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A Particle filtering approach for joint
detection/estimation of multipath effects on GPS

measurements.
A. Giremus , J.Y Tourneret, V. Calmettes

Abstract— Multipath propagation causes major impair-
ments to Global Positioning System (GPS) based naviga-
tion. Multipath results in biased GPS measurements, hence
inaccurate position estimates. In this work, multipath ef-
fects are considered as abrupt changes affecting the navi-
gation system. A multiple model formulation is proposed
whereby the changes are represented by a discrete valued
process. The detection of the errors induced by multipath
is handled by a Rao-Blackwellized particle filter (RBPF).
The RBPF estimates the indicator process jointly with the
navigation states and multipath biases. The interest of this
approach is its ability to integrate a priori constraints about
the propagation environment. The detection is improved by
using information from near future GPS measurements at
the particle filter (PF) sampling step. A computationally
modest delayed sampling is developed, which is based on a
minimal duration assumption for multipath effects. Finally,
the standard PF resampling stage is modified to include an
hypothesis test based decision step.

Keywords— GPS navigation, multipath, multiple models,
particle filtering, delayed sampling.

I. Introduction

Recursive estimation is of primary interest for naviga-
tion and tracking problems. The issue is to compute the
kinematic state (the position and its derivative) of moving
vehicles from noisy measurements from a cluster of sen-
sors. It may be crucial that the estimation is performed
on line, for instance to ensure flight safety for an aircraft.
The Kalman filter, introduced in [1] and further studied in
many textbooks such as [2], has been applied to a wide
range of practical problems. This popular algorithm is
optimal (in the sense that it minimizes the mean square
estimation error) only in the case of linear Gaussian sys-
tems. Local linearization schemes yield computationally
modest suboptimal solutions for a wide range of nonlin-
ear systems. However, these approximations fail in case of
severe nonlinearities. Particle filters (PFs) are promising
alternatives in such cases. They have recently received a
renewed interest, see for instance [3] or [4] for an overview
on the subject. PFs combine importance sampling and re-
sampling steps to generate Monte Carlo approximations of
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the posterior probability density functions (pdfs) of inter-
est. Thus, they can cope with non standard state space
models which exhibit non-Gaussian priors and/or highly
nonlinear equations.
In many practical situations, the studied systems experi-
ence nonlinear phenomena such as abrupt changes. These
changes can result for instance from a sensor failure or an
unexpected maneuver of the vehicle in tracking applica-
tions. They can considerably degrade the estimation so-
lution, which explains the active research conducted for
change detection. A nearly exhaustive overview of abrupt
change algorithms can be for instance found in [5]. Mean
jumps in linear systems have also been extensively stud-
ied in [6] where likelihood ratio based methods such as the
well-known Generalized Likelihood Ratio (GLR) and the
CUSUM algorithm are proposed. Other solutions are pro-
vided by multiple model formulation. This approach as-
sumes the unknown states obey competing models whose
parameters depend on a latent process indicating the pos-
sible changes. In this way, a priori information about the
frequency and amplitude of the changes can be directly ap-
pended to the state model. Hence, the detection is made
easier. The most popular algorithms, including the Inter-
acting Multiple Models (IMM) or the Generalized Pseudo-
Bayes (GPB), are thoroughly described in [7]. Due to their
applicability to any class of state space model, PFs also of-
fer a convenient solution to multiple model problems. Ef-
ficient algorithms have been developed for that purpose in
[8] and [9].
This work deals with GPS navigation, i.e., a vehicle esti-
mating its own motion from received satellite signals. More
precisely, an improved PF is proposed to tackle the prob-
lem of multipath which can severely degrade the GPS mea-
surements and thereby the positioning solution. A Rao-
Blackwellized technique is applied so that multipath effects
detection is handled by a PF technique while both naviga-
tion states and multipath errors are estimated by a bank
of conditional extended Kalman filters (EKFs). The PF
efficiency is known to be greatly improved by using near
future measurements at the sampling step [10]. The so-
called delayed sampling approach has for instance been de-
veloped for adaptive detection and decoding in flat-fading
channels in [11]. In this study, delayed sampling is used to
generate more relevant samples for multipath detection. A
computationally cheaper procedure is developed that takes
advantage of the sparseness of multipath events. The pro-
posed algorithm also includes an hypothesis test-aided re-
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sampling step. Whenever a multipath event is detected,
all the particles refuting this hypothesis are penalized to
speed up their removal. Thus, the estimation of the in-
coming states is improved and no computational cost is
devoted to update irrelevant samples. The resulting al-
gorithm compares favorably with standard multiple model
approaches and provides better multipath bias estimates
than the GLR algorithm.
The paper is organized as follows. The problem of GPS
navigation in the presence of multipath is described in
section II. Section III introduces a multiple model for-
mulation of this problem. Section IV proposes a fixed-
lag Rao-Blackwellized PF filter to solve the joint detec-
tion/estimation of multipath effects on GPS measurements.
Simulation results and conclusions are reported in sections
V and VI.

II. Background

The Global Positioning System (GPS) is extensively used
as a navigation system due to its world-wide coverage, low
cost and accuracy. GPS allows any vehicle equipped with
a receiver to compute its position, velocity, and so forth.
GPS receivers measure time delays of signals from in-view
satellites, hence range measurements. These measurements
are biased due to receiver and satellite clock offsets. Thus,
they are denoted as pseudoranges. Four simultaneous mea-
surements are necessary to solve the so-called navigation
problem: estimate the vehicle position in three-dimension
and the GPS clock offset.
Multipath propagation highly degrades GPS tracking per-
formance. Multipath occurs when the satellite signal is
reflected on different surfaces (ground, block of buildings)
before arriving to the receiver. Therefore, the incoming
signal is the sum of the direct signal and several delayed
replica. Usual GPS receivers, based on the single-path as-
sumption, estimate a wrong propagation delay. A closer
look over GPS receiver techniques allows us to plainly un-
derstand multipath effects. The transmitted GPS signals
are spread using pseudo-random noise (PRN) sequences
whose correlation peak is very sharp. They are correlated
in the receiver by a local shifted replica of the PRN code
until maximal correlation occurs. The local signal phase
then provides the incoming signal time of arrival. How-
ever, the correlation peak is distorted in the presence of
one or more reflected components, yielding biased pseudo-
ranges [12]. Note that multipath errors are bounded since
signals with delays larger than a code chip are uncorrelated
with the direct signal. Simulations carried out in [13] show
that multipath can result in biases of up to 100 meters.
Consequently, multipath appears as a critical issue.
There has been a surge of interest for mitigation techniques
in the past few years. The proposed solutions are aimed
either to recover the unbiased propagation delay or to com-
pensate for the induced errors on GPS measurements. A
wide range of techniques has been proposed in the first
case. Some of these techniques require to modify the re-
ceiver architecture. In [14] and [15], a narrow correlator
proves efficient to reduce the bias. Other approaches jointly

estimate the direct and reflected signal parameters, either
directly from the received signal [16] or by means of an EKF
based delay lock loop [17]. This study focuses on the sec-
ond class of methods which track multipath biases on the
GPS pseudoranges. A straightforward approach consists of
estimating jointly the navigation states and the multipath
biases from the corrupted GPS measurements. The track-
ing can be carried out by an EKF as advocated by [18]
for wireless positioning systems. Such an algorithm has
been shown to significantly improve positioning accuracy
in a known multipath environment. Its main limitation is
that multipath biases are estimated even in the absence of
multipath. The a priori dynamics of biases cannot be ad-
justed to cope at the same time with the abrupt jumps and
the nearly constant periods. As an alternative, this paper
presents a joint detection/estimation technique. Thus, the
state space model is modified to include multipath biases
only if a bias is detected on the GPS measurements.

III. Problem formulation

This paper proposes to handle multipath effects by a
joint detection/estimation strategy based on a multiple
model formulation. Multipath appearance or disappear-
ance results in a mean value jump in the measurement
equation, hence an abrupt change in the state space model.
The classical navigation model is extended in this work by
including both the multipath biases and a latent process
{λt}t>0 which represents multipath occurrences

(
xt

mt

)
= Ft

(
xt−1

mt−1

)
+ vt (1)

Y t = gt(xt) + C(λ0:t)mt + wt (2)

where

• vt ∼ N (0, Qt) and wt ∼ N (0, Rt) are independent
Gaussian white noise sequences (the notation N (m, P )
refers to a Gaussian distribution of mean m and covari-
ance matrix P );
• xt ∈ R

nx is the navigation vector, composed of the four
unknowns (the vehicle position and the GPS receiver clock
offset) and their derivatives;
• Y t ∈ R

ny is the measurement vector, formed of the GPS
pseudoranges at time t. The dimension ny coincides with
the number of in-view GPS satellites;
• mt ∈ R

ny is the vector of multipath biases (each compo-
nent is associated with one of the GPS measurement);
• λt ∈ R

ny indicates the possible mean value jumps on
the GPS measurements at time t. The vector λt takes its
values in a finite set Λ = {0, 1}ny , such that λt,i = 1 if a
multipath bias appears on the ith GPS measurement and
λt,i = 0 otherwise. Λ is formed of 2ny = nΛ elements de-

noted
{
λ

j
}

j=1,...,nΛ
. Note that, in this paper, the classical

notation λ0:t = (λ0, . . . ,λt) is used.

Denote as Xt = (xT
t ,mT

t )T the vector containing the un-
known continuous valued parameters. The state and mea-
surement models related to Xt and λt are detailed in sec-
tions III-A and III-B.
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A. State model

A.1 Navigation states/Multipath biases

Classical dynamic models can be used in navigation de-
pending on the dynamic level of the vehicle. The reader is
invited to read [19] for an overview on this subject. In this
study, the vehicle is assumed to be in uniform motion (i.e,
near constant velocity). Therefore, a second-order model
fully characterizes its dynamic behavior. The state vector
then only includes the following parameters:

Xt = (xt, ẋt, yt, ẏt, zt, żt, bt, ḃt,m
T
t , ṁT

t )T ,

where:
• (xt, yt, zt) is the vehicle position in the Earth Centered
Earth Fixed frame (ECEF), denoted pt;
• (ẋt, ẏt, żt) is the vehicle velocity,
• (bt, ḃt) are the GPS clock offset and clock drift, respec-
tively;
• mt and ṁt comprise the multipath biases and their
derivatives, respectively.
The velocity is reasonably modeled as a random walk pro-
cess (of variance σ2

a) and the position is obtained by in-
tegration. The GPS clock drift is usually represented as a
Gauss Markov process which is integrated to yield the GPS
clock offset [19]. Such a model is reasonable for short-term
applications as it does not take into account the periodical
clock resets performed by the GPS receiver. The multipath
biases can be well modeled as random walks (of variance
σ2

m). The overall state matrices are block-diagonal due to
the relative independence of the kinematic parameters, the
GPS clock parameters and the multipath biases. They can
be defined as follows:

Ft =




At 0 0

0 Ct 0

0 0 I



 and Qt =




Σa

t 0 0

0 Σc
t 0

0 0 σ2
mI



 ,

where I is the identity matrix and the block matrices At,
Ct, Σa

t and Σc
t have the following form:

At =




Ct 0 0

0 Ct 0

0 0 Ct



 , with Ct =

(
1 ∆t
0 1

)
,

Σa
t =




Qa

t 0 0

0 Qa
t 0

0 0 Qa
t



, with

Qa
t =

(
σ2

a
∆t3

3 σ2
a

∆t2

2

σ2
a

∆t2

2 σ2
a∆t

)

Σc
t =

(
σ2

b∆t + σ2
d

∆t3

3 σ2
d

∆t2

2

σ2
d

∆t2

2 σ2
d∆t

)
.

The variances σ2
a and σ2

m depend on the application (driv-
ing in a urban environment, air-flight ...), whereas the cor-
responding values for the GPS clock parameters σ2

b and σ2
d

have been extensively studied and are inventoried in ta-
bles [19]. The sampling period has been denoted ∆t in the
previous expressions.

A.2 Indicator process

The process λt takes on scattered non-zero values. Each
component can be modeled as a Bernoulli random variable:

P [λt,i = 1] = γ and P [λt,i = 0] = 1 − γ.

The parameter γ depends on the propagation environment.
For instance, rural areas are characterized by very low val-
ues of γ whereas urban areas require higher values of γ.

B. Measurement model

At each time instant, the measurement vector is com-
posed of the pseudoranges associated with in-view GPS
satellites. The nonlinear function gt, appearing in (2), is
the mathematical expression for the distances between the
vehicle and the GPS satellites which are corrupted by the
additive GPS receiver clock offset. Depending on the prop-
agation environment, any measurement can be affected by
multipath at a given time instant t. An additional pro-
cess εt is introduced to represent the presence/absence of
multipath biases on the measurements. It is related to the
change indicator as follows:

εt,i = εt−1,i if λt,i = 0

εt,i = 1 − εt−1,i if λt,i = 1.

Note that the component εt,i is equal to ⊕t
k=1λk,i (where ⊕

is the exclusive or), with ε0,i = 0 (assuming no multipath
at time t = 0).
The corresponding measurement equation can finally be
expressed as

Y t,i = ‖si
t − pt‖ + bt + εt,imt,i + wt,i

where
• Y t,i is the ith component of the measurement vector (i =
1, . . . , ny), or equivalently the GPS pseudorange associated
with the ith GPS satellite;
• si

t is the ith GPS satellite position;
• the covariance matrix of the measurement noise wt sat-
isfies Rt = σ2I, with σ the standard GPS ranging error.

The previous model includes both continuous and dis-
crete valued processes. Moreover, the GPS measurements
are nonlinearly related to the unknown state vector. Conse-
quently, sequential Monte Carlo methods offer an appropri-
ate framework for the estimation of the mixed state vector
(Xt,λt).

IV. A particle filtering approach

In a Bayesian framework, all inference about the un-
known parameters is based on their posterior distribu-
tion. The joint detection/estimation of multipath effects on
GPS measurements is handled by estimating the posterior
pdf of the augmented state vector (X0:t,λ0:t) conditioned
on the measurements up to the current time, denoted as
p(X0:t,λ0:t|Y 1:t). A recursive application of Bayes’rule
allows to derive a conceptual solution to the estimation
problem. The indicator process can be marginalized out to
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yield the posterior pdf of the navigation states and multi-
path biases:

p(Xt|Y 1:t) =

nt
Λ∑

i=1

ω
(i)
t p(Xt|Y 1:t,λ

(i)
0:t) (3)

where ω
(i)
t = P

[
λ

(i)
0:t|Y 1:t

]
, i.e,

ω
(i)
t ∝

t∏

k=1

p(Y k|λ
(i)
0:k,Y 1:k−1)P

[
λ

(i)
k

]
.

The pdfs p(Xt|Y 1:t,λ
(i)
0:t)t>0 and p(Y k|λ

(i)
0:k,Y 1:k−1)k=1:t

can be estimated by parallel EKFs, provided the measure-
ment model nonlinearities are small enough as shown in
[20]. However, the sum in (3) covers an exponentially grow-
ing number of discrete sequences λ0:t. A selection proce-
dure needs to be applied to keep the computational com-
plexity constant. Several algorithms have been developed
in the literature, which are based either on a pruning or
a merging strategy (see [7] for an overview on the sub-
ject). The most popular algorithms include the IMM and
the GPB. SMC methods also offer a convenient and flexible
framework to handle such problems. The main difference is
that the possible hypotheses are not explored exhaustively
but randomly according to a simulation-based rule. In-
deed, PFs automatically focuses on the most likely paths
λ0:t according to a combination of sampling/resampling
steps. This section shows that the GPS navigation prob-
lem defined by (1) and (2) can be advantageously solved
by a Rao-Blackwellized technique, where only the discrete
valued process distribution is approximated by a PF ap-
proach.

A. Rao-Blackwellized particle filters (RBPFs)

Many strategies can be implemented to improve PF effi-
ciency. Rao-Blackwellization is a well-known technique to
decrease the variance of the state estimates for condition-
ally linear Gaussian state space models. The principle is
to solve analytically the conditional linear part while the
nonlinear part is estimated by a PF method. This ap-
proach has received much interest in the literature, see for
instance [21]-[22], [23] or [24]. In our application, the state
space model is “almost linear” Gaussian conditioned on the
indicator sequence λ0:t (“Almost linear” means that the
nonlinearities can be handled by local linearizations with-
out introducing too much inaccuracy). The validity of this
assertion has been discussed for instance in [20], wherein
the estimation error of an EKF is shown to meet the Pos-
terior Cramer Rao Bound for a GPS positioning problem.
The RB technique is based on the following factorization
of the unknown pdf of interest:

p (Xt,λ0:t|Y 1:t) = p (Xt|λ0:t,Y 1:t) P [λ0:t|Y 1:t] .

The conditional posterior pdfs p (Xt|λ0:t,Y 1:t) can then
be estimated by Gaussian distributions whose first and sec-
ond order moments are computed by standard recursions

of EKFs. Consequently, only the discrete valued process λt

is estimated by a PF technique. Of course, the state vector
Xt could be also estimated by a PF technique. However,
this strategy has not been considered here since it would
require to use more particles to obtain a slightly better
estimation performance. The different steps allowing to
estimate the state vector Xt and the indicator sequence
λ0:t are detailed in what follows.

A.1 Estimation of λ0:t

PFs provide a point mass approximation of the distribu-
tion of interest:

P̂ [λ0:t|Y 1:t] =

N∑

i=1

ω
(i)
t δ

(
λ0:t − λ

(i)
0:t

)
, (4)

where δ denotes the Dirac distribution. The support

points λ
(i)
0:t are called particles, and the elementary prob-

abilities ω
(i)
t importance weights. This empirical estima-

tion is obtained from a combination of importance sam-
pling/resampling steps. In a few words, it is usually im-
possible to simulate the particles directly from the target
distribution P . As an alternative, they are drawn sequen-
tially from a proposal distribution Π:

λt ∼ Π
(
λt|λ

(i)
0:t−1,Y 1:t

)
.

The particles are assigned weights according to their rel-
evance with regard to P . PFs also include a resampling
step which consists of generating a new set of particles ac-
cording to the estimated discrete distribution. Thus, PF
degeneracy is avoided by selecting relevant particles. A
comprehensive presentation of these methods and their ap-
plications is found in [3].

A.2 Estimation of X0:t

Each particle λ
(i)
0:t is associated with a conditional EKF

that computes recursively:

p̂
(
Xt|λ

(i)
0:t,Y 1:t

)
= N

(
X̂

(i)

t , P
(i)
t

)

p̂
(
Y t|λ

(i)
0:t,Y 1:t−1

)
= N

(
Ŷ

(i)

t , S
(i)
t

)

p̂
(
Xt|λ

(i)
0:t,Y 1:t−1

)
= N

(
X̂

(i)

t|t−1, P
(i)
t|t−1

)
.

It results that the marginal distributions of the continu-
ous valued states are estimated by mixtures of Gaussian
distributions:

p̂ (Xt|Y 1:t) =

N∑

i=1

ω
(i)
t p̂

(
Xt|λ

(i)
0:t,Y 1:t

)
.

Note that RBPFs are very similar to classical multiple
model algorithms. Indeed, the estimation is performed
from a bank of conditional EKFs, each corresponding to

a possible indicator path λ
(i)
0:t or equivalently to a possible



5

multipath scenario. The main difference between these ap-
proaches lies in the way the indicator paths are explored.
The possible hypotheses are not investigated exhaustively
with RBPFs, contrary to usual multiple model algorithms.
Indeed, the simulation step allows to propose directly in-
teresting candidates.
This paper proposes some improvements to the classi-
cal RBPF to satisfy the detection/estimation objectives:
an approximate delayed sampling technique, a fixed lag
smoothing estimation and a decision-aided resampling, re-
sulting in the so-called fixed-lag Rao-Blackwellized particle
filter RBPF.

B. The fixed lag RBPF

B.1 Approximate delayed sampling

Multipath occurrences result in a temporary mean value
jump affecting GPS measurements. Consequently, near
future measurements reveal useful information about the
indicator state at the current time λt. The proposed al-
gorithm makes use of future observations to generate the
current particles as suggested in [11]. This procedure is
called delayed sampling. Such a method turns out to be
beneficial and possibly even crucial depending on the prop-
agation environment (urban or rural areas):

• multipath appearance/disappearance are sparse events,
hence the probability γ can be very low. If the particles
were only simulated according to their prior distribution,
the number of samples indicating a mean value jump would
be negligible,
• depending on their amplitudes, the induced mean value
jumps can be embedded in the measurement noise. Hence,
several observations are required to detect multipath oc-
currence,
• delayed sampling prevents false detections and thus
makes the algorithm more robust to outliers.

Information from near future measurements is included
by simulating from the fixed lag smoothing distribution

P
[
λt|λ

(i)
0:t−1,Y 1:t+L

]
(for i = 1, . . . , N), where L is a pos-

itive integer corresponding to the length of the observation
window. Proposals of this form significantly increase the
number of particles indicating a mean jump when multi-
path occurs. The indicator vector λt takes value in a finite
set of cardinal nΛ. Therefore, all the possible future paths
can be explored to compute the proposal distribution as:

P [λt|λ0:t−1,Y 1:t+L] =
∑

λt+1:t+L

P [λt,λt+1:t+L|λ0:t−1,Y 1:t+L] .

However, the computational complexity is prohibitive since
the sum covers a growing number of values with the lag.
In [11], a low-complexity technique based on a random ex-
ploration of the future states is presented. This paper pro-
poses a simpler procedure where only the a priori most
probable future paths are considered. An absence of jump
during the observation window (from time t + 1 to t + L)
is a priori far more likely than any other hypothesis due
to the sparseness of multipath events. Thus, the fixed lag

smoothing proposal distribution is approximated as

P
[
λt|λ

(i)
0:t−1,Y 1:t+L

]
'P
[
λt,λt+1:t+L = 0|λ

(i)
0:t−1,Y 1:t+L

]
.

The resulting distribution, referred to as approximate de-
layed sampling proposal, takes the form:

P
[
λt|λ

(i)
0:t−1,Y 1:t+L

]
'

nλ∑

j=1

γ(i,j)δ
(
λt − λ

j
)

where γ(i,j) ∝ P
[
λt = λ

j ,λt+1:t+L = 0|λ
(i)
0:t−1,Y 1:t+L

]
.

Introduce the following notation before detailing the com-
putations leading to the probabilities γ(i,j):

(
Λt+k

t−l

)(i,j)

=
(
λ

(i)
t−l:t−1,λt = λ

j ,λt+1:t+k = 0
)

.

The probabilities γ(i,j) can be expressed as follows:

γ(i,j) = γ̃(i,j)/

(
nΛ∑

k=1

γ̃(i,k)

)

where:

γ̃(i,j) ∝(
L∏

k=0

p
(
Y t+k|Y 1:t+k−1, (Λ

t+k
0 )(i,j)

))
P [λt = λ

j ].
(5)

In (5), the predictive pdfs p
(
Y t+k|Y 1:t+k−1, (Λ

t+k
0 )(i,j)

)

are obtained by running L iterations of the nΛ

EKFs conditional on the considered future paths(
(Λt+k

0 )(i,j)
)

j=1,...,nΛ

.

B.2 Estimation

The filtering importance weights can be updated clas-
sically as the ratio of the target and the proposal distri-
butions. If the index ji refers to the drawing result for

the particle λ
(i)
t (i.e λ

(i)
t = λ

ji

), the weights ω
(i)
t can be

classically computed as follows:

ω
(i)
t ∝ ω

(i)
t−1

p(Y t|Y 0:t−1,λ
(i)
0:t)P [λji

]

γ(i,ji)
. (6)

However, the delayed sampling rather suggests a fixed-
lag smoother PF, whereby tighter estimates are computed
from the smoothing distribution P [λt|Y 1:t+L]. A theo-
retically valid smoothing approach would require exploring
the entire future state space to generate candidate parti-

cles λ
(i)
t:t+L. The difficulty is easily overcome by consider-

ing the particles
(
Λt+L

t

)(i,ji)

as samples from the smooth-

ing proposal P
[
λt:t+L|Y 1:t+L,λ

(i)
0:t−1

]
, as proposed in [11].

Smoothing weights can then be computed as follows:

ω̃
(i)
t ∝ ω

(i)
t−1p

[
(Λt+L

t )(i,j
i)
]

L∏
k=0

p(Y t+k|Y 0:t+k−1, (Λ
t+k
0 )(i,j

i))

γ(i,ji)
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which yields:

w̃
(i)
t ∝ ω

(i)
t−1

(
nΛ∑

k=1

γ̃(i,k)

)
. (7)

Hence, the empirical approximation of the smoothing dis-
tribution can be written as:

P̂ [λ0:t+L|Y 1:t+L] =
N∑

i=1

ω̃
(i)
t δ

(
λ0:t+L − (Λt+L

0 )(i,j
i)
)

,

and an estimate of the desired marginal distribution is:

P̂ [λt|Y 1:t+L] =

N∑

i=1

ω̃
(i)
t δ

(
λt − λ

ji
)

.

Fixed-lag smoothing significantly improves the estimation
accuracy. The continuous state estimates are obtained by
combining the conditional EKF outputs:

X̂t =
N∑

i=1

ω̃
(i)
t X̂

(i)

t . (8)

Similarly, the detection can be handled by monitoring the
change probability, defined as

P c
t = P [λt 6= 0|Y 1:t+L] .

The corresponding fixed-lag PF approximation is given by:

P̂ c
t =

N∑

i=1

ω̃
(i)
t

(
1 − δ(λ

(i)
t )
)

. (9)

The change instants are expected to coincide with the esti-
mated probability peaks. Consequently, ad-hoc thresholds
might be chosen to decide the occurrence of a mean value
jump. In the next part, a different detection procedure is
proposed which allows to overcome this difficulty.

B.3 Decision aided resampling

Several difficulties may arise when applying the proposed
algorithm to real navigation scenarios. First, the parame-
ters of the multipath model are difficult to set. In particu-
lar, a too small value of the prior probability that a mean
jump occurs turns out to be very penalizing for detecting
multipath events. Second, a reasonable number of par-
ticles should be simulated to keep the computational cost
low. This constraint is the price for a possible on-board im-
plementation of the positioning algorithm. Based on these
remarks, multipath bias detection may not be clear-cut. It
takes a few iterations until all particles switch to indicate
a mean jump that affects GPS measurements. This paper
argues that a careful selection of the particles at each time
step allows to improve multipath bias tracking even if few
samples are used. Classically, irrelevant particles are dis-
carded on their own accord at the PF resampling step. In
this case, a more efficient scheme can be considered which
consists of introducing an hypothesis test to aid resam-
pling. This section first describes the corresponding test

statistic. The subsequent modified resampling procedure
is then detailed.

Binary Hypothesis Test
The hypotheses under consideration can be written as fol-
lows:
• H0,t: no multipath event,
• H1,t: occurrence of a mean value jump due to multipath.
According to the Neyman-Pearson lemma, the likelihood
ratio is an appropriate test statistic to decide between the
competing hypotheses. The delayed measurements are cru-
cial to design efficient proposal distributions. Similarly,
they are expected to improve the detection. Consequently,
the following decision procedure is proposed:

Tt =
p(Y t:t+L|Y 1:t−1,H1,t,νt)

p(Y t:t+L|Y 1:t−1,H0,t)

H1,t

≶
H0,t

ht, (10)

where νt is the mean value jump amplitude, estimated by
the PF as:

ν̂t = m̂t − m̂t|t−1

m̂t|t−1 =

N∑

i=1

ω
(i)
t−1m̂

(i)
t|t−1.

The main difficulty is to choose an appropriate threshold
test ht in (10). Usually, ht is computed as a function of
the false alarm rate, α = P [decide H1,t|H0,t], by solving
the equation:

α =

∫ ∞

ht

pH0,t
(u)du (11)

where pH0,t
(u) is the pdf of Tt under hypothesis H0,t. Un-

fortunately, the integral (11) is intractable because pH0,t
(u)

has not a simple closed-form expression. Therefore, this pa-
per proposes to use an approximate test statistic T̃t which
allows us to derive a closed-form expression for the thresh-
old.
First, the hypotheses H1,t and H0,t can be rewritten ac-
cording to the sparseness assumption:

H1,t = {λt 6= 0,λt+1:t+L = 0}

H0,t = {λt = 0,λt+1:t+L = 0} .

The Bayes rule then leads to the following approximated
expression for Tt:

Tt '
L∏

k=0

p (Y t+k|Y 1:t+k−1,H1,t, ν̂t)

p (Y t+k|Y 1:t+k−1,H0,t)
. (12)

Each likelihood appearing in the ratio (12) can be approxi-
mated by a mixture of Gaussian resulting from the RBPF.
Under the null hypothesis, the following result can be ob-
tained:

p(Y t+k|Y 1:t+k−1,H0,t) '

N∑

i=1

β
(i)
t+kp

(
Y t+k|Y 1:t+k−1,λ

(i)
0:t−1,H0,t

)
,



7

where k = 0, . . . , L and the expression of the weights

β
(i)
t+k is detailed in appendix. The parameters of the con-

ditional distributions p
(
Y t+k|Y 1:t+k−1,λ

(i)
0:t−1,H0,t

)
are

computed by the EKFs associated to the particles λ0:t+k =(
λ

(i)
0:t−1,λt:t+k = 0

)
. A solution to obtain a simpler ex-

pression for Tt is to merge the Gaussian distributions in a
single one by matching the first and second moments

p (Y t+k|Y 1:t+k−1,H0,t) ' N
(
Ŷ t+k, Ŝt+k

)
,

with:

Ŷ t+k =

N∑

i=1

β
(i)
t+kŶ

(i)

t+k,

Ŝt+k =

N∑

i=1

β
(i)
t+k

(
Ŝ

(i)
t+k + ε

(i)
t+kε

(i)
t+k

T
)

with ε
(i)
t+k = Y t+k − Ŷ

(i)

t+k. Note that this approxima-
tion underlies the well-known IMM algorithm [7]. In our
application, it makes sense since the decision-aided resam-
pling step automatically switches to the dominating mode
of the multimodal estimated pdfs at each time instant. The
merging strategy leads to an appealing expression for the
test statistic Tt and the threshold ht. The corresponding
calculations are developed hereafter. Let us introduce the
innovations in the equation (12):

Tt '
L∏

k=0

p (εt+k|H1,t, ν̂t)

p (εt+k|H0,t)
,

where:

εt+k = Y t+k − Ŷ t+k (13)

=

N∑

i=1

β
(i)
t+kε

(i)
t+k. (14)

In the linear Gaussian case, Willsky has shown in his sem-
inal paper introducing the GLR [25] that the impact of an
additive change on the innovations could be made explicit.

Thus, each conditional innovation ε
(i)
t+k satisfies

ε
(i)
t+k[t] = ε

(i)
t+k +

(
ϕT

t+k

)(i)
ν̂t, (15)

where the notation [t] refers to the value of the parameter
if a mean jump has occurred at time t. The necessary

formula to compute the matrices
(
ϕT

t+k

)(i)
are recalled for

instance in [5]. The merged innovations under hypotheses
H1,t and H0,t are related the same way:

εt+k[t] = εt+k + ϕT
t+kν̂t (16)

ϕT
t+k =

N∑

i=1

β
(i)
t+k

(
ϕT

t+k

)(i)
. (17)

Thus, their pdfs only differ by their means

p (εt+k|H0,t) ' N (0;St+k)

p (εt+k|H1,t, ν̂t) ' N
(
ϕT

t+kν̂t;St+k

)
.

The approximated test statistic satisfies

2 lnTt =

L∑

k=0

εT
t+kS−1

t+kεt+k−

(
εt+k − ϕT

t+kν̂t

)T
S−1

t+k

(
εt+k − ϕT

t+kν̂t

)
.

By using the equivalent statistic

T̃t =

(
L∑

k=0

εT
t+kS−1

t+kϕT
t+k

)
ν̂t, (18)

a straightforward expression of the threshold is obtained.
Indeed, the test statistic T̃t is Gaussian, hence

h̃t = σT φ−1 (1 − α) , (19)

where:
• φ (x) =

∫ x

−∞
1√
2π

exp
(
−x2

2

)
dx;

• σT =

√
ν̂

T
t

(∑L

k=0 ϕt+kS−1
t+kϕT

t+k

)
ν̂t is the standard de-

viation of T̃t.
By comparing the approximated test statistic T̃t and
the corresponding threshold h̃t, the algorithm can state
whether GPS pseudo-ranges are incurring a mean jump or
not.
Resampling procedure
A straightforward use of the statistic test would consist
of directly discarding particles that indicate the wrong
hypothesis. However, the convergence properties of the
PF would not be guaranteed anymore. As an alternative,
the result of the hypothesis test can be used to design a
more efficient proposal distribution for the resampling step.
The possible flexibility in choosing the resampling weights
has already been emphasized for instance in [26]. Instead
of resampling according to the filtering weights, auxiliary
weights may be used that reflect certain “future trend”.
Such approaches have already been extensively studied as
an improvement of the PF simulation step in [27] and [28].
The new set of generated particles is assigned corrected
weights according to the importance sampling rule, thereby
ensuring that the random samples still form an approxima-
tion of the target distribution P [λt|Y 1:t]. If a mean jump
is detected, the following rule can be applied to compute
the auxiliary weights:

• α
(i)
t =

(
ω̃

(i)
t

)β

for the particles which disagree with the

result of the test;

• α
(i)
t = ω̃

(i)
t otherwise;

where the coefficient of penalization β (β > 1) can be inter-
preted as the chance that the associated particles survive
after a few iterations. The modified resampling operates by

randomly selecting a particle λ
(i)
t from

{
λ

(k)
t

}

k=1:N
with

probability α
(k)
t . The particle is then assigned the filter-

ing weight ω
(i)
t = ω

(ki)
t /α

(ki)
t when sample λ

(ki)
t is selected.

By favoring the particles which are the more likely to live
on, this technique ensures that efficient proposals are used
to simulate the particles at the next time steps. It can
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• Initialization:

{
X

(i)
0 ∼ p (X0) ,

ω
(i)
t = 1/N,

for i = 1, . . . , N.

• For t = 1, . . . , T :
◦ Simulation step, for i = 1, . . . , N :

I run L iterations of nΛ parallel EKFs corresponding

to hypotheses
(
Λt+L

0

)(i,j)

(j = 1, . . . , nΛ).

I λ
(i)
t ∼ P

[
λt|λ

(i)
0:t−1,λt+1:t+L = 0,Y 1:t+L

]
.

◦ Weighting:

compute

{
filtering weights ω

(i)
t according to (6),

smoothing weights ω̃
(i)
t according to (7).

◦ Mean jump test:
I compute T̃t and h̃t according to (19) and (18),
I if T̃t ≥ h̃t, a mean jump is detected,

set





α

(i)
t =

(
ω

(i)
t

)β

if λ
(i)
t = 0,

α
(i)
t = ω

(i)
t otherwise,

for i = 1, . . . , N .

I if T̃t ≤ h̃t, set α
(i)
t = ω

(i)
t for i = 1, . . . , N .

I Normalization of the auxiliary weights α
(i)
t , for i =

1, . . . , N .

◦ Estimation: compute X̂t and P c
t as in (8) and (9).

◦ Resampling, for i = 1, . . . , N :{
λ

(i)
t = λ

(ji)
t with ji ∼

∑N

j=1 α
(j)
t δj ,

ω
(i)
t = ω

(ji)
t /α

(ji)
t .

TABLE I

Fixed-lag RBPF for joint detection/estimation of multipath

degradations.

be interpreted as an attempt to reduce the variability of
the PF importance weights. The PF behavior is therefore
improved for a moderate number of particles. The final
algorithm allowing us to estimate the state vector Xt and
the indicator sequence λ0:t is summarized in Table I.

V. Simulation results

Several simulations have been conducted to study the
performance of the proposed algorithm. The state space
model has been simulated with the parameters given in
Table II. These parameters correspond to a nearly straight
uniform motion. The fault-free GPS measurements have
been computed from almanac files listing all useful infor-
mation about GPS satellite orbital motion. Different mul-
tipath scenarios have been tested by randomly adding bi-
ases of various amplitudes and durations to these pseu-
doranges. The joint detection/estimation PF has been
compared to existing methods (GLR, multiple model al-
gorithm) through different criteria:

• detection capability: the ability to detect multipath
biases of small amplitudes is investigated together with
the chance of missed detections by studying the estimated
change probability P̂ c

t ,
• estimation accuracy: for both the navigation states
and multipath biases, M = 50 Monte Carlo runs are av-
eraged to compute the root mean square errors (RMSEs)

defined by

√

M−1
∑M

k=1

(
X̂

(k)

t − Xt

)2

, where X̂
(k)

t is the

kth run estimate.

Process noise (velocity) σa = 1 m/s
−2

Process noise (bias) σm = 0.1 m
GPS measurement noise σ = 10 m

TABLE II

Simulation parameters

The multiple model (MM) algorithm proceeds by cutting
off the less probable branches of the growing tree of possible
hypotheses. To allow a fair comparison, the same lag and
the same number of particles N = 1024 are used for the
MM algorithm and the fixed-lag Rao-Blackwellized particle
filter(FL-RBPF). The lag L, equal to 5, also determines the
size of the observation window for the GLR. Finally, the
penalizing factor β is set to 2.

A. Bias estimation

The accuracy achieved by the three algorithms for mul-
tipath biases estimation is depicted on Fig.1 and Fig.2 for
one of the simulated scenarios. Two of the GPS pseudo-
ranges, corresponding to the satellites with the lowest el-
evation angles, experience simultaneous multipath pertur-
bations. Fig.1 shows the estimated biases versus time. The
corresponding estimation errors are plotted on Fig.2. The
GLR fails to track the biases probably because no a pri-
ori information about the jump amplitudes is taken into
account. The two other algorithms provide better results.
However, the PF shows a smaller response time after a
mean value jump. In addition, the PF bias estimates visu-
ally seem more stable. Note that the tracking performance
of both approaches are similar when the amplitudes of the
mean jumps are high enough.

B. Detection Capability

Posterior change probabilities
Figure 3 shows the posterior change probabilities for the
MM algorithm and the particle filter for different values
of the lag L. The influence of this parameter is clearly
emphasized. In the absence of lag, it is almost impossible
to locate mean jumps of small amplitudes. On the con-
trary, the change probability peaks clearly coincide with
the change instants with a lag L = 5. Note that the peaks
are more pronounced for the fixed lag PF than for the MM
algorithm due to a more efficient strategy to select relevant
model hypotheses.

Detection performance
Mean jumps of different amplitudes have been introduced
on the GPS measurements to investigate the robustness
of the RBPF and the MM technique. For each scenario,
the mean detection delay τ̄ and its standard deviation στ

have been computed by averaging 50 realizations. The de-
tection delay is defined as the absolute estimation error
of the change instants and a detection occurs whenever
the estimated change probability exceeds a given thresh-
old. The obtained values are reported in Table III as well
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Fig. 1. Estimation of multipath biases (50 Monte Carlo runs). The
actual bias is shown in solid line while the mean estimated biases
are plotted as dotted lines.
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Fig. 2. Multipath bias estimation errors (50 Monte Carlo runs).
RBPF : solid line; GLR : dashed line; MM algorithm : dotted
line.

as the missed detection probability Pmd. The results con-
firm that biases which are embedded in the measurement
noise (amplitude inferior to 10 meters) are difficult to de-
tect, leading to high values of Pmd. In this case, nearly half
of the emulated mean jumps are not properly located. A
closer analysis of Table III reveals that the RBPF achieves
shorter detection delays and yields smaller values of the
Pmd. It’s worth noticing that the difference between both
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Fig. 3. Posterior change probabilities (50 Monte Carlo runs). (1)
MM algorithm. (2) Fixed Lag PF, L=1. (3) Fixed Lag PF, L=5.

approaches tends to become less marked as the amplitudes
of multipath errors increases.

Multiple multipath error detection

Mean jump
amplitude RBPF MM algorithm
(meters) τ̄ στ Pmd τ̄ στ Pmd

3 0.9 4.3 0.57 1.5 4.64 0.67
5 0.6 2.09 0.5 1.2 2.06 0.65
10 0.7 2.16 0.25 0.9 2.01 0.35
15 0.44 1.64 0.03 0.7 1.79 0.03
18 −0.23 1.55 0.01 −0.29 2.47 0.01
28 0.01 0.67 0 −0.14 0.79 0
35 0.01 0.38 0 0.06 0.62 0

TABLE III

Detection performance for mean jumps of different

amplitudes.

Finally, it is important to ensure that the algorithms can
handle several mean jumps occurring at the same time.
The simulation presented in this section considers 2 pseu-
doranges degraded simultaneously in order to avoid observ-
ability issues. The estimated numbers of multipath compo-
nents for 50 Monte Carlo runs are presented on Fig.4. The
simulation results show that RPBF provides more reliable
results than the MM solution.

C. Gain of aided-resampling

It is important to make sure that the particles whose
weights are penalized through decision-aided resampling
were likely to disappear a few iterations later. Figure 5
shows the average number of particles (out of N = 1024)
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Fig. 4. Number of estimated simultaneous mean jumps for 50 Monte
Carlo runs.

which do not detect a mean jump and survive for the next
iterations. The results have been obtained for biases of dif-
ferent amplitudes by averaging 50 Monte Carlo runs. All
the particles disagreeing with the result of the hypothesis
test are naturally discarded after a maximum of 30 itera-
tions. The decision-aided resampling proposed in this pa-
per is an attempt to speed up this removal process, thereby
improving multipath bias tracking.

The impact of the decision-aided resampling on multi-

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

350

S
U

R
V

IV
IN

G
 P

A
R

T
IC

LE
S

ITERATIONS

Fig. 5. Mean number of particles refuting the result of the hypothesis
test.

path bias estimation is then investigated. The bias esti-
mates and the corresponding estimation errors obtained
with the PF in presence or absence of decision-aided are
shown on Fig.6. The decision-aided resampling yields on
average tighter estimates, especially after apparition of a
multipath bias.

D. Position estimation

Fig.7 shows the position estimation errors for the three
algorithms so as to evaluate the impact of multipath event
detection on the navigation solution. Unsurprisingly, the
GLR performs poorly due to the inaccuracy of the bias
estimates. The advantage of the PF approach over the
MM algorithm for change detection has a slight impact
on the position estimates, yielding a smallest estimation
error. However, it is important to note that reliable mul-
tipath event detection is nonetheless crucial to inform the
user on the trust he can place in the computed navigation
solution.
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Fig. 6. Comparison of the decision-aided resampling and a classical
resampling procedure (50 Monte Carlo runs). Solid line : ac-
tual bias; dashed line : aided resampling; dotted line : classical
resampling.
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Fig. 7. Position estimation error (50 Monte Carlo runs). Solid line :
RBPF; dashed line : MM algorithm; dotted line : GLR.

the computational complexity of the different algorithms.
All simulations have been coded using MATLAB and per-
formed on a 512 MHz Athlon. One run of 200 iterations
requires on average 1 minute for the GLR, 15 minutes for
the MM solution and 25 minutes for the proposed PF al-
gorithm.

VI. Conclusion

This paper studied a particle filter algorithm to mit-
igate multipath effects in GPS navigation. An original
approach was proposed whereby the navigation algorithm
jointly tackles the detection and estimation of multipath er-
rors while inferring the vehicle dynamics. Multipath events
were considered as abrupt changes affecting the navigation
state space model. A particle filter approach was adopted
due to its flexibility to explore and select proper model
hypotheses. The proposed algorithm included an approx-
imate fixed lag delay sampling, smoothing estimates and
a decision aided resampling. The three steps were shown
to improve the detection of multipath events as well as the
estimation of the induced biases and the navigation states.
The method compared favorably with the algorithms con-
ventionally used for abrupt change detection, i.e., the GLR
and MM approaches.
It is important to note that this method is independent
of the GPS receiver technology so that it can be widely
applied. Moreover, another advantage of the PF strategy
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is that it can be easily extended to detect and estimate
other perturbations, such as variance jumps due to jam-
ming. The extension of the proposed algorithm to detect
and estimate interferences affecting GPS measurements has
been introduced in [29] and is currently under investigation.
This method could also be applied to multiple object track-
ing by considering a more elaborate multipath model. In
particular, targets which are close to each other are likely
to be affected simultaneously by a multipath mean jump.
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Appendix

PF approximation of the measurement predictive
distributions.

Section (IV-B.3) argues that the PF approximates the mea-
surement predictive distributions by mixtures of Gaussian
distributions. This assertion is confirmed hereafter and the
corresponding importance weights are computed. At time
instant t, the predictive pdfs under hypothesis H0,t can be
expressed as:

p(Y t+k|Y 1:t+k−1,H0,t) =
∑

λ0:t−1

p (Y t+k|Y 1:t+k−1,λ0:t−1,H0,t) p (λ0:t−1|Y 1:t+k−1,H0,t) ,

for k = 0, . . . , L. PF estimates of the conditional distribu-
tions of the indicator vector are available:

p (λ0:t−1|Y 1:t+k−1,H0,t) '
N∑

i=1

β
(i)
t+kδ(λ0:t−1 − λ

(i)
0:t−1).

with β
(i)
t ∝ ω

(i)
t−1 and

β
(i)
t+k ∝ ω

(i)
t−1

k∏

l=1

p
(
Y t+l−1|Y 1:t+l−2,λ

(i)
0:t−1,H0,t

)

for k > 0. It follows :

p (Y t+k|Y 1:t+k−1,H0,t)'
N∑

i=1

β
(i)
t+kp (Y t+k|Y 1:t+k−1,λ0:t−1,H0,t) .


