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Abstract
Background  An unprecedent increase in the number of cases and deaths reported from dengue virus (DENV) 
infection has occurred in the southwestern Indian ocean in recent years. From 2017 to mid-2021 more than 70,000 
confirmed dengue cases were reported in Reunion Island, and 1967 cases were recorded in the Seychelles from 
2015 to 2016. Both these outbreaks displayed similar trends, with the initial circulation of DENV-2 which was replaced 
by DENV-1. Here, we aim to determine the origin of the DENV-1 epidemic strains and to explore their genetic 
characteristics along the uninterrupted circulation, particularly in Reunion.

Methods  Nucleic acids were extracted from blood samples collected from dengue positive patients; DENV-1 was 
identified by RT-qPCR. Positive samples were used to infect VERO cells. Genome sequences were obtained from either 
blood samples or infected-cell supernatants through a combination of both Illumina or MinION technologies.

Results  Phylogenetic analyses of partial or whole genome sequences revealed that all DENV-1 sequences from 
Reunion formed a monophyletic cluster that belonged to genotype I and were closely related to one isolate from 
Sri Lanka (OL752439.1, 2020). Sequences from the Seychelles belonged to the same major phylogenetic branch of 
genotype V, but fell into two paraphyletic clusters, with greatest similarity for one cluster to 2016–2017 isolate from 
Bangladesh, Singapore and China, and for the other cluster to ancestral isolates from Singapore, dating back to 2012. 
Compared to publicly available DENV-1 genotype I sequences, fifteen non-synonymous mutations were identified 
in the Reunion strains, including one in the capsid and the others in nonstructural proteins (NS) (three in NS1, two in 
NS2B, one in NS3, one in NS4B, and seven in NS5).

Conclusion  In contrast to what was seen in previous outbreaks, recent DENV-1 outbreaks in Reunion and the 
Seychelles were caused by distinct genotypes, all likely originating from Asia where dengue is (hyper)endemic 
in many countries. Epidemic DENV-1 strains from Reunion harbored specific non-synonymous mutations whose 
biological significance needs to be further investigated.
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Background
Dengue virus (DENV) is the most widespread mosquito-
borne flavivirus worldwide. More than 390 million peo-
ple in over 129 countries are exposed to dengue virus 
infections with an estimated 20,000 deaths every year 
[1, 2]. DENV is transmitted through the bite of infected 
female mosquitoes belonging to the Aedes genus; the spe-
cies Aedes aegypti being a primary vector while Aedes 
albopictus plays a secondary role [3]. The DENV genome 
consists of a positive-sense single-stranded linear RNA 
of approximately 11 kilobases. Four DENV serotypes 
(DENV-1 to DENV-4) are currently known. Molecular 
analyses have highlighted the diversity of DENV geno-
types belonging to each of the four serotypes [4, 5].

The southwestern Indian ocean islands have a history 
of periodic outbreaks of DENV, but Reunion Island has 
been an exception in recent years. Since an outbreak of 
the virus in 2017, there has been continuous circulation 
of DENV on the island with over 70,000 confirmed cases 
between 2017 and 2022 (Table 1). This continuous pres-
ence of the virus on the island may suggest that dengue 
has become endemic [6].

At the beginning of the epidemic wave, DENV-2 was 
the first serotype detected on the island [9, 10]. At the 
end 2019, among the 25,000 confirmed cases and 20 
deaths, DENV-2 still represents the major serotype, but 
a few cases of DENV-1 and DENV-3 were also reported 
[11]. During the course of the epidemic, DENV-1 was 
also observed to co-circulate with DENV-2, and rapidly 
became the dominant serotype. DENV-1 was the only 
identified serotype among the 29,577 confirmed cases by 
week 35 in 2021 [12]. A similar trend was also observed 
in the Seychelles where an outbreak of DENV-2 started 
in 2015, being replaced by DENV-1 in 2016 (MOH Sey-
chelles). Interestingly, the DENV-2 strains that circulated 
at the beginning of these outbreaks are 99.8% similar to 
each other and 93% similar to a 2013 strain from Sin-
gapore, indicating a single introduction of DENV-2, 
presumably from Asia [10]. As DENV-1 subsequently 
succeeded DENV-2 in these two islands, it would be 

interesting to see whether the DENV-1 outbreaks were 
also initiated by a single introduction event.

In 2021, DENV-1 circulation in Reunion coincided with 
a significant increase of severe cases and hospitalizations 
when compared to 2018 and 2019 [12]. For instance, sev-
eral severe ophthalmological cases related to DENV-1 
infection were reported, notably in 2020 and 2021 [12]. 
Moreover, while severe forms and deaths were most fre-
quently observed in older patients with comorbidities 
such as diabetes and hypertension, increasing numbers 
of DENV1-induced mortalities were observed in younger 
patients (including children) without comorbidities [12]. 
Although such an increase in severity was observed for 
the first time in Reunion, these symptoms were already 
described in Asia where dengue is endemic [13, 14]. To 
investigate whether the current epidemic DENV-1 strains 
from Reunion and the Seychelles were similar to each 
other and to those known in Asia, we performed whole-
genome sequencing and phylogenic analyses to trace 
their origin and explore some genetic features.

Methods
Origin of samples
Biological samples from Reunion Island were origi-
nated from two different collections. The CARBO col-
lection consisted of a prospective cohort of patients 
with arbovirus infections, registered on clinicaltrials.gov 
(NCT01099852). The CARBO was started by the Univer-
sity Hospital of La Martinique in 2010 and extended to 
include patients from Reunion in 2018. The other collec-
tion, DEMARE, was established as part of an epidemio-
logical cross-sectional study conducted in 2019–2020. 
Both collections were approved by The French Commit-
tee for the Protection of Individuals. Written consent was 
obtained from all participants. Blood samples from the 
Seychelles were collected by the Ministry of health of the 
Seychelles during outbreaks between January 2015 and 
December 2016.

Bloods were collected from serologically confirmed 
patients presenting one or several dengue symp-
toms including fever, myalgia, headache, asthenia and 
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Table 1  Circulation of DENV from 2017 to mid-2022 in Reunion
Year* Number of confirmed cases Number of serotyped cases (TotS) DENV-1/TotS DENV-2/TotS DENV-3/TotS
2017 94 94 0 1 0

2018 6,759 950 0 1 0

2019 18,217 883 0.118 0.880 0.002

2020 16,414 838 0.85 0.12 0.03

2021 29,655 978 1 0 0

2022 1,129 329 1 0 0
*Data were obtained from [6] and Santé Publique France [7, 8].
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thrombocytopenia and without recent travel history. To 
increase the probability of detecting the presence of viral 
RNA, the samples used in the study were from patients 
included in the cohort within the first seven days of the 
onset of symptoms. Collections were performed by 
accredited professionals in 10 mL EDTA tubes. Within 
the two hours after collection, samples were centrifuged 
at 2,000 g for 10 min at 20 °C. Supernatants were trans-
ferred into new tubes, homogenized by inversion, ali-
quoted into new 2 mL tubes, labeled, then frozen and 
stored at -80 °C until used.

Viral RNA extraction and amplification
To ascertain the presence and the amount of DENV-1 
RNA in the selected samples, a reverse transcription 
quantitative real-time PCR (RT-qPCR) was performed. 
Briefly, total nucleic acids were extracted from the serum 
samples using the QIAamp® Mini Kit purification accord-
ing to the manufacturer’s recommendation (QIAGEN). 
For RT-qPCR, we used the QIAGEN OneStep kit follow-
ing the manufacturer’s instructions (QIAGEN). A mixed 
solution was prepared with RNA template (5 µl), a Taq-
Man probe (FAM-ACACCTCAAGCTAA-TAMRA) 
and primers (Forward 5’-GAACATGGRACAAYTG-
CAACYAT-3’; Reverse 5’-CCGTAGTCDGTCAGCT-
GTATTTC-3’) specific to DENV-1. The thermocycler 
program consisted of a retrotranscription step of 45 min 
at 45 °C, denaturation for 5 min at 95 °C followed by 40 
cycles of amplification (72 °C for 5 s and 56 °C for 60 s). 
Viral RNA copy number was estimated against a stan-
dard curve following the methodology published by the 
HAS (Haute Autorité de Santé, France). Plasmids con-
taining targeted DENV-1 were synthesized by GeneCust 
(France) and used as the standard curve at concentra-
tions of 101 to 108 RNA copy per µl.

The E gene was amplified to confirm RT-qPCR-positive 
samples. cDNA was synthesized from extracted RNA 
using the ProtoScript® II Reverse Transcriptase Kit with 
random primers following the manufacturer’s instruc-
tions (New England BioLab, USA) and amplified using a 
nested PCR protocol, as previously described [9]. Briefly, 
we designed degenerated primers targeting a fragment 
(~ 700–800 bp) of the E gene encoding the envelope pro-
tein. The first round of amplification reaction was per-
formed with primers DNV1-E-F1 (CAC TGG TGG AAG 
AAC AAG ACG C) and DNV1-E-R2 (CMA CDG AYG 
TGA ACA CYC CTC C) generating an approximately 
1100-bp fragment. The second round used the primers 
DNV1-E-F2 (ACG GAG CTC TYA CAT TGG ACT G) 
DNV1-E-R2 (CMA CDG AYG TGA ACA CYC CTC C) 
and generated a 750-bp fragment. PCR amplification was 
performed on a PCR System 2700 Thermocycler (ABI 
Applied Bio-system ™). Amplification programs were as 
follows: 94 °C for 2 min; 3 cycles of 95 °C for 5 s, 60 °C for 

30 s, 72 °C for 30 s; 3 cycles of 95 °C for 5 s, 55 °C for 30 s, 
72 °C for 30 s; and 28 cycles of 95 °C for 5 s, 50 °C for 30 s, 
72 °C for 1 min 30 s; 72 °C for 7 min. Amplified products 
were checked first on electrophoresis gel (Additional file) 
then samples showing amplicons of expected sizes were 
Sanger sequenced (Genoscreen, Lille, France).

Virus isolation
Viral isolation assays were conducted by inoculating the 
DENV-1 PCR-positive sera from viremic patients onto 
Vero E6 cell monolayers. Cultures were checked every 
day. When cytopathic effects were observed, superna-
tants (passage 1) were collected by centrifugation and 
stored at -80  °C. The presence of viral RNA was con-
firmed by RT-qPCR, as above, and by titration of viral 
infectious particles using plaque-forming unit assay [10].

Sequencing and genomic analysis
Genomic data were generated using either Oxford Nano-
pore Technologies (MinION) sequencing based on the 
amplicon tiling protocol, or Illumina shotgun sequenc-
ing, or by combining data from both sequencing plat-
forms [15].

For Illumina sequencing, libraries were generated 
from 10 ng of cDNA using the Celero™ PCR Workflow 
with Enzymatic fragmentation (DNA-Seq) following the 
manufacturer’s instructions. Sequencing was performed 
on the MiSeq platform, with 1 * 170 bp single-end reads. 
Demultiplexed sequences were provided by the sequenc-
ing company (Biofidal, Lyon, France). Sequences were 
quality trimmed and adapters removed using Trim-
momatic v0.39 [16]. Trimmed reads were mapped to 
reference sequence NC_001477.1 using bowtie2 [17]. 
Geneious v9.1.8 [18] was used to inspect and curate 
mapped sequence data.

For Oxford Nanopore Technology’s MinION sequenc-
ing, an amplicon tiling protocol was used in conjunction 
with DENV1 primers from the Oxford Centre for Arbo-
virus Discovery, Diagnostics, Genomics and Epidemiol-
ogy (https://www.caddecentre.org/protocols/). Briefly, 
cDNA was amplified in two independent PCR reac-
tions. PCR products were pooled, dA-tailed using the 
NEBNext® Ultra™ II End Repair/dA-Tailing Module then 
barcoded using the Nanopore Native Barcoding Expan-
sion kit (EXP-NBD104). Barcoded amplicons were then 
purified using a 0.4x volume of AMPure-XP SPRI beads, 
washing the beads with an excess volume of Nanopore’s 
small fragment buffer (SFB) to ensure that un-ligated bar-
code molecules were removed. Purified amplicons were 
then pooled in equimolar proportions before adapter 
ligation and sequencing, following the manufacturer’s 
instructions. The sequencing run was left for 24  h and 
stopped when predicted coverage exceeded 1000-fold 
for each genome. Base-calling and demultiplexing were 

https://www.caddecentre.org/protocols/
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performed using guppy (v4.0.11). Base-calling used 
default parameters in accurate mode, and demultiplex-
ing was performed using the “require_barcodes_both_
ends” parameter to minimize sample crosstalk. Reads 
were then assembled using Medaka v1.0.3 (https://nano-
poretech.github.io/medaka/) mimicking the ARTIC net-
work bioinformatics standard operating procedure for 
SARS-CoV-2 sequencing (https://artic.network/ncov-
2019/ncov2019-bioinformatics-sop.html), subsampling 
amplicon coverage to 400x and using genome acces-
sion NC_001477.1 for read mapping. Geneious v9.1.8 
was used to inspect and curate mapped sequence data. 
Consensus base-calling required a minimum of 30-fold 
coverage.

For samples from the Seychelles, only partial genomic 
assemblies were obtained by this method, as not all 
primer pairs produced amplified products. The partial 
assembly data were thus combined with Sanger sequence 
data from the envelope region of the genome to produce 
contiguous consensus sequences that spanned a 4,838 bp 
region at the 5’ end of the DENV genome. This region 
corresponded to base positions 156–4,994 of the refer-
ence genome NC_001477.1 and contained genetic data 
from the capsid, membrane glycoprotein, envelope, NS1, 
NS2a and NS2b regions of the genome.

Phylogenetic analysis
Global phylogenetic comparisons were carried out using 
the E-gene, which is typically used for identifying den-
gue genotypes [5]. The E-gene region was extracted from 
all reference sequences in the NCBI database using cus-
tom scripts. Alignments were generated using MAFFT 
[19], and the alignment was curated by eye in Geneious 
v9.1.8. IQTree2 (v2.1.3) was used to identify optimal 

substitution model parameters and to generate a boot-
strapped maximum-likelihood phylogeny with 1000 rep-
licates. Phylogenetic tree representations were generated 
in R, using the “ggtree” package [20].

Results
General characteristics
Among the 30 blood samples from Reunion and 14 
from Seychelles collected within the first seven days 
of the onset of symptoms, only nine (PR1583, PR1615, 
PR1914, PR4443, PR4453, PR4463, PR4483, PR6594, 
P0409) of 2019 to 2021 outbreaks from Reunion and four 
(DS16177, DS16229, DS16232, DS16233) of 2016 out-
break from Seychelles tested positive for DENV-1 by RT-
qPCR were further analyzed (Table 2). A higher viral titer 
was detected for the two samples PR1583 and PR6594 
with approximately 107 RNA copies/µL. These two sam-
ples were used to infect VERO cells allowing the isolation 
of DENV-1 strains named RUN1-1583 and RUN1-6594, 
respectively, isolates which were also further analyzed 
(Table 2). Sequencing with Illumina generated complete 
genome sequences for 5 blood samples (PR4443, PR4453, 
PR4463, PR4483, PR6594) and the isolate RUN1-6594 
(one passage) from Reunion. MinION technology 
allowed sequencing of almost complete genomes for 3 
sera (PR1615, PR1914, P0409) and the isolate RUN1-1583 
(one passage) from Reunion. The sequence of each iso-
lated strain was identical to that obtained from the corre-
sponding blood sample. Using MinION technology, only 
partial sequences were obtained from the four Seychelles 
samples. Upon sequence inspection, mismatches were 
identified in the DENV1_3, DENV1_11 and DENV1_12 
primer pairs which may explain inefficient amplifica-
tion of DENV1 genotype V. Further optimization of the 

Table 2  Biological samples and DENV isolates used in this study
Sample Origin Biological material Sequencing 

technology
Coverage Viral isolation Genbank 

Accession
RUN1-1583 Reunion, 2019 Supernatant, cDNA MinION, Illumina Complete Yes ON631277

PR1615 Reunion, 2019 Serum, cDNA MinION Complete* No ON631275

PR1914 Reunion, 2019 Serum, cDNA MinION Complete* No ON631274

PR4443 Reunion, 2020 Serum, cDNA Illumina Complete No ON631283

PR4453 Reunion, 2020 Serum, cDNA Illumina Complete No ON631282

PR4463 Reunion, 2020 Serum, cDNA Illumina Complete No ON631281

PR4483 Reunion, 2020 Serum, cDNA Illumina Complete No ON631280

PR6594 Reunion, 2021 Plasma, cDNA Illumina Complete No ON631278

RUN1-6594 Reunion, 2021 Supernatant, cDNA Illumina Complete Yes ON631279

P0409 Reunion, 2020 Plasma, cDNA MinION, llumina Complete No ON631276

DS16177 Seychelles, 2016 Serum, cDNA MinION Incomplete, 71.2% No ON631270

DS16229 Seychelles, 2016 Serum, cDNA MinION Incomplete, 88.4% No ON631271

DS16232 Seychelles, 2016 Serum, cDNA MinION Incomplete, 76.9% No ON631272

DS16233 Seychelles, 2016 Serum, cDNA MinION Incomplete, 76.9% No ON631273
*Genome coverage is considered complete for Illumina data if the sequence obtained mapped to more than 98% of the DENV-1 reference sequence (Genbank 
accession number NC_001477.1). The amplicon tiling protocol for MinION used primer positions that did not amplify 155 bp at the 5’ extremity, nor 575 bp at the 3’ 
extremity of each genome, thus complete contiguous sequences using MinION map to 93% of the same reference sequence.

https://nanoporetech.github.io/medaka/
https://nanoporetech.github.io/medaka/
https://artic.network/ncov-2019/ncov2019-bioinformatics-sop.html
https://artic.network/ncov-2019/ncov2019-bioinformatics-sop.html
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amplicon tiling protocol would be required to allow effi-
cient amplification and sequencing of all DENV-1 geno-
types by this method.

Phylogeny
Phylogenetic analyses of the approximately 5000-bp 
genomic region of 3,891 publicly available sequences 

showed that all sequences from Reunion Island found in 
2019, 2020 and 2021 belonged to genotype I of DENV-1 
(Fig.  1a), and possessed nearly identical sequences, 
forming a monophyletic cluster in the phylogeny. These 
sequences showed greatest similarity (99.5% identity) 
to one isolate from Sri Lanka in 2020 (Accession num-
ber OL752439.1) and two sequences from China in 
2016 (Accession numbers MN933661 and MN933663). 
Sequences from the Seychelles belonged to the same 
major phylogenetic branch of DENV-1 genotype V, but 
fell into two paraphyletic clusters (Fig.  1a). DS16177 
showed greatest similarity (> 99% identity) to sequences 
from 2016 to 2017 isolated in Bangladesh, Singapore 
and China, whereas DS16229, DS16232, DS16233 and 
DS16243 showed greatest similarity to numerous ances-
tral isolates from Singapore, dating back to 2012. How-
ever, interpretations of isolate origins should consider 
the strong sampling bias that exists in available DENV 
sequence data (Fig. 1b).

Further extending the phylogenetic comparison to 
include whole genomic data (Additional file) provided 
no strong evidence for the introduction of separate 
lineages in Reunion, as all whole genome sequences 
showed > 99.8% identity (between 0 and 19 SNPs).

Major non-synonymous mutations
Fifteen non-synonymous amino acid changes were spe-
cifically observed in all Reunion DENV-1 full genome 
sequences compared with other DENV-1 genotype I 
sequences publicly available (Fig. 2). Mutations consisted 
of N90S in the C gene, R989K, N1068S and K1116R in 
NS1, I1389M, V1451I and E1487K in NS2B, A2271T 
in NS4B. Seven mutations H2620Y, K2881R, V2906I, 
E3052D, S3059A, V3179I and I3322V were observed in 
NS5. As only partial sequences were generated from the 
Seychelles samples, reconstruction of full polyprotein 
was not possible, thus precluding the analysis of amino 
acid changes.

Fig. 2  Schematic representation of conserved mutations identified within isolates from Reunion. Position numbers are expressed relative to the first con-
served start methionine of all polyprotein sequences belonging to DENV1 as defined in [28]. Mutations are expressed relative to the majority amino acid 
sequence of DENV1 genotype I sequences from the same dataset. Positions are colored by mature protein: C, Capsid; prM, premembrane; E, envelope; 
NS, Nonstructrural. A: Alanine; D: Aspartic acid; E: Glutamic acid; H: Histidine; I: Isoleucine; K: Lysine; M: Methionine; N: Asparagine; R: Arginine; S: Serine; T: 
Threonine; V: Valine; Y: Tyrosine

 

Fig. 1  Phylogenetic analyses of DENV. (a) Phylogenetic tree generated 
using a 4,838-bp region of the DENV genome (positions 156 to 4,994 of 
NC_001477.1). Inset are zoomed representations of the tree topology and 
bootstrap values for regions relevant to sequences generated as part of 
this study. (b) A graphical representation of the country of origin data for 
sequences included in the phylogenetic analysis
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Discussion
Since the recent dengue outbreak started in late 2017, 
uninterrupted transmission has occurred in Reunion 
Island. From 2017 to mid 2022, more than 70,000 
confirmed cases were reported [6–8]. Circulation of 
DENV-2 in 2018 was followed by a major co-circulation 
of DENV-2 and DENV-1 at the end of 2019 and dur-
ing 2020, with few cases of DENV-3. In 2021 and 2022, 
DENV-1 was the only serotype identified in Reunion 
Island [6]. The Seychelles were also confronted to dengue 
outbreaks years before (2015–2016) with a similar trend 
starting with DENV-2 which was replaced by DENV-1 
[6].

Using phylogenetic analyses, we showed that the 
DENV-1 sequences from Reunion were closely related 
to a 2020 strain circulating in Sri Lanka, whereas those 
from the Seychelles showed a greatest similarity for iso-
lates from Bangladesh, Singapore and China. This result 
suggested that the DENV-1 epidemic strains in Reunion 
and Seychelles were probably imported from Asian coun-
tries. We identified a single DENV-1 lineage belonging 
to genotype I that circulated in Reunion since its emer-
gences at the end of 2019 and subsequently in 2020 and 
2021. On the contrary, two lineages of DENV-1 of geno-
type V occurred in the Seychelles in 2016. It should be 
noted that these are likely partial descriptions of the 
total genetic diversity of DENV on the two islands due 
to the limited sample availability for our study. Even 
so, our results were distinct to previous observations 
in the region where similar viral epidemic strains usu-
ally occurred in contemporary outbreaks. For instance, 
between 2003 and 2004 an outbreak caused by DENV-1 
serotype started in the Seychelles [21] and then spread in 
Reunion [22]. The same DENV-1 serotype was involved 
in an outbreak in Toamasina, eastern Madagascar, two 
years later in 2006 [23], but a regional link could not be 
established as no sequence was found. More recently, 
dengue outbreaks due to DENV-2 occurred in 2016 in 
the Seychelles and then in 2018 in Reunion, and it was 
shown to involve the same cosmopolitan sub-lineage I 
[9, 10]. Moreover, the link of dengue outbreaks between 
these two islands has been demonstrated by the presence 
of dengue cases in Reunion imported from the Seychelles 
whether in 2016 [7] or in 2017 [8].

The presence of two distinct sub-lineages of DENV-1 in 
the Seychelles suggests at least two introduction events. 
Conversely, the full-genome phylogenetic analysis (Addi-
tional file) strongly suggests that sequenced DENV-1 
genotype I strains in Reunion originated from a single 
introduction event. In these two countries, DENV-1 dis-
placed the previously circulating DENV-2. The displace-
ment phenomenon was also reported among genotypes 
of the same dengue serotype. For instance, during the 
DENV-2 outbreaks in several South American countries, 

the American genotype was replaced by the Asian gen-
otype [24]. In some cases, lineage replacements were 
associated with an increased clinical severity [24, 25]. In 
Reunion, the introduction and subsequent dominance of 
DENV-1 was accompanied by severe cases with peculiar 
symptoms, notably the maculopathy. Ophthalmic com-
plications associated with dengue, with certain depen-
dence to serotype, have been increasingly described in 
recent times [13, 26]. The possible link between macu-
lopathy observed in Reunion dengue patients and the 
emerging lineage DENV-1 genotype I needs to be further 
investigated.

Moreover, the probable single introduction of the 
DENV-1 genotype I in Reunion may have been be 
accompanied by a discrete micro-evolution event since 
fifteen exclusive non-synonymous mutations were found 
in different proteins, including capsid, NS1, NS2B, NS3, 
NS4B, and NS5. Such local micro-evolution events have 
been observed in Asia, as shown for instance in the 
Hunan province where several mutations were seen in 
DENV-2 outbreak (2018) after importation from neigh-
boring areas having higher incidence of dengue [27]. The 
micro-evolution event in either structural or non-struc-
tural proteins can be neutral or under positive or nega-
tive selection with an impact in disease epidemiology 
[27, 28]. For instance, mutations in NS1 have been shown 
to influence production and secretion with impact on 
NS1 ELISA-based dengue detection in clinical samples 
[29]. In addition, it was shown that mutations involving 
changes from basic to acidic residues or vice versa tend 
to affect NS1 surface expression and secretion patterns 
of flavivirus with impact in host immunity [29, 30]. Here, 
mutations were observed also in both NS2B and NS5, 
two proteins that play a pivotal role in the activity of NS3 
protease, the latter being also a therapeutic target against 
flaviviruses [31]. Strikingly, when studying mutations in 
NS2B of the flavivirus Zika, researchers found one par-
ticular mutation able to enhance transmission potential 
and to confer escape from pre-existing DENV immunity 
[32]. When analyzing several natural dengue variants 
from dengue severe patients, from mild to fatal cases, a 
link was established between mutations in NS5 and the 
virulent DENV phenotypes [33]. Whether the mutations 
found in DENV-1 epidemic strain played a role in den-
gue severe cases observed in Reunion needs to be further 
investigated. Particular attention should be paid in the 
three mutations (R989K, N1068S and K1116R) located in 
NS1, since expression of this nonstructural glycoprotein 
has been linked to dengue disease severity [14, 34, 35]. In 
addition, as NS1 antigen is a marker for routine diagno-
sis in rapid detection of dengue virus infection [36], the 
impact of these mutations on the efficiency of the tests 
may require further control.
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Conclusion
The southwestern Indian ocean region is usually subject 
to dengue outbreaks with co-occurrence of a given den-
gue serotype alternating intense circulation and inter-
epidemic periods. In contrast to what was observed 
previously, uninterrupted dengue circulation is occur-
ring and we showed that recent DENV-1 outbreaks in 
Reunion and the Seychelles were caused by distinct geno-
types, all probably originating from Asia. Strikingly, the 
unique DENV-1 genotype I lineage circulating during 
three consecutive years in Reunion harbored non-synon-
ymous mutations whose biological significance need to 
be further investigated.
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