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Cesium atoms in cryogenic argon matrix

This paper presents both experimental and theoretical investigations into the spectroscopy of dilute cesium (Cs) atoms within a solid argon (Ar) matrix at cryogenic temperatures. This system is relevant for matrix isolation spectroscopy and in particular for recently proposed methods for investigating phenomena that extend beyond the standard model of particle physics. We record absorption spectra at various deposition temperatures and examine the evolution of these spectra post-deposition with respect to temperature changes.

Taking advantage of Cs-Ar and Ar-Ar pairwise interaction potentials, we conduct a stability study of trapping sites, which indicates a preference for T d (tetrahedral, 4 vacancies) and O h (cubic, 6 vacancies) symmetries. By implementing a mean-field analysis of the long-range Cs(6s,6p)-Ar-Ar triple dipole interaction, combined with a temperature-dependent shift in zero point energy, we propose effective Cs(6s,6p)-Ar pairwise potentials. Upon integrating these pairwise potentials with spin-orbit coupling, we achieve a satisfactory agreement between the observed and simulated absorption line positions. The observed line broadening is reasonably well reproduced by a semiclassical thermal Monte Carlo approach based on Mulliken-type differences between excited and ground potential curves. Additionally, we develop a simple, first-order crystal field theory featuring only 6 interaction mode coordinates. It uses the reflection approximation and incorporates quantized (phonon) normal modes. This produces a narrow triplet structure but not the observed amount of splitting.

I. INTRODUCTION

Despite matrix isolation spectroscopy having been studied since the 1950s [START_REF] Barnes | Matrix isolation spectroscopy[END_REF][START_REF] Almond | Spectroscopy of Matrix Isolated Species[END_REF][START_REF] Bondybey | [END_REF], our understanding of the shape and behavior of trapping environments within the matrix remains limited. This is particularly true for even the simplest systems comprising single valence electron atoms (alkali atoms) in rare gas matrix environments, where no consensus has yet been reached regarding the trapping site with the host atom, especially for heavier atoms [4][5][6].

Gaining a more accurate understanding of the trapping site and the matrix's effect on the dopant would prove invaluable for precision spectroscopy experiments, such as magnetometry, spin-dependent interactions, and investigations into physics beyond the Standard Model. These investigations may include searches for violations of fundamental symmetries (parity, time-reversal) like electric dipole moment (EDM) particles or axion-like dark matter candidates. Precision spectroscopy experiments utilize spin-induced transitions, which are not directly affected by the matrix's pure electrostatic interaction at first order. However, a detailed study is necessary to assess the precision that these experiments can attain [7][8][9][10][11][12][13].

In this article, our focus is on studying cesium atoms trapped in an argon matrix. Understanding this simple system will help to further characterize more complex experiments. Among the (stable) alkali atoms, Cs is the heaviest, making it highly sensitive to the effects of the electron EDM [14]. We have chosen Argon because it is the only rare gas whose naturally occurring isotopes do not possess a nuclear spin that would interact with the cesium spin.

Absorption (or transmission) spectra form the foundation for all optical manipulations necessary for the above-proposed experiments. Intriguingly, only a few experiments have studied Cs embedded in Argon [15,16], and only two optical transmission spectra have been published [17,18] ( [19] gives only absorption and emission frequencies). For Cs in Ar, two structures were observed. They could arise from 6s → 6p transition in two different trapping site environments: the 6p triplet degeneracy being lifted either by a low symmetry site [17] or by a dynamical Jahn-Teller effect in a cubic symmetry site [18]. Ref. [19] observed, in addition, 6s → 5d and 6s → 7p transitions, along with relaxation and fluorescence from 6p and 5d levels.

In this article, we conduct new experiments with the aim of reconciling the discrepancies between previous measurements. We begin by presenting the experimental setup, which enables precise Cs density measurements in highly polycrystalline Ar samples. Then, using Cs-Ar and Ar-Ar pairwise interaction potentials, we first conduct a trapping site stability study. By correcting the pairwise interaction with effective third-order effects, we predict absorption line positions for the different trapping sites found. We then validate, using a simple crystal field model, whether the found linewidth agrees with the proposed trapping sites. Finally, we provide conclusions and potential improvements for further exploration.

II. EXPERIMENTAL SETUP

Figure 1 illustrates the experimental setup. The experiment is performed under a residual gas pressure of ∼ 10 -7 mbar in a two-stage cryostat manufactured by Mycryofirm using a pulsed tube cryocooler (SHI RP-082E2S). The cryogenic matrix is grown by depositing Ar gas onto a C-cut sapphire (Al 2 O 3 ) plate, which is 20 mm in diameter and 1 mm in thickness, and embedded in a copper frame. The cryogenic temperature of the sample holder, ranging from 3 K to 30 K, is regulated via resistive heating. In order to minimize thermal disturbances caused by the kinetic energy transfer of the Ar beam, the sample holder's temperature is maintained at a constant level via a PID loop. The thickness L of the argon layer is continuously monitored via 2D reflection Fizeau interferometry. A pattern formed by the interference between the light reflected from the front and back sides of the matrix is captured by a lens onto a CCD camera. The 2D imaging offers numerous advantages compared to previous 1D transmission or reflection laser interferometry studies [20][21][22]: it features a background-free environment ensuring excellent contrast, it is less restricted by beam size and spatial interference narrowing, and it enables the monitoring of the whole sample thereby ensuring the quality of deposition.

For this Ar growth measurement, a DFB diode laser operating at λ = 852 nm was employed, providing the advantage of also allowing the monitoring of the Cs flux through saturated absorption.

The interference fringes at a specific point evolve as per 2nAr λ dL dt , where n Ar = 1.3 is the refractive index of an argon bulk crystal at 852 nm [23].

A growth of approximately 3 fringes per minute is observed, corresponding to a growth rate for an ideal argon bulk crystal of dL dt = 1µm/min. After about one hour of argon deposition, a crystal is formed with a thickness of ∼50 µm.

B. Cs density

To embed cesium into the matrix, we utilize Alfasource 3S dispensers from Alfavakuo e.U., loaded with a CsBi 25 alloy. The alkali purity of the cesium is 99.980%. The dispenser is situated outside the 50 K and 4 K thermal shields and is activated by resistive current heating. The Cs vapor is funneled to the substrate through a steel tube with an inner diameter d of 4 mm, which pierces both thermal shields. Independently, the tube is heated to approximately 40 • C via resistors to minimize blockage from condensing Cs. We have extensively studied in Ref. [24] the behavior of cesium atom effusion through a collimating tube and established that, irrespective of the tube material, Cs adheres to the wall. This results in a well-collimated and homogeneous Cs atomic beam.

We monitor the Cs flux by recording a laser absorption spectrum while adjusting the frequency of the low-intensity diode laser intersecting the cesium beam. We assume that the Cs beam diameter aligns with the inner tube diameter d and its density n is uniform. Confirmation of this is obtained by scanning the laser beam through the atomic beam or by a simple 2D absorption image of the Cs in the Ar matrix, where the cesium-doped zone creates a visible spot that is about 5 mm wide. The velocity distribution is effusive [24]:

f z (v z ) = m √ 2k B Tz 2 v 3 z e - mv 2 z 2k B Tz along z.
The Cs beam is intersected by the laser at an angle of α = 22 • relative to the beam axis, as shown in Fig. 1. Hence, the Beer-Lambert-Bouguer absorption is given by ndσ 0

∞ 0 1 1+ ω L -ω Cs -kvz sin α Γ /2
2 f z (v z )dv z where σ 0 = 1.4 × 10 -9 cm 2 is the absorption cross section for an isotropic light polarization at the resonant 6s 1/2 (F = 4) → 6p 3/2 (F = 5) frequency ℏω Cs , which has a natural spontaneous decay rate of Γ = 1/(30.4 ns) [25]. We fit the experimental absorption profile to this formula while scanning the laser angular frequency ω L . The results align with and are not highly sensitive to T z ≈ 400 K.

We then determine the beam density n and consequently the Cs flux nπ(d/2) 2 v, where v = 8k B T z /πm is the average velocity. We only account for the population in the hyperfine level F = 4 (which represents only 9/16 of the total Cs(6s) population in the beam, assuming Boltzmann-equidistribution between the 9 times degen-erate F = 4 and 7 times F = 3 levels). Ultimately, we obtain a Cs(6s) flux of a few 10 12 at/s reaching the Ar matrix. We thus anticipate a ∼ 10 -4 atomic ratio of Cs in the argon matrix (density on the order of 10 18 cm -3 ) and a typical average internuclear distance between Cs atoms on the order of 10 nm.

To prevent Cs contamination of the window and to generate well-defined trapping environments for all the Cs atoms, we always initiate Cs deposition only after a few micrometers of Ar have already been deposited.

C. Quality of the samples

Undoubtedly, the epitaxy of an fcc Ar crystal is unfeasible on the hexagonal lattice of sapphire due to the incompatibility of their structural lattices [26], leading to the formation of several crystal defects, including holes or cavities, as observed in Ref [26].

In theory, Cs can be trapped in various defect types such as point defects surrounded by vacancies or linedislocation defects (including screw, edge, etc.), surface defects (like stacking fault, tilt and twist grain boundaries), or volume defects (e.g., pores, cracks, or alternate phases like hcp inclusions) [START_REF] Patterson | Solid-state physics: introduction to the theory[END_REF].

It is known from literature that the grain size is inversely proportional to the growth rate [START_REF] Smith | [END_REF], and the deposition temperature significantly influences the crystal quality. The crystals contain twins, stacking faults, and dislocations [29]. At 20 K and 10 K, the interdislocation distances are roughly 8 nm and 3 nm, respectively [START_REF] Kovalenko | Soviet Physics Solid State[END_REF][START_REF] Shakhsemampour | [END_REF]. This suggests the likely presence of small crystallites comprised of thousands of atoms, separated by dislocations. Additionally, if a film is grown at a condensation temperature greater than 2/3 of the sublimation temperature (that is 30 K for Ar), the fcc grains are about 100 nm in size. Conversely, at 1/3 of the sublimation temperature (that is 10 K for Ar), the grain size reduces to around 10 nm, with indications of a minority hcp phase [START_REF] Smith | [END_REF]32,[START_REF] Song | Self-trapped excitons[END_REF]. Furthermore, below a critical temperature (18 K for Ar), atomic-scale cavities appear in the lattice [START_REF] Schulze | [END_REF].

These studies align well with our experimental observations regarding the quality of the Fizeau interference image during crystal growth, and the reduction in light transmission intensity due to scattering on grain boundaries. Specifically, as described in [35], a sample turns almost opaque when the Ar crystal grain diameter reaches around 0.1λ. We attribute this to exactly this increased scattering.

Although we attempted annealing up to 30 K, the Ar crystal quality showed no significant improvement. This outcome aligns with expectations, as higher temperatures (closer to the triple point) would be necessary [36,37] to promote vacancy formation or atom-vacancy exchange through diffusion [38][39][40]. However, achieving such temperatures in a free-standing sample in vacuum is not possible as sublimation would occur prematurely due to the high vapor pressure of solid argon.

III. ABSORPTION SPECTRA

A. Experimental Spectra

In our absorption (or transmission) spectroscopy, we use an Avantes AvaLight-HAL tungsten-halogen light source and an Ocean Optics QE65000 spectrometer. The spectrometer was calibrated by measuring the spectra of Hg and Kr lamps.

To measure the absorption in the doped Ar crystal, we shine light from the lamp through the sample. The position and shape of the light on the plate can be adjusted with irises and mirrors and monitored via a camera.

We then compute the spectral absorbance of the sample due to Cs as A = log 10 I0 It , where I t denotes the spectral irradiance density recorded in the presence of the Cs-Ar sample, and I 0 is obtained prior to any Cs deposition.

The captured spectra from varying deposition temperatures are presented in Fig. 2 a). Above 14 K, the spectra become significantly broader, and we encountered difficulties producing any spectra for deposition temperatures above this.

Conversely, if Cs and Ar are deposited at a low temperature (8 K in the case of Fig. 2 b), the spectra remain visible even when the sample is subsequently heated up to approximately 35 K, a temperature at which argon begins to sublimate under vacuum. The spectra show two triplet structures similar to those observed by [17,18], attributed to two types of trapping sites. For comparison, spectra of previous experiments were obtained at 1.8 K in Ref. [18], likely performed at 4.2 K in [17] and performed at 10 K in [19]. Typical positions and widths of the two triplets structures at 8K are presented in Table I. The differing relative intensities of the two triplets in the various samples (Fig. 2 a) imply that depending on the deposition conditions (deposit rate, sample density, temperature, argon purity, etc.), one or the other trapping site is favored. It is worth noting that we used slightly different Ar and Cs fluxes for different samples. The flux estimates given in the previous section are measured for the sample deposited at 8 K, which will be the one we focus on in the following. For other deposits the rates used can easily vary by a factor of 3.

The temperature evolution shown in Fig. 2 b) shows a more pronounced spectral deformation in the red site (the one between 11 000 and 12 500 cm -1 ) than in the blue site (the one between 12 500 and 14 000 cm -1 ). The temperature changes below 20K are mainly reversible. In the 6-14K temperature range corresponding to a well-defined red triplet, there is a slight blue shift (∼ 50 cm -1 ) of the two lower energy components from 6K to 14K, while the position of the highest energy component remains constant. The bandwidths of this triplet structure do not depend on the temperature. Conversely, a slight broadening of the components attributed to the blue site can be inferred from the analysis in Gaussian bands (less than 50 cm -1 from 6 to 20K), while their positions do not shift with temperature. Heating beyond 20K typically leads to a drop in the baseline (likely due to stronger light scattering in the Ar), along with irreversible changes in the red triplet. The blue site, however, remains welldefined until 28K. Due to the lack of reproducibility, it is not possible to draw more precise conclusions about the evolution of temperature. These informations should be handled with care.

More broadly, these types of triplet structures are welldocumented in alkali atoms trapped in rare gas matrices. They are not due to resolved phonon lines but are created by homogeneous broadening and result from the lifting of the degeneracy of the p level by the crystal environment [4]. However, due to the finite temperature, it is not straightforward to differentiate between the splitting created by a low symmetry crystalline field, as in dislocations or surface defects, and one created by a (temperature-dependent) dynamical Jahn-Teller effect in a more symmetric (cubic, tetrahedral, etc.) crystalline field. From the shape of the lines, however, it already seems evident that the main splitting is on the order of the fine structure splitting between 6p 1/2 and 6p 3/2 (of nearly 554 cm -1 in the gas phase). Then the static or dynamical electric crystal field will lift the degeneracy between the |m| = 3/2 and |m| = 1/2 of the 6p 3/2 level.

B. Trapping sites

Potential curves

To explore potential trapping sites within an fcc lattice, we should conduct a stability analysis.

Utilizing a Lennard-Jones potential with an equivalent depth of ∼ 45 cm -1 and an equilibrium distance of ∼ 0.55 nm as the X 2 Σ + 1/2 , Cs-Ar potential [41][42][43], generic calculations for the accommodation of an atom in fcc and hcp rare-gas solids [6,44] suggest that the likely trapping sites for Cs in an Ar fcc matrix could have 6, 8, or potentially 10 vacancies with respective symmetries of O h , C 2v , C 4v . Nonetheless, a 7-vacancy fcc lattice (C 3v symmetry), a 5-vacancy trapping site located in an hcp environment, or a grain boundary akin to a stacking fault accommodation (D 3h symmetry) could also emerge [5,45].

However, as depicted in Fig. 3 c), the Lennard-Jones potential fails to accurately reproduce the Cs-Ar ground state interaction. Consequently, we conducted our study using more precise potentials.

For the V Ar-Ar potentials, we use the simple analytical formula provided by [46]. For the Cs-Ar ground state

V Ar-Cs = V X 2 Σ + 1/2
, we employed the potential curve from Ref. [42] with a third-order interpolation between points. Due to a lack of data points in the long-range, we incorporated parts of the potential from [41] for inter-nuclear distances exceeding 2 nm. These potentials are presented in Fig. 3. Although the Lennard-Jones approximation accurately represents the Ar-Ar potential, it is considerably inaccurate for the Cs-Ar potential.

For comprehensive Ar-Ar and Cs-Ar interactions, we use a simple two-body (pairwise potential) approximation. Here, the full interaction energy of a Cs-doped crystal with (N -n) Ar atoms and n vacancies is given by the following equation, using obvious notations:

V = N -n i=1 V Ar-Cs (R Cs-Ari ) + 1≤i<j≤N -n V Ar-Ar (R ij ) (1)
We began by using a simple cubic grid with N = 4 × 7 3 = 1372 atoms (the factor 4 arises from the 4 atoms in the fcc primitive cell). Convergence is achieved within one percent of the energy for this configuration. This Ar-Ar ground state potential curves. The potential curves V used in this study are compared to the zero-point energy VF H , and a third-order correction V (3) . The original potentials are taken from [42]. For the excited state, we chose to plot only a third-order case with no cut-off (in analogy with the ground state case, see text); i.e., the two-body potential V (offset by E(6p)) multiplied by 1 3 8πρ 9

C * 9 C * 6 .
number of atoms enables us to simulate a small homogeneous chrystallite that would sit between dislocations. For a central Ar atom located at R 0 , the sum over all other atoms i V Ar-Ar (R 0 -R i ) reaches ≈ 773 cm -1 (here, a larger grid is necessary for convergence). This significantly overestimates the experimental value for cohesive energy of 645 cm -1 [47,48]. Similarly, the equilibrium distance is established for a lattice constant of 0.521 nm, compared to the correct value of 0.531 nm [48]. To reproduce the correct cohesive (also called atomization -E at ) energy and the equilibrium lattice constant, we scaled the Ar-Ar potential by V = αV Ar-Ar (βR) with α = 645/773 and β = 0.521/0.531. Other variants of empirically modified potentials, such as αV Ar-Ar (β + R) used in Ref. [49], yielded similar outcomes. This method is a straightforward way to retain the simple two-body pairwise model while ensuring the appropriate cohesive energy and equilibrium lattice constant. This is achieved by incorporating many-body corrections and zero-point energy effectively [48].

Site Stability

To evaluate the thermodynamic stability of a structure with n vacancies, we calculate a variant of the Gibbs (or enthalpy) free accommodation energy for the structure [44,50,51]:

∆E N (n) = E Cs (n, N ) -E Ar (N )(N -n)/N .
Here, E Cs (n, N ) signifies the total energy of the system when a Cs atom is introduced into the crystal. Conversely, E Ar (N ) represents the total energy of a pure Ar crystal comprising N atoms, excluding the vacancies.

For the system to exhibit stability, it is crucial that the dissociation of M systems, each containing n vacancies, into M ′ subsystems with n ′ vacancies and M ′′ subsystems with n ′′ vacancies be energetically unfavorable. This requirement can be represented as:

M ∆E N (n) < M ′ ∆E N (n ′ ) + M ′′ ∆E N (n ′′ ), with the condition n ′′ M ′′ + n ′ M ′ =
nM ensuring the conservation of atom numbers. For instance, two systems each with 5 vacancies can evolve into a more stable configuration of one system with 4 vacancies and another with 6 vacancies. Thus, for n vacancies to form a stable trapping site, ∆E N (n) must fall within the convex hull of the free energy curve as it varies with the number of vacancies [51,52].

Despite its significance, ∆E N (n) is just one of several vital factors, such as migration and activation energies, needed for understanding the trapping sites. The ∆E N (n) formula is primarily beneficial for small crystals, or in our case, a small single crystallite in a polycrystal. Alternatively, for N → ∞, the thermodynamic limit is often applied with E Ar (N )/N ≈ E at , resulting in [53][54][55][56][57]. In order to find the most stable (minimum energy) configuration at a fixed n value, we do not explore the entire position space for the Cs atom and the vacancies through varying random initial configurations. Instead, we initialize with pre-established defect structures in fcc crystals, using positions sourced from existing literature [50,[53][54][55][56][57][START_REF] Cotterill | Calculation of the Properties of Vacancies and Interstitials[END_REF][59][60][61][62][63], specifically [64].

∆E ∞ N (n) = E Cs (n, N ) -E Ar (N ) + nE at
In anticipation of the necessity for further studies, such as the Jahn-Teller dynamical effect, we permit the Cs atoms and the initial few (typically ∼ 60) layers of nearest neighboring Ar atoms to move and optimize their position to minimize ∆E N (n) as much as possible. We utilize the Adaptive Moment Estimation (Adam) [65] and its modified version, Nesterov-accelerated Adaptive Moment Estimation (Nadam) [66], collectively considered as "the best overall choice" among gradient descent optimization algorithms [67,68]. Upon nearing the optimum, employing the second-order derivative offers a faster method to adjust the equilibrium position of the normal coordinates [START_REF] Simons | An introduction to theoretical chemistry[END_REF]. This procedure is iteratively applied, optimizing positions until a minimum is attained. Figure 4 showcases results from such optimized geometry. However, it should be noted that using initial fixed (pure) fcc Ar and vacancy positions suffices to reproduce the results with satisfactory accuracy for stable site predictions, eliminating the need for atomic position optimization.

This study's findings contrast from the previous one carried out using a Lennard-Jones potential [6,44]. Our study indicates that the most stable trapping sites probably are T d with 4 vacancies and O h with 6 vacancies. This seems consistent with our observation of two triplet lines in absorption. Contrary to the observations reported by Ref. [19], our data, as shown in Fig. 2, does not show evidence of the Cs(6s → 5d) transition. Only Cs(6s → 6p) triplet structures appear visible, with minimal evidence of any other Cs levels involved. Also Cs dimers seem to be absent at the low density and temperature we are operating at. We are therefore confident that a simple pairwise approximation of the diatomic-in-molecule (DIM) type of approach, involving only the Ar ground state and Cs(6s), Cs(6p) levels, should yield accurate results to simulate the Cs(6s → 6p) absorption spectra.

The detailed calculation is outlined in Appendix B. Briefly, the energy shift of the Cs(6s) is calculated in a similar manner as was done for the stability study. Now, we include the 6p manifold, where the energies are the eigenvalues of the Hamiltonian. These are calculated by summing up the interaction ⟨L ′ M ′ | VCs,Ar (R Cs,Ar = {X, Y, Z})|LM ⟩ between a Cs atom (with |6pM ⟩ levels quantized along an arbitrary but fixed axis z) and each Ar atom. This interaction is defined by the matrix obtained using Wigner rotations:

1 3 (2V Π (R) + V Σ (R))I 3 + 1 6 V Σ (R) -V Π (R) R 2   |M = -1⟩ |M = 0⟩ |M = 1⟩ X 2 + Y 2 -2Z 2 3 √ 2(X + iY )Z -3(X + iY ) 2 3 √ 2(X -iY )Z -2(X 2 + Y 2 -2Z 2 ) -3 √ 2(X + iY )Z -3(X -iY ) 2 -3 √ 2(X -iY )Z X 2 + Y 2 -2Z 2   (2) 
Here, we also include the spin-orbit A SO (R Cs,Ar )L.S term, where

R = √ X 2 + Y 2 + Z 2 .
The Hund's case (a) potential curves V Π (R), V Σ (R), and the spin-orbit coefficient A SO (R), where R denotes the Cs-Ar separation, are constructed as shown in Fig. 3. They are based on the most recent

V X 2 Σ + 1/2 , V A Π 1/2 , V A Π 3/2 , V B 2 Σ + 1/2
potentials [42]. The long-range part is taken from the potentials of Ref. [41], which provide more points, but are calculated from a smaller basis sets and hence, are less accurate at short range.

Given that the significant variation of the spin-orbit coefficient A SO (R) is limited to R values smaller than the distance between the closest neighbours [START_REF] Heaven | Potential energy curves for alkali metal-rare gas exciplex lasers[END_REF], as seen in Fig. 3 a), the use of a constant spin-orbit coefficient A SO yields minimal impact (a maximum shift difference of 10 cm -1 in the final Cs(6s)-Cs(6p) transition lines).

Hence, in the following analysis, we simply use the V Π , V Σ potential curves and a constant spin-orbit coefficient A SO based on the experimental value.

The big dots on Figure 5 display the results for the Cs(6s)-Cs(6p) transition line positions. In this 0 K theoretical computation, only doublets emerge, not triplets as would be anticipated in highly symmetric trapping sites, due to the lack of thermal or dynamical broadening. Nevertheless, the experimental and calculated positions show a reasonable degree of agreement.

It may seem surprising initially that the most shifted lines, relative to the gas phase case, are those with 6 vacancies. This happens while the more constrained structure with 4 vacancies appears to be hardly affected. The observation that the red triplet is T d and the blue one is O h is contrary to what has been noted (or simulated) for other systems such as Na in Ar [START_REF] Ryan | [END_REF]72]. This dis- The influence of zero point energy on these lines is marginal (at most 150 cm -1 ). However, the incorporation of the thirdorder effect (refer to the main text) results in an additional shift that we predict to fall within the elliptical regions.

crepancy can be qualitatively explained by a simplified model where Cs is surrounded by Ar atoms in a symmetric spherical environment. In this spherical context, the average interaction term becomes 2V Π + V Σ (refer to matrix (2)). Consequently, a valuable approach to study the shift of the 6s -6p line position involves examining 2V Π + V Σ -V X . This is demonstrated in Fig. 6, along with the positions of the nearest neighbors in both the T d and the O h structures as found in our stability study.

Fig. 6 highlights that the blue shift, resulting from positive ∆V = 2V Π + V Σ -V X values, is more pronounced in the O h case than in the T d scenario. This difference mainly arises because, in the O h situation, the first 8 and second 24 nearest neighbors (the solvationtype shell) each contribute to a blue shift of approximately 100 cm -1 . Meanwhile, in the T d case, the first shell almost causes no shift due to the cancellation of 2V Π + V Σ and V X shifts, and the second shell only contains 12 atoms. The cumulative effects of these shifts, coupled with the red shifts produced by shells at greater distances, offer a qualitative explanation for the ∼ 2000 cm -1 blue shift in the O h scenario. Also, the cancellation effect results in T d lines appearing near the gas phase location.

In line with our approach for Ar-Ar potentials, to enhance the comparison of the line positions, we should include the zero-point energy and Third-Order Many-Body interactions. However, as these factors merely provide corrections, we didn't use them to re-optimize the atomic positions. 

Third order (dipole-dipole-dipole type) correction

To the best of our knowledge, the third-order correction has not been previously utilized for simulating absorption spectra [4,72]. However, this correction is nonnegligible, particularly for ground states and even more so for excited states.

We currently lack accurate three-body Cs-Ar-Ar potential curves, leading us to approximate their contribution [73,74]. As elaborated in Appendix E, we employ two and three-body expressions for the pure long dipolar range part to extrapolate an appropriate three-body potential also applicable for shorter distances. Following that, we aggregate it over all atoms. Unfortunately, the nearest neighbors play a significant role [72], and it is in the area where our formula proves to be the least accurate. Consequently, we opt for a simpler approximation, akin to the approach used by Mutô-Stenschke-Marcelli-Wang-Sadus [74][75][START_REF] Akhouri | Physica A: Statistical Mechanics and its Applications[END_REF]. We average the formula, employing a mean-field approach for the position of the third Ar atom, resulting in an effective correction to the two-body Cs-Ar potential.

These are straightforward density-dependent expressions that connect the averaged three-body interactions to the two-body ones. This connection facilitates merging both types of interactions into effective Cs-Ar two-body potential curves. With this methodology, the final Cs-Ar potential curve is a corrected version of the original one, offset by the effective three-body contribution Ē(3) 12 . Ultimately, we obtain an effective two-body potential as described by Eqs. (E9) and (E11).

The influence of this adjustment can be qualitatively estimated from Eq. (E8). By utilizing 2V Π + V Σ -V X as a measure of the shift, we observe that the third-order effect Ē(3) 12 displays a 8πρ 3R 6 (C * 9 -C 9 ) > 0 dependence. This implies a probable net blue shift, where ρ is the Ar density and C 9 , C * 9 represent the triple dipole coefficient for the ground and excited states, respectively. This effect can also be interpreted by examining the potential curves provided in Fig. 3. In this figure, the depicted third-order excited state potential curve is computed similarly to the ground state case. Hence, we have V

(3) Σ = (V Σ -E(6p)) 1 3 8πρ 9 C * 9 C * 6 and V (3) Π = (V Π -E(6p)) 1 3 8πρ 9 C * 9 C * 6 .

Zero Point Energy Correction

In order to incorporate the quantum effects attributable to the zero-point energy, we utilize the Feynman-Hibbs approach, equivalent to the Wigner-Kirkwood method.

This approach introduces a temperature-dependent effective correction to a pair potential between ground state atoms, given as:

∆V F H (R) = σ 2 0 (V ′′ (R) + 2V ′ (R)/R),
where µ is the reduced mass, and σ 0 = ℏ 2 24µk B T represents the Gaussian width of quantum particles, as derived from the uncertainty principle [START_REF] Berendsen | Simulating the physical world[END_REF][START_REF] Ströker | [END_REF].

Absorption Line Positions

Upon integrating the zero-point energy and third-order correction, we find novel line positions for the absorption spectra depicted in Fig. 5. In this computation, for the excited states, we applied the effective two-body potential (two-body corrected with three-body), and for the ground state, we additionally incorporated the Feynman-Hibbs zero-point energy correction, ∆V F H (R), assuming an experimental temperature of 8 K. This procedure was not used for the Ar-Ar interaction, given that we already have a well-scaled potential. However, it is intriguing to validate this method against the known Ar-Ar case. As Fig. 3 suggests, our method of amending a two-body potential with ∆V F H (R) + Ē(3) accurately replicates the scaled potential we used.

A key insight is that the zero-point energy is quite negligible (on the order of 100 cm -1 ), whereas the thirdorder correction significantly impacts the outcome and thus should not be disregarded. Indeed, the shift generated by the third-order effect is extremely sensitive to the selected cut-off parameters, and it can be either attractive or repulsive, contingent on their values. As such, the induced shift should be viewed more as an indicator of the effect rather than a precise quantitative result, which is why we chose to represent its effect as an uncertainty in our findings. The ellipses in Fig. 5, acting as effective error bars, have been roughly assessed using different cut-off values and exponents in the power of the cut-off function (see Appendix E), along with the potential curves

V (3) Σ and V (3)
Π shown in Fig. 3. Despite the substantial uncertainty of the third order, we can observe a qualitative agreement between theoretical line positions and experimental ones, such as the O h lines being blue-shifted compared to the T d ones.

However, the correct line separation between O h and T d remains elusive. Using theoretical potential curves from Ref. [41] yielded similar results but they were blueshifted by approximately 1000 cm -1 compared to results obtained using the more precise and recent potentials from Ref. [42]). Still, this does not resolve the issue of the line separation between O h and T d , which consistently remains around 1000 cm -1 , half of the value observed in the experiment. This discrepancy indicates the need for further investigations to reconcile the differences between experimental and simulated positions. High-accuracy Cs-Ar potential curves are required, and better Cs-Ar-Ar third-order calculations, particularly for the nearest neighbor distances, should be developed.

The line position alone is a good indicator of the trapping site but is not always sufficient to confirm it. Even though the calculated positions for the T d 4-vacancies and O h 6-vacancies cases align with the observation, it is prudent to also consider other stable trapping sites on the convex hull such as the single vacancy case, where one Ar atom is replaced by a Cs atom, and the 10-vacancies case. The simulation of the absorption lines for the singlevacancy substitution site results in very red-shifted theoretical lines below 10 000 cm -1 , where no experimental lines are observed, ruling out this case. However, the 10vacancies case predicts line positions at 13 760 cm -1 and 13 210 cm -1 .

To study the lineshape and not just the central position, we now need to incorporate thermal broadening of the lines due to electron-lattice interaction.

We have already provided the results for the 1 and 10 vacancies cases in Fig. 7, confirming that they can likely be dismissed due to the large shift for 1 vacancy and the overly large and inverted triplet splitting for 10 vacancies. Henceforth, we will focus primarily on the 4 and 6 vacancies cases. 

D. Lattice interaction

We must also account for the fact that the nuclei are not stationary, due to zero-point energy and temperature effects.

Electron-lattice Interaction for Non-equilibrium Positions

We employ pair-wise potentials to compute the electronic ground state energy V (R) for the positions of the Cs and (N -n) Ar nuclei R = {R 1 , . . . , R N -n+1 } around the equilibrium point (R 0 ), as determined by the stability study.

Subsequently, as detailed in Appendix C, we diagonalize the mass-scaled Hessian matrix, computed via finite difference, to identify the normal mode coordinates Q n . The Hessian matrix provides all the oscillation frequencies; this method is a more accurate way of including the zero-point effect than the previously used Feynman-Hibbs formula.

Semi-classical Approximation for the Transitions

To study the laser excitation of the (6s) cesium atom toward the 6p manifold under the dipolar operator d, we start by noting (using the Beer-Lambert-Bouguer's law) that the spectral density optical absorption coefficient A(E) for a photon of energy E is given by the sum over all initial vibronic levels |i⟩, populated with probability

P i , with state |Ψ i ⟩ of energy E i , towards all possible final ones |Ψ f ⟩ of energy E f : A(E) ∝ f,i P i ⟨Ψ f | d|Ψ i ⟩ 2 δ(E -(E f -E i )) (3)
A(E)dE is the absorption coefficient for a photon in the energy band (E, E + dE). Several approximations are derived in Appendix D. For instance, we neglect the variation of the dipole d if (Q) with the internuclear distances and assume it to be constant (it is simply the 6s to 6p dipole transition). We will primarily use two approximations:

A(E) ∝ P g (Q)δ[E -(V e (Q) -V g (Q))]dQ (4) 
A(E)

∝ i P i |Ψ i (Q)| 2 δ[E -(V e (Q) -E i )]dQ(5)
The first one (equation ( 4)) is called the Mulliken approximation. The second one (equation ( 5)) is referred to as the Reflection approximation. V e (Q) is the excited electron (6p) potential energy curve, and V g (Q) is the ground state one. P g (Q) can be chosen by classical statistics P g (Q) ∝ e -Vg(Q)/k B T , and the formulae are thus called classical. However, it is clearly better to choose the quantumstatistical mechanical probability distribution

P g (Q) = i P i |Ψ i (Q)|
2 , in which case we call them semi-classical. Depending on the derivation chosen, the classical Mulliken approximation can be derived from the Reflection one with an additional approximation, as in Ref. [79]. Conversely, the reflection approximation can be derived from the Mulliken one, as in Ref. [80]. Hence, it is not clear which formula is the most accurate. However, proper derivation (see Appendix D) tends to favor the (semi-)classical Mulliken approximation. Indeed, the Mulliken difference potential E -(V e (Q) -V g (Q)) is known to be a quite good approximation for a Franck-Condon factor [81,[START_REF] Tellinghuisen | The franck-condon principle[END_REF] as it favors transitions where the kinetic energy term is identical between ground and excited state. This is where the phase of the ground and excited wavefunctions matches best, thereby favoring their overlap, as also highlighted by the one-dimensional WKB approximation.

Thus, we start with the semi-classical Mulliken approximation.

We will use Monte Carlo integration to estimate the integrals numerically. Thanks to the spin-orbit interaction and the interaction matrix we have, in the Cs(6p 1/2 ,6p 3/2 ) manifold, six eigenvalues V i,exc (Q) (the degeneracy of which depends on the symmetry of the trapping sites). The spectra are simply given by summing the histogram of all eigenvalue cases.

Phonons thermal effects

At temperature T , the average number of phonons with frequency ω is given by the Bose-Einstein distribution nω = 1 e ℏω/k B T -1 . The probability of exciting this phonon mode with n quanta (of energy E n = (n + 1/2)ℏω) is given by the geometric distribution P n = e -nℏω/k B T 1 -e -ℏω/k B T . In the semi-classical approximation, we use the true (quantum) probability distribution function of a harmonic phonon mode of normal mode coordinate Q ω and angular oscillation frequency ω, as given by [START_REF] Barragán-Gil | [END_REF]:

P ω (T ) = 1 √ 2πℏ[nω+1/2]/ω e -ω 2 Q 2 ω 2ℏω[nω +1/2] .
Thus, if we perform the classical Mulliken calculation with a Boltzmann distribution at a temperature T ′ = T ′ (ω) such that

T ′ (ω) T = ℏω k B T [n ω + 1/2] = ℏω 2k B T tanh ℏω 2k B T -1 , (6) 
we will get the correct quantum spectral band contour in the approximation of harmonic motion under the

1 2 ω 2 Q 2
ω potential, as if we had performed the full real quantum calculation at T . Thus, a classical Mulliken simulation at T ′ is equivalent to a semi-classical Mulliken simulation at T . This scaled temperature is a way to include phenomenologically the position oscillation due to the zero point energy in classical simulations [84]. The scaled temperature was used, for instance, to study Na in Ar using Molecular Dynamic simulation in Ref. [START_REF] Ryan | [END_REF], where T = 12 K and so T ′ = 45 K was used for the pure argon subsystem that thermalizes the Na deposition on other Ar layers.

In argon, the Debye frequency is ω D = k B × 93.3 K/ℏ, leading to an effective temperature of T ′ ≈ 44 K at low temperatures. Because we have several frequencies (one per mode), we used the scaled temperature T ′ (ω) for each of them and chose the mode coordinate Q ω according to ω) . The energy levels are then calculated for the chosen nucleus position, as done previously for the equilibrium positions. A histogram for the energy difference between excited levels and the ground state one finally gives the absorption coefficient at each energy according to Eq. ( 4). For this simulation, only Ar atoms within a specific cut-off distance R c from the Cs atom are considered. For all simulations presented here, convergence is obtained for R c = 3 nm. This corresponds to approximately 3000 Ar atoms, the positions of which have been optimized to relax the ground state energy. However, already R c = 1 nm leads to reasonable convergence.

the distribution P ω (T ′ (ω)) ∝ e - ω 2 Q 2 ω 2k B T ′ (
To benchmark our method, we compared it with Na in Ar results from [START_REF] Ryan | [END_REF] and indeed found very similar absorption spectra for the T d site.

For our Cs-Ar system, calculations are done with a bare two-body Cs-Ar potential. We found no effect on the shape when adding third order corrections or when using other potentials such as from [41].

The results for 10000 simulated samples of the semiclassical Mulliken simulations are given in Fig. 8 for the O h and T d cases. However, as discussed previously, the exact position cannot be perfectly reproduced for all presented simulations. Therefore, we shift the theoretical spectra for each O h and T d cases. The experimentally observed line broadening is well reproduced, but the triplets are not visible because the splitting of the 6p 3/2 doublet is too low to be resolved. The line positions barely evolve with temperature and the widths only increase by less than 20 cm -1 for the considered temperature range. The reason that almost no temperature effect arises is that we have a phonon angular frequencies spectral density very similar to the one for a pure fcc matrix, so ranging from ∼ 0 K to the Debye frequency ∼ 94 K. Thus, whatever the experimental temperature T = 6 K to 14 K, the energy spanned V g (Q) by the ground state motion does not vary much with the temperature because the scaled temperature T ′ (ω) is always T ′ (ω) ≈ ℏω 2k B and that way it is not very sensitive to the actual experimental temperature.

It is interesting to note that a purely classical model using T , not T ′ (ω), as done for Na in Ar in Ref. [85], is able to resolve the peak degeneracy and to show temperature effects when T varies. This is an example of a faulty model that gives erroneous results but that might, at first glance, look reasonable.

Another intriguing aspect concerns the fact that a simple Crystal Field model used in Ref. [18] was able to reproduce the triplet structure quite well. Thus, we now study this Crystal Field model based only on first-order electron-lattice interaction in order to understand why a simplification of the model might, strangely, give better results than the more complete one we just used. 4)) at different temperatures T = 6 K, 8 K, 10 K, 12 K, 14 K and 20 K and also for T = 0 K for the theory. The theoretical spectra are created from a kernel density estimation of the Monte Carlo simulation results. The results for the Td and Oh site have been shifted in energy by a global offset (that are 500 cm -1 and -380 cm -1 for O h and T d respectively) to enable easier comparison with the experimental data. For better visual clarity, vertical offsets have been applied to both the experimental and the theoretical spectra.

Crystal Field: First order electron-lattice interaction

The crystal field model is based on the natural expectation that, for better physical insight, it is worth linking the motional modes to the symmetry group of a given trapping site using the so-called crystal field theory [START_REF] Pavarini | Correlated electrons: from models to materials[END_REF].

The normal modes Q n coordinates have been chosen to obtain a diagonal Hamiltonian with ground state potential energy given by ⟨6s|

V |6s⟩ = V 0 + k 1 2 ω 2 k Q n k 2 .
However, within the Cs(6p) manifold, these coordinates Q n are not necessarily the most appropriate anymore. Indeed, if we restrict ourselves to the first order series in nuclear coordinates, each of the 9 coefficients V m ′ ,m = ⟨6pm ′ | V |6pm⟩ of the interaction matrix (2), when summed over all Ar positions, contains only linear combinations of the Q n . Thus, at most 9 different so-called interaction modes matter, each of them being a linear combination of the normal modes. These interaction modes are much more appropriate than the normal modes to give a physical insight into the Cs(6p) interaction within the Ar matrix.

They can be calculated when the interactions, so the potential curves, are known. But, in the crystal field theory, the Q Γ γ interaction mode coordinates are simply predicted using the symmetries of the trapping site. A given trapping site is an element of a symmetry group with irreducible representations Γ (and its row γ). From it, we find the Q Γ γ , which are the linear combination of the normal modes invariant under the Γ symmetries. The symmetries are also reflected on the electronic wavefunction that should have an adapted basis set |Γ γ⟩. Finally, the electron-lattice interaction can be written at first order (so-called crystal-field approximation) as

H CF = V (0) (r) + Γ γ V (1) Γ γ (r)Q Γ γ .
Focusing on the 6p manifold, the symmetries of the zero-order V (0) (r) potential in the cubic O h case suggest Γ = T 1u . The adapted electronic basis |Γ γ⟩ is the 6p real (tesseral) spherical harmonics |x⟩, |y⟩, |z⟩. Similarly, Γ = T 1 applies in the T d case.

To evaluate the first-order term Γ γ V

Γ γ (r)Q Γ γ within this basis, we use the Wigner-Eckart theorem [START_REF] Tsukerblat | Group theory in chemistry and spectroscopy: a simple guide to advanced usage[END_REF][START_REF] Dresselhaus | Group theory: application to the physics of condensed matter[END_REF][START_REF] Hergert | Group Theory in Solid State Physics and Photonics: Problem Solving with Mathematica[END_REF]:

⟨Γ 1 γ 1 |V (1) Γ γ |Γ 2 γ 2 ⟩ = ⟨Γ 1 || V (1) Γ ||Γ 2 ⟩⟨Γ 1 γ 1 |Γ 2 γ 2 , Γ γ⟩ (7)
This theorem delivers the selection rules and predicts the non-zero coefficients

⟨Γ 1 γ 1 |V (1) 
Γ γ |Γ 2 γ 2 ⟩ that only arise for some Q Γ γ [START_REF] Van Vleck | [END_REF][91][92]. The calculations' specifics are presented in appendix A for multiple symmetry groups in the |x⟩, |y⟩, |z⟩ basis. To better align with prior calculations, we also offer the results in the |m⟩ = | -1, 0, +1⟩ basis. Here, the Hamiltonian matrix M CF for the T d case (refer to Eq. (A1)) is given by:

    V A1 Q A1 - V E Q E,2 √ 3 V T2 iQ T 2 ,1 +Q T 2 ,2 √ 2 -V E Q E,1 -iV T2 Q T2,3 V T2 -iQ T 2 ,1 +Q T 2 ,2 √ 2 V A1 Q A1 + 2 V E Q E,2 √ 3 V T2 -iQ T 2 ,1 -Q T 2 ,2 √ 2 -V E Q E,1 + iV T2 Q T2,3 V T2 iQ T 2 ,1 -Q T 2 ,2 √ 2 V A1 Q A1 - V E Q E,2 √ 3     (8) 
For O h , the results are analogous, with the symmetries' names slightly altered. For simplicity, we maintain these notations for both T d and O h in the following discussions.

Comparing with the matrix (2) provides physical insight.

The A 1 mode, denoted as Q A1 , which varies as X 2 + Y 2 + Z 2 , is a symmetrical radial mode that preserves symmetry. The E g mode is a tetragonal distortion, represented by

Q E,1 varying as X 2 -Y 2 and Q E,2 as 2Z 2 -X 2 -Y 2 . It transforms O h symmetry into D 4h .
The T 2 mode bends the crystal to D 3d or C 3v , with Q T,1 , Q T,2 , and Q T,3 varying as XZ, Y Z, and XY respectively.

Note that even if the matrix elements are linear in the interaction mode coordinates, the eigenvalues, which are the potential curves, are not linear. Hence, to calculate the Cs(6s-6p) absorption spectra, a numerical integration method such as a Monte Carlo simulation is necessary. In the Mulliken formula (4), we have

V g (Q) = V Cs(6s)-Ar (Q) + V Ar-Ar (Q) and V e (Q) = V Cs(6p)-Ar (Q) + V Ar-Ar (Q) leading to V e (Q) -V g (Q) = V Cs(6p)-Ar (Q) -V Cs(6s)-Ar (Q). (9)
In the linear crystal field approximation, V Cs(6s)-Ar (Q) is null (or a constant that we offset), hence Eq. ( 4) simplifies to

A(E) ∝ 6 i=1 δ[E -X i (Q Γ )]e -Γ γ ω 2 Γ Q 2 Γ γ /2k B T dQ Γ , (10) 
where X i (Q Γ ) are the eigenvalues of M CF plus the spin-orbit matrix (A2), A SO L • S. This can be estimated using a Monte Carlo method where each

ω Γ Q Γ γ √ k B T
follows a standard unit normal Gaussian distribution [92].

Assuming in the Boltzmann distribution that the ground state energy can be written as

V g (Q) = 1 2 Γ γ ω 2 Γ Q 2 Γ γ
, which isn't usually the case as Q Γ γ are not the normal mode coordinates, we found that in our study of the 6s -6p transition, if projected to the sole "active" coordinates [START_REF] Bondybey | [END_REF] , the ground state Hamiltonian indeed takes the desired quadratic diagonal form.

Q A1 , Q E,1 , Q E,2 , Q T,1 , Q T,2 , Q T,
In this case, as used in Ref. [91,92] (see discussion in Appendix C 3), the oscillation frequencies ω Γ are not needed for the Mulliken semi-classical case, because we can include them in the definition of new scaled coor-

dinates QΓ γ = ω Γ √ 2 Q with new interaction coefficients ṼΓ γ = √ 2 ω Γ V . This leads to V Γ γ Q Γ γ = ṼΓ γ QΓ γ , thus Eq. (10) becomes A(E) ∝ 6 i=1 δ[E -X i ( QΓ )]e -Γ γ Q2 Γ γ /k B T d QΓ . (11)
Usually, crystal field theory is used as an effective theory; the parameters ṼΓ γ are adjusted to fit the data according to the trapping site symmetry. This fitting process, along with the 6s offset for the line position and potential fine structure splitting, typically yields a strong agreement between experiment and theory due to the large number of free parameters.

Compared to the Monte Carlo or molecular dynamics methods, the crystal field method is significantly faster.

It only requires a few parameters (in our case, ṼA1 , ṼE , ṼT2 ) and Gaussian random distributions ( QA1 , QE,1 , QE,2 , QT,1 , QT,2 , QT,3 in our case). Furthermore, the interaction is given by the analytical matrix (8). It is therefore a very attractive method. As previously mentioned in Ref. [18], the observed triplets, similar to our experimental data, were attributed to cubic symmetry sites and were well-fitted using the matrix (8) with parameters listed in table II. The fit was performed at a temperature of T = 1.8 K (classically, without any temperature scaling). Using these crystal field parameters, the calculated line shapes A(E) from Eq. ( 11) well match the observed shape, and the triplet structure can be resolved. By varying ṼA1 , ṼE , ṼT2 for the two sites, an almost perfect match can be achieved. 

Site

V |6s⟩ = V0 + Γ γ 1 2 ω 2 Γ Q 2 Γ γ
, while the parameters VA 1 , VE, VT 2 serve as coupling parameters for the excited state matrix (8) incorporating linear terms of the VΓ QΓ γ type. For comparison, values from the experimental spectrum of Ref. [18] are included.

However, the coefficients V A1 , V E , V T2 can also be computed by comparing the matrix (8) to the gradient of the interaction matrix calculated via the summation of Cs-Ar potentials (refer to Appendix C and formulas (C2) and (C3) for details). The parameter (V Γ /ω Γ ) 2 represents a Jahn-Teller energy shift for the excited potential, evident from the formula

V Γ Q Γ γ + 1 2 ω 2 Γ Q 2 Γ γ = 1 2 ω 2 Γ Q Γ γ + V Γ ω 2 Γ 2 -1 2 V 2 Γ ω 2 Γ
. Results are presented in Table II, where frequencies ω Γ and interaction coefficients V Γ are displayed in temperature units using ℏω Γ /k B and

(V Γ /ω Γ ) 2 /k B .
It is noteworthy that the V Γ parameters derived from realistic interaction potentials markedly differ from those fitted in Ref. [18]. This shows the risk of using solely crystal field parameters for fitting, which may not align with physical reality, leading to potential inaccuracies and misleading predictions for subsequent studies [93]. It is therefore crucial to validate them with an independent study, such as magnetic circular dichroism (MCD) [93], temperature dependence of absorption lines, or theoretical predictions [94][95][96][97].

Despite these findings, it is important to emphasize that using our derived V A1 , V E , V T2 coefficients, and limiting our absorption band shape Mulliken semi-classical simulation to the first order in the Q Γ coordinates for the excited state interaction matrix, we achieve crystal field results that are nearly identical to those obtained from the full Monte Carlo classical simulation (shown in Fig. 8). Here, excited states are calculated from the full potentials. Indeed, for our temperature range, the firstorder matrix element values in the Monte Carlo simulation deviate less than 10% from the actual ones.

In conclusion, both the full potential approach and the crystal field first-order approximation for the excited state matrix coefficients generate almost identical results. However, they fail to reproduce the observed triplet structure and its temperature evolution. The problem might originate from the inadequacy of the classical model for ground state motion at low temperatures where the vibrational energies are quantized.

Reflection approximation and quantization of the energy

Classical simulations, despite temperature scaling via the appropriate spatial Gaussian distribution Ψ i (Q), inherently fall short as they use a continuous energy P g (Q) in Eq. ( 4). In contrast, real systems possess quantized ground state energy E i . For instance, at low temperatures with only a single zero phonon mode occupation, the ground state exhibits a single energy value, whereas classical simulation permits all energies from 0 to this zero-point energy.

Such a discrepancy suggests that classical simulations can induce artificial line broadening on the order of half the Debye oscillation frequency. In argon, this equates to roughly ∼ 30 cm -1 per vibrational (phonon) mode. While this constitutes an extreme case, given that the majority of lattice vibrations between ground and excited states are similar.

This indicates that the semi-classical Mulliken approximation, often employed to simulate atomic spectra in rare gas matrices may not always be perfectly adequate [45,52,[START_REF] Ryan | [END_REF]72,85,98]. Previous studies have shown that this approximation cannot adequately account for observed line shapes, especially at low temperatures, for the A → T spectral band shape (6s

→ 6p is A 1g → T 1u for O h or A 1 → T 1 for T d ) [98-100].
In most cryogenic rare gas matrix experiments, a majority of phonon modes exhibit energies significantly larger than the thermal energy, ℏω ≫ k B T . As a result, vibronic transitions often occur from zero-phonon occupation, a phenomenon observed in heavy atoms like Eu, Sm, or Yb embedded in Ar [START_REF] Jakob | [END_REF][102][103][104][105]. Such cases, confined to a single A 1 mode, lead to vibrational quantization that produces well-resolved Huang-Rhys-Pekar type peaks in the excited states due to the displacement of the harmonic potential in the ground state [106][107][108][109]. These peaks can only be elucidated via a full quantum treatment of kinetic energy, as opposed to a semi-classical Franck-Condon-Mulliken approximation.

We are dealing with a particularly complex case: the so-called T ⊗ (a + e + t 2 ) coupling, where a 6p triplet T couples with the lattice through several modes plus spin-orbit interaction. This situation bears a strong similarity to the extensively studied Jahn-Teller T ⊗ (e + t 2 ) coupling, which has been investigated using a variety of approximation techniques in full quantum mechanical treatments [95,[START_REF] Bersuker | The Jahn-Teller effect and vibronic interactions in modern chemistry[END_REF][START_REF] Sturge | The jahn-teller effect in solids[END_REF][111][112][START_REF] Bersuker | The Jahn-Teller[END_REF]. Even with some justifiable approximations for our case (see Table II), of a p state equally coupled to E and T vibrations [98], the problem remains intricate. Nevertheless, full quantum treatments seem to agree with classical approaches [92,[START_REF] O'brien | [END_REF].

The optimal path forward to derive a definitive answer would be to perform a full quantum calculation of nuclear motion in the calculation of probability transfers. However, this is outside the scope of this article, as our aim is to use semi-classical expressions to calculate electronic absorption spectra without the need to compute molecular vibrational eigenstates.

In our scenario, most phonon energies ℏω and Jahn-Teller energy shifts ℏ(V Γ /ω Γ ) 2 exceed the kinetic energy temperature k B T . Therefore, the reflection approximation in Eq. ( 5) should provide greater accuracy than the Franck-Condon Mulliken approximation, as it treats the excited-state oscillator classically while the ground state is quantized [79,107].

Regrettably, utilizing the reflection approximation gives rise to numerous complexities. This is particularly true when employing the harmonic approximation, as shown by:

V g (Q) = V Cs(6s)-Ar (Q) + V Ar-Ar (Q) = k 1 2 ω 2 k Q n k 2 .
From this, we must calculate the following:

V e (Q) -E i = V Cs(6p)-Ar (Q) -V Cs(6s)-Ar (Q) + k 1 2 ω 2 k Q n k 2 -E i .
In the above equation, the total quantized ground state energy

E i = k ℏω k (n k + 1/2) and k 1 2 ω 2 k Q n k 2
both increase linearly with the number of modes. We can bypass this nonphysical divergence by categorizing the modes as either "active" or "passive", depending on whether they impact V Cs(6p)-Ar (Q) -V Cs(6s)-Ar (Q). This can be done using symmetryadapted coordinates, in which only the 6 active coordinates significantly affect the Cs interaction with the Ar crystal.

Unfortunately, the ground state Hamiltonian no longer remains diagonal in the interaction modes, making the energy ill-defined. One possible solution to this problem is to use the fact that, in the low temperature regime, the soft normal coordinates phonon modes with low frequency (ω ≳ k B T /ℏ) are populated. This population results in a different spatial distribution for these normal modes and, thus, for their linear combinations present in the six interaction mode coordinates. For each temperature T , we scale each normal mode frequency, transforming ω into ω ′ , where ω ′2 /T = ω 2 /T ′ (ω), to maintain the correct spatial distribution for the normal modes. The resulting orthonormal transformation produces new diagonal ω ′ Γ γ (T ) oscillation frequencies for the six interaction mode coordinates. At this temperature T , we simulate a spectrum using the classical Boltzmann distribution, 12)), using parameters from Table II. The theoretical spectra are generated from a density kernel estimation of the Monte Carlo simulation results. Results for the T d and O h sites are shifted in energy by a global offset for easier comparison with the experimental data (that are 1650 cm -1 and 85 cm -1 respectively for O h and T d ). Vertical offsets have been applied to both experimental and theoretical spectra to enhance visual clarity.

∝ e -1 2 ω ′ Γ γ (T ) 2 Q 2 Γ γ /k B T ,
ergy E i = Γ γ 1 2 ω ′ Γ γ (T ) 2 Q 2 Γ γ .
The formula used, with Q representing the interaction mode coordinates, is as follows:

A(E) ∝ i P i |Ψ i (Q)| 2 δ[E -(V Cs(6p)-Ar (Q) - k 1 2 ω ′ 2 k Q n k 2 )]dQ (12)
The results are presented in Fig. 9. This modified reflection approximation restores the triplet shapes, but the splittings do not match closely with the observed ones at the lowest temperature of T = 6 K.

Furthermore, the simulated spectra show some temperature-dependent evolution that does not fully align with observed data. Experimentally, the red trapping site (attributed to T d ), and the blue trapping site (attributed to O h ), behave differently with temperature. However, the simulation predicts similar behaviors for O h or T d sites, as the Cs(6p) interaction with the Ar matrix is governed by similar couplings (as evidenced by the similar values for the coupling coefficients in Table II). Theoretically we observe, for a Gaussian fit, a red shift of all lines (compare to blue shift of some lines in the experiment) of nearly 30 cm -1 for the temperature evolution up to 20 K. We also see a quite strong modification (almost 50%) of the theoretical width, where the experimental evolution is smaller in relative value. Also care must be taken with experimental temperature calibration, as the temperature of a matrix sample may differ from a temperature sensor nearby [115]. There are, however, more critical discrepancies that need to be addressed. The most notable is the mismatch in the splitting between the peaks in the experimental and theoretical data.

It remains unclear whether utilizing more sophisticated approximations for the absorption shape would help alleviate these discrepancies. As an example, the improved crystal field absorption line shape formula proposed in Ref. [99] could be considered. Here, S-P transitions are calculated for the most general case, where the coupling of all three vibration modes A 1 , E g , T 2 , as well as spinorbit interaction, are taken into account. However, because the ω Γ frequencies are almost identical for the T d and O h case, this formula may also not produce different temperature evolutions for the two sites.

Further, as highlighted in Ref. [116], semiclassical formulas often require correction when the energy involved is comparable to the quantization energy spacing. However, the proposed corrected terms often have a similar order of magnitude, making the convergence unclear.

Hence, it may be more promising to explore other effects to resolve this discrepancy, such as non-Born-Oppenheimer effects like nonadiabatic coupling.

IV. CONCLUSION

In conclusion, we have observed Cs absorption spectra in an Ar matrix containing six major resonances. These were assigned to transitions from the 6s 1/2 Cs ground state to the 6p 1/2 and 6p 3/2 excited states, with lifted |m|-degeneracy and two different trapping environments. Pair-wise Ar-Ar and Cs-Ar potentials facilitated a stability study, indicating that the two observed triplets are likely due to a 4 vacancy tetrahedral T d trapping site and a 6 vacancy cubic O h one in an fcc Ar matrix.

To qualitatively reproduce the line locations using the pair-wise approach, we derived effective two-body potential curves. These included zero-point energy and thirdorder terms. We found that zero-point energy has a minor effect, but adding third-order many-body corrections significantly modifies the potentials. Our derivation of the effective two-body potential from the long-range part of the triple dipolar interaction, based on an exact derivation of the long-range part, is not very accurate. More work is needed on effects such as the Pauli repulsion, exchange interaction, and three-body dispersion interactions for the rare gases -alkali atoms, especially in excited states and for the short-range part [117].

Our study reasonably assigns the nearly unshifted (relative to the gas phase) triplet to the 4 vacancy T d site, and the blue-shifted one to the 6 vacancy cubic O h trapping site. Using the computationally demanding core polarization pseudopotentials will be an interesting approach to confirm this fact and to achieve better agreement between theory and experiment for the line separations [72,118].

Within our current approach, we demonstrate that a triplet shape can only be reproduced by using quantized energy for the ground state vibrational motions. Indeed, the classical simulation may produce artificial broadening of the lines, on the order of half the Debye oscillation frequency. Therefore, in Ar this would be on the order of ∼ 30 cm -1 . Hence, our semi-classical Mulliken simulation fails to produce a triplet structure, instead producing a broad doublet. A simulation using the reflection approximation, on the other hand, only yields a triplet at 0 K, but otherwise diverges with increasing numbers of Ar atoms due to unphysical treatment of the phononic modes.

Finally, a quantized simulation based on a modified reflection approximation reproduces a triplet structure. We show that modifying the population of the soft (lowfrequency) phonon modes can also alter the absorption shapes. Using only the matrix gradient (linear, firstorder approximation) for the excited state does not alter the quality of the results but leads to significantly faster calculations. Moreover, at low temperatures when only ground state vibrational (zero-phonon) levels are populated, the simplest crystal field model suffices to reproduce the observed line broadening caused by the dynamic Jahn-Teller thermal effect. This requires only three electron-lattice parameters given in Table II (together with Eq. ( 10) and diagonalization of spin-orbit and (8) matrices) [92]. The reduced number of modes is advantageous as it leads to faster calculations than the full Monte Carlo method and captures the essential aspects of the electrostatic interaction, providing a powerful starting point for further studies.

However, our work was unable to reproduce the triplet splitting and did not provide accurate red and blue line separations. The reason for this discrepancy is unclear, but could be due to our neglect of the dipole transition dependence on the Q coordinates, lack of coupling with other excited states (like Cs(5d)), or an inappropriate inclusion of the third-order non-additive terms in the potentials. The role of nonadiabatic couplings should also be studied.

Following [START_REF] Ryan | [END_REF], modifying the potential curves, such as the BΣ state (recently suspected to be inaccurate [119]), might lead to better agreement between experiment and theory. However, our preliminary attempts suggest that substantial modification of the position and the slope of the curve in the region near the first nearest neighbors (see Fig. 6) may be necessary. This should be further investigated, along with experimental and theoretical stud-ies of other possibilities such as trapping in other crystal defects of lower symmetry (for instance, 5 vacancy of D 3h symmetry in the hcp phase [5,6]), which may explain the discrepancy between experiment and simulation.

Experimentally, many tools are available such as magnetic circular dichroism, fluorescence, electron (paramagnetic) spin resonance, oscillator strength determination, time-resolved emission spectra, nonradiative branching ratios, optical pumping, or bleaching studies. Comparing with the rubidium case and using other rare gases, or even mixed ones, would be interesting [120], to confirm that the matrix shift seen in the S-P transitions is approximately linear with the polarizability of the matrix host [52,[START_REF] Ryan | [END_REF]121].

We hope that our work will be useful for further studies of similar systems used for fundamental physics experiments in rare gas solid crystals [122][123][124]. A given trapping site is defined by the near neighbor environment of the impurity atom and by its overall crystal orientation in the laboratory frame. We detail here the crystal field method that we use to simulate the absorption spectrum.

Using vector notation for the cartesian coordinate of each position of the Cs and the (N -n) Ar nuclei R = {R 1 , . . . , R 3(N -n+1) }) and r as the Cs valence electron coordinates, the electron-lattice interaction can be written as V = V (r, R), where for simplicity, we use, in this article, the same notation for operators and their representations in coordinate basis.

Crystal field interpretation

A given single trapping site, at the equilibrium position R 0 , possesses a certain symmetry group with irreducible representation Γ (and its row γ). So it is more convenient to use coordinates, Q Γ γ , that transforms well under such a representation. They are linear combinations of the R i -R 0i ones, such that at a linear (first order) approximation, in the nuclear coordinate R or Q Γ , the electron-lattice interaction can be written as

V = V (0) (r) + Γ γ V (1)
Γ γ (r)Q Γ γ . We refer to this expression as the "crystal-field approximation".

At zero order, the electron lattice V (0) (r) = V (r, R 0 ) modifies the Cs electron wavefunction throughout the ⟨n 1 l 1 m 1 |V (0) |n 2 l 2 m 2 ⟩ couplings (we use here the nonrelativistic wavefunctions, without fine structure that depend on the spherical harmonics Y m l ). The trapping site equilibrium position R 0 determines the symmetry group for the nuclear environment that produces the electron lattice interaction V 0 (r). For simplicity, we keep the same notation, as for the nuclear coordinate representation Γ , and name the eigenstates of the electronic Hamiltonian that are linear combinations of the |nlm⟩ states, |Γ γ⟩. They are given by the projection operators for the irreducible representation Γ .

Once the Cs electronical eigenstates |Γ γ⟩, that are adapted for the ground state equilibrium position, are found, we can use them to calculate the next order of the electron lattice interaction Γ γ V

(1)

Γ γ (r)Q Γ γ .
The key result [START_REF] Tsukerblat | Group theory in chemistry and spectroscopy: a simple guide to advanced usage[END_REF][START_REF] Dresselhaus | Group theory: application to the physics of condensed matter[END_REF] [START_REF] Tsukerblat | Group theory in chemistry and spectroscopy: a simple guide to advanced usage[END_REF][START_REF] Dresselhaus | Group theory: application to the physics of condensed matter[END_REF]. Since V is real, we only need to consider the symmetric part of the product:

is that the ⟨Γ 1 γ 1 |V (1) Γ γ |Γ 2 γ 2 ⟩ coupling terms can be calculated using the Wigner-Eckart's theorem ⟨Γ 1 γ 1 |V (1) 
Γ γ |Γ 2 γ 2 ⟩ = ⟨Γ 1 || V (1) Γ ||Γ 2 ⟩⟨Γ 1 γ 1 |Γ 2 γ 2 , Γ γ⟩. Non zero Clebch- Gordan coefficient ⟨Γ 1 γ 1 |Γ 2 γ 2 , Γ γ⟩ occurs only if the Γ representation is part of the Γ 1 × Γ 2 representation
[Γ 1 × Γ 2 ].
Thus, group theory automatically leads to the proper basis |Γ γ⟩ and provides directly the useful representations Γ with non-zero matrix elements

V Γ = ⟨Γ 1 || V (1)
Γ ||Γ 2 ⟩ and the Clebch-Gordan coupling coefficients.

We will now illustrate this crystal field procedure for several possible trapping site symmetries that might occur for atoms in matrices [50,[53][54][55][56][57][START_REF] Cotterill | Calculation of the Properties of Vacancies and Interstitials[END_REF][59][60][61][62][63]. For this we use the free Mathematica group theory package GTPack [START_REF] Hergert | Group Theory in Solid State Physics and Photonics: Problem Solving with Mathematica[END_REF]125].

Cubic: O h or T d symmetry

In fcc crystals, the 1 vacancy substitution and the 6 vacancies site have both O h symmetry (same symmetry as the SF 6 molecule) while the 4 vacancies site has a T d symmetry (as CH 4 ).

For such symmetries, the electron-lattice potential at equilibrium V (0) (r) does not lift the 6s nor the 6p degeneracy. This can be understood in a simple manner by decomposing it in spherical harmonics:

V (0) (r) = l,m r l a m l Y m l (θ, φ)
. We now only have to take into account that this interaction potential has necessarily the same O h or T d symmetry as the nuclear position that creates it. Thus most of the terms are zero, and the potential becomes V (0) (r) = a 0 Y 0 0 +r 4 a 4 (Y -4 4 + 14/5Y 0 4 + Y 4 4 )+• • • (a 0 is not to be confused with the Bohr radius). These leading order terms formed the so-called Devonshire's potential [126]. The triangle inequality |l 1 -l 2 | ≤ l ≤ l 1 + l 2 for the Clebsch-Gordan coefficients appearing when calculating ⟨n 1 l 1 m 1 |V (0) = l,m r l a m l Y m l |n 2 l 2 m 2 ⟩ indicates that the l ≥ 4 terms cannot couple to 6s (l = 0) nor to 6p (l = 1) states but would lift the degeneracy of the 5d (l = 2) level for instance.

For completeness, we indicate that the same calculation can be done elegantly using directly the quantum states |nlm⟩, without using spherical harmonics, by directly writing the potential V (r, R 0 ) using angular momentum operators. For this, we simply have to replace, in the Devonshire's potential expression,

Y 0 0 → 1, Y ±4 4 → L 4 ± and Y 0 4 → 35L 4 z -(30L(L + 1) -25)L 2 z + 2L 2 (L + 1) 2 -6L(L + 1)
where L is the orbital angular momentum operator [127,128].

It would be possible to use the |6sm = 0⟩ and |6pm⟩ = |m⟩ basis but for cubic symmetry the so-called real (or tesseral) spherical harmonics:

|x⟩ = (|m = -1⟩ -|m = +1⟩)/ √ 2, |y⟩ = i(|m = -1⟩ + |m = +1⟩)/ √ 2, ⟩, |z⟩ = |m = 0⟩
is better. Indeed, the projection operator technique for the angular momentum basis |6pm⟩ under the symmetry group O h or T d and their representations Γ leads to the following: for the 6s electronic state Γ = A 1g (or Γ = A 1 for T d ) and |6sm = 0⟩ forms a good basis. For the 6p electronics state Γ = T 1u (or Γ = T 1 in the T d case) and the basis |Γ γ⟩ is just given by |x⟩, |y⟩, |z⟩. Now that the zero-order symmetry |Γ γ⟩ basis adapted to the nuclear equilibrium configuration is established, we can use it to calculate the first-order correction

Γ γ ⟨Γ 1 γ 1 |V (1) Γ γ (r)|Γ 2 γ 2 ⟩Q Γ γ . Only the non zero ⟨6p = T 1u ||V (1) ||6p = T 1u ⟩ terms are interesting. Then because [T 1u × T 1u ] = A 1g ⊕ E g ⊕ T 2g (or [T 1 × T 1 ] = A 1 ⊕ E ⊕ T 2 in the T d case ), the ⟨Γ 1 γ 1 |V Γ γ |Γ 2 γ 2 ⟩Q Γ γ
calculation leads to the matrix (with the u, g label removed in the T d case), in the 6p manifold, for the total

⟨Γ 1 γ 1 | V = V (0) + V (1) |Γ 2 γ 2 ⟩Q Γ γ crystal field (CF) interaction: M CF = a 0 √ 4π + V A1g Q A1g I 3 +     |x⟩ |y⟩ |z⟩ V Eg Q Eg,1 -1 √ 3 Q Eg,2 V T2g Q T2g,3 V T2g Q T2g,2 V T2g Q T2g,3 -V Eg Q Eg,1 + 1 √ 3 Q Eg,2 V T2g Q T2g,1 V T2g Q T2g,2 V T2g Q T2g,1 V Eg 2 √ 3 Q Eg,2     (A1)
Where we have used

V A1 = ⟨Γ 1 || V (1) A1 ||Γ 2 ⟩/ √ 3, V Eg = ⟨Γ 1 || V (1) Eg ||Γ 2 ⟩/ √ 2, V T2g = ⟨Γ 1 || V (1)
T2g ||Γ 2 ⟩/ √ 2 and performed an orthonormal transformation for the {Q Eg,1 , Q Eg,2 } coordinates to obtain the same matrix as the one given in Ref. [92].

This matrix highlights again the fact that, with no thermal effect, so with Q Γ γ = 0, the 6p levels are not lifted by the crystal field, only a (a 0 ) global shift of the free transition 6s → 6p will occur.

In order to complete the calculation, we add the spin degree of freedom with the spin 1/2 basis sets |±⟩.

The spin-orbit matrix is

H SO = A SO 2        |x+⟩ |y+⟩ |z+⟩ |x-⟩ |y-⟩ |z-⟩ 0 -i 0 0 0 1 i 0 0 0 0 -i 0 0 0 -1 i 0 0 0 -1 0 i 0 0 0 -i -i 0 0 1 i 0 0 0 0        (A2)
And the crystal field matrix takes a simple block form:

H CF = M CF 0 0 M CF 3. Hexagonal: D 3h , C3v
a. Hexagonal: D 3h

The D 3h symmetry (as C 2 H 6 Eclipsed Ethane), can arise from 5 vacancy in hcp phase, for instance. Its basis vectors are |E ′ , 1⟩, |E ′ , 2⟩, and |A ′′ 2 ⟩ = |z⟩. The crystal field is, at the lowest order,

V (0) (r) = a 0 0 Y 0 0 +r 2 a 2 Y 0 2 +• • • (with Ŷ 0 2 = 3L 2 z -L(L + 1)).
And with

[E ′ × E ′ ] = A ′ 1 ⊕ E ′ we have M CF = a 0 √ 4π I 3 +     |E ′ , 1⟩ |E ′ , 2⟩ |z⟩ -⟨r 2 ⟩a2 √ 20π + V E ′ Q E ′ ,1 V A ′ 1 Q A ′ 1 0 V A ′ 1 Q A ′ 1 -⟨r 2 ⟩a2 √ 20π + V E ′ Q E ′ ,2 0 0 0 2⟨r 2 ⟩a2 √ 20π    
where ⟨r 2 ⟩ = ⟨6p|r 2 |6p⟩ is the square of the size of a Cs atom in its 6p level.

Here the 6p (l = 1) degeneracy is partially lifted into two levels by the crystal field and only the spin-orbit will create the triplet structure that is then broadened and modified by the A ′

1 and E ′ terms. This symmetry would likely produce a triplet structure.

b. Hexagonal: C3v

The C 3v symmetry (as Ammonia NH 3 molecule), can arise in 4 vacancy in an hcp phase. It is very similar to the D 3h symmetry case and can be obtained from it through the substitutions E ′ → E, A ′ 1 → A 1 , and A ′′ 2 → A 1 . Therefore, the basis becomes |E, 1⟩, |E, 2⟩, |A 1 ⟩ = |z⟩ and the crystal field that at lowest order is given by:

V (0) (r) = a 0 0 Y 0 0 + r 2 a 2 Y 0 2 + • • • . With [E × E] = A 1 ⊕ E we have M CF = a 0 √ 4π I 3 +     |E, 1⟩ |E, 2⟩ |z⟩ -⟨r 2 ⟩a2 √ 20π + V E Q E,1 V A1 Q A1 0 V A1 Q A1 -⟨r 2 ⟩a2 √ 20π + V E Q E,2 0 0 0 2⟨r 2 ⟩a2 √ 20π    
This is identical to the previous case, so this symmetry would likely produce a triplet structure.

Tetragonal: C4v

The C 4v symmetry ( as SF 5 Cl or IF 5 ), can arise in the 10 vacancy case. Its basis is |E, 1⟩ = |x⟩, |E, 2⟩ = |y⟩, and |A 1 ⟩ = |z⟩. The crystal field is at the lowest order:

V (0) (r) = a 0 0 Y 0 0 + r 2 a 2 Y 0 2 + • • • . And with [E × E] = A 1 ⊕ B 2 ⊕ B 1 we get M CF = a 0 √ 4π + V A1g Q A1g I 3 +     |x⟩ |y⟩ |z⟩ -⟨r 2 ⟩a2 √ 20π -V B2 Q B2 V B1 Q B1 0 V B1 Q B1 -⟨r 2 ⟩a2 √ 20π + V B2 Q B2 0 0 0 2⟨r 2 ⟩a2 √ 20π    
This is very similar to the previous cases, and this symmetry would likely produce a triplet structure.

Lower symmetry: C2v

The C 2v symmetry (as H 2 O water molecule), can arise in the 8 vacancy case and has the basis

|B 2 ⟩ = |x⟩, |B 1 ⟩ = |y⟩, |A 1 ⟩ = |z⟩.
The crystal field is at the lowest order:

V (0) (r) = a 0 0 Y 0 0 + r 2 [a 0 2 Y 0 2 + a 2 2 (Y -2 2 + Y 2 2 )] + • • • . (with Ŷ ±2 2 = L 2
± ) and its matrix takes a diagonal form:

M CF = a 0 √ 4π + V A1g Q A1g I 3 + ⟨r 2 ⟩ √ 20π   |x⟩ |y⟩ |z⟩ -a 0 2 + √ 6a 2 2 0 0 0 -a 0 2 - √ 6a 2 2 0 0 0 2a 0 2  
Here the 6p (l = 1) degeneracy is fully lifted in the three levels by the crystal field. The spin-orbit will also shift the levels and the triplet structure will be broadened in a symmetric way by the A 1g terms.

with the convention: -α, -β, -γ] (the last notation being adapted for the Mathematica software). Using the spherical coordinate, polar angle θ and azimuthal angle φ, for the vector R Cs,Ar (from Cs to Ar) we have α = φ, β = θ, γ = 0.

z ⟨LM ′ |R(α, β, γ)|LM ⟩ z = D L M ′ M (α, β, γ) = e -iαm ′ z ⟨L ′ M ′ |e -iβLy |LM ⟩ z e -iγm = WignerD[{L, M ′ , M },
Finally, we find the following matrix for the ⟨L ′ M ′ | VCs,Ar (R Cs,Ar )|LM ⟩ interaction [85,132]:

    |Π, -⟩ |Σ⟩ |Π, +⟩ 3V Π +V Σ +(V Π -V Σ ) cos(2θ) 4 e iφ (V Σ -V Π ) cos θ sin θ √ 2 e 2iφ (V Π -V Σ ) sin 2 θ 2 e -iφ (V Σ -V Π ) cos θ sin θ √ 2 V Σ cos 2 θ + V Π sin 2 θ e iφ (V Π -V Σ ) cos θ sin θ √ 2 e -2iφ (V Π -V Σ ) sin 2 θ 2 e -iφ (V Π -V Σ ) cos θ sin θ √ 2 3V Π +V Σ +(V Π -V Σ ) cos(2θ) 4     (B2)
for a vector R between the Cs atoms and the Ar atoms with X, Y, Z cartesian coordinate where cos(θ) = Z/R, e ±iφ sin(θ) = (X ± iY )/R. Its cartesian form is given by Eq. 2.

We then sum over all Ar atoms, using V Σ and V Π potentials without spin-orbit interactions in Eq. 2, and after we add a constant spin-orbit interaction that is

H SO = A SO           |Π -↓⟩ |Σ ↓⟩ |Π + ↓⟩ |Π -↑⟩ |Σ ↑⟩ |Π + ↑⟩ 1 2 0 0 0 0 0 0 0 0 1 √ 2 0 0 0 0 -1 2 0 1 √ 2 0 0 1 √ 2 0 -1 2 0 0 0 0 1 √ 2 0 0 0 0 0 0 0 0 1 2           (B3) ( ∂V ∂Q m 1 , ∂V ∂Q m 2 , • • • ). So the nuclear Hamiltonian in the Born-Oppenheimer approximation Ĥ = 1 2 P † m -1 P + V 0 + ∇ R V † (R - R 0 ) + 1 2 (R -R 0 ) † ∇ 2 R V (R -R 0 ) becomes simply Ĥ = 1 2 P † Q m PQ m +V 0 +∇ Q m V † Q m + 1 2 Q m † ∇ 2 Q m V Q m ,
where we have used PQ m = m -1/2 P vector notation for the momentum conjugate with the Q m coordinates, that verifies the canonical commutation relation

[Q m , PQ m ] = [R, P ] = R P † -P R † = iℏ1.
The eigendecomposition of the Hessian matrix

∇ 2 Q m V = O n m ω 2 O n m † creates the the normal vibrational modes Q n = O n m † Q m with O n
m the change-of-basis orthonormal matrix and ω a diagonal matrix with the k-th element being the (mass scaled) oscillation angular frequency ω k . The Hamiltonian is thus written as

Ĥ = 1 2 P † Q n PQ n + V 0 + ∇ Q n V † Q n + 1 2 Q n † ω 2 Q n (C1) = k -ℏ 2 ∂ 2 ∂ 2 Q n k + V 0 + (∇ Q n V * ) k Q n k + 1 2 ω 2 k Q n k 2 with ∇ Q n V = O n m † ∇ Q m V and P Q n = O n m † PQ m is the conjugate momentum with [Q n , PQ n ] = iℏ1.

First order: crystal field coefficient

We will now use the decomposition (C1) for

V (R) = ⟨6pm ′ | V |6pm⟩.

a. Crystal field coefficients

In order to determine the (real) crystal fields coefficients V Γ , that are the (∇

Q Γ V † ) m ′ m = ⟨m ′ | ∂V
∂Q Γ γ |m⟩ coefficients present in the 3×3 crystal field matrix M CF , we restrict ourselves to only the first order series in nuclear coordinates. Thus

V = ⟨6pm ′ | V |6pm⟩ contains only (V 0 ) m ′ m +(∇ Q n V † ) m ′ m Q n type of terms. We will put the (∇ Q n V † ) m ′ m
values in a 3×3=9 rows matrix, with each row linked to a given m ′ , m.

The first order potential can be calculated using the normal mode basis Q n or expressed in the expected M CF crystal field ones. Equalizing the two expressions leads to the equation

∇ Q Γ V † Q Γ = ∇ Q n V † Q n .
Without knowing the orthonormal transformation,

Q Γ = O Γ n † Q n that
links the crystal field symmetry adapted interaction mode coordinates Q Γ γ to the normal mode coordinates Q n k , the use of the fact that the transformation is orthonormal leads to a 9×9 matrix equation

∇ Q Γ V † ∇ Q Γ V = ∇ Q n V † ∇ Q n V (C2)
that, when solved, gives the crystal field coefficients ∇ Q Γ V .

b. Interaction mode coordinates

In order to perform Monte Carlo simulations, it might be important to know how the crystal field symmetry adapted interaction mode coordinates Q Γ can be calculated.

They can be found using the singular value decomposition of the 9 rows matrix

∇ Q n V † = U W V † of rank r (the matrix V not being confused with the potential V ). Equation ∇ Q Γ V † Q Γ = ∇ Q n V † Q n leads to ∇ Q Γ V † Q Γ = (U W )(V † Q n ). We cannot simply equalize ∇ Q Γ V † with U W and Q Γ with V † Q n because Q int = (V † Q n )
is only one choice for the interaction mode coordinates, that is not necessarily the same basis (for instance not in the same order, same sign, ...) as the Q Γ = {Q Γ γ } used to determine from symmetry consideration the crystal field matrix M CF . However, using the only useful first r rows of the r blocks matrix restriction (noted with index r ) of

(W r ) -1 U † r ∇ Q Γ V † • Q Γ = Q int = (V † r Q n ) leads to the transformation Q Γ = O Γ n † Q n ,
where, for simplicity, we have kept the same notation Q Γ or Q int for the first r interaction modes coordinates than for the 3N ones.

The important fact is that the diagonal matrix W has only r non-zero singular values on the diagonal (so W r is square diagonal of size r), and thus we will often be interested only in the r relevant (r first) interaction modes coordinates.

With these new coordinates it turns out that the r × r matrix (ω

Γ ) 2 = O Γ n † ω 2 O Γ n matrix is diagonal. We thus have ⟨6s| V |6s⟩ = V 0 + 1 2 Q Γ † (ω Γ ) 2 Q Γ = V 0 + r Γ γ=1 1 2 ω 2 Γ Q 2 Γ γ
(C3) Once again, we see the advantage of using the interaction mode coordinates to reduce drastically the number of modes to be calculated. The Monte Carlo simulation becomes very simple because we have to calculate only few (r ≤ 9) interaction mode coordinates, such as [START_REF] Bondybey | [END_REF] } to be compared to ∼ 3N modes in standard molecular dynamic simulation (almost 10000 in our case for the ∼ 3000 movable atoms).

Q Γ = {Q A1 , Q E,1 , Q E,2 , Q T,1 , Q T,2 , Q T,

Frequency scaled coordinates

Following [91,92], it might be interesting to use the oscillation frequency scaled coordinates Qn = 1 √ 2 ωQ n and QΓ = 1

√ 2 ω Γ Q Γ such that Eq. (C3) become ⟨6s| V |6s⟩ = V 0 + Qn † Qn = V 0 + k Qn k 2 = V 0 + r Γ γ=1 Q2 Γ γ
This form is interesting, because in a pure classical molecular dynamical simulation, the Boltzmann statistics indicates that Qn follows a multivariate normal distribution ∝ e - It is even possible to keep the normalized coordinates in a classical simulation that includes the temperature scales T ′ by having Qn following a multivariate normal distribution with a new diagonal variance Σn′ with diagonal element given by 1 2 k B T ′ (ω k ) according to Eq. ( 6), namely

Qn k √ k B T ′ (ω k )/2
. In this case, QΓ has simply to be chosen with a Gaussian variance ΣΓ

′ = O Γ n † Σn′ O Γ
n . Another strategy, that leads to the same final result, is to keep the unit normal distribution for

Qn k √ k B T /2 but change each ω k into ω ′ k such that ω ′2 k /T = ω 2 k /T ′ (ω k )
. So, as used in Ref. [91,92], such frequency scaled coordinates are useful in classical simulations because the oscillations frequencies ω Γ (or the scaled ones ω ′Γ ) of the modes are not needed, if we include them in the definition of new crystal field parameters ṼΓ = √ 2V Γ /ω Γ . Then all terms in the interaction matrix can be written using V Γ Q Γ γ = ṼΓ QΓ γ with now Eq. ( 10) becoming Eq. ( 11) that is

A(E) ∝ 6 i=1 δ[E -X i ( QΓ )]e -Γ γ Q2 Γ γ /k B T d QΓ (C4) with the QΓ γ √ k B T /2
coordinates having a standard unit normal (Gaussian) distribution.

To illustrate this, we mention that the values given in Ref. [18] for the crystal field in Table II are

A = √ k B T /2 A SO ṼA1 = √ k B T /2 A SO √ 2 ω A 1 V A1 = 0.294, B = √ k B T /3 A SO ṼE = √ k B T /3 A SO √ 2 ω E V E = 0.6, C = √ k B T /4 A SO ṼT2 = √ k B T /4 A SO √ 2 ω T 2 V T2 = 0.2.
Indeed the linear part of the potential is

V Γ γ Q Γ γ = A SO √ k B T /x Γ A SO √ 2 ω Γ V Γγ 1 √ k B T /x Γ ω Γ √ 2 Q Γγ (x Γ
is 2 for the case of Γ = A 1 , 3 for E 2 and 4 for T 2 [92]).

In the above notation, the ground state potential reduces to Γ γ

1 2 ω 2 Γ Q 2 Γ γ = Γ γ Q2 Γ γ .
For the quantized simulation, this frequency scaled coordinates procedure does not work anymore because the quantized energy levels are intrinsically linked to the frequencies, that thus cannot be simply scaled. We could think of using the frequency scaled coordinates with unity frequencies such that all modes look similar and the number of different modes would appear to matter less. However this approach is futile because the kinetic energy of the lattice (from Eq. (C1)) would not be diagonal in the momenta conjugate to the scaled interaction mode anymore, as already noticed in Ref. [91]. This is not important in the classical Franck-Condon Mulliken approximation where the kinetic energy plays no role because there, we only need to find the positions that are determined by the Boltzmann distribution involving only the potential energy. It, however, becomes crucial for quantized energies, such as in the reflection approximation.

Coordinate distribution

Let us mention that at T = 0 K each normal mode |Ψ i (Q k )| 2 distribution is gaussian (ground state of the harmonic oscillator) and so the multivariate normal distribution

∝ e -1 2 Q n † Σ -1 Q n of the Q n normal modes is transformed in a multivariate normal distribution with a variance Σ Γ = O Γ n † Σ n O Γ
n for the interaction mode. It turns out that the marginal distribution for the 6 mode coordinates is indeed a variance that is diagonal. This is a consequence of the fact that the projection on the 6 mode coordinates on the ground state Hessian matrix is diagonal with the frequencies ω Γ given in Table II. Together with the fact that the first order approximation is quite accurate for the excited state interaction this leads to the fact that the T = 0 K spectra can be calculated in a pure crystal field model with only 6 coordinates simply using frequencies ω Γ to determine the gaussian Q Γ coordinates using temperature scaling or the ground state wavefunction of the 1 2 ω 2 Γ γ Q 2 Γ γ harmonic oscillator. The result for T = 0 K gives the same spectra as the one in Fig. 9. Indeed at T = 0 K each E i is constant and is the zero point energy of the i-th modes. By offsetting to this value, we have at T = 0 K, E i = 0 and so the reflection approximation is A(E) ∝

6 i=1 P i |Ψ i (Q)| 2 δ[E -(V Cs(6p)-Ar (Q) -E i )
]dQ which can be compared to the formula (12).

Appendix D: Semi-classical approximations

To study laser excitation of the (6s) cesium atom toward the 6p manifold we start (thanks to the Beer-Lambert-Bouguer's law) by using the fact that the spectral density optical absorption coefficient A(E) for a photon of energy E, is given by the sum over all initial vibronic levels |i⟩, populated with probability P i with wavefunction Ψ i (Q) of energy E i , towards all possible final ones Ψ f (Q) of energy E f :

A(E) ∝ if P i δ[E-(E f -E i )] Ψ † f (Q)d if (Q)Ψ i (Q)dQ 2 (D1)
Thus A(E)dE is the absorption coefficient for a photon in the energy band E, E + dE.

Semi-classical Franck-Condon approximation

In our case, the variation of the dipole transition strength from X to Σ or Π states is on the order of 10% [41]. So we can reasonably consider variation of the dipole d if (Q) with the internuclear distances Q as negligible (this is the "Condon" approximation [79]). If needed, a better approximation would be the Herzberg-Teller centroid one with d if taken at the point Q, which cancels the first order evolution in Q. In the following, for simplicity we will assume d if (Q) ≈ d if ( Q) to be constant (it is simply the 6s to 6p dipole transition and can thus be left out of the equation). Furthermore, we can also justify an isotropic nature of the dipole in our case because of the poly-crystalline structure of our sample leads to random orientations of the crystal axes.

In our case, after laser excitation of the Cs(6s) atom from its equilibrium position, the Cs(6p) atom is far from being in its equilibrium position and the excited electron potentials are mostly linear and not quadratic. Thus the motional excited states will be states with large vibrational quantum numbers or even quasi continuum one, which, according to the Bohr correspondence principle, can be treated as approximately classical. Thus, following [79] we can assume transitions near the classical turning points and for the sum over f we can replace E f in the delta-function by a mean value independent of f that is the electron excited (6p) potential energy curve V e (Q) so:

A(E) ∝ i P i δ[E -(V e (Q) -E i )] |Ψ i (Q)| 2 dQ (D2)
This expression is also called the reflection approximation [80]. If many initial states (vibrational for instance) i are involved, it is convenient to use a mean-value approximation using for the ground state energies, the potential energy V g (Q) leading to the so-called semiclassical Franck-Condon formula

A(E) ∝ δ[E -(V e (Q) -V g (Q))]P g (Q)dQ (D3) with P g (Q) = i P i |Ψ i (Q)|
2 is the quantum-statistical mechanical probability distribution. In the case where P g (Q) is given by classical statistics, the expression becomes the standard classical Franck-Condon formula [79].

Semiclassical transition in energy or in phase space

It is useful to present the spectral density transition probability P (E 0 ), for a transition energy E 0 given by Eq. (D1), in a state picture

P (E 0 ) = f,i P i ⟨Ψ f | d|Ψ i ⟩ 2 δ(E 0 -(E f -E i )) (D4)
because 2πP (E 0 )/ℏ can now be interpreted as a rate given by Fermi's Golden rule [99,134,135].

This can be written simply as (in the Condon or centroid approximation where we forget about d 2 from now on), for a pure state (P i = 1 to simplify the notation) as

P (E 0 ) = f,i ⟨ψ f |ψ i ⟩⟨ψ i |ψ f ⟩⟨ψ f |δ(E 0 -( Ĥf -E i ))|ψ f ⟩ = f,i ⟨ψ f |ψ i ⟩⟨ψ i | f ′ |ψ f ′ ⟩⟨ψ f ′ |δ(E 0 -( Ĥf -E i ))|ψ f ⟩ = f ⟨ψ f | i |ψ i ⟩⟨ψ i |δ(E 0 -( Ĥf -E i )) |ψ f ⟩ = T r i |ψ i ⟩⟨ψ i |δ(E 0 -( Ĥf -E i )) = T r[ρ i δ(E 0 -( Ĥf -E i ))] = ⟨δ(E 0 -( Ĥf -E i ))⟩ = ⟨δ(E 0 -( Vf -Vi ) -( Ĥi -E i ))⟩ where Ĥi = k P 2 k /(2m k ) + V i ( Q) and Ĥf = k P 2 k /(2m k ) + V f ( Q) are
the Hamilton operators respectively for the initial and final electronic state and ρi = i |Ψ i ⟩⟨Ψ i | is the density matrix operators for the initial state.

The formula can also be written, in the case of a pure state as P (E 0 ) = 1 2πℏ dte i(E0-Êi)t/ℏ ⟨Ψ i |Ψ i (t)⟩where |Ψ i (t)⟩ = e -i Ĥf t/ℏ |Ψ i ⟩. This time (and Fourier transform) picture opens another way to treat the transition using the (wave packet) time evolution of the system to find |ψ(t)⟩ [116,[136][137][138][139].

One of the best approximations for the formula is clearly to use Ĥi -E i as a perturbation, especially when projected on |ψ i ⟩ because ⟨ψ i | Ĥi -E i |ψ i ⟩ = 0. Therefore the simplest natural approximation is the zero-order one for a d dimensional space:

P (E 0 ) = ⟨δ(E 0 -( Vf -Vi ))⟩ (D5) = (2πℏ) -d i dQ|ψ i (Q)| 2 δ((E -V f (Q) + V i (Q)))
This is exactly the same as the formula (D3). But, note that this derivation differs considerably from the previous traditional derivation despite the final results being the same. For instance, it gives a very clear physical understanding that the reflection approximation of Eq. ( 5) is reproduced under the extra approximation of

δ(E -(H f cl -H icl ) replaced by δ(E -(V f (Q) -E i )).
A very similar derivation has been done by moving to the Wigner representation of quantum mechanics [136,[140][141][142][143][START_REF] Ferry | The Wigner function in science and technology[END_REF] where the exact formula for P (E 0 ) becomes, in d dimension, simply P (E 0 ) = (2πℏ) -d dP dQρ iW δ(E 0 -( Ĥf -E i )) W where W designing the Wigner transform. The leading order in ℏ is simply the semi-classical limit with Ĥf,i replaced by their classical counterpart H f,i = k Pk /(2m k ) + V f,i (Q) and ρ iW replaced by the classical phase space density ρ cl ∝ e -H cl /k B T . It is obviously slightly better to keep the true Wigner function ρ iW (also because it is known analytically for the harmonic potential case) to have [START_REF] Segev | [END_REF]:

P (E) = (2πℏ) -d dP dQρ iW δ(E -(H f cl -H icl )).
This is again the same formula (D3) if using the fact that integration of the Wigner function over P gives exactly the wavefunction probability distribution |ψ i (Q)| 2 [141]. This derivation has the advantage of justifying the use of the true quantum (or Wigner) phase-space initial distribution and not the classical one. Thus the probability P i has to be chosen accordingly to the actual quantum distribution.

Another advantage of this semi-classical phase space picture is that it allows for systematic series expansion, typically in power of ℏ order corrections [80,136,138,140,[START_REF] Segev | [END_REF][146][147][148]. Finally, the method can be generalized for non-radiative transitions, such as surface hoping nonadiabatic effects or electron transfer with instanton theory or other non Born-Oppenheimer effects [START_REF] Segev | [END_REF][149][150][151][START_REF] Agostini | Chemistry without the born-oppenheimer approximation[END_REF].

Appendix E: Third order many-body term

We will detail some calculations to determine the effective two-body potential from the sum of the thirdorder terms. For this, we will first derive the general expression for the third-order terms and calculate it for the long-range dipolar case and in a simple two-level approximation. This will allow us to create a mean field of long-range third-order terms that we compare to the long-range part of the two-body case. We finally extend this comparison for all internuclear distances to produce an effective two-body potential that includes the thirdorder effect.

Perturbation theory up to third order

The energy shift ∆E of the energy E of the full system of a given atom A (Cs in our case) in a given state |lm⟩ within the crystal formed by many other atoms (Ar in our case) can be estimated by the perturbation theory from the full hamiltonian energy

H = i H 0 (i) + 1 2 i̸ =j V ij
where H 0 (i) is the single i th atom hamiltonian and V ij (r i , r j , R i , R j ) contains all electrostatic interactions between the i th atom and the j th with electron coordinates r i , r j and nuclear ones R i , R j .

We note the eigenstates of the single atom Hamiltonian H 0 (i) as |0 i ⟩ for the initial (not necessarily the ground state in the Cs case) state of atom i of energy E 0i and |m i ⟩ the other states of energy E mi .

We calculate the energy shift ∆E(R) that only depends on the nuclear coordinates R by perturbation theory. Up to the third-order, the full crystal energy is

1 2 AB E (2) AB + 1 6 ABC E (3) ABC = A<B E (2) 
AB + A<B<C E

ABC . The first order is zero and the second order leads to a shift depending on atom A given by B E

AB where E

(2) 12 = m1,m2 -|⟨0102|V12|m1m2⟩| 2 ∆m 1 (1)+∆m 2 (2) with ∆ mi (i) = E mi -E 0i .
The third-order perturbation theory terms depend on three atoms A, B, and C. Using the symmetry group S 3 of permutations of the 3 atoms A=1, B=2, C=3, and using

V ij = V ji , E (3) 
ABC = E (3)
123 is the sum of six terms (see [START_REF] Bell | [END_REF] (7b)):

E (3) 123 = σ∈S3,m1,m2,m3 ⟨0 σ(1) 0 σ(2) |V σ(1)σ(2) |m σ(1) m σ(2) ⟩⟨m σ(2) 0 σ(3) |V σ(2)σ(3) |0 σ(2) m σ(3) ⟩⟨m σ(3) m σ(1) |V σ(3)σ(1) |0 σ(3) 0 σ(1) ⟩ (∆ m σ(1) (σ(1)) + ∆ m σ(2) (σ(2)))(∆ m σ(1) (σ(1)) + ∆ m σ(3) (σ(3))) (E1)

dipole dipole dipole long-range interaction

We will calculate these terms in the dipolar long-range interaction case.

We thus assume a dipolar type of interaction (with a fixed quantization axis named z). For two atoms labeled 1 and 2 with internuclear separation R 12 = R 12 e 12 where e 12 is a unit vector, the dipole-dipole interaction is V 12 = e 2 That can be written using the irreducible tensors notation, r q = r 4π 3 Y 1q (r), as 

V 12 = -e 2
) ⊗ r(2)} 2M = q,q ′ C 2M 1q1q ′ r q (1)r q ′ (2). So V 12 = - √ 6e 2 4πϵ 0 R 3 12 M,q1,q2 (-1) M C -M (e 12 )C 2M 1q11q2 r q1 (1)r q2 (2) 
We will often use atomic units where e 2 4πϵ0 = 1. This can be simply realized by changing r(i) by r(i)

e 2 4πϵ0 .
a. Two level approximation One of the simplest approximations is to consider a single effective atomic energy transition, in the pure case, a S ↔ P transition for each atom (energy difference E SP (Cs) for Cs and E SP (Ar) for Ar). In our case, all Ar atoms are in the ground state S, but the Cs can be either in ground S or in excited state P . Therefore, S or P degeneracy means that, in Eq. (E1), all energy terms are independent of m i . We write ∆ mi (σ(i)) as ∆(σ(i)) that can be factorized out of the sum in Eq. (E1).

Using Cs as atom 1 and Ar for 2 and 3, we have for

i = 2, 3 |0 i ⟩ = |l = 0m = 0⟩ and |m i ⟩ = |l = 1m = m i ⟩ states.
We then follow the elegant derivation done in ref. [154].

We first look on terms depending on m 2 so for i label for which σ(i) = 2, in Eq. (E1) we have terms ⟨0 δ q2,-q ′ 2 (-1) q2 . Similar results arise for atoms 3, for j label for which σ(j) = 3.

b. Interaction between ground state atoms

If the Cs atom is in its ground state, the levels are

|0 1 ⟩ = |l = 0 m = 0⟩ and |m 1 ⟩ = |l = 1 m 1 ⟩.
The second order leads to

E (2) 12 = -C6 R 6 12 (E2) C 6 = 2 3 r 2 SP (Cs)r 2 SP (Ar) E SP (Cs) + E SP (Ar) with r SP (Cs) = ⟨1||r(1)||0⟩ and r SP (Ar) = ⟨1||r(2)||0⟩
For the third order calculation, the results we just derived, in section E 2 a, indicate that, in the sum of Eq. (E1), one numerator becomes

E = - √ 6 R 3 12 √ 6 R 3 13 √ 6 R 3 23 ⟨1||r(1)||0⟩ 2 3 ⟨1||r(2)||0⟩ 2 3 ⟨1||r(3)||0⟩ 2 3 × q1,q2,q3,q ′ 1 ,q ′ 2 ,q ′ 3 (-1) q1+q2+q3 δ q1,-q ′ 1 δ q2,-q ′ 2 δ q3,-q ′ 3 × M,M ′ ,M ′′ (-1) M +M ′ +M ′′ C -M (e 12 )C -M ′ (e 13 )C -M ′′ (e 23 ) × C 2M 1q11q2 C 2M ′ 1q ′ 1 1q3 C 2M ′′ 1q ′ 2 1q ′ 3 
but using (8.4(10) and 8.7(15) from [START_REF] Varshalovich | Quantum theory of angular momentum[END_REF]) we have

q1,q2,q3 (-1) q1+q2+q3 C 2M 1q11q2 C 2M ′ 1-q11q3 C 2M ′′ 1-q21-q3 = -(-1) -M ′′ 5C 2-M ′′ 2M 2M ′ 1 1 2 2 2 1 = -(-1) -M ′′ C 2-M ′′ 2M 2M ′ 7/12. So E = √ 14 9 ⟨1||r(1)||0⟩ 2 R 3 12 ⟨1||r(2)||0⟩ 2 R 3 13 ⟨1||r(3)||0⟩ 2 R 3 23 × M,M ′ ,M ′′ (-1) M +M ′ C -M (e 12 )C -M ′ (e 13 )C -M ′′ (e 23 )C 2-M ′′ 2M 2M ′
and finally using z axis along e 12 (so M = 0 in the previous sum) and θ i being the inner angles of the 123 triangle with cos θ 1 = e 12 .e 13 and cos(π -θ 2 ) = e 12 .e 23 . We get

E = ⟨1||r(1)||0⟩ 2 ⟨1||r(2)||0⟩ 2 ⟨1||r(3)||0⟩ 2 36R 3 12 R 3 13 R 3 23 × (1 -3(cos(2θ 1 ) + cos(2θ 2 ) + cos(2θ 3 )))
So when summing the 6 terms, this finally leads to We wrote the C 9 coefficient such that we can restore the historical (Axilrod-Tenner-Mutô [155,156] form using 1 -3(cos(2θ 1 ) + cos(2θ 2 ) + cos(2θ 3 )) = 4(1 + 3 cos(θ 1 ) cos(θ 2 ) cos(θ 3 )).

E (3) 123 = 4⟨1||r(1)||0⟩ 2 ⟨1||r(2)||0⟩ 2 ⟨1||r(3)||0⟩ 2 36R 3 12 R 3 13 R 3 23 × (1 -3(cos(2θ 1 ) + cos(2θ 2 ) + cos(2θ 3 ))) × ∆(1) + ∆(2) + ∆(3) (∆(1) + ∆(2))(∆(2) + ∆(3))(∆(1) + ∆(3)) So in summary E (3) 123 = C 9 R 3 12 R 3 23 R 3 
These calculations are technical but similar in a way to the case of two atoms under the effect of a static external electric field [157], the physical picture of the dipole of one atom (1 for instance) interacting with the vector electric fields produced by the other dipoles ( 2) and (3) helps to understand that the final result depends on the angles and distance between atoms.

c. Interaction with Cs in an excited state |l = 1 m⟩

To our knowledge, no general simple formula has been derived for the dipole-dipole-dipole interaction with one atom in the excited state (see however Ref. [158] and reference therein). We derive one formula here. For this, we start by the fact that in this case, = δ mq1 δ q1,-q ′ 1 (-1) q1 ⟨1||r(1)||0⟩ 2 3

The second order leads to C * 6 = 2 q1,q2,q ′ 1 ,q ′ 2 ,q3,q ′ 3 δ mq1 δ q1,-q ′ 1 (-1) q1+q2+q3 δ q2,-q ′ 2 δ q3,-q ′ 3 × M,M ′ ,M ′′ Then, summing the 6 terms (see [154]) finally leads to E The most accurate way to include this third-order correction for the energy of atoms A is to sum over all B,C pairs of atoms. But due to the lack of information on the short-range part and due to the crude (two-level) estimation made up to now, we can simplify the problem further and use the mean-field approach done in Ref. [75] (see also [74,159]) by creating a mean-field potential Ē(3)

AB = C E (3) 
ABC such that the full crystal energy 

Ē(3)

AB . We can thus stay at a two-body level simply by modifying the two-body interaction between atoms by adding

1 3 Ē(3) AB to the E (2)
AB potential interaction curves we already have. This mean-field approach has been proven to be quite accurate for pure crystals, as shown by the so-called Marcelli-Wang-Sadus potential [74,[START_REF] Ströker | [END_REF][159][160][161][162]] and as we demonstrate in Fig. 3 in the Ar-Ar case.

a. Mean field homogeneous assumption

Strangely enough, almost no mathematical derivation of the mean field approach exists though it has been performed as back as in the original paper by Mutô [156] (whose journal reference is almost always wrong) and by Stenschke [75]. Following these works, we replace the sum Ē(3)

AB = C E (3) 
ABC by an integral assuming Ar atoms uniformly distributed with density ρ = N/V (for solid argon the density ρ = 280 a -3 0 where a 0 is the Bohr radius). We thus sum over the C atoms (the number 3 above); that is, we average the potential V = j E

(3) 12j as V = ρ V r 2 sin θdrdθdφ = 2πρ V r 2 sin θdrdθ in spherical coordinate with θ = θ 1 and r = R = R 12 . We found simpler to use r 1 = R 13 , r 2 = R 23 coordinates, as in Ref. [75], such that V = 2πρ V r1r2 R dr 1 dr 2 , with an exclusion sphere of radius σ around the atoms A=1 and B=2. Equations (E3) and (E7) lead to Ē(3) 12 = 2πρ Therefore, the triple dipole interaction does not depend on σ only when the state is isotropic, such as the S ground state, or when summing over m = -1, 0, 1 for the P state.

b. Effective potentials

All results are summarized by Eqs (E2-E8) from where we can extract the effective potentials for the internuclear distance R:

E eff AB (R) = E (2) 
AB (R) 1 -8πρ 9

C 9 C 6 (E9) E * ,eff AB (Σ) = E (2) 
AB (Σ) 1 -4πρ 9

C * 9 C * 6 4 -3 log R 2 -σ 2 σ 2 E * ,eff AB (Π) = E (2) 
AB (Π) 1 -8πρ 9

C * 9 C * 6 -1 + 3 log R 2 -σ 2 σ 2
This form, derived from the long-range triple dipole interaction, can however naturally be extended to the full range of the potential by simply keeping the same formula for all R. The only requirement is the choice of the cutoff because R > 2σ. Because the short-range part of the potential is clearly not a dipole-dipole one, we smoothly reduce the C * 9 part for R < 2σ by multiplying it in Eq. (E9), for all R, by a sharp cut-off function 1 -e -(R/2σ) 10 . A reasonable value for σ might be the nearest neighbor distance in the fcc crystal, the lattice size or the first nearest neighbor Cs-Ar atoms in a given trapping site (see Fig. 6). This may depend on the chosen trapping site to be studied. Another cut-off, in principle independent, should be of the order of the LeRoy radius that corresponds to the change in the multipole expansion at small R. In that case the theoretical curves are too different from the long-range part, which we used to derive the formula [163,164]. From all this, we found that a reasonable value can be σ ∼ 8 a 0 . However, all these parameters (cut-offs and the power 10 in the sharp function) are arbitrary choices that can be optimized. We have modified them a bit (typically by a factor of 2) to produce the uncertainty in the line position shown in Fig.

5.

c. Approximate calculation of C6 and C9 coefficients Our previous formulae for second Eq. (E2) and (E4), and third-order perturbations Eq. (E3) and (E7), contain the van der Waals interaction coefficients C 6 , C * 6 , C 9 , C * 9 , which we now need to evaluate. For this, we will use an effective two-level approximation, known to be 25% accurate for ground state interactions between rare-gas and alkali atoms [73,165], and that we are going to use for the excited states as well. We will also compare the value found by fitting them to the long-range part of our potential curves to existing results to assess the method accuracy.

From now on, we will use atomic units for this calculation.

The atomic unit value for the C 6 coefficient for Ar-Ar, found by fitting the theoretical Ar-Ar potential curve by -C 6 /R 6 , is 67; and 380 for Ar-Cs. Using Eq. (E2) with the well-known experimental values, E SP (Cs) ≈ 0.0524 and E SP (Ar) ≈ 0.43 for the first excited P levels, leads to r SP (Cs) = 5.4 and r SP (Ar) = 3.0.

These values are acceptable because they are reasonable: the C 6 Cs-Cs coefficient is 5500 (compare to the real value of nearly 6700 [166]) ; C 9 (Ar -Ar -Ar) ≈ 650 (compared to 525 in Refs. [165,167]); and C 9 (Cs -Cs -Cs) ≈ 1500000 (compared to C 9 (Cs -Cs -Cs) ≈ 2200000 in Ref. [73]). However, these values for r SP (Cs), r SP (Ar), E SP (Cs) and E SP (Ar) lead to quite wrong values for the excited Cs * -Ar coefficient of C * 6 (Π) = 2 3 C * 6 = 310 compared to 600 in our potential curves and C * 6 (Σ) = 1 6 C * 6 = 80 compared to 270. Unfortunately, it is not possible to solve this discrepancy for all excited states at once simply because Eq. (E4) gives a ratio 4 between C * 6 (Π) and C * 6 (Σ) while in our case, the theoretical potential curves give only a factor ∼ 2. This factor 2 is indeed found in many other cases [168,169].

This discrepancy probably comes from the fact that we have neglected other excited states (like Cs(7s)) that are quite near the Cs excited (6p) level. But, because our intention is to simulate the Cs spectrum in argon, we will focus more on the Cs-Ar and Cs * -Ar interaction curves than on the Ar-Ar one in order to try to reduce the discrepancy. For this, we choose an intermediate strategy and allow modification of the dipole transitions r SP (Cs), r SP (Ar) and the energy level E SP (Ar), that become effective values. This allows us to better reproduce the long-range part of the theoretical potential curve for Cs-Ar and Cs * -Ar. For this, we start with fitting the theoretical potential curve that leads to E SP (Ar)-E SP (Cs) . This leads to E SP (Ar) = 2E SP (Cs) = 0.10. Then, using expression Eq. (E2) for the C 6 coefficient for Ar-Ar (67) and Ar-Cs 

  FIG. 1. (Color available online) Schematic representation of the cryostat and the optical systems utilized to monitor the matrix growth rate and to measure the absorption and fluorescence spectra. The arrows indicate the propagation directions of the beams. The laser illumination of the matrix is imaged on CCD camera 2 to display the interference pattern.

FIG. 2

 2 FIG. 2. a) Absorbance spectra of Cs embedded in Ar for deposits conducted at different temperatures. b) Evolution with temperature for a spectrum initially created at 8 K. The spectra are offset in ordinate for better visual clarity. The positions of the 6s 1/2 , →6p 1/2 (left) and 6s 1/2 , →6p 3/2 (right) Cs gas-phase transitions are indicated for reference.

FIG. 3 .

 3 FIG.3. a) Spin-orbit constant for Cs(6p)-Ar interaction. b) Cs(6p)-Ar potential curves. c) Cs(6s)-Ar potential curves. d) Ar-Ar ground state potential curves. The potential curves V used in this study are compared to the zero-point energy VF H , and a third-order correction V(3) . The original potentials are taken from[42]. For the excited state, we chose to plot only a third-order case with no cut-off (in analogy with the ground state case, see text); i.e., the two-body potential V (offset by E(6p)) multiplied by1 

C. Simulation of the position of the absorption lines 1 .

 1 Line Positions in the Pairwise Approach

2 FIG. 5 .

 25 FIG.5. This figure presents a comparison between an experimental transmittance spectrum (represented by the solid pink lines), for the two trapping sites, O h with 6 vacancies, and T d with 4 vacancies. The lower section indicates the position of the 0 K lines employing pairwise potential, where dots correspond to the two-body cases with potentials sourced from[42]. The influence of zero point energy on these lines is marginal (at most 150 cm -1 ). However, the incorporation of the thirdorder effect (refer to the main text) results in an additional shift that we predict to fall within the elliptical regions.

FIG. 6 .

 6 FIG. 6. This figure illustrates ∆V = 2V Π + V Σ -VX Cs-Ar potentials with an offset of the asymptotic values. The first R1, second R2, and third R3 nearest neighbor shells in the T d and O h scenarios are provided (for the O h case, an example of the Cs and Ar positions is also given).

FIG. 7 .

 7 FIG. 7. Comparison between the experimental absorption spectrum and theoretical semi-classical Mulliken formula (4)for the 1 and 10 vacancy sites at 10 K.

FIG. 8 .

 8 FIG. 8. Comparison between experimental absorption spectra and theoretical semi-classical Mulliken formula (eq.(4)) at different temperatures T = 6 K, 8 K, 10 K, 12 K, 14 K and 20 K and also for T = 0 K for the theory. The theoretical spectra are created from a kernel density estimation of the Monte Carlo simulation results. The results for the Td and Oh site have been shifted in energy by a global offset (that are 500 cm -1 and -380 cm -1 for O h and T d respectively) to enable easier comparison with the experimental data. For better visual clarity, vertical offsets have been applied to both the experimental and the theoretical spectra.

FIG. 9 .

 9 FIG. 9. Comparison of observed absorption with the simulated one using the temperature scaled first order crystal fields model. The model incorporates the modified reflection approximation (Eq. (12)), using parameters from TableII. The theoretical spectra are generated from a density kernel estimation of the Monte Carlo simulation results. Results for the T d and O h sites are shifted in energy by a global offset for easier comparison with the experimental data (that are 1650 cm -1 and 85 cm -1 respectively for O h and T d ). Vertical offsets have been applied to both experimental and theoretical spectra to enhance visual clarity.
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  Appendix A: Perturbation matrices for different symmetries

1 2 1 2

 11 Qn † Σ-1 Qn with a variance Σn =1 2 k B T I. That way the interaction mode coordinate vector QΓ = O Γ n † Qn follows a multivariate normal distribution with a variance that is also diagonal:ΣΓ = O Γ n † Σn O Γ n = k B T I. Thus, in a standard classical Monte Carlo simulation at temperature T , each QΓ γ √ k B T /2coordinate has the same distribution: a standard unit normal (Gaussian).

4πϵ0R 3 12 [

 12 r(1).r(2) -3(r(1).e 12 )(r(2).e 12 )] = e 2 4πϵ0R 3 12 r(1).(1 -3e 12 e 12 ).r(2).

4πϵ0R 3 √ 5 Y

 35 6C(e 12 ).{r(1) ⊗ r(2)} 2 where C M (e 12 ) = 4π 2M (e 12 ) and {r(1

1 (

 1 |0 1 ⟩ = |l = 1 m⟩ and |m 1 ⟩ = |l = 0 m = 0⟩. So m1 ⟨0 1 |r q1 (1)|m 1 ⟩....⟨m 1 |r q ′ 1 (1)|0 1 ⟩ = ⟨1m|r q1 (1)|00⟩....⟨00|r q ′

3 ⟨1||r 2

 32 SP (Cs)r 2 SP (Ar) E SP (Ar) -E SP (Cs) so as expected C * 6 (Σ) + 2C * 6 (Π) = C * 6 .For the third order, we have for a given numerator term:

(- 1 ) 3 but using z axis along e 12 ( 23 ×M(- 1 ) 23 f

 131223123 M +M ′ +M ′ C -M (e 12 )C -M ′ (e 13 )C -M ′′ (e 23 ) so M = 0) we have ′ ,M ′′ (-1) M ′ +M ′′ C 0 (e 12 )C -M ′ (e 13 )C -M ′′ (e 23 ) q3 C 2M ′ 1-m1q3 C 2M ′′ 1m1-q3 So, E = ⟨1||r(1)||0⟩ 2 ⟨1||r(2)||0⟩ 2 ⟨1||r(3)||0⟩ 2 (θ 1 , θ 2 , θ 3 , m) with f (θ 1 , θ 2 , θ 3 , m) = -(1 + 3 cos(2θ 1 ) + 3 cos(2θ 2 ) + 9 cos(2θ 3 )) for m = 0 (E5) f (θ 1 , θ 2 , θ 3 , m) = (5 -3 cos(2θ 1 ) -3 cos(2θ 2 ) + 9 cos(2θ 3 ))/4for m = ±1 (E6)

1 ) 3 23 ×f

 1323 ||0⟩ 2 ⟨1||r(2)||0⟩ 2 ⟨1||r(3)||0⟩ 2 27R 3 12 R 3 13 R (θ 1 , θ 2 , θ 3 , m) × ∆(1) + ∆(2) + ∆(3) (∆(1) + ∆(2))(∆(2) + ∆(3))(∆(1) + ∆(3)) SP (Ar) -E SP (Cs) 2(E SP (Ar) -E SP (Cs)) 2 E SP (Ar)3. Mean field effect and effective two-body potentials

  ABCcan be written as sum of two body terms E eff AB = (E

4 - 12 ( 3

 4123 3 log[(R 2 -σ 2 )/σ 2 ]) for m = 0 Ē * + 3 log[(R 2 -σ 2 )/σ 2 ]) for m = ±1

C * 6 C6 ≈ 3 . 6 C6

 636 Then Eq. (E2) and (E4) giveC * = E SP (Ar)+E SP (Cs) 

1 C 6

 16 (380) leads to (in atomic units):E SP (Cs) = 0.052 (E10) E SP (Ar) ≈ 0.10 r SP (Cs) ≈ 4.4 r SP (Ar) ≈ 2.The long-range parts of some potential curves are shown in Fig.10. These parameter values, and the modification by a factor ∼ 2 for the cut-off and the power of the sharp function, have been used in order to produce the uncertainty in the line positions shown in Fig.5.

FIG. 10 .

 10 FIG.10. Cs(6p)-Ar potential curves compared to the one with the effective third-order effect included.

TABLE II .

 II Crystal field parameters, given in Kelvin, for the two types of sites. Oscillation frequencies are such that the ground state potential is given by ⟨6s|

			O h			T d
	modes A1g	Eg	T2g	A1	E	T2
	ℏωΓ /kB 60	75	65	64	68	72
	(V Γ /ω Γ ) 2 k B from [18] (V Γ /ω Γ ) 2 k B	50 13600 84700 12600 13600 84700 12600 120 140 110 130 150

  2 |V (j2)|m 2 ⟩ and ⟨m 2 |V (2k)|0 2 ⟩. So using the Wigner-Eckart theorem ⟨l ′ m ′ |r +1 ⟨l ′ ||r 2 ||l⟩ the m2 ⟨0 2 |V (j2)|m 2 ⟩....⟨m 2 |V (2k)|0 2 ⟩ sum (the .... are simply here to indicate that the terms are not necessarily neighbors in Eq. (E1)) contains m2 ⟨0 2 |r q2 (2)|m 2 ⟩....⟨m 2 |r q ′ 2 (2)|0 2 ⟩ = -m2 C 00 1m21q2 ...

	(q) 2 |lm⟩ = 3 ⟨1||r(2)||0⟩ 2 , where we have used 1m 2 001q ′ 2l ′ C C l ′ m ′ lm1q √ 2 √
	⟨0||r(2)||1⟩ = -⟨1||r(2)||0⟩. Then,	m2=1 m2=-1 leads to
	⟨1||r(2)||0⟩ 2	
	3	

  SP (Cs) + E SP (Ar)) 2 E SP (Ar)

			31	1 -3(cos(2θ 1 ) + cos(2θ 2 ) + cos(2θ 3 )) 4 (E3)
	C 9 =	4 9	r 2 SP (Cs)r 4 SP (Ar)	2(E	E SP (Cs) + 2E SP (Ar)

Appendix B: Potential curves calculation

We discuss here the Cs-Ar potential for Cs in its 6p excited level, the origin of the energy is taken at the 6p level in gas phase. When adding the spin-orbit A SO (R)L.S, the Hamiltonian becomes

and the matrix will be identical for the basis with opposite signs for all values of the projection of angular momenta: |Π, -⟩|m s = 1/2⟩, |Σ⟩|m s = -1/2⟩, |Π, -⟩|m s = -1/2⟩. The spin-orbit parameter A SO (R) is not in general constant and deviates from the asymptotic atomic value as shown in Fig.

3 [129]. Taking the eigenvalues leads to the potential curves with spin-orbit

with the correspondence:

From this correspondence we have extracted the

ones. The calculation is done using the most recent

potentials (in Hund's case (a) notation, but calculated with fine structure included) with spin-orbit interactions from [42] and with a cubic interpolation between points and above 2 nm the long-range part is taken from [41].

Cs-Ar sum

Using the primitive cell and lattice vectors, we sum the interaction ⟨L ′ M ′ | VCs,Ar (R Cs,Ar )|LM ⟩ between a Cs atom and all Ar ones. Where |LM ⟩ = |LM ⟩ z is quantized along the fixed z axis.

We then use the fixed right-handed frame, righthand screw counterclockwise rule active interpretation (extrinsic) rotation z y z convention R(α, β, γ) = e -iαLz e -iβLy e -iγLz [START_REF] Varshalovich | Quantum theory of angular momentum[END_REF][START_REF] Man | [END_REF] such that R rotates the |LM ⟩ z state to the |LM ⟩ R(z) where the new axis

The calculation is done using active rotation of the state vector and Wigner D-matrix

Appendix C: Vibrational modes

In order to study the vibronic interactions [133] and the Jahn-Teller effect [START_REF] Bersuker | The Jahn-Teller effect and vibronic interactions in modern chemistry[END_REF][START_REF] Sturge | The jahn-teller effect in solids[END_REF][START_REF] Bersuker | The Jahn-Teller[END_REF] we use several different mode coordinates. We will detail here all coordinates we used:

and their corresponding momenta conjugate respectively P , PQ m , PQ n , PQ int , PQ Γ , P Qn , P QΓ .

Quantization in the normal modes

We consider the matrix elements V (R) = ⟨n ′ l ′ m ′ | V |nlm⟩ for the Cs(6s) and 6p levels.

Neglecting the anharmonic terms, the electron-lattice

Where we have used standard row vector

the Hermitian adjoint, that is the conjugate transpose) and matrix ∇ 2 R V notations. In order to treat all kinetic energy terms where m j is the mass of the atom on which the j th coordinate resides. We define the diagonal mass matrix m with m jj = m j and