . . , jL) with
jl ∈ {0, . . . , nΛ − 1} referring to thejthl possible value of
vectorλt. More precisely,ΛJ =

(
Λj0 , . . . ,Λj1

)
. In this case,

the smoothing weights are computed as

wi,J
t+L ∝ Ki,J

t+LP
[
λt:t+L = ΛJ |λi

0:t−1

]
wi

t−1 (34)
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where

Ki,J
t+L =

L∏
l=0

p
(
Y t+l|Xi,J

t+l

)
p
(
X

i,J
t+l|S

i,J
t+l−1,λ

i,J
t+l = Λjl

)

π
(
X

i,J
t:t+L|Si

t−1,λt:t+L = ΛJ ,Y t:t+L

) . (35)

The main advantage of this approach is that there is no risk
to discard useful information as when drawing one particle
out of thenΛ possibilities for vectorλt. However, the gain in
performance should be balanced with the increased computa-
tional complexity. Each particle at timet− 1 results innL+1

λ

offsprings (instead of one for usual PF implementations). After
the propagation step, the total number of particles amountsto
N × nL+1

λ , hence increases exponentially with the lagL. To
keep the computational cost reasonable, we propose to limit
the paths to consider for vectorλt by taking advantage of the
sparseness of variance jump events. When detecting variance
jumps at timet, it can be assumed that no jump occurs during
time interval[t+ 1, t+ L], which isa priori the most probable
event. Therefore, the sum in equation (33) can be restrictedto
the sequencesλ(j)

t:t+L = Λj
0 whereΛj

0 =
(
Λj ,0, . . . ,0

)
, with

j = 1, . . . , nΛ, yielding to the following approximation

p̂ (S0:t+L|Y 1:t+L) = (36)
nΛ∑

j=1

N∑

i=1

wi,j
t−1δ

(
S0:t+L −

{
Xi

0:t−1,X
i,j
t:t+L,λ

i,j
t:t+L = Λj

0

})
.

This strategy was proved to be efficient for multipath mitiga-
tion in [15]. Its consequences on the estimation of variance
jumps are discussed in section IV dedicated to simulation
results.

C. Proposal distribution for the continuous states

The uncertainty on the measurement noise variance after a
jump imposes to select a non informativeprior distribution as
in section II. It is thus important to integrate informationfrom
the GPS measurements to sample relevant variance values. As
discussed beforehand, the optimal proposal is given by

p
(
Xt:t+L|Xi

t−1,λ
i,j
t:t+L = Λj

0,Y t:t+L

)
. (37)

This distribution is non standard and cannot be sampled from
efficiently. Thus we introduce a proposal distribution which is
an approximation of (37) but still preserves information from
the measurements. First, given the assumption that no variance
jump occurs during time interval[t+ 1, t+ L], the variance
can be considered constant during this period. Therefore, it
is sufficient to simulateφt and then setφt+l = φt for l =
1, . . . , L. Particle propagation can thus be performed in three
steps.

1) Simulation of the mobile motion parameters,

x
i,j
t:t+L ∼ π

(
xt:t+L|Xi

t−1,λ
i,j
t:t+L = Λj

0,Y t:t+L

)
.

2) Simulation of the variance vectorφt,

φ
i,j
t ∼ π

(
φt|xi,j

t:t+L,X
i
t−1,λ

i,j
t:t+L = Λj

0,Y t:t+L

)
.

3) Extrapolation,

φ
i,j
t+l = φ

i,j
t , for l = 1, . . . , L.

The proposal distributions corresponding to steps 1) and 2)
are described hereafter.

1) Variance parameter simulation:Using Bayes’ rule, the
optimal importance distribution for the variance parameters
can be decomposed as

p(φt|xi,j
t:t+L,X

i
t−1,λ

i,j
t:t+L = Λj

0,Y t:t+L) (38)

∝ p
(
Y t:t+L|xi,j

t:t+L,φt

)
p
(
φt|φi

t−1,λ
i,j
t = Λj

)
.

The prior of the variance vector components is anIG-
distribution. In addition, seen as a function of vectorφt, the

likelihood functionp
(
Y t:t+L|xi,j

t:t+L,φt

)
takes the form of

a product ofIG-distributions up to a proportional constant. It
follows that the observation noise variances at timet can be
generated independently as

φ
i,j
t (k) ∼ IG

(
φt(k); α̃

i,j
t (k), β̃i,j

t (k)
)

(39)

where theIG parameters are given by

α̃i,j
t (k) = α

(
Λj(k)

)
+ (L+ 1)/2 (40)

β̃i,j
t (k) = β

(
Λj(k)

)
+∆βi,j

t (k). (41)

In (41), the increment in theprior value of parameterβ,
denoted above∆βi,j

t (k), is equal, up to a proportionality
constant, to the estimation of the measurement noise variance
from L+ 1 consecutive observations

∆βi,j
t (k) =

1

2

L+1∑

l=0

(
Y t+l(k)− hk

t+l

(
x
i,j
t+l

))2
. (42)

2) Motion parameter simulation:The proposal distribution
for the motion parameters can theoretically be obtained by
marginalizing the joint distribution of the continuous states

p(xt:t+L|Xi
t−1,λt:t+L = Λj

0,Y t:t+L) = (43)∫

φt

p
(
xt:t+L,φt|Xi

t−1,λt:t+L = Λj
0,Y t:t+L

)
dφt.

Using Bayes’ rule to compute (43), the following result can
be obtained

p(xt:t+L|X i
t−1,λt:t+L = Λj

0,Y t:t+L) (44)

∝ p
(
xt:t+L|xi

t−1

) ny∏

k=1

(
β̃i,j
t (k)

)−α̃
i,j
t (k)

.

This distribution is not easy to simulate. However, an accurate
Gaussian approximation can be used instead as detailed in
appendix A. Using this approximation, we simulate the motion
vectors, forl = 0, . . . , L, according to

p(xt+l|xi,j
t+l−1,λt = Λj ,Y t:t+l) ≃ N (xt+l;m

i,j
t+l,Σ

i,j
t+l)

where

Σi,j
t+l =

((
Hi,j

t+l

)T (
Di,j

t

)−1

Hi,j
t+l +Q

)−1

m
i,j
t+l = Σi,j

t+l

(
Q−1Fx

i,j
t+l−1 +

(
Di,j

t

)−1 (
Hi,j

t+l

)T
∆Y

i,j
t+l

)
.
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In these equations,Hi,j
t+l is the matrix of the partial derivatives

of vectorial functionht+l evaluated inxt+l = Fx
i,j
t+l−1.

Furthermore,

Di,j
t = diag

(
V

i,j
t

)
(45)

with the components of the vectorV i,j
t defined as

V
i,j
t (k) = β(Λj(k))

(
α(Λj(k)) + L/2

)−1
. (46)

Finally, we have

∆Y
i,j
t+l=Y t+l − ht+l(Fx

i,j
t+l−1) +Hi,j

t+lFx
i,j
t+l−1. (47)

D. Algorithmic enhancements

1) Hypothesis test:After the propagation step, the number
of particles in the FLPF is multiplied bynL+1

Λ . Therefore,
a selection procedure has to be used to keep the number of
particles constant. Two different approaches can be applied.
The simplest one consists of selecting theN best particles
among theN × nL+1

Λ ones. As an alternative, sampling with
replacement according to the smoothing weightswi,j

t+L could
be employed. A more efficient strategy is proposed here.
Indeed, estimating the variance of a stochastic process is a
challenging issue when the number of available realizations
is limited. In our case, ifL is small, the detection of a
variance jump may not be clear cut. Thus, it may take a few
time steps before the majority of the particles indicate the
presence of interferences. The longer it takes, the larger the
position estimation error. To bypass this limitation and thereby
improve the tracking ability of our algorithm, we propose to
help particle selection by applying a hypothesis test with the
following hypotheses

• H0
t : no variance jump,

• H1
t : variance jump.

According to Bayesian decision theory, hypothesisH1
t is

accepted if the following inequality is satisfied

P
[
H1

t |Y 1:t+L

]

P [H0
t |Y 1:t+L]

≥ Th (48)

whereTh is a threshold depending on the probability of false
alarm of the test. TheposteriorprobabilitiesP

[
Hi

t |Y 1:t+L

]
,

for i = {0, 1}, can be directly approximated from the PF
smoothing weights

P
[
H0

t |Y 1:t+L

]
≃

N∑

i=1

nλ∑

j=1

wi,j
t+Lδ(λ

i,j
t ) (49)

P
[
H1

t |Y 1:t+L

]
= 1− P

[
H0

t |Y 1:t+L

]
. (50)

At that stage, the most straightforward use of the statistic
test resulting from (48) consists of discarding all the particles
standing for the wrong hypothesis. However, the convergence
properties of the PF would be lost. We propose a more
flexible strategy allowing the algorithm to recover from a
wrong decision. The idea is to resample the particles according
to auxiliary weights as advocated in [20]. These resampling
weights are derived from the smoothing weights by penalizing

irrelevant particles whenever a variance jump is detected as
follows

αi,j
t ∝

(
wi,j

t+L

)β
, if λ

i,j
t = 0 (51)

αi,j
t ∝ wi,j

t+L otherwise. (52)

In expression (51),β is a penalizing factor (β > 1). Then, the
resampling is performed in two steps. First,N particles are
sampled with replacement out of theN × nΛ according the
auxiliary weightsαi,j

t . Unfortunately, the generated particles
are not distributed anymore according to an approximation of
the filtering distributionp (S0:t|Y 1:t) as required to proceed
to next step of the PF. Hence, they are assigned new weights
to remedy this problem. Thus, the proposed resampling pro-
cedure is the following.

For l = 1, . . . , N , a new particleSl
t is drawn out of the

N × nΛ particlesSi,j
t (i = 1, . . . , N and j = 1, . . . , nΛ)

according to the multinomial distribution with probabilities
αi,j
t . Then, assuming vectorSp,q

t is selected, the particle
is assigned the weightwl

t ∝ wp,q
t /αp,q

t to make sure an
approximation ofp (S0:t|Y 1:t) is obtained before proceeding
to the next iteration.

In this way, the variability of PF weights is artificially
reduced by enforcing the removal of the particles that are less
likely to survive at the next time steps. Furthermore, detection
of small variance jumps and estimation of their amplitudes is
improved even with a small lagL and a reasonable number
of particles.

2) Dynamic prior probabilities: This section presents an
extension of the proposed FLPF which aims at preventing
false detections of variance jumps which can severely impair
the estimation of the mobile motion parameters. In section
III, the vectorsλt are assumed time-independent for the sake
of simplicity. However, as already pointed out in the work
of De Cambry [9] dedicated to the off-line segmentation of
stochastic signals, this assumption can lead to close detections
of changes in the signal model hence to an over-segmentation.
To prevent false detections, De Cambry introduces a minimal
duration constraint. Similarly, we could restrict the set of
possible offsprings of the parent particlesλi

0:t−1 by enforcing
a minimal delay between too consecutive variance jumps.
Although this approach allows one to reduce the computational
complexity, it turns out to be difficult to set the minimal delay.
Indeed, it depends both on the mobile velocity and the number
of interference sources in the navigation environment. As an
alternative, we propose to adjust the value of the variance jump
prior probability γ as a increasing function of the elapsed
time since the last jump. More precisely, the following ruleis
adopted

γi
t(k) = exp

[(
1 +

1

t− tiocc(k)

)
ln(γm)

]
(53)

where the superscripti refers to theith particle,k corresponds
to the kth component of the observation vector andγm is
the maximum value allowed for the probabilitiesγi

t(k). Here
tiocc(k) is the last time particlei indicated a variance jump,
that is

tiocc(k) = max
{
u ≤ t|λi

u(k) = 1
}
. (54)
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Initialization
For particlesi = 1, . . . , N ,

– sample the motion parametersxi
0 ∼ π (x0),

– sample the variance vectorφi
0 ∼ π (φ0).

Iterations

for t = 1, 2, . . .,
– for particles i = 1, . . . , N and indicator vectorλt values j =

1, . . . , nΛ,
* update prior probabilities of the indicator particles,µt(k) and

γi
t(k), for k = 1, . . . , ny ,

* sample the motion parameters according to the suboptimal
distribution

x
i,j

t:t+L
∼ π

(

xt:t+L|X
i
t−1,λ

i,j

t:t+L
= Λ

j
0,Y t:t+L

)

,

* sample the variance parameters

φ
i,j
t ∼ π

(

φt|x
i,j
t:t+L

,Xi
t−1,λ

i,j
t:t+L

= Λ
j
0,Y t:t+L

)

,

* extrapolation: forl = 1, . . . , L, φi,j

t+l
= φ

i,j
t .

* Compute the importance weightswi,j

t+l
for l = 0, . . . , L.

– Smoothed state estimation

xt =
N
∑

i=1

nλ
∑

j=1

w
i,j

t+L
x
i,j
t

φt =
N
∑

i=1

nλ
∑

j=1

w
i,j

t+L
φ

i,j
t

– Selection procedure
* Perform the hypothesis test

P
[

H1
t |Y 1:t+L

]

P
[

H0
t |Y 1:t+L

] ≥ Th?

* Depending on the selected hypothesis, compute the resampling
weightsαi,j

t .
* Draw N particles out ofN × nΛ according to the resampling

weights. They are denotedSi
0:t =

{

xi
0:t,φ

i
0:t,λ

i
0:t

}

for i =
1, . . . , N .

TABLE I
SUMMARY OF THE PROPOSED FIXED-LAG PARTICLE FILTER.

V. A PPLICATION TO A GPSNAVIGATION SCENARIO

A. Simulation settings

Several simulations have been conducted to illustrate the
performance of the proposed algorithm. We first consider a
trajectory of200 samples (with a sampling periodTe = 1 s)
corresponding to a nearly uniform motion with a velocity of10
m/s. All along this trajectory, the actual distances between the
vehicle and the satellites of the GPS constellation have been
computed on the basis of GPS almanac files. The latter provide
us with the latest upgrades of the satellite orbital parameter
values so that we can infer the satellite positions in the ECEF
frame of coordinates. Then, we have degraded these ideal
pseudoranges by adding both the receiver clock bias, generated
according to state model (3), and the measurement noise. The
standard deviation of this noise has been adjusted according
to RTCA recommendations [1]. Thus it slightly varies over
time as a function of the in-view satellite elevation angles.
The so-called nominal value of the standard deviation is
denoted hereafterσn

t (k) for thekth satellite at timet. Finally,
to simulate the presence of interferences, the pseudoranges

associated to the1st and 2nd in-view satellites (they are
referred to as PR1 and PR2 in the sequel) have been corrupted
by an additive white noise from time instant67 to time instant
167 for satellite1 and from time instant100 to time instant200
for satellite2. The standard deviations of these interferences
have been chosen so that the overall additive noise does not
result in a loss-of-lock of the receiver. Therefore, the following
rule-of-thumb has been applied (see [17] for more details):
3σmax = d, whereσmax refers to the maximum tolerable value
of the measurement noise standard deviation andd to the
correlator spacing. A classical value for the correlator spacing
is 1

2 chip of the PRN code, hence97 m when considering GPS
signals dedicated to civil users. Thus, the maximum value of
the standard deviation of the simulated measurement noise is
32.33 m. As a result, the measurement noise standard deviation
in the presence of interferences has been set to25 m for the
1st pseudorange and30 m for the 2nd pseudorange. Finally,
the motion model standard deviation is taken asσv = 0.1 m/s2

and the clock variance parameters satisfySb = 10−19 s2 and
Sd = 3× 10−19 s2.

B. Simulation results

The performance analysis is conducted in several steps.
First, we study the ability of the FLPF to detect variance
jumps. For that purpose, we compare the estimatedposterior
probability that a variance jump has occurred with a threshold
according to equation (48). Then, we evaluate the accuracy
of both the measurement noise variance and the position
coordinate estimates in the presence of interferences. Finally,
we study the influence of different algorithmic settings such as
the parameters of theprior distributions and the deterministic
exploration strategy. All the results have been obtained by
averaging50 Monte Carlo runs corresponding to different re-
alizations of the measurement noise. For comparison purposes,
we have implemented two algorithms in addition to the FLPF

• a fixed-lag smoothing particle filter based on the same
Bayesian model and using the test-triggered resampling,
but with a random exploration of the discrete-valued
states. It should be noted that, for the continuous-valued
states, the same proposal distribution as the one presented
in section IV is used to propagate the particles.

• a fixed-lag extended Kalman smoother, denoted hereafter
FL-EKF, which is coupled with an innovation based hy-
pothesis test to detect the variance jumps. More precisely,
among the different algorithms published in the literature,
we have implemented the state augmentation smoother
which was first proposed by Biswas and Mahalanabis
[6] for its numerical stability. The detection of variance
jumps is carried out by applying a 2-CUSUM scheme
as expressed in [24]. By denoting asηi,t the Kalman
innovation associated to theith GPS measurement at time
t, the CUSUM statistics are updated as follows

C+
i,t = max(0, C+

i,t−1) + (η2i,t − C), (55)

C−
i,t = min(0, C−

i,t−1) + (η2i,t + C), (56)

with the initial valuesC+
i,0 = C−

i,0 = 0, and C is a
threshold which determines the sensitivity of the CUSUM
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test to small variance jumps. The absolute values of these
statistics are compared to a thresholdTc to detect the
variance jumps. Then, a generalized likelihood ratio is
used, as presented in [28], to estimate both their times
of occurrence and their amplitudes. Finally, the newly
estimated values of the GPS measurement noise variance
are fed back to the Kalman smoother.

The behavior of the FLPF partly depends on the tuning of
different parameters such as the number of particlesN and
the detection threshold. Their values, as well as the valuesof
the 2-CUSUM scheme, are given in table II for the proposed
simulation results. As for theIG prior distribution parameters,
they need to be adjusted on-line since they depend both on the
previous value of the measurement noise variance and on the
elevation angle of the satellite. For theith particle and thekth

pseudorange at timet, we apply the formula given in section
III with the following parameter values

• Case 1 (λi
t(k) = 0): σIG

0 = 1 m andµIG
0 = φi

t−1(k).
• Case 2 (λi

t(k) = 1): the lowest inflexion point is set to
Imin = 122, which is slightly superior to the nominal
variance of the GPS measurement noise. The2nd one is
set toImax = 32.332 which is the maximum value before
loss-of-lock.

• Case 3 (λi
t(k) = 2): σIG

2 = 1 m and µIG
2 = σn

t (k),
i.e., the nominal value of the measurement noise standard
deviation for thekth satellite at timet.

We also study the influence of the lagL by varying its value.

Number of particles N = 250
Penalizing factor β = 2
Detection threshold (FLPF) Th = 1
Detection threshold (CUSUM) Tc = 20000
Sensitivity parameter (CUSUM) C = 100

TABLE II
FLPFAND CUSUM PARAMETERS

1) Variance jump detection:Fig. 2 shows the number of
detections at each time step over the50 Monte Carlo runs.
For that purpose, we apply the Bayesian hypothesis test (48)
with a thresholdTh = 1 (maximum a posteriori rule) and
we setL = 8. We can observe that almost all the detections
are located at the vicinity of the actual variance changepoints,
which are indicated by vertical dashed lines. However, due to
the fixed-lag smoothing, the variance jumps may be detected
a few time steps before they actually occur. To study the
influence of the lag, we have computed the statistics of the
detection delay for different values ofL indicated in table
III. The results obtained withL = 2 have not been reported
because the missed and false detections were too numerous
to compute significant statistics. Broadly speaking, the higher
the lag, the higher the bias in the estimated changepoint
because the detection occurs systematically before the actual
changepoint. Conversely, the standard deviation of the detec-
tion delay decreases withL because the detection becomes
less sensitive to the measurement noise. It should be noted
that a lagL = 5 seems to offer a good compromise between
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Fig. 2. Posterior number of detections over the50 Monte Carlo runs for
pseudorange1 (top) and pseudorange2 (bottom).

Changepoints t = 67 s t = 100 s t = 167 s
(PR 1) (PR 2) (PR 1)

L
ag

=
8

Detection delay (s) −3.5 −5 1.4
Standard deviation (s) 2.3 1.9 3.4

L
ag

=
5

Detection delay (s) −1 −1.9 2.1
Standard deviation (s) 2.7 2.1 3.8

TABLE III
MEAN DETECTION DELAY AND STANDARD DEVIATION OF THE DETECTION
DELAY IN S FOR DIFFERENT CHANGEPOINTS AND DIFFERENT VALUES OF

THE LAG L.

bias and variance when considering changepoint estimation.
However, better results are obtained with a lagL = 8 for
estimating the variance jump amplitudes as shown in the next
section.

2) Variance estimation:Fig. 3 shows the average of the
FLPF measurement noise standard deviation estimates ob-
tained from 50 Monte Carlo runs. Different values of the
lag L have been considered to emphasize the benefits of
smoothing. It can be noted that the estimated curve that best
fits the actual value of the standard deviation is obtained for
L = 8. However, due to smoothing, the value of the estimated
standard deviation starts increasing a few time steps before
the actual changepoint. With a lagL = 5, the FLPF tends
to slightly overestimate the value of the standard deviation
after the jump but still achieves a good trade-off between
accuracy and computational complexity. On the contrary, with
a too small value of the lag (L = 2), the proposed algorithm
does have enough information from the measurements to
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counterbalance the vagueprior distribution assigned to the
variance value in the presence of a jump. In this case, the FLPF
yields too high values of the standard deviation. Therefore, due
to the uncertainty on the variance jump amplitude, smoothing
turns out to be necessary to properly track the variance value.
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Fig. 3. Average of the FLPF measurement noise standard deviation (std)
estimates, computed from50 MC runs. Plain line: actual values, dotted line:
L = 8, dashed line:L = 5, dashdot line:L = 2.

3) Positioning error: In order to appreciate the interest of
the proposed algorithm in term of positioning error, Fig. 4
shows the root mean square error (RMSE) between the true
position of the mobile and the estimates obtained with the
FLPF and the FL-EKF using the same lagL = 8. Before
the appearance of the interferences, the FL-EKF RMSEs are
slightly inferior to that of the FLPF, most presumably due to
the limited number of particles used in the FLPF implementa-
tion. On the contrary, after the appearance of the interferences,
the FLPF yields the lowest RMSEs. When comparing both
algorithms, it appears that the FPLF positioning error can
be locally decreased up to5 meters with respect to the
FL-EKF. A closer analysis shows that the 2-CUSUM test
timely detects the jumps. However, their amplitudes may be
poorly estimated, which in return degrades the navigation state
estimates. Furthermore, the gain in accuracy achieved withthe
FLPF is expected to be more significant for longer interference
periods.

Another way of comparing the different navigation algo-
rithms consists of computing Bayesian confidence intervals,
or so-called credible intervals [25], for the different estimates.
Fig. 5 shows the x-coordinate estimation error versus time

and the approximate credible intervals, defined by twice the
estimated standard deviation of the estimation error, for the
FL-EKF and the FLPF. The FLPF credible intervals are more
in agreement than the FL-EKF ones with the corresponding
positioning errors. Thus, an additional advantage of the pro-
posed approach is to provide interesting uncertainty measures
for the positioning errors along the trajectory. Furthermore, we
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Interferences

Fig. 4. RMSEs for the position estimation. Plain line : FLPF,dotted line :
FL-EKF. Vertical dashed lines: variance changepoints.

TABLE IV
RMSES (M ) FOR THE X,Y AND Z COORDINATES WITH DIFFERENT LAGS.
(1) : WITHOUT THE HYPOTHESIS TEST, (2) : WITH THE HYPOTHESIS TEST.

(a) Positioning errors with respect to the true mobile trajectory.

L = 8(1) L = 8(2) L = 5(2) L = 2(2)

x axis 5.04 4.40 5.24 10.43
y axis 5.26 4.68 5.53 10.52
z axis 7.65 6.93 7.81 14.9

(b) Positioning errors with respect to the mean of the fixed lag
distribution.

L = 8(1) L = 8(2) L = 5(2) L = 2(2)

x axis 4.46 4.32 5.24 8.96
y axis 4.82 4.85 5.43 9.20
z axis 7.40 7.31 8.17 13.19

have studied the influence of both the lag and the hypothesis
test on the positioning error. Table IV(a) reports the RMSEs
for thex, y andz coordinates for different values of the lagL.
The lowest RMSEs are obtained with the lagL = 8. For this
value, using the hypothesis test clearly allows one to reduce
the estimation error. The same remark holds forL = 5 and
L = 2 but the RMSE in the absence of hypothesis test have not
been reported in the table for the sake of brevity. By speeding
up the removal of non relevant particles after a variance jump,
the hypothesis test improves the variance estimation during
the time intervals associated to interferences.
Finally, to take into account that we compute an approximation
of the means of the smoothing distribution and not the exact
values of the hidden Markov chain{Xt}t≥0, we have also
evaluated the RMSEs between the algorithm estimates and
the estimates obtained by running a reference particle filter
using 100, 000 particles. These errors are provided in table
IV(a). They are very close to the RMSEs reported in table
IV(b), which ensures that the exact position coordinates of
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the mobile coincide with the means of the smoothingposterior
distribution.
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Fig. 5. Positioning error (plain line) and 95% confidence bounds for the
FL-EKF and the FLPF. The variance changepoints are indicated by vertical
dashed lines.

4) Deterministic versus random exploration:Following re-
sults previously published in the litterature [22] [27] [13], we
have favored a deterministic scheme for the exploration of the
discrete-valued states. In order to study the relevance of this
approach, we have also implemented the proposed algorithm
with a random evolution of all the unknown parameters. Since
nλ offsprings are considered per particle for the deterministic
technique, the fully random scheme is implemented with
N × nλ particles so that the overall number of particles used
for the estimation is the same.

Table V presents the number of good detections over
50 Monte Carlo runs for the different variance jumps. As
expected, the exhaustive exploration technique outperforms a
fully random approach when dealing with the estimation of
the discrete-valued indicator vectorλt. However, this result is
somewhat counterbalanced by the positioning RMSEs which
are plotted in Fig. 6. It appears that the RMSEs of the
fully random PF are slightly inferior to that of the combined
random/deterministic PF. This last result can be explainedas
follows. The combined random/deterministic PF allocates a
fixed number of particlesN to each scenario: slow evolution
of the noise variance or abrupt jump. Since the variance shifts
are rare events which have a smallprior probability, most
of the standard PF particles correspond to the1st scenario.
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Fig. 6. Positioning RMSEs for the combined deterministic/random explo-
ration scheme (plain line) and the fully random scheme (dashed line).

Thus, most of the time (99% of the time in the simulation),
only N particles of the combined deterministic/random PF are
actually useful for the estimation, which should be compared
to nearlyN × nλ for the standard PF. Conversely, at each
changepoint, the number of particles indicating the variance
shift is far more important when considering in a systematic
manner all the indicator vector possible values.

Finally, to make the analysis complete, it should be noted
that the computational complexity between the compared algo-
rithms is not strictly equivalent. The resampling step, which is
quite demanding, involves onlyN particles for the combined
deterministic/random PF againstN ×nλ for the fully random
algorithm. To conclude, the combined deterministic/random
strategy is more efficient for detecting the presence of interfer-
ences. However, a fully random strategy might be considered
if we are only interested in positioning errors.

Changepoints t = 67 s t = 100 s t = 167 s
(PR 1) (PR 2) (PR 1)

Combined
deterministic/random 50 48 40

exploration

Random
exploration 42 39 42

TABLE V
NUMBER OF GOOD DETECTIONS OVER50 MONTE CARLO RUNS FOR THE

DIFFERENT CHANGEPOINTS.

C. Sensitivity to parameter tuning

Fig. 7 investigates the robustness of the FLPF with respect
to some user-chosen parameters. First of all, the frequency
of the variance jumps is determined by the parameterγ. In
the considered simulation setting, the actual value ofγ is
0.01. Fig. 7a) depicts the positioning RMSEs obtained by
considering different values ofγ in the FLPF implementation.
These RMSEs are computed by averaging the positioning
error over50 Monte Carlo runs and over the200 points of
the mobile trajectory. Unsurprisingly, the minimum error is
obtained when using the true value ofγ. However, varyingγ
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a) Sensitivity to the parameterγ
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Fig. 7. Positioning RMSEs for different tuning of the FLPF parameters.

does not impact significantly the FLPF performance, probably
due to the deterministic exploration strategy.
Then, it is worth studying the sensitivity of the algorithm to
the parameters of theIG distributions assigned to the variance
states. When considering the3 cases presented in section III.C,
it appears that theprior distribution is relatively non informa-
tive in case2. On the contrary, in cases1 and 3, the shape
of the varianceprior distributions is directly impacted by the
nominal GPS noise standard deviation, denotedσn

t (k) for the
kth pseudorange at timet. Fig 7b) illustrates the robustness of
the FLPF with regards to an imperfect knowledge ofσn

t (k).
This figure shows the RMSEs obtained with different values of
α, which is the ratio between the true value of the observation
noise standard deviation and the value considered in the
FLPF implementation. Again, the best positioning accuracyis
achieved by using the true value of theσn

t (k) (corresponding
to α = 1). Although this parameter appears to impact more
significantly the FLPF thanγ, the proposed algorithm seems
quite robust to uncertainties. In addition, it should be noted
that a too erroneous value ofσn

t (k) would be detected as a
variance jump. Thus, its influence on the RMSE would be
attenuated.

VI. CONCLUSION

This paper addressed the problem of mitigating RF inter-
ferences in GPS navigation. Contrary to existing approaches,
the proposed algorithm directly compensated for the interfer-
ences effects at the level of the navigation algorithm. For

that purpose, interferences were modeled as variance jumps
affecting the GPS measurements. A particle filtering algorithm
was then proposed to estimate these variance jumps jointly
with the vehicle motion. In order to improve the variance
jump detection, several alternatives to the classical particle
filter were introduced. First, the sparsity of interferences was
taken into account to perform smoothing while preserving
a reasonable computational complexity. Second, an efficient
proposal distribution was introduced to capture the information
brought by the current measurements when simulating the
particles. Finally, an hypothesis test was introduced at the
level of the resampling step to accelerate the removal of
irrelevant particles. The performance of the so-called FLPF
was validated on simulated data.

We are currently investigating the following extensions.
First, this study assumed that interferences corrupting the
different pseudoranges were not correlated. This hypothesis
makes easier the definition of indicatorpriors but may be
restrictive in some practical applications. An alternative would
be to consider that measurements resulting from a set of
satellites located in the same direction are likely to experience
interferences at the same time. For that purpose, correlations
between the components ofλt should be introduced, e.g.
by defining appropriateprior distributions for this vector.
Improving detection by exploiting the correlation between
multiple measurements has already shown interesting results
in other contexts such as the joint segmentation of multiple
time series [12] [11]. We think this strategy can also be useful
for navigation applications.

APPENDIX A
PROPOSAL DISTRIBUTION

This appendix derives the proposal distribution of the mo-
bile motion parameters used in the proposed particle filtering
algorithm. As mentioned in section IV, the optimal proposal
distribution (in the sense that it minimizes the variance ofthe
PF importance weights) is

p
(
xt:t+L|Xi

t−1,λ
i,j
t:t+L = Λj

0,Y t:t+L

)
. (57)

This distribution can be obtained by marginalization as follows

p
(
xt:t+L|Xi

t−1,λ
i,j
t:t+L = Λj

0,Y t:t+L

)
(58)

=

∫
p
(
xt:t+L,φt|X i

t−1,λ
i,j
t:t+L = Λj

0,Y t:t+L

)
dφt.

Then, by applying several times Bayes’ rule, the joint dis-
tribution of the continuous states can be decomposed in the
following manner

p
(
xt:t+L,φt|X i

t−1,λ
i,j
t:t+L = Λj

0,Y t:t+L

)

∝ p (Y t:t+L|xt:t+L,φt) p
(
xt:t+L|xi

t−1

)
p
(
φt|φi

t−1,λ
i,j
t

)

∝ p
(
xt:t+L|xi

t−1

) ny∏

k=1

IG
(
φt(k); α̃

i,j
t (k), β̃i,j

t (k)
)

(
β̃i,j
t (k)

)α̃i,j
t (k)

(59)

where the expressions ofα̃i,j
t (k) andβ̃i,j

t (k) are given by (40)
and (41). It should be noted that, in the above decomposition,
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we have considered that the variance remains constant forl =
0, . . . , L.

By integrating out the variance states, we can obtain an
analytical expression of the optimal proposal distribution

p
(
xt:t+L|X i

t−1,λ
i,j
t:t+L = Λj

0,Y t:t+L

)

∝ p
(
xt:t+L|xi

t−1

) ny∏

k=1

(
β̃i,j
t (k)

)−α̃
i,j
t (k)

∝ p
(
xt:t+L|xi

t−1

) ny∏

k=1

T i,j
t (k) (60)

where

T i,j
t (k) =

(
1 +

ui,j
t (k)

2α
(
Λj(k)

)
+ L

)−
2α(Λj(k))+L+1

2

(61)

ui,j
t (k) =

√√√√√√

∑L

l=0

(
Y t+l(k)− h

k
t+l (xt+l)

)2

2β(Λj(k))
2α(Λj(k))+L

.

T i,j
t (k), as defined in (61), takes the form of a Student

distribution with2α
(
Λj(k)

)
+L degrees of freedom, which

is evaluated inui,j
t (k). Student distributions are centered,

symmetric and bell-shaped distributions similar to Gaussian
distributions. However, their tails are heavier. The higher
the degree of freedom, the closer the Student distribution
to a Gaussian distribution. To derive a Gaussian proposal
distribution for the mobile motion vector, we propose here
to approximateT i,j

t (k) as follows

T i,j
t (k) ≃ 1√

2π
exp

(
−ui,j

t (k)2

2

)

∝ exp


−

∑L

l=0

(
Y t+l(k)− hk

t+l (xt+l)
)2

2V i,j
t (k)


 (62)

where the parameterV i,j
t (k) is defined as

V
i,j
t (k) =

α
(
Λj(k)

)
+ L/2

β
(
Λj(k)

) . (63)

By substituting (62) in (61), we obtain the following approx-
imation of the proposal distribution

p
(
xt:t+L|X i

t−1,λ
i,j
t:t+L = Λj

0,Y t:t+L

)
(64)

∝ p
(
xt:t+L|xi

t−1

) ny∏

k=1

L∏

l=0

fk
t (xt+l)

with

fk
t (xt+l) = exp


−

(
Y t+l(k)− hk

t+l (xt+l)
)2

2V i,j
t (k)


 . (65)

The distribution (64) is still not easy to simulate. Thus, we
propose to generate one after the other the motion vectors
x
i,j
t+l, for l = 0, . . . , L, by using a Gaussian approximation

of (64). For that purpose, we perform a local linearization
of the GPS observation equation so as to express, up to a
proportionality constant, the functionft(xt+l) as a Gaussian
distribution with regards toxt+l. This linearization leads to

ht+l (xt+l) ≃ ht+l

(
Fx

i,j
t+l−1

)
+Hi,j

t+l

(
xt+l − Fx

i,j
t+l−1

)

for l = 0, . . . , L, where xt+l is the actual motion vector
and Hi,j

t+l refers to the matrix of the partial derivatives of
the functionht+l with respect to the components ofxt+l,
evaluated inFx

i,j
t+l−1.

We can take advantage of this linearization to rewrite
ft(xt+l) as follows

fk
t (xt+l) ≃ exp


−

(
∆Y

i,j
t+l(k)−Hi,j

t+l(k, :)xt+l

)2

V
i,j
t+l(k)




where Hi,j
t+l(k, :) stands for thekth row of matrix Hi,j

t+l.
Thus, it becomes possible to simulate the motion vectorx

i,j
t+l

according to the Gaussian distribution

π (xt+l |Si
t−1,λ

i,j
t:t+l,x

i,j
t+l−1,Y 1:t+l

)
(66)

= N
(
xt+l;m

i,j
t+l,Σ

i,j
t+l

)

with mean and covariance matrix defined as

Σi,j
t+l =

((
Hi,j

t+l

)T (
Di,j

t

)−1

Hi,j
t+l +Q

)−1

m
i,j
t+l = Σi,j

t+l

(
Q−1Fx

i,j
t+l−1 +

(
Di,j

t

)−1 (
Hi,j

t+l

)T
∆Y

i,j
t+l

)

whereDi,j
t = diag

(
V

i,j
t

)
and

∆Y
i,j
t+l = Y t+l − ht+l

(
Fx

i,j
t+l−1

)
−Hi,j

t+lFx
i,j
t+l−1.
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