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Simple Summary: The choroid plexus is a specialized structure responsible for the production and
secretion of cerebrospinal fluid, and it is considered an interface between the peripheral immune
system and the central nervous system. It can allow the passage of inflammatory cells or pathogens
and has the potential to act as a source of inflammatory mediators in several diseases. Thus, this
study aimed to evaluate the role of the choroid plexus as a possible route of inflammatory cells in
the development of brain lesions in dogs with canine leishmaniosis, as well as its association with
blood–cerebrospinal barrier dysfunction. Our findings demonstrated blood–cerebrospinal barrier
dysfunction during leishmaniosis and suggest that the chemokines CCL-5 and CXCL-10 can be
responsible for the recruitment of inflammatory cells found in choroid plexus.

Abstract: Visceral canine leishmaniasis (CanL) can cause several clinical manifestations, including
neurological lesions. Few reports have characterized the lesions observed in the central nervous
system (CNS) during CanL; however, its pathogenesis remains unclear. The choroid plexus (CP)
is a specialized structure responsible for the production and secretion of cerebrospinal fluid (CSF)
and considered an interface between the peripheral immune system and CNS. It can allow the
passage of inflammatory cells or pathogens and has the potential to act as a source of inflammatory
mediators in several diseases. Thus, this study aimed to evaluate the role of CP as a possible route of
inflammatory cells in the development of brain lesions in dogs with CanL, as well as its association
with blood–CSF barrier (BCSFB) dysfunction. Samples were collected from 19 dogs that were naturally
infected with CanL. We evaluated the histopathological lesions in the brain and investigated the
gene expression of the cytokines. Capture enzyme-linked immunosorbent assay (ELISA) was used
to evaluate the presence of the same cytokines in the CSF. Biochemical analysis was performed to
compare the presence of albumin in the serum and CSF. Indirect ELISA was performed to measure the
presence of anti-Leishmania antibodies in the CSF, which would suggest the disruption of the BCSFB.
Histopathological evaluation of the dogs’ brains revealed mild-to-severe inflammatory infiltrates,
mainly in the CP and meninges. We also detected the presence of anti-Leishmania antibodies and
albumin in the CSF, as well as Leishmania DNA in the CP. The gene expression of CCL-5 was
increased in the CP of infected dogs compared with that of controls, and there was a tendency for
the increase in the gene expression of CXCL-10. Thus, our findings confirm the disfunction of the
BCSFB during CanL and suggest that the chemokines CCL-5 and CXCL-10 can be responsible for the
recruitment of inflammatory cells found in CP.
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1. Introduction

Leishmaniasis is a zoonotic, chronic, and systemic disease caused by several protozoan
Leishmania spp. It is endemic in 76 countries and has been described in at least 12 countries
on the American continent. Brazil registered 90% of the cases in Latin America, reporting
1.993 human cases in 2020, with 165 deaths (Ministry of Health, Brazil, 2022). In cities, dogs
play a key role as domestic reservoirs for parasites [1].

Visceral canine leishmaniasis (CanL) can cause several clinical manifestations in dogs,
of which the most common are generalized lymphadenopathy, cachexia, lethargy, hep-
atosplenomegaly, fever, and chronic diarrhea [2]. Neurological alterations, such as seizures,
motor incoordination, paresis, and myoclonus, have already been reported [3–6]. However,
studies have demonstrated that only 4–5% of chronically infected dogs develop neurologi-
cal signs [6,7], although histopathological alterations in the central nervous system (CNS)
are frequently described [8].

Naturally infected dogs have demonstrated evidence of brain inflammation and dis-
ruption of the blood–brain barrier (BBB) [8,9], presenting with alterations such as meningitis,
choroiditis, perivascular immunoglobulin deposition, and signs of glial activation [10]. The
activation of enzymes that degrade extracellular matrix components and pro-inflammatory
profile of cytokines and chemokines in the brain have also been detected [11–13].

The choroid plexus (CP) is a specialized structure responsible for the production
and secretion of the cerebrospinal fluid (CSF). It is composed of a single layer of highly
vascularized epithelial cells located in the lateral, third, and fourth ventricles. These
cells have occlusive-type intercellular junctions that form the blood–cerebrospinal barrier
(BCSFB). Since the BBB is absent in the CP, the BCSFB is responsible for avoiding direct
contact between the blood and CSF; nevertheless, access of blood molecules and cells into
the choroidal stroma occurs. Thus, the CP is considered to be a mediator between the
peripheral immune system and CNS, allowing the passage of inflammatory cells and acting
as a producer of inflammatory mediators in several diseases [14–16]. In addition, the CP
and CSF can act as entry sources for circulating pathogens and antigens [17].

It is already know that epithelial cells from the CP have the ability to produce cytokines,
such as interleukin (IL)-6, IL-8, tumor necrosis factor α (TNF-α), and IL-1β, which can be
released into the CSF when systemic peripheral inflammation occurs, resulting in changes
in the nervous tissue [16,18–20]. Regarding chemokines, few studies have been conducted
on their synthesis and secretion by CP [21]. However, CP epithelial cells are believed to
express chemokines and adhesion molecules that facilitate the homing of leukocytes from
the CSF to the CP [22,23].

Macrophage inflammatory protein-1α (CCL-3) and Motif chemokine ligand 4 (CCL-
4) are chemokines expressed by activated inflammatory macrophages, whereas Motif
chemokine ligand 5 (CCL-5), also known by “Regulated on Activation, Normal T cell
Expressed and Secreted” (RANTES), and C-X-C motif chemokine ligand 10 (CXCL-10) are
expressed and secreted by T lymphocytes [24]. CCL-5 and CXCL-10 are associated with
regulating the migration of Th1 effector cells to the site of inflammation. Th1 response in
leishmaniasis is associated with parasite control and elimination [25,26].

Previous studies conducted by our research group pointed out a pro-inflammatory
brain environment favorable to an accumulation of T lymphocytes CD3+ in dogs in-
fected with CanL, especially in leptomeninges, the subependymal region, and the CP [8,9].
Histopathological evaluation of the CP also demonstrated changes that suggested dysfunc-
tion in the BCSFB [9]. From these findings, in this study, we evaluated the CP with the aim
of determining its possible role as a gateway to the parasite and as structure responsible for
producing pro-inflammatory mediators, triggering and perpetuating the inflammatory pro-
cess within the nervous environment. Therefore, we evaluated the expression of cytokines
and chemokines already known to be differentially expressed in the brains of dogs with
CanL [11,27,28] and assessed BCSFB disfunction by measuring the presence of albumin
and anti-Leishmania antibodies in the CSF.
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2. Materials and Methods
2.1. Sample Collection

A total of 19 adult dogs, non-bred; aged between one and five years; in a random pro-
portion of males and females; not vaccinated against leishmaniasis; serologically positive
for CanL as shown by enzyme-linked immunosorbent assay (ELISA; cut-off > 0.270); and
presenting characteristic symptoms of the disease, such as weight loss, lymphadenopathy,
dermatological lesions and/or onychogryphosis, were included in the infected group.

The control group consisted of four dogs, negative for CanL as shown by ELISA and
quantitative polymerase chain reaction (qPCR), and whose cause of euthanasia was related
to complications of trauma lesions, showing no signs related to infectious or neurological
diseases.

The dogs of both groups were euthanized according to the protocol of the Federal
Council of Veterinary Medicine of Brazil, in the Center for Zoonosis Control of Araçatuba.
Before euthanasia, they were anesthetized with sodium pentobarbital (Hypnol® 3%) at
a dose of 15–20 mg/kg, intravenously (IV). Under anesthesia, blood and CSF samples
were collected for biochemical testing, allowing clinical staging of the animals according to
Solano-Gallego et al. (2009) [2]. Subsequently, potassium chloride (19.1%) was administered
at a dose of 2 mL/kg, IV. All of the dogs were serologically negative for Neospora caninum
and Toxoplasma gondii, as shown by the indirect immunofluorescence reaction (IFA, tilters
up to 1:16 were considered negative), and were negative in blood PCR for Babesia spp. and
Ehrlichia spp.

Routine necropsy was performed and samples from the spleen and brain were col-
lected and immediately stored frozen in RNA preserving solution (RNAlater, Applied
Biosystems, AM7020) or 10% formaldehyde, according to the needs of the techniques to be
performed.

For histopathological evaluation of the brain, samples of coronal sections of the cortical
regions (temporal and piriformis), hippocampus, and thalamus, containing the periventric-
ular region, were obtained, including the CP.

For molecular analysis of the CP, in order to collect the structure in the lateral and
fourth ventricles, a coronal section passing through the center of the pituitary infundibulum
and a cranial coronal section to the infundibulum, passing through the mamillary bodies,
were made (Figure 1A). The choroid plexus of the fourth ventricle was identified after
performing a median sagittal section of the cerebellum and brainstem, at the level of the
cerebellar peduncles (Figure 1B). In non-fixed tissue, the red coloration of the structure
was easily visualized, allowing us to efficiently isolate and collect fragments of the CP
(Figure 1C,D).

2.2. Histopathological Evaluation of the Brain

The intensity of brain inflammation in hematoxylin and eosin-stained tissues was
determined semiquantitatively using a 0–3 scoring system, as previously described by Melo
and Machado [8]. The presence and intensity of the inflammatory infiltrate was assessed in
the leptomeninges, subependymal region, and CP. The absence of inflammatory cells was
assigned a score of 0; discreet or focal accumulation of rare cells was assigned a score of 1;
diffuse or multifocal accumulation of few cells was assigned a score of 2; and the marked
presence of inflammatory cells was assigned a score of 3. The presence of perivascular cuffs
was also evaluated, and only cuffs with at least two layers of inflammatory cells around
the vessel were considered.

2.3. Detection and Quantification of Leishmania DNA in the Spleen and CP

Total DNA was extracted from tissue fragments of the spleen and CP using the
DNeasy Blood & Tissue Kit (69506, Qiagen, Hilden, Germany) according to the manufac-
turer’s protocol. Spleen qPCR was performed to confirm the positivity of infected animals
as well as to check their parasite load. Quantification of Leishmania DNA in CP was
performed only in 13 dogs in the infected group due to the small amount of material.
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The extracted DNA was quantified using a NanoDrop spectrophotometer (260/280 ratio
of 1.8 and 2.0). qPCR was performed using Eppendorf Mastercycler® RealPlex2, SYBR
Green PCR Master Mix (4309155, Applied Biosystems) and 900 nM of each primer (sense:
5′-CCTATTTTACACCAACCCCCAGT-3′; anti-sense: 5′-GGGTAGGGGCGTTCTGCGAAA-
3′), which amplify a 116 bp fragment of the minicircle kinetoplast DNA (kDNA) of
Leishmania spp. [29]. Duplicate samples were incubated at 94 ◦C for 2 min, followed
by 40 amplification cycles (94 ◦C for 15 s, followed by 60 ◦C for 1 min). Subsequently,
the samples were subjected to a dissociation curve (melt curve) from 60 to 95 ◦C, with
increments of 0.5 ◦C every 5 s. Nuclease-free water was used as the negative control for the
reaction. For absolute quantification, serial dilutions from 10−1 to 106 L. infantum DNA
(MHOM/BR/72/LD46) were used to construct a standard curve.
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Figure 1. Coronal section highlighting the lateral ventricles (VL) (dashed circles) and pituitary in-
fundibulum (PI) (A). In the lateral ventricles, the choroid plexus can be visualized as a red structure in
non-fixed tissue ((C)—dashed circles – Figure Caption). (B) Median sagittal section of the cerebellum
and brainstem, at the level of the cerebellar peduncles, passing through the infundibulum. The
choroid plexus of the fourth ventricle (IIIV) is highlighted in the dashed circle (D).

2.4. Cytokines and Chemokines Gene Expression in the CP

CP samples were extracted using the RNeasy® Lipid Tissue Mini kit (74804, Qiagen,
Hilden, Germany) following the manufacturer’s recommendations. After obtaining RNA,
genomic DNA lysis was performed using the RNase-Free DNase Set (79254; Qiagen). To-
tal RNA was quantified using a NanoDrop spectrophotometer (260/280 ratio, 2.0 and
2.3). Reverse transcription was performed to obtain cDNA using the RT2 First Strand
Kit (330404; Qiagen) following the manufacturer’s instructions. qPCR was performed
using the CSFX96TM Real-Time System (Bio-Rad®, Hercules, CA, USA) detection sys-
tem with the commercial Taqman® Universal Mastermix (4326708, Applied Biosystems,
Waltham, MA, USA).

The concentrations of the oligonucleotide primers and probes for IL-1β, IL-6, TNF-
α, interferon γ (INF-γ), and glyceraldehyde-3-phosphate dehydrogenase (G3PDH) were
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determined according to the methods described by Fujiwara et al. [29] and Peters et al. [30].
CCL-3, CCL-5, CXCL10, and ribosomal protein L32 (RPL-32) were purchased from Life
Technologies (Carlsbad, CA, USA). The amplification conditions were: 55 ◦C for 2 min,
95 ◦C for 10 min, 45 cycles at 95 ◦C for 15 s, and 60 ◦C for 1 min. Reactions were performed
in duplicate.

The quantification of cytokines and chemokines gene expression was evaluated using
the 2-∆∆Ct method, as previously described by Livak and Schmittgen (2001) [31], using the
geometric mean of two reference gene signals, G3PDH and RPL-32, for data normalization,
as described by Pfaffl et al. (2004) [32]. The results were described using relative gene
expression, which indicates the number of times (fold change) the expression of a target
gene was higher (upregulated) or lower (downregulated) in the infected group than in the
control group.

2.5. Cytokines in the Serum and CSF

Capture ELISA was performed according to manufacturer’s instructions to detect and
quantify the presence of cytokines IFN-γ, IL-1β, TNF-α, and IL-6 in the CSF and serum of
infected dogs. CSF and serum samples were centrifuged at 10,000× g for 15 min at 4 ◦C,
and the supernatant was separated and immediately stored at −80 ◦C. The concentrations
of TNF-α, IFN-γ, and IL-1β were determined using commercial kits (Duo SET® Canine
TNF-α; Duo SET® Canine IFN-γ and Duo SET® Canine IL-1β—R&D System, Minneapolis,
MI, USA).

For IL-6 evaluation, anti-canine monoclonal antibody (mAb) produced in mice (Cat.
Number: MAB16091, R&D Systems, USA) and biotinylated anti-canine polyclonal antibody
produced in goat (Cat. Number: BAF1609, R & D System, USA) were used. Plates with
96 wells (Corning, NY, USA) were sensitized with 2 µg/mL of mAb and 1 µg/mL of
detection antibody. Recombinant canine IL-6 (Cat. Number: 1609-CL, R&D Systems,
USA) was used to generate the standard curves. The test was developed using 3,3′,5,5′-
tetramethylbenzidine (TMB; Sigma, Ronkonkoma, NY, USA).

Samples were measured in duplicate, and the plates were read using a spectropho-
tometer (Spectra Count, Packard Bio Science Company, Meriden, CT, USA) at 450 nm. The
limit of detection was 3.90 pg/mL in CSF and 7.81 pg/mL in serum for IL-1β, 78.12 pg/mL
in CSF and 9.7 pg/mL in serum for IL-6, 31.21 pg/mL in CSF and 15.62 pg/mL in serum
for TNF-α, and 15.62 pg/mL in CSF and 62.5 pg/mL in serum for IFN-γ.

2.6. Albumin and Anti-Leishmania Antibodies in the CSF

Biochemical tests were performed to assess the levels of total protein and albumin in
the serum and CSF to verify the possible breakdown of the barriers (BBB and BCSFB). The
albumin quotient was calculated using the formula established by Gama et al. (2007) [33]
and values higher than 0.64 were considered positive for loss of the blood CSF barrier
integrity. Indirect ELISA was used to determine the concentration of anti-Leishmania
antibodies in the CSF, as previously described by Lima et al. (2003) [34]. The assays were
performed in only 16 dogs because of the restricted amount of CSF.

2.7. Statistical Analysis

Statistical analyses were performed using Prism software (v6.05, GraphPad, La Jolla,
CA, USA). Differences between the infected and control groups were determined using
the Mann–Whitney test, and correlation was assessed using the Spearman test. Statisti-
cal significance was set at p < 0.05. Evidence of statistical trend was considered when
0.05 < p < 0.1.

3. Results
3.1. Clinical Staging

As previously described by Solano-Gallego et al. [2], 26.31% (5/19) of the dogs were
classified in stage I, 52.63% (10/19) in stage II, 15.78% (3/19) in stage III, and 5.26%
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(1/19) in stage IV. The animals’ data and test results that allowed staging are available in
Supplementary Table S1 in the Supplementary Materials.

Macroscopic evaluation revealed that 78.94% (15/19) of the infected dogs presented
with weight loss, while 68.42% (13/19) had skin alterations. Splenomegaly was observed
in 63.15% (12/19) of the dogs, and 35.29% (7/19) had generalized lymphadenopathy.
Laboratory analyses showed that 84.21% (16/19) of the infected dogs had anemia, 52.63%
(10/19) had lymphopenia, and 31.57% (6/19) had thrombocytopenia. Almost all infected
dogs showed hypoalbuminemia. Moreover, azotemia was evident in 31.57% (6/19) of the
infected dogs.

3.2. Brain Histopathology and Immunohistochemistry

Mild-to-severe inflammation was the most common change found in the brains of the
infected dogs, which was frequently in the leptomeninges and CP. Representative images
of inflammation in each evaluated area are shown in Figure 2. In addition, perivascular
cuffing was present in 26.31% (5/19) (Figure 2C). The inflammatory infiltrate was composed
predominantly of lymphocytes and plasma cells (lymphoplasmacytic). It is possible to
observe the margination and transmigration of leukocytes in the capillaries of the choroid
plexus on HE staining (Figure 3A–D), and the participation of TCD3+ lymphocytes was
confirmed by immunohistochemistry (Figure 3E,F). Amastigote forms of Leishmania were
visualized in the CP of one dog [35]. Table 1 summarizes the percentage of infected animals
with brain inflammation and its intensity in each region evaluated. Supplementary Table S2
in the Supplementary Materials details the histopathological findings of each dog in the
study. Appendix A, Figure A1, demonstrates the histology of the choroid plexus with
minimal changes, belonging to the control dogs.

3.3. Detection and Quantification of Leishmania DNA in the CP

The presence of kDNA from L. infantum chagasi was detected in the spleens of all dogs
and in the CP of 38.46% (5/13) of the dogs with CanL. The amplification reaction obtained
an efficiency of 106%, coefficient of determination (r2) of 0.968, and angular coefficient
of −3.179. The standard curve of the serial dilutions of L. infantum DNA allowed for the
quantification of the parasite load in PC, obtaining a detection range of 1 to 27,778 parasites
per 10 mg of CP.

3.4. Gene Expression of Cytokines and Chemokines in the CP

The gene expression of the cytokines IL-1β, IL-6, INF-γ, and TNF-α in the CP of dogs
with CanL showed no statistical difference compared with the control group (Figure 4A).
Meanwhile, the gene expression of the chemokine CCL-5 in the CP of dogs with CanL was
higher than that in the control group (p < 0.05), whereas that of CXCL-10 tended to increase
(p = 0.05) (Figure 4B). However, there was no statistical difference in the gene expression of
CCL-3 and CCL-4 compared with the control group.

3.5. Cytokines in the Serum and CSF

The cytokines IL-6 and IFN-γ were not detected in the serum or CSF of any of the dogs
with CanL in this study. IL1-β was detected in the serum and TNF-α in the CSF; however,
there was no statistical difference with the control group.

3.6. Albumin and Anti-Leishmania Antibodies in the CSF

Anti-Leishmania antibodies were detected in the CSF samples of 68.75% (11/16) of
the dogs infected with CanL. The optical density ranged from 0.1 to 1.348 (Figure 5D). An
increase in the amount of albumin in CSF was observed in 77.77% (14/18) of the dogs
infected with CanL compared with that in healthy dogs (Figure 5A). The albumin quotient
was increased in 72.22% (13/18) of the dogs infected with CanL (Figure 5C).
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diencephalon. (D) Focal perivascular lymphoplasmacytic infiltrate (*) in the leptomeninges. (E,F) 
Immunolocalization of CD3+ T lymphocytes in the cerebellar white matter (*)composing the inflam-
matory infiltrate of the leptomeninges (*) ((A–D) HE stain and (E,F) immunostain for CD3 lympho-
cytes, bar = 20 μm). 

Figure 2. Representative photomicrographs of the inflammatory changes observed in the brain
of dog with visceral leishmaniasis. (A) Inflammatory infiltrate of mononuclear cells with focal
distribution in the CP. (B) Plexus choroiditis characterized by marked mononuclear inflammation
and evident stromal thickening. (C) Perivascular cuff (*) with more than two layers in the region
of the diencephalon. (D) Focal perivascular lymphoplasmacytic infiltrate (*) in the leptomeninges.
(E,F) Immunolocalization of CD3+ T lymphocytes in the cerebellar white matter (*)composing the
inflammatory infiltrate of the leptomeninges (*) ((A–D) HE stain and (E,F) immunostain for CD3
lymphocytes, bar = 20 µm).
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predominantly mononuclear inflammatory cells (lymphocytes and plasma cells) marginalizing the 
endothelial cells and transmigrating through the capillaries (arrows). Arrow in (B) also points out a 
rarely observed neutrophil. In (D), perivascular infiltrate around a capillary of the VC (*), with lym-
phocytes and plasma cells (arrowhead). In (E,F), perivascular CD3+ T lymphocytes, transmigrating 
through the epithelium and adhered to the apical surface of the PC epithelial cells ((A–D) HE stain 
and (E,F) immunostain for CD3 lymphocytes, bar = 10 μm). 

  

Figure 3. Photomicrographs of choroid plexus (CP) of dog with visceral leishmaniasis (A–C). Note
predominantly mononuclear inflammatory cells (lymphocytes and plasma cells) marginalizing the
endothelial cells and transmigrating through the capillaries (arrows). Arrow in (B) also points out a
rarely observed neutrophil. In (D), perivascular infiltrate around a capillary of the VC (*), with lym-
phocytes and plasma cells (arrowhead). In (E,F), perivascular CD3+ T lymphocytes, transmigrating
through the epithelium and adhered to the apical surface of the PC epithelial cells ((A–D) HE stain
and (E,F) immunostain for CD3 lymphocytes, bar = 10 µm).
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Table 1. Percentage of dogs with inflammation classified according to intensity and region.

Intensity of
Inflammation

Brain Region

Leptomeninges (%) Subependyma (%) Choroid Plexus (%)

0 (−) 0.0 42.1 5.3
1 (+) 21.1 36.8 15.8

2 (++) 36.8 21.1 47.4
3 (+++) 42.1 0.0 31.6

0—(−) Absence of inflammatory cells; 1—(+) Discreet or focal accumulation of rare cells; 2—(++) Diffuse or
multifocal accumulation of few cells; 3—(+++) Marked presence of inflammatory cells.
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Figure 4. Mean relative gene expression of cytokines (A) and chemokines (B) in the choroid plexus
of dogs with visceral leishmaniasis. The values, on the logarithmic scale at base 10, indicate the
number of times (fold change) the gene for cytokines and chemokines is more (positive values) or
less expressed (negative values) in relation to the dogs in the control group. The normalization factor
was the reference gene, glyceraldehyde 3-phosphate dehydrogenase, and ribosomal protein L32
gene according to the 2−∆∆Ct method. * Indicates p < 0.05, ±0.05 < p < 0.1; ** indicates tendency for
increased gene expression.
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Figure 5. Determination of albumin concentration and quotient in the serum and cerebrospinal fluid
(CSF) and anti-Leishmania antibodies in the CSF of dogs with CanL. Horizontal line indicates the
median. The dotted lines represent the cut-off values. White circles represents the result of each dog.
(A) CSF albumin of infected dogs with CanL (reference value 2600–3300 mg/dL). (B) Serum albumin
of infected dogs with CanL (reference value < 10 mg/dL). (C) Albumin quota established in the CSF
of infected dogs with CanL (reference value > 0.64). (D) Concentration of specific anti-Leishmania
antibodies in the CSF of infected dogs with CanL. O.D., optical density.
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4. Discussion

Histopathological analysis of brain samples from dogs with CanL demonstrated the
presence of mononuclear lymphoplasmacytic inflammatory cells that were mostly located
in perivascular areas, mainly in the leptomeninges of the cortical, cerebral, and cerebellar
regions, as well as in the subependymal region and CP, with different intensities. This
finding is consistent with that of our previous studies and those of others that characterized
histopathological lesions in the brain of dogs with leishmaniasis, which can be present even
in the absence of neurological signs [8,9,36]. Similar to other studies [4,9], we did not find a
correlation between the intensity of inflammation and the clinical staging of the animals.

The CNS has a low number of inflammatory cells under normal conditions and it is
considered an immunologically privileged region with a complex system of protective bar-
riers [37]. In the CP, macrophages, dendritic cells, and rare lymphocytes are expected to be
found in the matrix stroma, responsible for antigen presentation and immunosurveillance
in the region [38]. T cell lymphocytes, after peripheral immune stimulation, adhere to the
CP and transmigrate through its epithelium, where they can be activated and proliferate,
based on the stimulation of specific antigens [23]. We suggest that the inflammatory infil-
trate observed mostly in the CP of CanL infected dogs indicates an active process of cell
migration and proliferation through the CP. Systemic inflammatory mediators released
during CanL infection, as well as the presence of the parasite itself, are possible mechanisms
that can trigger immune cell trafficking to the CNS, passing through the CP. The presence of
plasma cells in the infiltrate has been described in various organs and tissues in CanL [39].

We detected Leishmania DNA via qPCR in the CP of 38% (5/13) of the infected dogs.
The presence of parasite DNA in the CSN and CSF using qPCR has been previously reported
(8,35), albeit the presence of amastigotes forms were observed in the CP of only one dog,
by immunohistochemistry, and this result was published in a previous paper [35]. To the
best of our knowledge, there are only a few reports on the presence of the whole parasite
in the CNS of dogs [36], including amastigotes found in the CP [40], meninges [41], and
spinal cord [41,42]. The highest CP parasite load was found in the sample from the same
dog in whose CP we observed amastigote forms of the parasite via immunohistochemistry.
It is likely that all dogs with a positive PCR in CP samples present amastigotes in the CP,
undetected by immunohistochemistry, but detected by PCR, a more sensitive test. It is
unlikely that the Leishmania DNA identified in the CP comes from the blood, considering
that not all infected animals, thus blood positive, were also PCR positive in the CP.

Presence of anti-Leishmania antibodies and albumin in the CSF of infected dogs in
this study corroborates the hypothesis of a brain barrier dysfunction promoted by Leish-
mania infection, already observed in the BBB [8,9] and now in the BCSFB. In response to
systemic inflammation, inflammatory mediators have direct access to the brain through the
circumventricular organs, as well as through the disrupted brain barriers, which allow the
penetration of various mediators and potential neurotoxic factors into the brain [14,37,43].

In our study, no statistical difference in the gene expression of the cytokines IL-1β,
IL-6, TNF-α, and IFN-γ was detected in the CP of dogs with CanL compared with control
dogs. Furthermore, these cytokines were not detected in the serum and CSF of the dogs,
except for IL1-β in the serum and TNF-α in the CSF, and they did not differ from control
dogs.

Studies which evaluated cytokine gene expression in the brains of dogs with CanL
showed an increased expression of IL-1β, IL-6, TNF-α, and IFN-γ [11,27]. As we did not
observe a similar pattern in the CP of infected dogs, this suggests that the CP does not
directly participate in the production of these specific cytokines. Notwithstanding, the
CP is constantly exposed to signals from the brain parenchyma and peripheral immune
system; therefore, its role in CanL may be restricted to mediating the inflammatory cell
transmigration to the CSF and the inflammatory response [14,17,23].

The presence of Leishmania DNA in the CP, as well as peripheral inflammatory
mediators induced by infection, could activate local Toll-like receptors, such as TLRs 2 and
9, which are increased in the CP of dogs with CanL [28], and then trigger the production of
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cytokines and chemokines in other CNS cells of infected dogs [11,27], such as microglia and
astrocytes, which are absent in the CP, but exhibit an activated phenotype in CanL. Glial
cell activation produces cytokines and others inflammatory mediators that can aggravate
barrier dysfunction [10].

Systemic inflammatory stimuli resulting from Leishmania infection could promote a
compartmentalized and CNS-specific inflammatory response, as the immune response
to leishmaniasis in different organs is distinct, even after the same systemic peripheral
stimulus [39,44]. In this case, studies suggest that the CP, after peripheral stimulation,
acts by promoting T cell trafficking through the CNS and modulating the innate im-
mune response [21,23]. Leukocyte transmigration to the CNS is mainly stimulated by
the chemokines produced by the epithelial cells of the CP. These cells serve as the BCSFB
and determine the degree to which molecules and leukocytes can translocate from the
blood to the CSF and CNS, participating in the upregulation of chemokines following a
peripheral stimulus [23]. In fact, we observed a significantly increased gene expression of
the chemokine CCL-5 and tendency to increase the gene expression of CXCL-10 in the CP
of dogs with CanL.

The chemokine CCL-5 is highly chemoattractant for macrophages and monocytes, as
well as several subpopulations of lymphocytes, dendritic cells, and natural killer cells [24].
Moreover, CXCL-10 is induced by IFN-γ, which regulates the migration of Th1 effector
cells to the site of inflammation during the adaptive immune response [24]. Previous
studies that evaluated the profile of chemokines expressed in the CNS of dogs with CanL
detected a pattern of upregulation in CCL-3, CCL-4, and CCL-5 [11]. These results agree
with our findings, although there was no statistical difference in gene expression of CCL-3
and CCL-4 in the CP of infected dogs compared to the control group. Increased CCL-5
expression has also been found in the skin and spleen of dogs with leishmaniasis, and
is positively correlated to parasite load [45,46]. Furthermore, it is important to consider
the limitations of this study, such as the limited number of dogs and the use of dogs in
different stages of infection, which may have impacted the lack of statistical significance in
the results. In vitro studies should be ideal for verifying the observed results.

Since the presence of lymphocytes has already been reported in the brains of dogs
with CanL [9], increased expression of CCL-5 and CXCL-10, as observed in our study, is
probably related to lymphocyte recruitment for the CP. The presence of T lymphocytes
in the CP could alter the function of the BCSFB or favor the production of other pro-
inflammatory mediators that were not measured in our study. These mediators can promote
the inflammatory phenotype of glial cells once they circulate in the CSF.

5. Conclusions

Dogs with CanL frequently present with leptomeningitis and choroiditis regardless of
the clinical stage of the animal. We confirmed blood–CSF barrier and BBB dysfunction due
to the presence of anti-Leishmania antibodies and albumin in the CSF. We also observed
the presence of CD3+ T cells migrating through the CP. In addition, the upregulation of
the chemokine CCL-5 and the tendency to increase CXCL-10 may favor local inflammation
during CanL infection. These findings, associated with the previously described dysfunc-
tion of the blood–brain and blood–cerebrospinal barriers in dogs with CanL (8), suggest
that the CP may act as a gateway for parasites’ entrance into the CNS.
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