

A dual function for the chromatin organizer Special A-T rich Binding Protein 1 in B-lineage cells

Morgane Thomas, Charlotte Bruzeau, Ophélie Alyssa Martin, Justine Pollet, Sébastien Bender, Claire Carrion, Sandrine Le Noir, Eric Pinaud

► To cite this version:

Morgane Thomas, Charlotte Bruzeau, Ophélie Alyssa Martin, Justine Pollet, Sébastien Bender, et al.. A dual function for the chromatin organizer Special A-T rich Binding Protein 1 in B-lineage cells. Cellular and molecular immunology, 2023, 20 (10), pp.1114-1126. 10.1038/s41423-023-01069-y . hal-04240912

HAL Id: hal-04240912 https://hal.science/hal-04240912

Submitted on 13 Nov 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A dual function for the chromatin organizer Special A-T rich Binding Protein 1 in B-lineage cells

- 3
- 4 Morgane Thomas 1£, Charlotte Bruzeau 1, Ophélie Alyssa Martin 1, Justine Pollet 1, Sébastien
- 5 Bender 1,2,3, Claire Carrion 1, Sandrine Le Noir 1‡ and Eric Pinaud 1‡
- 1 Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université
 de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France.
- 8 2 Centre Hospitalier Universitaire Dupuytren, Service d'Immunopathologie, Limoges, France.

3 Centre Hospitalier Universitaire de Limoges, Centre National de l'Amylose AL et Autres Maladies
 par Dépôt d'Immunoglobulines Monoclonales, Limoges, France.

£ Current Address : Laboratoire Suivi des Thérapies Innovantes, Institut de Génétique Humaine,
 UMR 9002 CNRS-UM, Montpellier, France

- 13 ‡ corresponding authors
- 14

15 **Correspondence should be addressed to:** eric.pinaud@unilim.fr and sandrine.le-noir@unilim.fr

- 16 Keywords: B cells, nuclear factor, ambivalent, somatic hypermutation
- 17
- 18

19 Abstract

20 SATB1 (Special A-T rich Binding protein 1) is a cell type specific factor that regulates the genetic 21 network in developing T cells and neurons. In T cells, SATB1 is required for lineage commitment, 22 VDJ recombination, development and maturation. Considering that its expression varies during B 23 cell differentiation, the involvement of SATB1 needed to be clarified in this lineage. Using a KO 24 mouse model deleting SATB1 from the pro-B cell stage, we examined the consequences of SATB1 25 deletion in naive and activated B cell subsets. Our model indicates firstly, unlike its essential 26 function in T cells, that SATB1 is dispensable for B cell development and the establishment of a 27 broad IgH repertoire. Second, we show that SATB1 exhibits an ambivalent function in mature B 28 cells, acting sequentially as a positive and negative regulator of Ig gene transcription in naive and 29 activated cells, respectively. Third, our study indicates that the negative regulatory function of 30 SATB1 in B cells extends to the germinal center response in which this factor limits somatic 31 hypermutation of Ig genes.

32

33 Introduction

34 The transcription factor Special A-T rich binding protein 1 (SATB1) is a factor able to bind to Matrix 35 Attachment Regions (MAR) in the nucleus ¹. This MAR-binding protein (MAR-BP) is indispensable 36 for T lymphocyte development ²⁻⁴ through its implication in properly organizing nuclear architecture. 37 especially chromatin folding 5-7. Murine SATB1, sharing more than 98% identity with its human 38 homologue, can multimerize through an ubiquitin-like domain ⁸ and interacts with chromatin through 39 its CUT-like and homeodomains respectively involved in DNA binding affinity and specificity 9,10. 40 One historic feature of SATB1 is its ability to tie nuclear matrix proteins ^{11,12}. Another essential 41 feature, as a transcription factor, is its capacity to bind DNA for gene regulation. Strikingly, such 42 interactions were found to occur in nucleosome-dense regions, preferentially at AT-rich sequences 43 in the nucleosomal core ¹³, a feature that strongly supports its candidacy as a pioneer factor. Given 44 its multivalent potency as a nuclear matrix scaffolding factor, a genome organizer involved in 45 chromatin looping and a transcription factor, the exact mechanism linking this MAR-BP to gene 46 regulation remains puzzling. The large body of literature related to SATB1 in T cells suggest that 47 this factor is capable of flexible functions; either binding to euchromatin ^{5,6} or nucleosome-dense 48 regions ¹³, depending on the cell type and development stage assessed. Long distance interactions 49 between promoters and enhancers can be promoted by SATB1 homotetramerization⁸. A negative 50 regulatory function for SATB1 was attributed to its capacity to recruit chromatin modifiers such as 51 Histone deacetylase 1 (HDAC1) ¹⁴. Indeed, SATB1 is subject to posttranslational modification: 52 phosphorylation of this MAR-BP modifies interactions with chromatin corepressor and coactivator 53 complexes, leading to a switch in its transcriptional activity ^{15,16}; SATB1 acetylation disrupts its 54 interaction with C-terminal binding protein 1 (CtBP1) ¹⁷. Moreover, regulation of Satb1 gene is by 55 itself tightly regulated in T cells by interchanging promoter usage, resulting in fine tuning of protein expression ^{18,19}. These multiple levels of regulation suggest the need for meticulous control of 56 57 SATB1 expression.

58 SATB1 deletion models in the mouse led to major alterations in neuronal, hematopoietic and 59 immune systems ^{2,20} and pointed out broad and critical functions for this protein in mouse 60 development. SATB1 is a major player in early hematopoiesis since it promotes hematopoietic 61 stem cell self-renewal (HSC) ²¹. Based on its relative expression level in differentiating HSC ²², 62 SATB1 favors the lymphoid lineage ²³. In erythrocyte and myeloid cells, this protein also modulates 63 epigenetic marks by association with CBP (CREB binding protein) to control β-globin and NADPH oxydase gene expression ^{24–26}. There is also growing evidence showing that SATB1 is involved in 64 cancer and auto-immune diseases 6,7,27,28 highlighting the necessity to decipher its regulation in 65 66 immune cells.

Due to thymus alteration in *Satb1* KO mice ², SATB1's functions were largely studied in T-cells.
Initially described as a repressor factor ^{12,29}, SATB1 proved to be also a transcriptional activator

69 ^{6,30}. As an example of ambivalence, SATB1 could repress *c-myc* in resting T-cells while stimulating 70 its expression in activated T cells ³. It is now established that this MAR BP is a major regulator of 71 thymocyte development throughout all differentiation stages from progenitors to regulatory subsets 72 ^{28,31,32}. One notable role of SATB1 in T cells is its activator function for *Rag* gene expression in 73 order to promote VDJ recombination and shape the T cell receptor repertoire ^{33,34}. In this context, 74 SATB1 has been shown to bridge *Rag1* and *Rag2* gene promoters and the distant antisilencer 75 element (ASE) of this locus³³.

- 76 By contrast to the vast knowledge on SATB1 fine tuning and regulatory functions in T lymphocytes, 77 little is known on the potency of SATB1 to regulate B cell development, beyond HSC fate decision 78 ^{22,23}. Initial studies reported a discrete defect on B cell numbers in Satb1 KO mice². Taking 79 advantage of its elegant fluorescent reporter model, Yokota group's described fluctuations in Satb1 80 expression throughout B cell development with higher expression in naive B cell subsets. In this 81 study authors proposed that SATB1 is involved in BCR-mediated B cell survival ³⁵. Many aspects 82 of the literature point to a potential function for SATB1 during B cell development. Given its 83 regulatory function for Rag gene expression in T cells ³³, the potential implication of SATB1 in V(D)J 84 recombination of Ig genes in B cells needs to be examined. Moreover, since SATB1 was discovered 85 by its ability to bind the $MAR_{E\mu}$ region of the IgH locus ¹, we could postulate a role for SATB1 in Ig 86 heavy chain expression.
- In this study, we examined SATB1 implication in B-lineage cell development and depicted its critical function on immunoglobulin production using a conditional KO mouse model allowing deletion of this factor in B-lineage cells. Although we found SATB1 nonessential for B cell development, we showed that this factor displays an ambivalent function in late developing B cell subsets: acting sequentially as a positive and then negative regulator of Ig gene transcription. The negative regulatory function of SATB1 extends to the germinal center reaction in which this factor limits Ig gene somatic hypermutation.

94

95 Materials and Methods96

97 *Mice:* Satb1^{tm1a/wt} mice come from the Mouse Clinical Institute (MCI) (IR00004167/ P4167). First 98 crossings with 129S4/SvJae-Gt(ROSA)26Sort^{m2(FLP*)sor/J} mice (The Jackson Laboratory) removed 99 reporter and marker cassette placed between Frt sites. Second crossings with B6.C(CG)-100 Cd79atm1(cre)Reth/EhobJ mice (The Jackson Laboratory) deleted Satb1-exon4 due to CRE 101 recombinase expression in B-lineage cells ³⁶. Aicda^{-/-} homozygous mice (kindly provided by Pr. T. 102 Honjo) were used to prepare control samples devoid of SHM, as reported in ³⁷. All experiments, 103 excepted 3C-HTGTS, were performed on two-month-old mice. Primers used for genotyping are 104 listed in Supplementary Table S1. All animal strains were bred and maintained in SPF conditions 105 at 21–23°C with a 12-h light/dark cycle. Procedures were reviewed and approved by the Ministère 106 de l'Enseignement Supérieur, de la Recherche et de l'Innovation APAFIS#16639-107 2018090612249522v2.

108 Western Blot: B cells from spleen were sorted with EASYSEP MOUSE B cell isolation kit (Stem 109 Cell Technologies) and lysed using RIPA buffer (Santa Cruz) completed with protease inhibitor 110 (Orthovanadate, PMSF, anti-protease cocktail). Proteins were quantified with Pierce BCA Protein 111 Assay kit (Thermo Scientific) and denatured 5 minutes at 95°C. TGX Stain-free FastCast 12% 112 acrylamide gels (Bio-Rad Laboratories) were used to separate proteins that were transferred on 113 Transblot Turbo polyvinylidene fluoride membranes (Bio-Rad laboratories) with Transblot Turbo 114 Transfer System. After blocking incubation with Phosphate Buffer Saline (PBS)- 5% skim milk, 115 SATB1 primary antibody was incubated overnight at 4°C. Membrane was incubated with secondary 116 antibody with PBS-3% milk. Proteins were detected and guantified with PIERCE ECL Western 117 Blotting Substrate (Thermo Scientific) and ChemiDoc Touch Imaging System coupled to Image Lab 118 J6.0 software (Bio-Rad Laboratories). Antibodies and concentrations used are in Supplementary 119 Table S2. Unprocessed raw data are provided in Supplementary Fig. S1A)

120 Enzyme-linked ImmunoSorbent Assay (ELISA): Sera were collected from the blood of two-121 month-old mice. Supernatants were obtained after sorting B cells from spleens and in vitro LPS-122 activation during 4 days. Plates were coated overnight with 1µg/ml of primary antibody Goat Anti-123 Mouse Unlabeled IgM, IgG3, IgG1 or IgA (Southern Biotech) diluted in sodium carbonate buffer. 124 Plates were blocked with PBS-3% bovine serum albumin 1 hour at 37°C. Supernatant or diluted 125 sera were incubated 2 hours at 37°C then secondary antibody conjugated with alkaline 126 phosphatase (Southern Biotech) was incubated 1 hour at 37°C. Enzymatic reaction was performed 127 by adding SigmaFast[™] p-nitrophenyl phosphate tablet. DO were measured at 405 nm on Thermo 128 scientific MULTISKAN FC. Antibodies and concentrations used are in Supplementary Table S2.

129 Flow Cytometry: To analyze B cell populations, spleen and bone marrow were collected, crushed 130 and filtered through Clearline Streaner 40 µm (Fisherbrand); lymphocyte numbers were quantified 131 in a Cell-Dyn Emerald counter (Abbott). Cell suspensions were labeled in FACS Buffer (PBS buffer 132 (Eurobio), 10% BSA (Stem Cell Technologies) 2mM EDTA) containing antibodies for 20 minutes 133 at 4°C and analyzed on BD LSRFortessa SORP flow cytometer (BD Bioscience). For intracellular 134 staining, cells were first stained for surface markers. After washing, cells were treated with the 135 fixation/permeabilization kit Intraprep (Beckman Coulter, A07803), following the manufacturer's 136 instructions. Mean Fluorescence Intensity values were normalized to WT values; antibodies used 137 are provided in Supplementary Table S2. Gating strategies to evaluate proportions and numbers 138 of B cell subsets are provided in Supplementary Fig. S1.

RNA extraction: Pre-B cells, splenic resting B cells, *in vitro*-activated cells with LPS for 2 or 4 days, plasma cells and GC B cells were lyzed with TRIZOL Reagent (Ambion Life Technologies) and RNA extraction was done following recommendations of DirectZol RNA microprep kit (ZymoResearch).

143 RT-gPCR: 1µg RNA from B cell subset samples was treated with DNase I Amplification Grade 144 (Invitrogen) and reverse transcription was done following the High Capacity cDNA Reverse Transcription kit protocol (Applied Biosystem). Quantitative PCR was performed on 20ng cDNA 145 146 using either SensiFAST Probe Hi-ROX or SensiFAST SYBR Hi-ROX kits (BioLine) on a Quant 147 Studio III (Applied BioSystem). IgH and Igk primary transcripts were quantified as previously described ³⁸. Satb1 transcripts were measured by TagMan assays with Mm.PT.58.13287891 (IDT), 148 149 Rag 1 and Rag 2 transcripts with Mm01270936 m1 and Mm00501300 m1 (ThermoFisher), 150 respectively. Transcript quantification was carried out with normalization to Hprt 151 (Mm.PT.58.32092191 - IDT) for resting and in vitro-stimulated cells, and to B220 152 (Mm.PT.58.32086646 - IDT) for GC B cells. Specific primers designed to amplify membrane and 153 secreted Igµ transcripts, as well as Sµ transcripts are listed in Supplementary Table S1.

Repertoire: Pre-B cells from bone marrow were enriched using mouse CD25 MicroBead Kit 154 155 (Miltenyi Biotec). Library preparation was adapted from methods previously described^{39,40}. Transcripts were amplified by 5'RACE PCR using reverse primer hybridizing within μ gene and Cap 156 157 race primer carrying Unique Molecular Identifiers (UMIs). ProtoScript® II (New England Biolabs, 158 Ipswich, MA) was used for reverse transcription and amplicons were obtained using Phusion® High 159 Fidelity DNA Polymerase (New England Biolabs, Ipswich, MA) according to the manufacturer's 160 instructions. (Primers are listed in Supplementary Table S1). Illumina adapter and tag sequences 161 were added by primer extension⁴². Resulting libraries were sequenced on Illumina MiSeq 162 sequencing system using MiSeq Reagent kit V3 600 cycles. Paired reads were merged as previously described⁴² and UMIs were treated with MIGEC software. Repertoire analysis was done
 using IMGT/HIGHV-QUEST online tool (<u>http://imgt.org/</u>) ⁴³.

165 In vitro Stimulation: Splenic B cells isolated with EASYSEP MOUSE B cell isolation kit (Stem Cell Technologies) were cultured at 1x10⁶ cells/ mL in RPMI 1640 medium (Eurobio) supplemented with 166 167 10% fetal bovine serum (Dutscher), 2mM Glutamine (Eurobio), 1% Eagle's Non Essential Amino 168 Acids (Eurobio), 50U/ml of penicillin-streptomycin (Gibco), 1mM sodium pyruvate (Eurobio), 129 169 μ M 2- β mercaptoethanol (Sigma-Aldrich) in the presence of 1 μ g/ml Lipopolysaccharide (LPS-170 Invivogen). An aliquot of cells was collected for analysis and sample preparation at day 2 or 4 after 171 stimulation. Same isolation protocol and cell culture reagents were used for Anti-CD40 + IL4 in vitro 172 stimulation by replacing LPS with 5µg/ml of anti-CD40 antibody (R&D Systems, listed in 173 Supplementary Table S2).and 20ng/mL recombinant mouse IL4 (Peprotech). An aliquot of cells 174 was collected for analysis and sample preparation at day 3 and 4 after stimulation.

In vitro Ethynil-DeoxyUridine (EdU) Incorporation: Splenic B cells were cultured as described
above and EdU was added 48 hours later and incorporated for 24 hours. Cells were then processed
by following recommendations of Click-it EdU Alexa Fluor 488 Flow Cytometry Assay Kit (Thermo
Fisher Scientific). EdU incorporation was evaluated by flow cytometry on BD LSRFortessa SORP
flow cytometer (BD Bioscience)

180 NP-CGG immunization: Nitrophenylacetyl-Chicken Gamma Globulin (NP-CGG) immunization 181 was realized by injecting 100µg NP-CGG (N-5055C-5 Biosearch Technologies) precipitated with 182 complete for the first intraperitoneal injection (day 0) and incomplete Freund's adjuvant for the 183 second one at day 12. Pre-immune sera were collected before day 0 and immunized sera were 184 collected at days 8 and 17. Mice were sacrificed at day 17 and splenic GC B cells were sorted to 185 extract DNA for SHM quantification by HTS.

Cell sorting: Plasma cells from spleen or plasmablasts from *in vitro* stimulation were sorted using
 B220 and CD138 surface markers on BD FACS ARIA III (BD Bioscience). GC B cells were sorted
 using B220 and GL7 cell surface markers (*Supplementary* Table S2).

Somatic Hypermutation Analysis: SHM analysis was performed on B220⁺/GL7⁺ GG B cells sorted from Peyer's patches or immunized spleens from *wt*, *Satb1* cKO and *Aicda* KO mice. 5'S μ , 3'J_H4 and 3'J κ 5 intronic regions were amplified from 10,000 cells with specific primers (listed in *Supplementary* Table S1) using Phusion High-Fidelity DNA Polymerase (New Englands Biolabs) and according to the following program: denaturation (98°C 10s), hybridization (69°C 30s) and amplification (72°C 1mn) during 38 cycles. Libraries were constructed with Ion Xpress Plus gDNA Fragment Library kit (Cat. no. 4471269, Life Technologies) and sequenced on the Ion-Proton
 System S5. SHM frequencies were determined using Raw Data analyzed with DeMinEr tool ³⁷

197 **RNA-Sequencing:** RNA-Seq analysis was performed either on splenic resting B cells sorted with 198 Easysep Mouse B cell isolation kit (Stem Cell Technologies), in vitro-activated B cells with LPS 199 (bulk culture, at day 2) and in vitro LPS-differentiated plasmablasts (sorted at day 4). Sample quality 200 controls and library preparation were performed at the GeT-Santé facility (Inserm, Toulouse, 201 France, get.genotoul.fr). i/ Quality control: RNA concentration and purity were determined using a 202 ND-2000 Spectrophotometer (Thermo Fisher Scientific, Waltham, USA). RNA integrity was 203 checked with a Fragment Analyzer (Agilent Technologies, Santa Clara, USA), using the RNA 204 Standard Sensitivity Kit. 260/280 purity ratios were all ≥ 1.8, and integrity indices were of good 205 quality (8.3-10 RIN and > 1.7 28S/18S ratios). ii/ Library preparation (GeT-Santé): RNA-seq paired-206 end libraries were prepared according to Illumina's protocol with some adjustments, using the 207 TruSeq Stranded Total RNA Gold library prep Kit (Illumina, San Diego, USA). Briefly, between 934-208 1000 ng total RNA were first ribo-zero depleted using Illumina Ribo-Zero probes. Then, remaining 209 RNA were fragmented during 2 min and retrotranscribed to generate double stranded cDNA. 210 Compatible adaptors were ligated, allowing the barcoding of the samples with unique dual indices. 211 Libraries were amplified by 12 PCR cycles of PCR and an additional final purification step resulted 212 in 280-700 bp fragments. Libraries quality was assessed using the HS NGS kit on the Fragment 213 Analyzer (Agilent Technologies, Santa Clara, USA). iii/ Library quantification (GeT-PlaGe): 214 quantification and sequencing were performed at the GeT-PlaGe core facility (INRAE, Toulouse, 215 France). Libraries were quantified by qPCR using the KAPA Library Quantification Kit (Roche, 216 Basel, Switzerland) to obtain an accurate quantification. iiii/ Sequencing (GeT-PlaGe): libraries 217 were equimolarly pooled and RNA sequencing was then performed on one S4 lane of the Illumina 218 NovaSeq 6000 instrument (Illumina, San Diego, USA), using the NovaSeq 6000 S4 v1.5 Reagent 219 Kit (300 cycles), and a paired-end 2 x 150 pb strategy.

220 RNA-Sequencing Analysis: Paired-end reads were mapped on GRCm38 mouse genome that 221 "Mus_musculus.GRCm38.dna.primary_assembly.fa" was previously indexed with and 222 "Mus musculus.GRCm38.102.chr patch hapl scaff.gtf" files from ENSEMBL release 102. Index and mapping steps were both made with STAR v2.6.0c ⁴⁴. Then featureCounts v2.0.1 ⁴⁵ was used 223 224 to count reads by gene. An R script named template script DESeq2 CL.r of SARTools ⁴⁶ was run 225 first with all count data in order to retrieve a PCA and check if biological variability was the main 226 source of variance in the data. Then, the same script was run for each desired differential analysis 227 with count data from defined reference and interest conditions. Differentially regulated genes with 228 an adjusted p value of 0.05 and a foldchange \leq -1.5 or \geq 1.5 were selected for downstream analysis. 229 Gene SYMBOLs were converted to ENTREZIDs with the bitr function of the R ClusterProfiler 230 package ⁴⁷. The resulting ENTREZIDs and their associated log2foldchange were then used to 231 calculate enriched biological pathway profiles of different gene clusters (Down in cKO, Up in cKO , Down in WT and Up in WT) using the CompareCluster function of ClusterProfiler ⁴⁷ with p value 232 233 and g value thresholds set to 0.01 and 0.05 respectively. The resulting enriched functional profiles 234 were filtered through a Gene Ontology list consisting of the hierarchical children of the following 235 Biological pathway terms: B cell costimulation, B cell selection, humoral immune response, 236 immunoglobulin production, memory B cell differentiation, regulation of the apoptotic process of 237 mature B cells, SHM (Supplementary Table S3). Terms that were enriched in all down-regulated 238 gene clusters or all up-regulated clusters were discarded.

239 3C-HTGTS: 3C-HTGTS was performed as previously described⁴⁸. Briefly, 10 million of resting and 240 LPS-stimulated B cells (at day 3) were crosslinked with 2% formaldehyde 10% FCS PBS for 10min 241 at RT under rotation. Crosslinking is stopped by adding glycine at 0.1M. Then, cells were lysed in 242 50mM Tris, 150mM NaCl, 5mM EDTA, 0.5%NP-40,1% TX-100 supplemented with protease 243 inhibitor (ROCHE #11873580001). Nuclei were resuspended in 0.3% SDS for 1h at 37°C at 900rpm 244 and then neutralized with Triton TX-100 for 1h. DNA restriction was performed using CviQ1 245 (Thermo Fisher ER0211) in B buffer (Thermo Fisher #BB5) overnight at 37 °C, before heat 246 inactivation for 25 min at 65 °C. Overnight ligation was performed at 16°C at 300rpm. Next, DNA 247 was treated by proteinase K and RNase and cleaned by phenol/chloroform. After 3C step, the LAM-248 HTGTS protocol was performed ⁴⁹. Briefly, 3C DNA was sonicated using the Bioruptor (Diagenode; 249 two pulses at low intensity for 20s), and 10 µg was used for the LAM-HTGTS step. A Sµ bait was 250 used for primer elongation. These single-stranded DNA fragments were incubated with streptavidin 251 beads (Dynabeads C1 streptavidin beads; Invitrogen) overnight at RT and washed with BW buffer 252 (1M NaCl, 5mM Tris-HCl pH7.4, 0,5mM EDTA pH 8.0). Universal I7 adaptors were ligated before 253 the nested PCR performed with Sµ nested and universal I7 reverse primers (all primers are listed 254 in Supplementary Table S1). After the Tagged PCR with I7 and I5 Illumina primer, PCR products 255 were cleaned using PCR clean-up kit (Macherey-Nagel REF#740609) and validated after migration 256 on BioAnalyser (Agilent). 3C-HTGTS libraries were sequenced 300pb paired-end MiSeg V3 with 257 20% PhiX.

Analysis of 3C-HTGTS: Sequencing reads were aligned to the mm10 genome and processed as previously described⁴⁹. Each 3C-HTGTS library plotted for comparison was normalized by randomly selecting a number of junctions equal to the total number of junctions present in the smallest library in the comparison set.

Data availability: Raw data from RNA-seq, SHM, Rep-Seq and 3C-HTGTS have been deposited
 in the European Nucleotide Archive database under access number PRJEB52320.

264 Results

265

266 Conditional deletion of Satb1 in murine B lineage cells

267 Since depletion of Satb1 in ES cells and mouse embryos showed multiple dysfunctions and did not 268 allow animals to survive beyond 1 month of age 2, we evaluated SATB1 contribution to B cell 269 development in a conditional knock out model inducing SATB1 depletion in B-lineage cells from 270 the pro-B cell stage. In our model, initially derived from Satb1^{tm1a} allele, Satb1 conditional allele 271 (Satb1^{fix}) contains exon 4 flanked with two LoxP sites that permit its specific deletion when coupled 272 to one allele carrying a CRE recombinase insertion into Cd79a gene (Cd79a^{cre}) ³⁶ (Fig. 1A). Mice 273 carrying the homozygous SATB1 deletion in B-lineage cells (Satb1flx/flx Cd79acre/+, referred as cKO conditional Knock Out) were compared to heterozygous littermates (Satb1fix'+ Cd79acre/+, referred 274 275 as cHet: conditional Heterozygous) and to wt littermates carrying an identical conditional allele but 276 devoid of CRE expression (Satb1^{flx/+} Cd79a^{+/+}, referred as WT). Western blot experiments 277 performed on sorted splenic B cells from these three genotypes confirmed that Satb1-exon4 278 deletion induced a complete protein depletion (Fig. 1B, unprocessed raw data are provided in 279 Supplementary Fig. S1).

280

281 SATB1 depletion in B lineage cells allows normal B cell development and IgH repertoire

282 By questioning ImmGen database ⁵⁰, we examined Satb1 expression in developing B-lineage cells 283 and noted that all subtypes of B-lineage cells expressed Satb1 transcripts (Supplementary Fig. 284 S2A). Common lymphoid progenitor and pre-pro B cells, also mentioned as Hardy fraction A, both 285 displayed higher SATB1 expression. This was not surprising given that SATB1 has been reported 286 to favor lymphocyte lineage differentiation from hematopoietic stem cells ²³. While a consistent drop 287 in Satb1 transcription was observed at pro- and pre-B stages, a second wave of Satb1 gene 288 expression occured in transitional and mature resting B cells present in splenic follicles or the 289 marginal zone as well as in splenic memory B cells. Satb1 gene expression further decreased in 290 antigen-activated cells such as germinal center centrocytes to reach its minimal level in proliferating 291 cell subsets such as centroblasts and plasmablasts (Supplementary Fig. S2A). In B cells from WT 292 mice, we experimentally confirmed a significant decrease in Satb1 transcripts by RT-qPCR assays 293 when comparing naive and GC B cells sorted from Peyer's patches (Fig. 1*C*). The same findings, 294 corroborating expression profiles described in the ImmGen database, were very recently 295 documented in a mouse model carrying a Tomato-reporter transgene knocked into a Satb1 allele 296 ³⁵. This converging evidence for variable expression of Satb1, according to B cell subsets, 297 supposes a narrow regulation and suggests an accurate function of this factor in the B cell lineage.

298 To determine SATB1 contribution throughout B cell development and maturation, we analyzed B 299 cell populations from WT, cHet and cKO mice by flow cytometry (Supplementary Fig. S1). Absolute 300 numbers of B-lineage cell subsets from bone marrow (Fig. 1D left and middle) and spleen (Fig. 1D 301 right) were not affected by Satb1 gene inactivation suggesting, despite its contribution to 302 lymphocyte lineage initiation ²², that SATB1 was not required for B cell development. Our findings 303 that early B cell development was not impaired in our cKO mice excluded any function for SATB1 304 in B-lineage choice maintenance. This data completed studies from Kanakura and Steidl groups 305 ^{21,22} that previously hypothesized that SATB1 function was restricted to stem cell renewal and fate 306 hematopoietic lineages.

Since SATB1-binding to the ASE region is known to modulate Rag gene expression in T cells and 307 308 incidentally impact TCR rearrangements ³³, the consistent expression of this factor in early 309 committed and developing B cells could confer a similar function on Ig gene rearrangements. We 310 investigated this point by first analyzing Rag gene expression by RT-qPCR and found that sorted 311 bone marrow pre-B cells from WT and cKO animals expressed similar transcript levels (Supplementary Fig. S2B). The striking different impact of SATB1 deletion on Rag expression in B 312 313 and T cells could be indirectly explored by comparing DNA accessibility in the region close to Rag 314 genes regions from WT B- and T-lineage cell precursors. Such a detailed study was provided by 315 the consortium of the Immunological Genome Project that performed ATAC-seg in B and T cell 316 precursors⁵¹. This study indicates that, while the DNA region encompassing the SATB1-binding 317 ASE regulatory element was accessible in T-lineage precursor cells, this was not the case in bone 318 marrow cell subsets of the B cell lineage (a comparison focused on Rag gene loci was provided in 319 Supplementary Fig. S2C). To note, B-lineage precursors display other accessible regulatory 320 regions such as the *Erag* element located closely to Rag genes regions. It is then reasonable to 321 suppose that ASE region is not active in the B cell lineage, this could potentially explain normal 322 Rag gene transcription in SATB1-deficient B cell precursors. Given that SATB1 acts as a chromatin 323 loop organizer in T cells 5,34,52-54, we suspected a potential effect of its deletion on IgH V region 324 accessibility in developing B cells. To assess this point we examined VDJ recombination diversity 325 by Repertoire-Sequencing experiments on RNA samples (RepSeq) extracted from pre-B cell-326 enriched bone marrow fractions. Our data displayed an equivalent broad distribution of each 327 rearranged and expressed V gene (Fig. 1 E and Supplementary Fig. S2D) in WT and cKO mice. A 328 similar representation of V_{H} family usage indicated that SATB1 deletion did not hamper 329 mechanisms leading to a diversified IgH VDJ repertoire in developing B cells. VDJ junction analysis 330 in pre-immune repertoire of WT and Satb1 cKO models revealed comparable lengths of CDR3 331 regions as well as rather comparable distribution of P and N nucleotides (Supplementary Fig. S2E) 332 suggesting that IgH V region assembly and end-joining occurs normally in the absence of STAB1. 333 Altogether, our results indicate that SATB1 is dispensable to establish IgH repertoire and does not 334 affect Rag expression or influence IgH locus accessibility. Given that SATB1 deletion did not impair 335 VDJ rearrangements and B cell development, further studies could then be performed on peripheral 336 B cell subsets in this model without any bias. In line with this statement, we determined whether 337 SATB1 deletion could impact Ig isotype production and secretion in the mouse. Sera from WT, 338 cHet and cKO animals were collected at two months of age and IgM, IgG1, IgG3 and IgA levels 339 were quantified by ELISA assays. Homozygous and heterozygous KO mice displayed serum Ig 340 levels comparable to WT for each isotype (Fig. 1F), suggesting that SATB1 does not influence 341 global antibody production.

342

343 SATB1 depletion decreases IgH transcription in resting B cells

344 Despite normal bone-marrow B cell development and Ig secretion in cKO mice, we however 345 suspected that SATB1 depletion might influence IaH locus expression, given its capacity to bind MAR sequences in vitro ⁵⁵ and to modulate MAR-containing reporter genes ²⁹. We first examined 346 347 surface IgM expression levels, as a component of B cell receptors, on immature and mature B cell 348 subsets from bone marrow and spleen compartments in our model. By measuring IgM mean 349 fluorescence intensity (MFI) by flow cytometry, Satb1 cKO mice displayed consistent and significant 350 decreased IgM surface expression when compared to WT, on bone marrow immature and 351 recirculating B cells (Fig. 2A) and on splenic transitional, marginal zone and follicular B cell 352 populations (Fig. 2B). The same significant decrease in IgM BCR expression, also observed on 353 naive B cells sorted from Pever's patches (Fig. 2C), confirmed a specific function for SATB1 as a 354 positive regulator of BCR expression in resting B cells. This role for SATB1 in BCR surface 355 expression could explain its function as a contributing factor to B cell survival as described recently 356 by Ozawa et al ³⁵. Indeed, the knock-in reporter mouse model used in their study leads to 357 inactivation of one Satb1 allele and it is likely that such a deletion induces intermediate surface IgM 358 expression level similar to the one we observed in our heterozygous mice (Supplementary Fig. S3 359 A). It is reasonable to suppose that reduced BCR expression on resting B cells reduces ability of 360 these cells to respond to anti-IgM mediated in vitro-stimulation. One fair interpretation of the survival 361 defect described by Ozawa et al ³⁵ could be simply the consequence of reduced BCR expression 362 in the knock-in model.

The decreased BCR expression observed in SATB1-deficient B lymphocytes raised the question of a potential Ig gene transcription defect in our model. Quantification of *IgH* primary transcription by RT-qPCR in resting splenic B cells showed a significant 2 fold-decrease of transcripts running through the $J_H 4$ intron in cKO mice when compared to WT (Fig. 2*D*). We also evaluated the respective proportion of membrane and secreted *Igµ* transcripts (*Supplementary* Fig. S3*B*), our data showed that SATB1 deletion does not impair alternative splicing of the *Igµ* chain transcript. Although not statistically significant, a similar downward trend was also observed for *Igk* 370 transcription in mutants (Fig. 2D). It is established that MAR sequences flanking both sides of the IgH cEµ intronic enhancer are able to bind SATB1 ⁵⁶. Whereas binding of equivalent regions in the 371 372 Igk locus has never been shown, it has to be noted that only one upstream MAR is associated with 373 the *iEx* enhancer. The presence of either one or two MAR sequences surrounding these intronic 374 enhancers could potentially explain differences observed for IgH and Igk transcription in our Satb1 375 KO model. It is tempting to speculate that, through its DNA binding in proximity to intronic 376 enhancers, SATB1 could physiologically potentiate their transcriptional effect in resting B cells. 377 Although, this hypothesis is unlikely since IgM BCR expression was never compromised in resting 378 B cell populations of mice devoid of either $E\mu$, $iE\kappa$ full regions or their associated-MARs ^{57–60}. In 379 contrast, the literature reports that BCR expression on resting B cells was decreased upon deletion 380 of components of the 3'regulatory regions of both $I_{\alpha}H^{61}$ and $I_{\alpha}K^{62}$ loci, arguing for the importance 381 of close contact between 3'enhancers and respective promoters of rearranged V exons. In resting 382 B cells, such loops have been reported within the IgH locus in many studies ⁶³. In line with a 383 proposed function for SATB1 as a promoter-enhancer loop regulator⁵⁴, a rationale hypothesis could 384 be that this MAR binding protein participates in physical interactions between rearranged V_H exons 385 and the 3'RR and consequently enhances Ig chain transcription in resting B cells. To evaluate such 386 chromatin loop interactions, we performed 3C-HTGTS experiments using a bait within the $S\mu$ 387 region⁴⁸ of resting B cells from *wt* and mutant mice. Our data showed that loop interactions between 388 $E\mu$ and V_H regions still occur at frequencies that do not significantly differ in resting B cells from both genotypes (Supplementary Fig. S4A); this suggests that SATB1 is not required to form 389 390 chromatin loops in naive and LPS-activated B cells.

391 In line with the broad chromatin organization function proposed for SATB1 in T cells, we then 392 performed total RNA seq analysis of both WT and SATB1-deficient B cell subsets. Resulting 393 datasets were submitted to principal component analysis to validate reproducibility between 394 samples (Supplementary Fig. S5A). When comparing datasets obtained from resting splenic B 395 cells, our analysis only disclosed 65 genes displaying significant changes in expression: 53 were 396 overexpressed and only 12 were downregulated (log2 FC>+/-1.5; Fig. 2E and Supplementary Table 397 S4). Indeed, our data supports the hypothesis of an ambivalent function for SATB1, displaying both 398 positive and negative regulatory actions for gene expression in resting B cells. Our study indicates 399 that SATB1 depletion does not induce drastic transcriptional changes in resting B cells. In contrast 400 to the T lineage 7,27,64, our data suggest that the intrinsic function of SATB1 in B cells may be 401 relatively focused. In this cell type, SATB1 would have a distinctly different role from that of a major 402 genome organizer.

403

404 SATB1 depletion increases IgH transcription and Ig synthesis in activated B cells

405 We sought to evaluate effect of SATB1 depletion on B cell activation in response to mitogenic and 406 antigenic stimuli. We first performed in vitro stimulation of splenic B cells from both genotypes with 407 LPS and carried out RNA seg in a time-course manner on resting B cells (sorted at day 0), activated 408 B cells (bulk culture at day 2) and plasmablasts (sorted at day 4). Once sample reproducibility 409 validated (Supplementary Fig. S5A), we compared transcriptional programs induced by transition 410 from "resting to activated" and "activated to plasmablast" cell stages. Venn diagrams mainly 411 indicate that both B cell activation and differentiation programs induced by LPS were not drastically 412 impaired upon SATB1 depletion. Indeed, following in vitro culture, a vast majority of transcripts 413 displayed a common regulation profile in WT and SATB1-deficient models: i.e. 5460 transcripts 414 during the "resting to activated" transition and 2758 during the "activated to plasmablast" transition 415 (Supplementary Fig. S5B). Nevertheless, we submitted differentially expressed genes from both 416 transition programs, to a gene ontology analysis for biological processes relevant to B cell activation 417 (see list in Supplementary Table S3). During the "resting to activated" transition, SATB1 depletion decreased expression of a few genes involved in humoral immune responses mediated by 418 419 circulating immunoglobulins (Fig. 3A, red dots) including Lta, a gene recently described as a SATB1 420 target in T cells ⁵⁴, as well as *Tgfb1* encoding TGF β , the cytokine involved in regulation of isotype 421 switching to IgA. Strikingly, the analysis specified that SATB1 depletion increased *Tcf3* expression 422 in activated B cells (Fig. 3A, blue dot), while its gene expression, encoding the E2A transcription 423 factor, was unchanged in hematopoietic stem cells devoid of SATB1 ⁶⁵. During the "activated to 424 plasmablast" transition, SATB1 depletion downregulates Cd40 and few genes involved in Ig class 425 switching pathway (Fig. 3B, red dots); this effect on Cd40 targeting was expected since already 426 observed upon SATB1 deletion in hematopoietic stem cells and T cells ^{54,65}.

427 In parallel, in such in vitro stimulation assays, B cells were tested for intrinsic abilities to proliferate, 428 to undergo LPS-driven class switch recombination and to differentiate into plasmablasts. When 429 measured by EDU incorporation, the ability of SATB1-deficient B cells to proliferate was similar to 430 that of WT cells (Supplementary Fig. S6A). This suggested that, while decreasing IgM BCR 431 expression on naive cells, SATB1-deficiency is dispensable for cell cycle entry of splenic B cells 432 upon activation of TLR pathways. The same normal proliferation capacity in response to TLR or 433 CD40 triggering was also recently reported for B cells devoid of the entire Satb1 gene region ³⁵. In 434 our model, normal in vitro proliferation observed in B cells devoid of SATB1 was consistent to the 435 normal proportion of spontaneous GC B cells in Peyer's patches of KO animals (Fig. 3C), or the 436 equivalent proportions of splenic GC centroblasts and centrocytes obtained after NP-CGG 437 immunization (Supplementary Fig. S6B). More strikingly, in clear contrast with the decreased IgH 438 expression in resting B cells, such in vivo-activated cells express higher BCR levels as evidenced 439 by IgM surface labelling (Fig. 3D). This highlights that the ambivalent function for SATB1 clearly 440 applies to Ig gene expression in developing mature B cells.

441 Class switching to IgG3 was examined by surface labelling of *in vitro*-activated splenic B cells by 442 LPS at day 4. Data showed equivalent numbers of IgG3-expressing cells in both WT and SATB1 443 KO models (Supplementary Fig. S6C) indicating that SATB1 is not required for IgG3 class 444 switching. RNA seg datasets from LPS- activated cells at day 2 also provided relevant portrayals 445 of germline transcription landscape in the IgH locus of WT and SATB1 deficient models 446 (Supplementary Fig. S6D). When examining germline transcription within the $l\mu$ -donor and $l\gamma$ 3- or Iv2b-acceptor regions, both WT and SATB1-deficient models displayed identical profiles 447 448 suggesting that, in agreement with normal CSR to IgG3 observed at day 4, SATB1 depletion does 449 not impede LPS-induced germline transcription occurring prior to CSR.

When measured in the same *in vitro* assays, the intrinsic ability of splenic B cells to differentiate into plasmablasts (CD138⁺) upon LPS activation was also similar in WT and our SATB1 KO model (Fig. 3*E*). In agreement with *in vitro* data, NP-CGG immunization of mice induced generation of plasma cells in normal proportions in the absence of SATB1 (Fig. 3*F*). Altogether, these data suggest that SATB1 is dispensable for efficient differentiation into antibody secreting cells.

Although, once differentiated *in vitro* into plasmablasts, SATB1 deficient cells displayed higher
levels of intracellular IgM when analyzed by flow cytometry (Fig. 3*G*). This increase in Ig production
by plasmablasts was correlated with a significant increase of both *IgH* and *Igκ* primary transcripts
(respectively 1.4 and 1.7) in LPS-activated cells from SATB1 deficient animals (Fig. 3*H*).

459 The effect of SATB1 deletion on global transcription of both IgH and IgL chains was also confirmed 460 by comparing RNA seg data from splenic B cells activated by LPS at day 2 (Fig.3J) or from sorted 461 plasmablasts at day 4 (Fig.3K). In the first case, among the 64 genes found upregulated in SATB1-462 deficient models (log2 FC>+/-1.5), 20 of them corresponded to IgVH chain products and 23 others were identified as IgV KL chain products (Fig.3J and Supplementary Table S5). When comparing 463 464 plasmablasts, IgV H chain and $IgV \lambda L$ chain products were strongly increased upon SATB1 465 depletion (Fig. 3K and Supplementary Table S6). Our data indicate that, beyond its modest effect 466 on B cell activation programs induced by LPS in vitro, the absence of SATB1 induces a more 467 pronounced transcription of Ig genes. Moreover, STAB1 is dispensable for proliferation, CSR and 468 differentiation into plasma cells.

469 As a parallel to LPS stimulation, we performed *in vitro* stimulation with anti-CD40+IL4 in our model 470 to evaluate, in another activation context, cell differentiation and Ig intracellular content in the 471 absence of SATB1. Our data show, as in LPS-stimulation, that SATB1-deficient B cells differentiate 472 efficiently into plamablasts in response to anti-CD40+IL4 cocktail (Supplementary Fig S6E left). To 473 note, such plasmablasts devoid of SATB1 also contains high level of intracellular IgM, although 474 upregulation was not, in this case, increased significantly (Supplementary Fig S6 *E right*). However, 475 our data unveil a switch in the regulatory function of SATB1 for Ig chain transcription, from positive 476 in naive to negative in activated B cells. This striking effect persists until the terminal stage since

SATB1-deficient plasma cells display a high content of Ig chains. However, SATB1-depletion does
not allow plasma cells to produce more Ig since our deficient mice display broadly normal levels of
serum antibody isotypes.

480

481 SATB1 depletion increases somatic hypermutation

482 Since our group recently reported a critical function of *cEµ*-associated MARs for SHM of the *IgH* 483 locus in mouse models ⁶⁶, and according to historic studies in the *lgk* locus ⁵⁹, it was questionable 484 whether MAR binding proteins, such as SATB1, could be involved in targeting somatic mutations of Ig genes. We first evaluated the ability of SATB1 deficient B cells to support somatic mutations 485 by analyzing global SHM within intronic regions, not subject to antigen selection, located 486 487 immediately downstream from V exons of both IgH and $Ig\kappa$ loci and also upstream from $IgH S\mu$ 488 regions in spontaneous GC B cells from Pever's patches. As a possible regulation mechanism, 489 transcription taking place in the corresponding regions targeted by AID was also quantified in this 490 subset. Second, to more accurately evaluate the ability of SATB1-deficient B cells to undergo SHM 491 in response to specific antigen, we immunized mice with NP-CGG 67. By analogy to B cells devoid 492 of MARs_{EP} regions, in which SHM machinery gains access more frequently to the region 493 downstream from $cE\mu$ (upstream from $S\mu$) ⁶⁸, we carefully quantified SHM in this same region (Fig 494 4A, scheme). In GC B cells sorted from Peyer's patches, while Sµ transcription was not significantly 495 raised (Fig. 4A, left bar graph, p=0.3), we found a significant increase of mutations in the absence 496 of SATB1 (1.88 mut/Kb) compared to WT (1.44 mut/Kb) (Fig. 4A, middle bar graph, p=0.02 and 497 Supplementary Table S7A). A similar and significant increase of SHM in this region was also 498 observed in splenic GC B cells sorted after NP-CGG immunization: while WT cells barely reached 499 0.22 mut/Kb, SATB1-deficient cells underwent two fold more mutations reaching 0.41 mut/Kb (Fig. 500 4A, right bar graph, p=0.03 and Supplementary Table S7B). This common feature shared by 501 MARs_{Eu} KO- and Satb1 KO-B cells suggests that SATB1 could be involved in limiting access of the 502 SHM machinery to donor Sµ regions in cells undergoing SHM. When transcription and SHM were 503 quantified downstream from the rearranged IgH variable regions (Fig 4B, scheme) in GC B cells 504 sorted from Peyer's patches, homozygous Satb1 deletion increased transcription (Fig. 4A, left bar 505 graph, p=0.3) downstream from $J_H 4$ and raised, although not significantly, SHM frequencies (Fig. 506 4B, middle bar graph, p=0.05 and Supplementary Table S7C). These findings were clearly 507 confirmed upon NP-CGG immunization. Since B cell response to NP-CGG challenge is 508 preferentially dominated by mutated clones expressing the V_H186.2 segment ⁶⁷, quantification of 509 base substitutions in the $J_H 4$ intron downstream from the V_H186.2-rearranged exons is considered 510 as a reliable hallmark of antigen-induced SHM. Indeed, in SATB1-deficient GC B cells from 511 immunized mice, NP-CGG-induced mutations were significantly increased within the J_{H4} intron: 512 mutant cells displayed 5.06 mut/Kb while WT cells only reached 3.28 mut/Kb (Fig. 4B, right bar 513 graph, p=0.02 and Supplementary Table S7D). When, in the intronic region downstream from $J\kappa 5$ 514 of the Igk locus (Fig 4C, scheme), global transcription was significantly increased in mutant 515 samples, (Fig 4C, left bar graph, p=0.03), both spontaneous and NP-CGG-induced GC B cells 516 displayed an increased trend of mutation frequencies upon SATB1 depletion (Fig. 4C, middle and 517 right bar graphs and Supplementary Table S7E and F). Since B cell responses to DNP hapten 518 preferentially involve lg composed of $Ig\lambda 1$ light chains ⁶⁹, it is likely that changes in mutation 519 frequency within the lgk light chain loci, in this case not significant, probably underestimated any 520 potential SHM increase induced by SATB1 depletion. While our Gene Ontology enrichment 521 analysis detects the "Somatic diversification of Igs" as a differentially regulated pathway during the 522 "resting to activated" transition, expression of major actors of mismatch repair (MMR) and base excision repair (BER) pathways such as Ung, Msh2, Msh6, Pms2 and Polq were similarly 523 524 upregulated in both wt and cKO samples (Fig. 3A). Beyond global pathways analysis, it was also 525 necessary to verify in detail whether SATB1 depletion could affect, through its transcription factor 526 function, expression of any potential factors, including AID, involved in SHM. Indeed, when 527 extracted from RNA-seq datasets, expression of 16 genes involved in SHM was unchanged upon 528 SATB1 deletion in both LPS-activated B cells as well as LPS-induced plasmablasts 529 (Supplementary Fig. S7A). Within Ig gene regions submitted to SHM analysis, substitution 530 frequencies calculated at each base displayed a globally increased pattern (although not 531 significant) that did not offer any hypothesis regarding the origin of the changes (Supplementary 532 Fig. S7B). It is well established that AID targeting for SHM is coupled to transcription initiated at V 533 promoters ⁷⁰. Given the significant increase of primary transcription occurring at IgH and Igk in GC 534 B cells devoid of SATB1 (Fig. 4B and 4C), one straightforward hypothesis to explain the global 535 SHM increase in our model could be an overall increase in AID targeting of Ig genes. Interestingly, 536 in line with this hypothesis, we recently highlighted increased AID deamination coupled to increased 537 transcription in our mouse model devoid of MARs_{Eu} regions when bred into a DNA repair-deficient background 68. Surprisingly, while genomic deletion of MAR_{Eik} or MAR_{SEµ} regions in the mouse 538 539 decreased SHM ^{59,68}, suppression of SATB1 led to the opposite effect in the regions downstream 540 from the rearranged variable segments of IgH and $Ig\kappa$ loci. This finding also plays in favor of a 541 protective function for SATB1 against mutations. In this case, since the regions involved are located 542 upstream from $E\mu$ and $Ei\kappa$, one could propose that the potential protective effect of SATB1 could 543 take place in resting B cells in which SHM is not expected to happen. Moreover, the discrepancy 544 between the effect of MARs_{Eu} deletion and SATB1-depletion on targeted mutations upstream from 545 intronic enhancers suggest that other interacting factors, beyond SATB1, participate in the complex 546 regulation of *cis*-acting MARs. While we recently proposed that MARs_{Eu} favor error-prone repair in 547 its upstream regions in order to optimize SHM ⁶⁸, our current study suggest that SATB1 does not 548 participate in the unfaithful repair processes associated with SHM.

549 Taken together, our data suggest that SATB1-deletion increases SHM of Ig genes through a 550 transcription-coupled mechanism that probably favors AID targeting.

551

552 Discussion

553 The fact that SATB1 plays a major role as a "genome organizer" in hematopoietic- and T-lineage 554 cells ^{7,28,30} suggested that it is also important in B-lineage cells, a cell type that also undergoes fine 555 developmental regulation of its expression ³⁵. By using a conditional deletion model in B cells, our 556 study fills in gaps concerning the function of SATB1 in this lymphocyte lineage. In contrast to its 557 function in early-developing T cells, SATB1 is dispensable for the establishment of the Ig gene 558 repertoire and overall early B cell development in the bone marrow; this result is consistent with 559 the pioneer SATB1-null mouse model in which B cell populations could be observed in the spleen². 560 When looking at regions involved in Rag genes regulation, accessibility data suggests that, unlike 561 its critical function in T cell precursors, ASE region is not active in B-lineage cells. This difference 562 suggests that Rag genes regulation process evolved separately in B and T lineages, at least with 563 regard to the regulatory function of SATB1. However, our model reveals that SATB1 is involved in 564 the control of Ig gene transcription in mature B cells. Although previously unknown in the B lineage, 565 our findings once again point to a dual function for SATB1 depending on the activation stage. We 566 show that SATB1 promotes Ig gene transcription in resting B cells, while in activated B cells, it acts 567 as a repressor. In contrast to the T cell lineage where SATB1 is considered a major regulatory 568 factor of the enhancer/super-enhancer network 53,54, SATB1 deletion does not induce major 569 disruptions in the B cell transcriptome. Our invalidation model shows that only a reduced number 570 of genes expressed during B differentiation are impacted by SATB1 deletion. In agreement with 571 the repressive function of this factor in activated B cells, our study also shows that Ig genes are the 572 predominant targets of SATB1 in activated B cells. Our 3C-HTGTS data indicate that SATB1 is not 573 required to establish chromatin loops between $E\mu$ and V_H regions in resting and activated B cells. 574 A rationale hypothesis could be that the effect of SATB1 on IgH transcription is mainly due to its 575 function as a transcription factor rather than a genome organizer. Given the critical effect of SATB1 576 depletion on Ig gene transcription, it would certainly be interesting to evaluate SATB1 physiological 577 binding to regulatory regions in Ig gene loci in resting and activated B cells.

578 By clarifying that SATB1 is an essential activator of Ig chain transcription, and consequently BCR 579 expression, in resting B cells, our study extends recent work published by Yokota's team ³⁵ and 580 proposes a rational explanation for the survival function of SATB1 at this stage. These two studies 581 also point out the importance of SATB1 expression levels which could, as demonstrated in HSCs 582 ^{22,65}, fine-tune some critical genes or regulatory pathways in lymphocytes. Beyond the physiological 583 decrease in *Satb1* expression between naive and activated B stages, it is possible that this gene undergoes splicing modifications in the B cell lineage as it is proposed in developing T cells by the Spillianakis' group ⁷¹. The stability of SATB1 protein, according to its transcript variants, might also be critical for its function in mature B cell subsets, as already proposed in T-lineage cells by the Galande's group¹⁹. Interestingly, the dual function of SATB1 also observed in the B lineage, switching from activator to repressor of transcription in activated B cells, is reminiscent of the molecular switch observed upon phosphorylation and acetylation of this factor ¹⁶.

590 A surprising observation from our study is that SATB1 deletion increases somatic hypermutation of 591 the *IqH* locus, extending into the $S\mu$ region. It is very likely that the *Igk* locus is similarly influenced. 592 A direct impact of SATB1 on key factors involved in SHM, such as AID and proteins involved in 593 BER and MMR pathways, can be excluded since normal induction of their transcripts were 594 observed in the absence of SATB1. In this respect, SATB1 could play a protective role against 595 SHM in resting cells. This finding should be read in conjunction with our recent study of the MARs 596 regions associated with the Eµ enhancer of the IqH locus ⁶⁸, known to bind SATB1⁻¹. The SATB1-597 induced increase in SHM could logically be correlated with the observed increase in primary 598 transcription of the variable regions of Ig H and L chains. However, it is not excluded that SATB1 599 modifies the accessibility of these regions to AID or its cofactors. Since it is proposed that SATB1 600 stabilizes the unpaired DNA regions against unwinding ¹³, such an action of SATB1 taking place in 601 the MARs-E μ region could contribute to the protection of its surrounding regions against unwanted 602 SHM. In line with the putative protective function of SATB1, it has been shown that this protein acts 603 as an accessory factor of BER through its interaction with Oxo-guanine-glycosylase 1 (OGG1) 72. 604 a DNA glycosylase that usually promotes error-free repair and that is not involved in Ig gene SHM 605 73

Further study of these modifications of SATB1 in B cells will be necessary to clarify the origin of its versatility. It has recently been proposed that SATB1 isoforms are subject to phase separation in T cells ⁷¹. Consistent with its localization to PML nuclear bodies ^{74,75}, this mode of regulation deserves to be explored in the context of the B cell nucleus. Moreover, since chromatin loop extrusion mechanisms are now proven to be critical for Ig gene regulation ⁷⁶, it might be relevant to evaluate a potential implication of SATB1 in this process.

612

613 Acknowledgments614

The authors are grateful to BISCEm unit (Univ. Limoges, UAR 2015 CNRS, US 42 Inserm, CHU Limoges) for technical support regarding DNA-RNA sequencing, cytometry experiments and animal core facility. We are grateful to Emeline Lhuillier and the Genotoul Plateau GeT-Santé facility (<u>https://get.genotoul.fr</u>) for technical assistance with RNA sequencing, to Mehdi Alizadeh from Etablissement Français du Sang (Rennes; France) for assistance with Repertoire sequencing and to Christelle Oblet for technical help with Western blots. This work benefitted from data 621 assembled by the ImmGen consortium⁵⁰. MT, CB and OM were supported by PhD fellowships from 622 the French Ministère de l'Enseignement Supérieur, de la Recherche et de l'Innovation and the 623 Fonds Européen de Développement Régional (FEDER). This work was supported by La Ligue 624 Contre le Cancer (comités 87, 23 to EP and SLN); the Fondation ARC pour la recherche sur le 625 cancer (PJA 20181207918 to EP and PhD continuation fellowship to MT and CB), Institut CARNOT 626 CALYM, INCa-Cancéropôle GSO Emergence (to EP). We are grateful to Drs. Jeanne Moreau and 627 Amélie Bonaud for critical reading of the manuscript, helpful comments and edits. 628 629 Author Contributions: MT, CB, OM, SB and CC performed experiments. MT analyzed the data. 630 EP and SLN conceived and supervised the study. MT and OM developed the experimental model. 631 JP performed the bio-informatic analysis. MT, CB, EP and SLN wrote the manuscript. 632 **Competing Interest Statement:** The authors declare no competing financial interests. 633 References 634 635 Dickinson L, Tadashi J, Yoshinori K, Terumi K-S. A tissue-specific MARSAR DNA-binding 636 1 637 protein with unusual binding site recognition. Cell 1992; 70: 631–645. 638 Alvarez JD, Yasui DH, Niida H, Joh T, Loh DY, Kohwi-Shigematsu T. The MAR-binding protein 2 639 SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. Genes Dev 2000; 14: 521-535. 640 641 3 Cai S, Han H-J, Kohwi-Shigematsu T. Tissue-specific nuclear architecture and gene expession 642 regulated by SATB1. Nat Genet 2003; 34: 42-51. 643 4 Yasui D, Miyano M, Cai S, Varga-Weisz P, Kohwi-Shigematsu T. SATB1 targets chromatin 644 remodelling to regulate genes over long distances. Nature 2002; 419: 641-645. 645 5 Cai S, Lee CC, Kohwi-Shigematsu T. SATB1 packages densely looped, transcriptionally active 646 chromatin for coordinated expression of cytokine genes. Nat Genet 2006; **38**: 1278–1288. 647 6 Kohwi-Shigematsu T, Poterlowicz K, Ordinario E, Han H-J, Botchkarev VA, Kohwi Y. Genome 648 organizing function of SATB1 in tumor progression. Semin Cancer Biol 2013; 23: 72–79. 649 Zelenka T, Spilianakis C. SATB1-mediated chromatin landscape in T cells. Nucl Austin Tex 7 650 2020; **11**: 117–131. 651 Wang Z, Yang X, Chu X, Zhang J, Zhou H, Shen Y et al. The structural basis for the 8 oligomerization of the N-terminal domain of SATB1. Nucleic Acids Res 2012; 40: 4193–4202. 652

- Purbey PK, Singh S, Kumar PP, Mehta S, Ganesh KN, Mitra D *et al.* PDZ domain-mediated
 dimerization and homeodomain-directed specificity are required for high-affinity DNA
 binding by SATB1. *Nucleic Acids Res* 2008; **36**: 2107–2122.
- Yamasaki K, Akiba T, Yamasaki T, Harata K. Structural basis for recognition of the matrix
 attachment region of DNA by transcription factor SATB1. *Nucleic Acids Res* 2007; **35**: 5073–
 5084.
- De Belle I, Cai S, Kohwi-Shigematsu T. The Genomic Sequences Bound to Special AT-rich
 Sequence-binding Protein 1 (SATB1) In Vivo in Jurkat T Cells Are Tightly Associated with the
 Nuclear Matrix at the Bases of the Chromatin Loops. *J Cell Biol* 1998; **141**: 335–348.
- Seo J, Lozano MM, Dudley JP. Nuclear Matrix Binding Regulates SATB1-mediated
 Transcriptional Repression. *J Biol Chem* 2005; **280**: 24600–24609.
- Ghosh RP, Shi Q, Yang L, Reddick MP, Nikitina T, Zhurkin VB *et al.* Satb1 integrates DNA
 binding site geometry and torsional stress to differentially target nucleosome-dense
 regions. *Nat Commun* 2019; **10**. doi:10.1038/s41467-019-11118-8.
- Kumar PP, Purbey PK, Ravi DS, Mitra D, Galande S. Displacement of SATB1-Bound Histone
 Deacetylase 1 Corepressor by the Human Immunodeficiency Virus Type 1 Transactivator
 Induces Expression of Interleukin-2 and Its Receptor in T Cells. *Mol Cell Biol* 2005; 25: 1620–
 1633.
- Galande S, Purbey PK, Notani D, Kumar PP. The third dimension of gene regulation:
 organization of dynamic chromatin loopscape by SATB1. *Curr Opin Genet Dev* 2007; **17**:
 408–414.
- 674 16 Pavan Kumar P, Purbey PK, Sinha CK, Notani D, Limaye A, Jayani RS *et al.* Phosphorylation of
 675 SATB1, a global gene regulator, acts as a molecular switch regulating its transcriptional
 676 activity in vivo. *Mol Cell* 2006; **22**: 231–243.
- Purbey PK, Singh S, Notani D, Kumar PP, Limaye AS, Galande S. Acetylation-dependent
 interaction of SATB1 and CtBP1 mediates transcriptional repression by SATB1. *Mol Cell Biol*2009; **29**: 1321–1337.
- Khare SP, Shetty A, Biradar R, Patta I, Chen ZJ, Sathe AV *et al.* NF-κB Signaling and IL-4
 Signaling Regulate SATB1 Expression via Alternative Promoter Usage During Th2
 Differentiation. *Front Immunol* 2019; **10**: 667.
- Patta I, Madhok A, Khare S, Gottimukkala KP, Verma A, Giri S *et al.* Dynamic regulation of
 chromatin organizer SATB1 via TCR-induced alternative promoter switch during T-cell
 development. *Nucleic Acids Res* 2020; **48**: 5873–5890.
- Balamotis MA, Tamberg N, Woo YJ, Li J, Davy B, Kohwi-Shigematsu T *et al.* Satb1 Ablation
 Alters Temporal Expression of Immediate Early Genes and Reduces Dendritic Spine Density
 during Postnatal Brain Development. *Mol Cell Biol* 2012; **32**: 333–347.

- Will B, Vogler TO, Bartholdy B, Garrett-Bakelman F, Mayer J, Barreyro L *et al.* Satb1
 regulates the self-renewal of hematopoietic stem cells by promoting quiescence and
 repressing differentiation commitment. *Nat Immunol* 2013; **14**: 437–445.
- Doi Y, Yokota T, Satoh Y, Okuzaki D, Tokunaga M, Ishibashi T *et al.* Variable SATB1 Levels
 Regulate Hematopoietic Stem Cell Heterogeneity with Distinct Lineage Fate. *Cell Rep* 2018;
 323–3235.
- Satoh Y, Yokota T, Sudo T, Kondo M, Lai A, Kincade PW *et al.* The Satb1 Protein Directs
 Hematopoietic Stem Cell Differentiation toward Lymphoid Lineages. *Immunity* 2013; 38:
 1105–1115.
- Wen J, Huang S, Rogers H, Dickinson LA, Kohwi-Shigematsu T, Noguchi CT. SATB1 family
 protein expressed during early erythroid differentiation modifies globin gene expression. *Blood* 2005; **105**: 3330–3339.
- Hawkins SM, Kohwi-Shigematsu T, Skalnik DG. The Matrix Attachment Region-binding
 Protein SATB1 Interacts with Multiple Elements within the gp91 ^{phox} Promoter and Is Down regulated during Myeloid Differentiation. *J Biol Chem* 2001; **276**: 44472–44480.
- Fujii Y, Kumatori A, Nakamura M. SATB1 Makes a Complex with p300 and Represses
 gp91phox Promoter Activity. *Microbiol Immunol* 2003; **47**: 803–811.
- Naik R, Galande S. SATB family chromatin organizers as master regulators of tumor
 progression. *Oncogene* 2019; **38**: 1989–2004.
- Papadogkonas G, Papamatheakis D-A, Spilianakis C. 3D Genome Organization as an
 Epigenetic Determinant of Transcription Regulation in T Cells. *Front Immunol* 2022; 13:
 921375.
- Kohwi-Shigematsu T, Maass K, Bode J. A thymocyte factor SATB1 suppresses transcription of
 stably integrated matrix-attachment region-linked reporter genes. *Biochemistry* 1997; 36:
 12005–12010.
- Burute M, Gottimukkala K, Galande S. Chromatin organizer SATB1 is an important
 determinant of T-cell differentiation. *Immunol Cell Biol* 2012; **90**: 852–859.
- 31 Kakugawa K, Kojo S, Tanaka H, Seo W, Endo TA, Kitagawa Y *et al.* Essential Roles of SATB1 in
 Specifying T Lymphocyte Subsets. *Cell Rep* 2017; **19**: 1176–1188.
- Kitagawa Y, Ohkura N, Kidani Y, Vandenbon A, Hirota K, Kawakami R *et al.* Guidance of
 regulatory T cell development by Satb1-dependent super-enhancer establishment. *Nat Immunol* 2017; **18**: 173–183.
- 33 Hao B, Naik AK, Watanabe A, Tanaka H, Chen L, Richards HW *et al.* An anti-silencer– and
 SATB1-dependent chromatin hub regulates Rag1 and Rag2 gene expression during
 thymocyte development. *J Exp Med* 2015; **212**: 809–824.

- Feng D, Li Z, Qin L, Hao B. The role of chromatin organizer Satb1 in shaping TCR repertoire in
 adult thymus. *Genome* 2021; 64: 821–832.
- 35 Ozawa T, Fujii K, Sudo T, Doi Y, Nakai R, Shingai Y *et al.* Special AT-Rich Sequence-Binding
 Protein 1 Supports Survival and Maturation of Naive B Cells Stimulated by B Cell Receptors. *J Immunol* 2022; **208**: 1937–1946.
- 36 Hobeika E, Thiemann S, Storch B, Jumaa H, Nielsen PJ, Pelanda R *et al.* Testing gene function
 early in the B cell lineage in mb1-cre mice. *Proc Natl Acad Sci U S A* 2006; **103**: 13789–
 13794.
- Martin OA, Garot A, Le Noir S, Aldigier J-C, Cogné M, Pinaud E *et al.* Detecting Rare AIDInduced Mutations in B-Lineage Oncogenes from High-Throughput Sequencing Data Using
 the Detection of Minor Variants by Error Correction Method. *J Immunol* 2018; **201**: 950–
 956.
- Tinguely A, Chemin G, Péron S, Sirac C, Reynaud S, Cogné M *et al.* Cross talk between
 immunoglobulin heavy-chain transcription and RNA surveillance during B cell development. *Mol Cell Biol* 2012; **32**: 107–117.
- Pascal V, Dupont M, de Rouault P, Rizzo D, Rossille D, Jeannet R *et al.* Demultiplexing Ig
 repertoires by parallel mRNA/DNA sequencing shows major differential alterations in severe
 COVID-19. *iScience* 2023; **26**: 106260.
- 40 Ouk C, Roland L, Gachard N, Poulain S, Oblet C, Rizzo D *et al.* Continuous MYD88 Activation
 Is Associated With Expansion and Then Transformation of IgM Differentiating Plasma Cells. *Front Immunol* 2021; **12**: 641692.
- Turchaninova MA, Davydov A, Britanova OV, Shugay M, Bikos V, Egorov ES *et al.* Highquality full-length immunoglobulin profiling with unique molecular barcoding. *Nat Protoc*2016; **11**: 1599–1616.
- Javaugue V, Pascal V, Bender S, Nasraddine S, Dargelos M, Alizadeh M *et al.* RNA-based
 immunoglobulin repertoire sequencing is a new tool for the management of monoclonal
 gammopathy of renal (kidney) significance. *Kidney Int* 2022; **101**: 331–337.
- 43 Boice M, Salloum D, Mourcin F, Sanghvi V, Amin R, Oricchio E *et al.* Loss of the HVEM Tumor
 Suppressor in Lymphoma and Restoration by Modified CAR-T Cells. *Cell* 2016; **167**: 405418.e13.
- 44 Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S *et al.* STAR: ultrafast universal
 RNA-seq aligner. *Bioinformatics* 2013; 29: 15–21.
- Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning
 sequence reads to genomic features. *Bioinformatics* 2014; **30**: 923–930.

- Varet H, Brillet-Guéguen L, Coppée J-Y, Dillies M-A. SARTools: A DESeq2- and EdgeR-Based R
 Pipeline for Comprehensive Differential Analysis of RNA-Seq Data. *PLOS ONE* 2016; **11**:
 e0157022.
- 47 Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z *et al.* clusterProfiler 4.0: A universal enrichment tool
 for interpreting omics data. *The Innovation* 2021; **2**: 100141.
- 763 48 Zhang X, Yoon HS, Chapdelaine-Williams AM, Kyritsis N, Alt FW. Physiological role of the
 764 3'IgH CBEs super-anchor in antibody class switching. *Proc Natl Acad Sci U S A* 2021; **118**:
 765 e2024392118.
- Hu J, Meyers RM, Dong J, Panchakshari RA, Alt FW, Frock RL. Detecting DNA doublestranded breaks in mammalian genomes by linear amplification-mediated high-throughput
 genome-wide translocation sequencing. *Nat Protoc* 2016; **11**: 853–871.
- The Immunological Genome Project Consortium, Heng TSP, Painter MW, Elpek K, LukacsKornek V, Mauermann N *et al.* The Immunological Genome Project: networks of gene
 expression in immune cells. *Nat Immunol* 2008; **9**: 1091–1094.
- Yoshida H, Lareau CA, Ramirez RN, Rose SA, Maier B, Wroblewska A *et al.* The cis-Regulatory
 Atlas of the Mouse Immune System. *Cell* 2019; **176**: 897-912.e20.
- Kohwi-Shigematsu T, Kohwi Y, Takahashi K, Richards HW, Ayers SD, Han H-J *et al.* SATB1mediated functional packaging of chromatin into loops. *Methods San Diego Calif* 2012; 58:
 243–254.
- Feng D, Chen Y, Dai R, Bian S, Xue W, Zhu Y *et al*. Chromatin organizer SATB1 controls the
 cell identity of CD4+ CD8+ double-positive thymocytes by regulating the activity of superenhancers. *Nat Commun* 2022; **13**: 5554.
- Zelenka T, Klonizakis A, Tsoukatou D, Papamatheakis D-A, Franzenburg S, Tzerpos P *et al.*The 3D enhancer network of the developing T cell genome is shaped by SATB1. *Nat Commun* 2022; **13**: 6954.
- 55 Dickinson LA, Dickinson CD, Kohwi-Shigematsu T. An Atypical Homeodomain in SATB1
 784 Promotes Specific Recognition of the Key Structural Element in a Matrix Attachment Region.
 785 *J Biol Chem* 1997; **272**: 11463–11470.
- 56 Dickinson LA, Kohwi-Shigematsu T. Nucleolin is a matrix attachment region DNA-binding
 protein that specifically recognizes a region with high base-unpairing potential. *Mol Cell Biol* 1995; **15**: 456–465.
- 57 Marquet M, Garot A, Bender S, Carrion C, Rouaud P, Lecardeur S *et al*. The Eµ enhancer
 region influences H chain expression and B cell fate without impacting IgVH repertoire and
 immune response in vivo. *J Immunol Baltim Md 1950* 2014; **193**: 1171–1183.

- Xu Y, Davidson L, Alt FW, Baltimore D. Deletion of the lg kappa light chain intronic
 enhancer/matrix attachment region impairs but does not abolish V kappa J kappa
 rearrangement. *Immunity* 1996; **4**: 377–385.
- Yi M, Wu P, Trevorrow KW, Claflin L, Garrard WT. Evidence that the Igkappa gene MAR
 regulates the probability of premature V-J joining and somatic hypermutation. *J Immunol Baltim Md 1950* 1999; **162**: 6029–6039.
- Sakai E, Bottaro A, Davidson L, Sleckman BP, Alt FW. Recombination and transcription of the
 endogenous Ig heavy chain locus is effected by the Ig heavy chain intronic enhancer core
 region in the absence of the matrix attachment regions. *Proc Natl Acad Sci U S A* 1999; **96**:
 1526–1531.
- 61 Garot A, Marquet M, Saintamand A, Bender S, Le Noir S, Rouaud P *et al.* Sequential
 activation and distinct functions for distal and proximal modules within the IgH 3' regulatory
 region. *Proc Natl Acad Sci U S A* 2016; **113**: 1618–1623.
- 805 62 Inlay M, Alt FW, Baltimore D, Xu Y. Essential roles of the kappa light chain intronic enhancer
 806 and 3' enhancer in kappa rearrangement and demethylation. *Nat Immunol* 2002; **3**: 463–
 807 468.
- Bruzeau C, Moreau J, Le Noir S, Pinaud E. Panorama of stepwise involvement of the IgH 3'
 regulatory region in murine B cells. *Adv Immunol* 2021; **149**: 95–114.
- 810 64 Yokota T, Kanakura Y. Role of tissue-specific AT-rich DNA sequence-binding proteins in
 811 lymphocyte differentiation. *Int J Hematol* 2014; **100**: 238–245.
- 812 65 Satoh Y, Yokota T, Sudo T, Kondo M, Lai A, Kincade PW *et al.* The Satb1 protein directs
 813 hematopoietic stem cell differentiation toward lymphoid lineages. *Immunity* 2013; 38:
 814 1105–1115.
- 815 66 Martin OA, Thomas M, Marquet M, Bruzeau C, Garot A, Brousse M *et al.* The IgH Eμ-MAR
 816 regions promote UNG-dependent error-prone repair to optimize somatic hypermutation.
 817 *Front Immunol* 2023; **14**: 1030813.
- 67 Cumano A, Rajewsky K. Clonal recruitment and somatic mutation in the generation of
 819 immunological memory to the hapten NP. *EMBO J* 1986; 5: 2459–2468.
- 68 Martin O, Thomas M, Marquet M, Garot A, Brousse M, Bender S *et al.* The IgH *E*μ -MAR
 regions promote UNG-dependent error-prone repair to optimize somatic hypermutation.
 Immunology, 2022 doi:10.1101/2022.08.15.503996.
- Reth M, Hämmerling GJ, Rajewsky K. Analysis of the repertoire of anti-NP antibodies in
 C57BL/6 mice by cell fusion. I. Characterization of antibody families in the primary and
 hyperimmune response. *Eur J Immunol* 1978; **8**: 393–400.
- Fukita Y, Jacobs H, Rajewsky K. Somatic hypermutation in the heavy chain locus correlates
 with transcription. *Immunity* 1998; **9**: 105–114.

- Zelenka T, Tzerpos P, Panagopoulos G, Tsolis KC, Papamatheakis D-A, Papadakis VM *et al.* SATB1 undergoes isoform-specific phase transitions in T cells. bioRxiv, 2022.
- Kaur S, Coulombe Y, Ramdzan ZM, Leduy L, Masson J-Y, Nepveu A. Special AT-rich
 Sequence-binding Protein 1 (SATB1) Functions as an Accessory Factor in Base Excision
 Repair. J Biol Chem 2016; 291: 22769–22780.
- Winter DB, Phung QH, Zeng X, Seeberg E, Barnes DE, Lindahl T *et al.* Normal somatic
 hypermutation of Ig genes in the absence of 8-hydroxyguanine-DNA glycosylase. *J Immunol Baltim Md 1950* 2003; **170**: 5558–5562.
- Kumar PP, Bischof O, Purbey PK, Notani D, Urlaub H, Dejean A *et al.* Functional interaction
 between PML and SATB1 regulates chromatin-loop architecture and transcription of the
 MHC class I locus. *Nat Cell Biol* 2007; **9**: 45–56.
- Tan J-AT, Sun Y, Song J, Chen Y, Krontiris TG, Durrin LK. SUMO conjugation to the matrix
 attachment region-binding protein, special AT-rich sequence-binding protein-1 (SATB1),
 targets SATB1 to promyelocytic nuclear bodies where it undergoes caspase cleavage. *J Biol Chem* 2008; **283**: 18124–18134.
- 76 Zhang Y, Zhang X, Dai H-Q, Hu H, Alt FW. The role of chromatin loop extrusion in antibody
 844 diversification. *Nat Rev Immunol* 2022; **22**: 550–566.

845

846 Legend to Figures

847 848 **Figure 1.**

849 A) Conditional deletion of Satb1-exon 4 by Cd79acre/+ recombinase in B cells. Exon 4, cre site, frt site, conditional allele (Satb1^{fix}) and Wild type allele (Satb1⁺) are indicated. B) SATB1 protein 850 851 quantification by Western Blot in splenic B cells from WT (Satb1^{fix/+}), conditional heterozygous (Satb1^{flx/flx} Cd79a^{cre/+}) and conditional homozygous (Satb1^{flx/flx} Cd79a^{cre/+}) mice. C) Satb1 transcript 852 853 quantification by RT-qPCR (normalized to Hprt) in Peyer's patch naive and GC B cells sorted from 854 WT mice (n=8) from 3 independent experiments. D) Bar graphs displaying absolute numbers of B 855 cell subsets determined by flow cytometry from bone marrow (per femur, n=7-10) and spleen 856 (n=11-15) from 4-5 independent experiments. E) Pie chart representation of IgHV family gene 857 usage, guantified by RACE-RepSeg, expressed by pre-B cell-enriched bone marrow populations 858 in WT (n=5) and cKO mice (n=6) from 2 independent experiments. F) Immunoglobulin serum 859 isotype levels quantified by ELISA in 8 to 10 week-old WT and cKO mice (n=8-15) from 4 860 independent experiments. Error bars represent SEM; p-value was determined with two tailed Mann 861 Whitney test; non-significant (ns) and significant differences are indicated (*** p<0.001).

862

863 Figure 2.

864 A) Comparison of surface IgM fluorescence intensity, evaluated by flow cytometry, on immature 865 and recirculating bone marrow B cell subsets from two-month-old WT and homozygous cKO 866 animals. One representative histogram is shown (left), bar graph (right) displays normalized surface 867 IgM MFI in WT and cKO animals (n=7-10 from 4 independent experiments). B) Comparison of 868 surface IgM fluorescence intensity, evaluated by flow cytometry, on Follicular (FO), Marginal zone 869 (MZ), Transitional (Tr.1, Tr.2, Tr.3) splenic B cell subsets from two-month-old WT and homozygous 870 cKO animals. One representative histogram is shown (left), bar graph (right) displays normalized 871 surface IgM MFI in WT and cKO animals (n=13-14 from 5 independent experiments). C) 872 Comparison of surface IgM fluorescence intensity, evaluated by flow cytometry, on naive B cells sorted from Pever's Patches from two-month-old WT and homozygous cKO animals. One 873 874 representative histogram is shown (left), bar graph (right) display normalized surface IgM MFI in 875 WT and cKO animals (n=10-11 from 3 independent experiments). D) IgH and Igk primary 876 transcripts quantified by RT-qPCR (normalized to Hprt) in splenic resting B cells sorted from WT 877 and cKO mice (n= 6-10 from 5 independent experiments). E) Volcano plot from RNA-seq indicating 878 differentially expressed transcripts when comparing WT and cKO mice (n=2) resting B cells. 879 Transcripts located within Ig gene loci are indicated. Error bars represent SEM; p-value was 880 determined by two tailed Mann Whitney test; non-significant (ns) and significant differences are indicated (* p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001). 881

882

883 Figure 3.

884 A) Visual representation of Gene Ontology enrichment analysis of genes significantly associated 885 with biological pathways upon B cell transition from resting (day 0) to in vitro-activated (day 2) 886 subsets in WT and cKO mice. Datasets from RNA-seq experiments were used for the analysis. B) 887 Same representation as above for B cell transition from in vitro-activated (day 2) to plasmablast 888 (day 4) subsets. C) Germinal center (GC) B cell subsets evaluated by flow cytometry in Peyer's 889 patches of WT and cKO animals (n=12-18 from 4 independent experiments). D) Comparison of 890 surface IgM fluorescence intensity evaluated by flow cytometr, on Peyer's patch GC B cells from 891 two-month-old WT and homozygous cKO animals. One representative histogram is shown (left), 892 bar graph (right) displays normalized surface IgM MFI in WT and cKO animals (n=10-11 from 3 893 independent experiments) E) Proportion of plasmablasts evaluated by flow cytometry, obtained 894 following in vitro LPS activation (day 4) of splenic B cells from WT and cKO animals (n=13-18 from 895 6 independent experiments) (left). F) Proportion of plasma cells in the spleen evaluated by flow 896 cytometry following NP-CGG immunization of WT and cKO animals (n=6-7 from 1 experiment). G) 897 Comparison of intracellular IgM fluorescence intensity evaluated by flow cytometry, in *in vitro*-898 differentiated plasmablasts (day4) from WT and homozygous cKO animals. One representative 899 histogram is shown (left), bar graph (right) displays normalized intracellular IgM MFI in WT and 900 cKO animals (n=9-10 from 4 independent experiments). H) IgH and Igk primary transcripts 901 quantified by RT-qPCR (normalized to Hprt) in in vitro LPS-activated B-lineage cells (day 4) of WT 902 and cKO animals (n=9-13 from 5 independent experiments). J) Volcano plots from RNA-seq 903 indicating differentially expressed transcripts when comparing WT and cKO mice (n=2) in in vitro 904 LPS-activated B cells (day 2). Transcripts located within Ig gene V regions are indicated. K) Same 905 analysis as above in *in vitro* LPS-differentiated plasmablasts (day 4). Error bars represent SEM; p-906 value was determined by two tailed Mann Whitney test; non-significant (ns) and significant 907 differences were indicated (* p<0.05; ** p<0.01).

908

909 Figure 4.

Comparison of primary transcription and somatic hypermutation in WT and cKO animals, taking 910 911 place in various regions of Ig genes targeted by AID (left schemas), in spontaneous GC B cells 912 sorted from Peyer's patches (n=7-10 from 4 independent experiments, left and middle bar graphs). 913 Somatic hypermutation in splenic GC B cells sorted after NP-CGG immunization (n=7-8 from 4 914 independent experiments, right bar graphs). Data were obtained by NGS (Ion proton) combined 915 with DeMinEr filtering, an accurate dedicated method to quantify AID-induced substitutions in B-916 lineage cells (50). A) Transcription and SHM upstream from IgH Sy region. B) Transcription and 917 SHM within the IgH intron downstream from VJ558 (consensus) to J_H4 -rearranged exons (in 918 spontaneous GC B cells) or in the same region downstream from V186.2 to J_{H} -rearranged exons 919 (in NP-CGG-induced GC B cells). C) Transcription and SHM within the *lgk* intron downstream from

- 920 all-rearranged *Jκ*5 segments. Error bars represent SEM; p-value was determined by two tailed
- 921 Mann Whitney test; non-significant (ns) and significant differences were indicated (* p<0.05).

922

ΙgΜ

lgG1

lgG3

IgA

Fig. 2

В

Ε

Splenic resting B cells

Fig. 3

- A Resting (day 0) to in vitro-activated (day 2) transition
- B In vitro-activated (day 2) to plasmablast (day 4) transition

Peyer's patch

GC B cells

Peyer's patch

GC B cells

Splenic GC B cells in NP-CCG-immunized mice

Α

Fig. S1. (A) Unprocessed original images of Western blots quantifying SATB1 protein expression in sorted splenic B cells from WT, cKO heterozygous and cKO homozygous mice. (B) Gating Strategy used to analyse bone marrow mouse B cell subsets in Fig.1D. (C) Same as (B) for B cell subsets from the spleen.

Figure S2. (*A*) Representation of SATB1 relative expression in murine *wt* B cell populations with Gene Skyline data browser (ImmGen ULI RNASeq data group⁴⁶). Populations include Common Lymphoid progenitor, Hardy fractions A, B, C, E and mature peripheral B cell subsets. (*B*) Transcription of *Rag1* and *Rag2* genes quantified in bone marrow sorted pre-B cells from wt (n=6) and *Satb1* cKO (n=5) mice. Error bars represent SEM; p-value was determined with two tailed Mann Whitney test. (*C*) Comparison of *Rag* gene loci accessibility by ATAC-seq in thymocytes (intermediate single-positive and double positive populations, upper lanes in blue) and bone-marrow developing B cells (common lymphoid progenitor, fractions A and BC, lower lanes in green) performed in wt mice, published data assembled by the ImmGen consortium^{46, 47}, relevant regulatory elements are indicated. (*D*) Comparison of *IgHV* gene relative proportion, quantified by RACE-RepSeq, expressed by pre-B cell-enriched bone marrow populations in wt (n=5) and cKO mice (n=6). (*E*) Comparison of CDR3 length (left panel), N and P-nucleotide addition (right panel) during VDJ recombination for wt (n=5) and cKO mice (n=6). Statistical analysis was not performed given the minor differences observed.

Fig. S3. (*A*) Mean Fluorescence Intensity measured by FACS analysis (normalized on WT samples) of IgM expressed at the surface of B cell subsets of 2-month-old WT and cKO heterozygous mice. Left panel includes data from bone marrow IgM expressing B cell subsets (n=7-9). Right panel includes data from B cell subset from the spleen (n=12-13). (*B*) Primer location to quantify Membrane and Secreted IgM transcripts on the mouse IgH locus (top, not to scale), RT-qPCR quantification (Normalized to *Hprt*) in splenic resting B cells of WT (n=10) and cKO (n=9) animals. Error bars represent SEM; p-value was determined by two tailed Mann Whitney test; non-significant (ns) and significant differences are indicated (* p<0.05; ** p<0.01).

Fig. S4. (A) Chromatin loops in resting B cells from spleen (n=3 of each genotype). Intrachromosomal interactions at IgH locus measured by 3C HTGTS between the bait located close to $E\mu$ enhancer ($I\mu S\mu$ region) and the V_H family regions in B cells from WT and cKO mice (> 2-month-old). Left diagram: representative bedgraph of each genotype (IGV browser), showing physical interaction between bait (identified by an asterisk) and the various V_H segments (proximal, middle and distal) positioned on the germline locus. Right diagram display normalized coverage reads mapping with respective V_H family regions from 3 to 4 sample of each genotype.. (B) Same as (A) in LPS-activated B cells for 3 days (n=3-4 of each genotype). Error bars represent SEM; p-value was determined by two tailed Mann Whitney test; non-significant (ns) differences are indicated.

Fig. S5. (*A*) Principal Component Analysis of RNA sequencing of resting (R), LPS stimulated (J) or plasmablast (C) cells from WT and cKO mice (n=2). (*B*) Venn diagrams from RNA-seq displaying numbers and proportions of differentially expressed transcripts of B-lineage cells from WT and cKO mice (n=2) during resting to *in vitro*-activated (day 2) transition (left) and during *in vitro*-activated to plasmablast (day 4) transition (right)

Fig. S6

Fig. S6. (*A*) Percentage of EdU-incorporating splenic B cells from WT and cKO mice during *in vitro* LPS activation (n=4-7). (*B*) Detailed analysis of germinal center (GC) populations obtained following NP-CGG immunization of WT (n=6) and cKO (n=7) animals: percentage of GC B cells (B220⁺GL7⁺, left) among splenic B cells, percentage of centroblasts (CD86^{Low}CXCR4^{High}, upper right) & centrocytes (CD86^{High}, lower right) within the initial GC B cell subset. (*C*) IgG3 switched cells obtained after *in vitro* activation of splenic B cells with LPS at day 4. (*D*) Visual representation of relevant *IgH* constant gene transcripts induced in *in vitro* LPS-activated B cells (day 2) from WT and cKO mice (n=2). Bedgraph files from RNAseq analysis were aligned on mouse GRCm38/mm10 assembly using IGV browser. (*E*) Proportion of plasmablasts evaluated by flow cytometry, obtained following *in vitro* α CD40+IL4 activation (day 3 and day 4) of splenic B cells from WT and cKO animals (left); Comparison of intracellular IgM fluorescence intensity evaluated by flow cytometry, in *in vitro*-differentiated plasmablasts (α CD40+IL4, day4) from WT and homozygous cKO animals (n=6). Error bars represent SEM; p-value was determined by two tailed Mann Whitney test; non-significant (ns) differences are indicated.

Fig. S7. (*A*) Relative expression of genes involved in SHM and SHM-associated DNA repair pathways in *in vitro* activated B cell- (day 2) or enriched-plasma cell-(day 4) subsets of WT and cKO mice evaluated by RNA-seq (n=2). (*B*) Base substitution patterns, reported in frequencies for each base, in GC B cells sorted from Peyer's patches of WT and cKO mice. SHM taking place within the region upstream from *IgH Sµ* (top), downstream from rearranged-*J_HA* exons (middle) and downstream from rearranged-*Jk5* exons (bottom) (n=7-10). Data were obtained by NGS (Ion proton) combined to DeMinEr filtering. Error bars represent SEM; p-value was determined with two tailed Mann Whitney test, only significant differences were indicated (* p<0.05).

Primer name	Sequence	Gene
EF	5'-TTTGCTCATGTGGAATGTCGAGGTA-3'	Satb1
KR	5'-GGGCAAGAACATAAAGTGACCCTC-3'C	Satb1
EF2	5'-AATAATCTGCTCCACTGCTCCACTGAGGACCCAC-3'	Satb1
ER3	5'-CCCTATTGCAGTGGGAATCAGCAT-3'	Satb1
MB1 CRE Wild Type Forward	5'-CTCTTTACCTTCCAAGCACTGA-3'	Mb1
MB1 CRE COMMON	5'-ACTGAGGCAGGAGGATTGG-3'	Mb1
MB1 CRE MUTANT Forward	5-'CATTTTCGAGGGAGCTTCA-3'	Mb1

Supplementary Table S1: summary table of genotyping primers

	Antibody	Clone	Dilution	Sources
WESTERN	SATB1	EPR3951	1/1000	ABCAM AB109122
BLOT	GAPDH	AF5718	1/5000	RD SYSTEMS
	Goat anti-rabbit	AB 2632593	1/5000	SOUTHERNBIOTECH
ELISA	Unlabeled Goat Anti	1020.01	1/500	SOUTHEDNDIOTECH
	Mouse IgM	1020-01	1/300	SOOTHERNBIOTECH
	Unlabeled Goat Anti Mouse IgG1	1070-01	1/500	SOUTHERNBIOTECH
	Unlabeled Goat Anti Mouse IgG3	1100-01	3/1000	SOUTHERNBIOTECH
	Unlabeled Goat Anti Mouse IgA	1040-01	1/250	SOUTHERNBIOTECH
	Goat Anti Mouse IgM-AP	1021-04	1/1000	SOUTHERNBIOTECH
	Goat Anti Mouse IgG1-AP	1070-04	1/1000	SOUTHERNBIOTECH
	Goat Anti Mouse IgG3-AP	1100-04	1/1000	SOUTHERNBIOTECH
	Goat Anti Mouse IgA-AP	1040-04	1/1000	SOUTHERNBIOTECH
Flow	cKIT BV421	288	1/100	BECTON DICKINSON 562609
cytometry	B220 BV510	RA3-6B2	1/100	BIOLEGEND 103248
BONE	CD25 APC	PC61	1/100	BECTON DICKINSON 561048
MARROW B	CD24 FITC	M2/169	1/100	BECTON DICKINSON 553261
CELLS	CD43 PE	S7	1/100	BECTON DICKINSON PHARM 553271
	IGM PC7	II /41	1/100	EBIOSCIENCE 25-5790-82
	CD19 APCH7	1D3	1/100	BECTON DICKINSON PHARM
Flow	CD5 FITC	53-7.3	1/100	BECTON DICKINSON 5530211
cytometry	CD19 APCH7	1D3	1/100	BECTON DICKINSON PHARM
CELLS	CD33 PC7	B3B/	1/100	BIOLEGEND 101614
	CD21 PE	7G6	1/100	BECTON DICKINSON PHARM
	IGM APC	II /41	1/100	EBIOSCIENCE 17-2590-82
	IGD BV421	11-26C-2A	1/100	BIOLEGEND 405725
Flow	B220 APC	RA3-6B2	1/100	BIOLEGEND 103212
cytometry PEYER 'S PATCHES CELLS	GL7 FITC	GL7	1/100	BECTON DICKINSON 553666
Flow	B220 BV510	RA3-6B2	1/100	BIOLEGEND 103248
cytometry	CD38 FITC	90	1/100	BECTON DICKINSON 558813
CENTROCYTE	FAS BV421	Jo2	1/100	BECTON DICKINSON 562633
/ CENTROBLAST	CXCR4 PE	2B11/CXCR4	1/50	BECTON DICKINSON PHARM 551966
	CD86 APC	GL1	1/50	BIOLEGEND 105011
Flow	B220 BV421	RA3-6B2	1/100	BECTON DICKINSON 562922
Cytometry	IGM PC7	II/41	1/100	EBIOSCIENCE 25-5790-82
IN VITRO	lgG3 FITC	R40-82	1/100	BECTON DICKINSON 553403
STIMULATED CELLS	CD138 APC	281-2	1/100	BECTON DICKINSON 558626

Supplementary Table S3: List of Gene Ontology pathway used

GO:0031296	GO:0019731	GO:0002759	GO:0006958	GO:0019731	GO:0061844	GO:0019731	GO:0006956	GO:0001869	GO:0002803
GO-0002244	GO-0010722	GO-0061844	GO-0002455	GO:0001867	GO-0006058	GO:0061844	GO-0006058	GO:0001071	GO-0006058
00.0002344	00.0019732	00.0001844	00.0002455	00.0001807	00.0000338	00.0001844	00.0000338	00.0001371	00.0000338
GO:0002352	GO:0061844	GO:0006958	GO:0006958	GO:0061844	GO:0061844	GO:0019731	GO:0006956	GO:0045916	GO:0002455
GO:0002344	GO:0019731	GO:0061844	GO:0002455	GO:0006958	GO:0006958	GO:0006958	GO:0006958	GO:0061844	GO:0019731
CO.00032E3	CO.00060E0	CO:0010721	CO-0010721	CO:0010721	CO:0061944	CO:0021206	CO:0010721	CO:00027E0	CO.00060E9
GO.0002352	00.0000939	60.0019731	60.0019731	00.0019731	00.0001844	00.0031290	60.0019731	GO.0002739	00.000938
GO:0002344	GO:0006958	GO:0061844	GO:0002455	GO:0061844	GO:0019731	GO:0002344	GO:0019732	GO:0061844	GO:0002455
GO:0016446	GO:0019730	GO:0019731	GO:0019731	GO:0019731	GO:0002780	GO:0002352	GO:0061844	GO:0006958	GO:0006958
CO.00060E0	CO:00024EE	CO:0061944	CO.00024EE	CO:0061944	CO:00027E0	CO:0002244	CO:0010721	CO:0061944	CO-00024EE
GO:0006959	GO:0002455	GO:0061844	G0:0002455	GO:0061844	GO:0002759	G0:0002344	GO:0019731	GO:0001844	GO:0002455
GO:0006956	GO:0019731	GO:0019731	GO:0006958	GO:0019731	GO:0002786	GO:0002352	GO:0006959	GO:0019731	GO:0019731
60.0003833	GO:0061844	GO:0061844	60.0002455	GO:0061844	60.0019731	60.0002344	60.0006958	GO-0061844	60.0002455
00.0002522	00.0001044	00.0001044	00.0002455	00.0001044	00.0015751	00.0002344	00.0000550	00.0001044	00.0002455
GO:0019731	GO:0019731	GO:0006959	GO:0006958	GO:0019731	GO:0006958	GO:0016446	GO:0019730	GO:0019731	GO:0019731
GO:0019732	GO:0006958	GO:0002925	GO:0002455	GO:0006959	GO:0001869	GO:0006959	GO:0002455	GO:0061844	GO:0002455
GO:0061844	60.0045016	60.0006020	60.0006058	GO:0010721	60.0006028	60.0006026	CO-0010721	CO-0010721	60.0006058
00.0001844	00.0045910	00.0000959	00.000938	00.0019751	00.000958	00.0000950	00.0019751	00.0019731	00.0000958
GO:0019731	GO:0045959	GO:0061844	GO:0002455	GO:0061844	GO:0045916	GO:0002922	GO:0061844	GO:0061844	GO:0002455
GO:0019732	GO:0006956	GO:0019732	GO:0006958	GO:0019731	GO:0006958	GO:0019731	GO:0019731	GO:0006959	GO:0006958
CO:0061844	CO:004E016	CO:0010721	CO:00024FF	CO:0002760	CO:0010721	CO:0010722	CO.000C0E8	CO.0003035	CO:00034FF
00.0001844	00.0045910	00.0019731	00.0002455	00.0002700	00.0019731	60.0019732	00.000938	00.0002925	00.0002455
GO:0019731	GO:0030449	GO:0006956	GO:0006958	GO:0002779	GO:0019732	GO:0061844	GO:0045916	GO:0006959	GO:0006958
GO:0061844	GO:0006958	GO:0002925	GO:0002455	GO:0002780	GO:0061844	GO:0019731	GO:0045959	GO:0061844	GO:0002455
CO:0010721	CO:0042152	CO:0002815	CO:0010721	CO:000C0E8	CO:0010721	CO:0010722	CO.000C0FC	CO:0010722	CO.000C0E9
GO:0019731	GO:0043152	GO:0002815	GO:0019731	GO:0006958	GO:0019731	GO:0019732	GO:0006956	GO:0019732	GO:0006958
GO:0019732	GO:0061844	GO:0006963	GO:0061844	GO:0061844	GO:0002455	GO:0061844	GO:0045916	GO:0019731	GO:0002455
GO·0061844	GO:0001867	GO:0006965	GO·0019731	60.0006929	GO:0006958	GO·0019731	GO·0030449	GO:0006956	60.0006958
60.0001044	CO:0001007	00.0000000	00.0013731	60.00000000	CO:0010731	60.0013731	00.00000445	CO:00000000	CO:0003455
GO:0002803	GO:0045916	GO:0006958	GO:0061844	GO:0061844	GO:0019731	GO:0061844	GO:0006958	GO:0002925	GO:0002455
GO:0019731	GO:0001867	GO:0002925	GO:0002925	GO:0006957	GO:0002455	GO:0019731	GO:0043152	GO:0002815	GO:0019731
GO·0061844	60.0006957	GO:0006958	60.0006958	GO·0019731	GO·0019731	GO·0019732	GO·0061844	60.0006963	GO:0061844
00.0001044	00.0000000	00.0000550	00.0000550	60.0013731	60.0013/51	60.0013732	00.0001044	00.0000505	00.0001044
GO:0019731	GO:0006958	GO:0019/31	GO:0061844	GO:0061844	GO:0002455	GO:0061844	GO:0001867	GO:0006965	GO:0019731
GO:0061844	GO:0045959	GO:0061844	GO:0006957	GO:0019731	GO:0006958	GO:0002803	GO:0045916	GO:0006958	GO:0061844
60.0006928	60.0006957	60.0006929	60.0006958	60.0006956	60.0019731	60.0019731	60.0001867	60.0002925	60.0003832
00.0000338	00.0000337	00.0000333	00.0000958	00.0000950	00.0019731	00.0019731	00.0001807	00.0002925	00.0002925
GO:0061844	GO:0006959	GO:0006958	GO:0006956	GO:0030449	GO:0006956	GO:0061844	GO:0006957	GO:0006958	GO:0006958
GO:0006958	GO:0043152	GO:0019731	GO:0019731	GO:0030451	GO:0006957	GO:0019731	GO:0006958	GO:0019731	GO:0061844
CO.000C0FC	CO:00C1844	CO:00C1844	CO:0010722	CO:000C0EC	CO1000C0E8	CO:00C1844	000045050	CO:00C1844	CO.000C0F7
GO:0006956	GO:0061844	GO:0061844	GO:0019732	GO:0006956	GO:0006958	GO:0061844	GO:0045959	GO:0061844	GO:0006957
GO:0030449	GO:0002924	GO:0019731	GO:0061844	GO:0030449	GO:0019731	GO:0006958	GO:0006957	GO:0006959	GO:0006958
GO·0030451	GO:0006959	GO·0061844	GO·0019731	GO:0006956	GO·0061844	GO·0061844	GO:0006959	GO:0006958	GO:0006956
CO:000C0FC	CO:00C1011	00.00000000	00.0000000	CO:000C057	CO:0010701	00.00000000	CO:0042452	CO:0010721	CO:0010731
GO:0006956	GO:0061844	GO:0006959	GO:0006958	GO:0006957	GO:0019731	GO:0006958	GO:0043152	GO:0019731	GO:0019731
GO:0006957	GO:0001971	GO:0061844	GO:0061844	GO:0061844	GO:0002812	GO:0006956	GO:0061844	GO:0061844	GO:0019732
60.0006956	60.00/25916	60.0019731	60.0019731	60.0001867	60.0001867	60.0030449	60.0002924	60.0019731	60.0061844
00.0000550	00.0043310	00.0013731	00.0015751	00.0001007	00.0001007	00.0030443	00.0002324	00.0013731	00.0001044
GO:0001905	GO:0001971	GO:0061844	GO:0061844	GO:0061844	GO:0061844	GO:0030451	GO:0006959	GO:0061844	GO:0019731
GO:0006956	GO:0030449	GO:0002925	GO:0019731	GO:0002923	GO:0006958	GO:0006956	GO:0061844	GO:0006959	GO:0006958
60.0006057	GO:0001071	60.0006020	60.0006058	60.0003032	60.0006020	60.0006057	GO-0001071	GO:0061844	GO-0061844
00.0000557	00.0001371	00.0000555	00.0000550	00.0002323	00.0000555	00.0000000	00.0001571	00.0001044	00.0001044
GO:0006956	GO:0061844	GO:0002925	GO:0045916	GO:0030449	GO:0061844	GO:0006956	GO:0045916	GO:0019731	GO:0019731
GO:0030449	GO:0006958	GO:0006959	GO:0045959	GO:0045957	GO:0019731	GO:0001905	GO:0001971	GO:0061844	GO:0061844
CO:0061844	CO:0010721	CO:0010721	CO:0020440	CO:004F0F0	CO:00C1844	CO:00060E6	CO:0020440	CO.0003035	CO:0010721
GO:0001844	GO:0019731	GO:0019731	GO:0030449	GO:0045959	GO:0061844	GO:0006956	G0.0030449	GO:0002925	GO:0019731
GO:0002920	GO:0061844	GO:0019732	GO:0030450	GO:0045957	GO:0019731	GO:0006957	GO:0001971	GO:0006959	GO:0006958
GO·0006958	GO:0006958	GO·0061844	GO:0006958	GO [.] 0061844	GO·0061844	GO:0006956	GO·0061844	GO:0002925	GO·0045916
CO:000C050	CO:00C1011	CO:0010721	CO:004501C	60:0002706	CO:0010701	CO:0030440	00.0000000	00.00000000	CO:0045050
GO:0006959	GO:0061844	GO:0019731	GO:0045916	GO:0002786	GO:0019731	GO:0030449	GO:0006958	GO:0006959	GO:0045959
GO:0061844	GO:0019731	GO:0061844	GO:0045959	GO:0006959	GO:0061844	GO:0061844	GO:0019731	GO:0019731	GO:0030449
60.0006928	GO:0061844	60.0019731	GO-0061844	GO:0061844	60.0019731	60.0003830	GO-0061844	60.0019732	60.0030450
00.00000000	00.0001044	00.0015751	00.0001044	00.0001044	00.0013731	00.0002320	00.0001044	00.0013732	00.0000400
GO:0006957	GO:0019/31	GO:0006958	GO:0019731	GO:0019731	GO:0061844	GO:0006958	GO:0006958	GO:0061844	GO:0006958
GO:0006958	GO:0061844	GO:0061844	GO:0045959	GO:0061844	GO:0019731	GO:0006959	GO:0061844	GO:0019731	GO:0045916
CO.00060E6	CO.00060E8	CO:0010721	CO-0061944	CO.00060E0	CO-0061944	CO:0061944	CO:0010721	CO:0061944	CO-004E0E0
00.0000950	00.000938	00.0019751	00.0001644	00.0000939	00.0001644	60.0001644	00.0019751	60.0001844	00.0045959
GO:0006958	GO:0002803	GO:0006958	GO:0019731	GO:0019731	GO:0019731	GO:0006958	GO:0061844	GO:0019731	GO:0061844
GO:0002920	GO:0061844	GO:0002787	GO:0019732	GO:0006958	GO:0061844	GO:0006957	GO:0019731	GO:0006958	GO:0019731
CO:0010721	CO.000C0E8	CO.0061844	CO.0001944	CO:0010721	CO:0010721	CO.000C0E8	CO.0061844	CO:0061844	0.0045050
GO:0019731	GO:0006958	GO:0061844	GO:0061844	GO:0019731	GO:0019731	GO:0006958	GO:0061844	GO:0001844	GO:0045959
GO:0061844	GO:0061844	GO:0002225	GO:0019731	GO:0019732	GO:0061844	GO:0006956	GO:0006958	GO:0019731	GO:0061844
GO:0019731	GO:0006958	GO:0006959	GO:0061844	GO:0061844	GO:0019731	GO:0006958	GO:0002803	GO:0006958	GO:0019731
GO-0061944	60.0003455	GO-0010721	GO-0010721		GO-0061944	60.0003030	GO:0061944	60.0002707	GO-0010733
00.0001044	00.0002433	00.0019/31	30.0019/31	00.0000938	00.0001044	00.0002920	00.0001044	00.0002/0/	30.0019/32
GO:0006956	GO:0006959	GO:0019732	GO:0006959	GO:0030449	GO:0019731	GO:0019731	GO:0006958	GO:0061844	GO:0061844
GO:0006957	GO:0006958	GO:0061844	GO:0006958	GO:0006958	GO:0061844	GO:0061844	GO:0061844	GO:0002225	GO:0019731
60.0006928	60.0006020	60.0010231	GO-0061844	60.0061844	60.0010231	60.0010231	60.0006028	60.0006020	60.0061844
00.000000000000000000000000000000000000	00.0000939	50.0013/31	00.0001044	00.0001044	00.0013/31	50.0013/31	00.0000938	00.000000000000000000000000000000000000	00.0001044
GO:0006956	GO:0019731	GO:0045959	GO:0006958	GU:0006958	GU:0061844	GU:0061844	GO:0002455	GO:0019731	GU:0019731
GO:0006957	GO:0061844	GO:0006958	GO:0006956	GO:0006959	GO:0019731	GO:0006956	GO:0006959	GO:0019732	GO:0006959
60.0006028	60.0010721	60.0001867	60.0061844	60.0061844	60.0006050	60.0006057	60.0006058	60.0061844	60.0006050
00.000938	00.0019/31	00.000100/	00.0001044	00.0001044	00.0000939	00.0000937	00.000000000	00.0001044	00.0000958
GO:0006956	GO:0006956	GO:0006958	GO:0006958	GO:0006959	GO:0006958	GO:0006958	GO:0006959	GO:0019731	GO:0061844
GO:0001970	GO:0006957	GO:0001867	GO:0061844	GO:0019730	GO:0043152	GO:0006956	GO:0019731	GO:0045959	GO:0006958
CO.00060E6	CO.00060E8	CO.00060E9	CO-0010720	CO.004E060	CO-0001967	CO:00060E7	CO:0061944	CO.00060E9	CO.00060E6
00.0000950	00.0000958	00.0000958	00.0013/20	00.0043900	00.000100/	00.0000957	00.0001844	00.0000958	00.0000930
GO:0045917	GO:0030451	GO:0001867	GO:0061844	GO:0061844	GO:0006956	GO:0006958	GO:0019731	GO:0001867	GO:0061844
GO:0006956	GO:0006956	GO:0002786	GO:0019731	GO:0006958	GO:0019730	GO:0006956	GO:0006956	GO:0006958	GO:0006958
CO:000C0E9	CO:0010722	CO:004E017	CO:0061944	CO:0003455	CO-0010722	CO:0001070	CO.0000077	CO:0001967	CO:0001844
90:0008328	90:0019/32	00.004591/	00.0001844	00.0002455	00:0019/32	90:00019/0	90.0006927	00:00186/	00:0001844
GO:0045959	GO:0061844	GO:0006958	GO:0019731	GO:0006956	GO:0006958	GO:0006956	GO:0006958	GO:0006958	GO:0019730
GO:0006956	GO:0045959	GO:0006959	GO:0006958	GO:0002925	GO:0006959	GO:0045917	GO:0030451	GO:0001867	GO:0061844
CO:0001070	CO:00C1011	CO.0010731	CO.0003032	CO:00C1011	CO.00C1011	CO.00000050	CO.00000751	CO.000270C	CO:0010721
GO:0001810	60:0061844	90:0019/31	GO:0002922	GU:0061844	GU:0061844	90:0006956	90:0006956	GO:0002786	GO:0019731
GO:0006956	GO:0043152	GO:0061844	GO:0002924	GO:0019731	GO:0006958	GO:0006958	GO:0019732	GO:0045917	GO:0061844
60.0006922	60.0010231	60.0006028	60.0006020	60.0061844	60.00/12012	60.0042020	GO:0061844	60.0006028	60.0010721
GG.0000337	00.0013/31	0.0000330	0.0000333	00.0001044	00.0043317	00.0043333	00.001044	0.0000330	00.0019/31
GO:0006958	GO:0061844	GO:0019731	GO:0006958	GU:0006958	GU:0061844	GO:0006956	GO:0045959	GO:0006959	GU:0006958
GO:0030449	GO:0043152	GO:0006959	GO:0006959	GO:0045957	GO:0002924	GO:0001970	GO:0061844	GO:0019731	GO:0002922
60.0020451	60.0006058	60.0006058	60.0061844	60.0001867	60.0006058	GO.0006026	60.00/2152	60.0061844	60.0003034
00.0030431	00.0000338	00.0000338	00.0001044	00.000100/	00.0000338	00.0000330	00.0043132	00.0001044	00.0002924
GO:0006956	GO:0001869	GO:0002803	GO:0019732	GO:0019731	GO:0002225	GO:0006957	GO:0019731	GO:0006958	GO:0006959
GO:0006958		CO-0006058	GO·0001867	GO:0019732	GO:0030449	GO:0006958	GO:0061844	GO:0019731	60.0006958
	GO:0001971	00.0000338	00.0001007						00.00000000000
60.0006926	GO:0001971	GO:0000958	GO.00060258	GO:0061844	60.0006028	60.0030110	GO:00/13152	60.0006020	CO.00060200
GO:0006956	GO:0001971 GO:0045916	GO:0000358 GO:0002455	GO:0006958	GO:0061844	GO:0006958	GO:0030449	GO:0043152	GO:0006959	GO:0006959

GO:0019732	GO:0030451	GO:0002639	GO:0002377	GO:0002639	GO:0048294	GO:0002377	GO:0002377	GO:0016446	GO:0002377
GO:0001867	GO:0006956	GO:0045830	GO:0002381	GO:0048295	GO:0048302	GO:0002639	GO:0002381	GO:0002204	GO:0048289
GO:0006958	GO:0030449	GO:0002638	GO:0002377	GO:0045830	GO:0045191	GO:2000572	GO:0002344	GO:0045190	GO:0048294
GO:0001867	GO:0006956	GO:0045190	GO:0048298	GO:0045190	GO:0002426	GO:0045830	GO:0002381	GO:0016447	GO:0002377
GO:0019731	GO:0006957	GO:0002377	GO:0002639	GO:0048304	GO:0002377	GO:0048304	GO:0002377	GO:0016446	GO:0045190
GO:0001867	GO:0061844	GO:0002637	GO:0002377	GO:0002377	GO:0033152	GO:0002377	GO:0016446	GO:0002381	GO:0002638
GO:0061844	GO:0001867	GO:0048304	GO:0002638	GO:0002381	GO:0002381	GO:0002639	GO:0002377	GO:0002377	GO:0002639
GO:0006958	GO:0061844	GO:0002377	GO:0002377	GO:0002639	GO:0002377	GO:0002377	GO:0002637	GO:0002637	GO:0002377
GO:0019731	GO:0002923	GO:0002637	GO:0002208	GO:0002638	GO:0002639	GO:0048302	GO:0002377	GO:0002381	GO:0045190
GO:0061844	GO:0002925	GO:0048304	GO:0045830	GO:0016446	GO:0045830	GO:0045830	GO:0045190	GO:0002377	GO:0002377
GO:0019731	GO:0030449	GO:0002377	GO:0002377	GO:0002637	GO:0045190	GO:0002208	GO:0002377	GO:0002638	GO:0016446
GO:0061844	GO:0045957	GO:0002639	GO:0045190	GO:0016445	GO:0002639	GO:0045830	GO:0002381	GO:0002639	GO:0033152
GO:0019731	GO:0045959	GO:0048304	GO:0002208	GO:0002377	GO:0002377	GO:0048298	GO:0002638	GO:0002638	GO:0045191
GO:0061844	GO:0045957	GO:0002639	GO:0045830	GO:0045190	GO:0002639	GO:0048304	GO:0002639	GO:0002377	GO:0002377
GO:0019731	GO:0061844	GO:0002638	GO:0002377	GO:0045830	GO:0048304	GO:0002204	GO:0002377	GO:0016446	GO:0002639
GO:0006959	GO:0002786	GO:0033152	GO:0016446	GO:0002381	GO:0048295	GO:0016447	GO:0016445	GO:0048298	GO:0002377
GO:0019731	GO:0006959	GO:0002377	GO:0016447	GO:0016446	GO:0048304	GO:0045190	GO:0016446	GO:0048304	GO:0002344
GO:0061844	GO:0061844	GO:0033152	GO:0045190	GO:0002637	GO:0048295	GO:0016447	GO:0045190	GO:0016446	GO:0002377
GO:0019731	GO:0019731	GO:0045190	GO:0016447	GO:0002381	GO:0002639	GO:0016446	GO:0002639	GO:0016447	GO:0002639
GO:0002760	GO:0061844	GO:0033152	GO:0002377	GO:0002638	GO:0048304	GO:0016447	GO:0048302	GO:0016446	GO:0048298
GO:0002779	GO:0006959	GO:0048290	GO:0045191	GO:0033152	GO:0002639	GO:0002204	GO:0048294	GO:0002377	GO:0071707
GO:0002780	GO:0019731	GO:0016446	GO:0045190	GO:0045190	GO:0048289	GO:0016446	GO:0048289	GO:0048298	GO:0002377
GO:0006958	GO:0006958	GO:0045190	GO:0045830	GO:0033152	GO:0048291	GO:0045190	GO:0002637	GO:0002426	GO:0045830
GO:0061844	GO:0019731	GO:0016447	GO:0016446	GO:0002377	GO:0002639	GO:0016446	GO:0002639	GO:0002381	GO:0002377
GO:0006959	GO:0019732	GO:0016446	GO:0002381	GO:0045190	GO:0048304	GO:0002639	GO:0048304	GO:0002377	GO:0048304
GO:0061844	GO:0061844	GO:0045190	GO:0002377	GO:0045830	GO:0002639	GO:0002377	GO:0002377	GO:0045190	GO:0002377
GO:0006957	GO:0006958	GO:0002377	GO:0016447	GO:0048302	GO:0002377	GO:0048298	GO:0016445	GO:0016446	GO:0002381
GO:0019731	GO:0030449	GO:0002638	GO:0016446	GO:0002377	GO:0002637	GO:0002639	GO:0071707	GO:0002377	GO:0002377
GO:0061844	GO:0048289	GO:0002377	GO:0002377	GO:0048297	GO:0002344	GO:0002377	GO:0016446	GO:0002639	GO:0002639
GO:0019731	GO:0048295	GO:0002381	GO:0071707	GO:0002377	GO:0016446	GO:2000558	GO:0002377	GO:0045829	GO:0002377
GO:0006956	GO:0002377	GO:0048304	GO:0048304	GO:0002208	GO:0002377	GO:0002377	GO:0048298	GO:0002637	GO:0002319
GO:0030449	GO:0033152	GO:0002344	GO:0016446	GO:0045830	GO:2000558	GO:0002381	GO:0048304	GO:0048291	GO:0002906

Genes downregulated in resting B cells									
MGI SYMBOL	WT	cKO	FoldChange	log2FoldChange	pvalue	padj			
Hspa1a	188896	122130	0.647	-0.629	4.58040337476548e-6	0.00191077385433822			
Hspd1	49936	32268	0.646	-0.63	5.29346297269999e-7	2.9673168376341e-4			
Tnf	1570	1008	0.642	-0.64	9.48629703355245e-5	0.0215398982516283			
Snord118	627	392	0.625	-0.679	2.595515118942e-4	0.0484982814620647			
Hspe1	33980	20312	0.598	-0.742	8.0046597154752e-7	4.1025024564626e-4			
Ccrl2	1730	998	0.576	-0.796	5.81615734952946e-6	0.00231844956746354			
Oasl1	2640	1502	0.569	-0.814	4.34376907467054e-6	0.00185520308717715			
Rnu5g	502	282	0.558	-0.842	1.734644340325e-4	0.0366071178550015			
Map3k19	765	416	0.546	-0.873	2.03195896221967e-5	0.00662714179350843			
Bag3	1758	955	0.543	-0.881	3.20931750492121e-6	0.00143921843508192			
Xlr3b	754	276	0.367	-1.447	1.74137977854962e-8	1.35812480294013e-5			
Ifi208	826	141	0.172	-2.542	6.32098751900608e-24	2.2677174823186198e-20			
			Genes up	regulated in resti	ng B cells				
MGI SYMBOL	wт	cKO	FoldChange	log2FoldChange	pvalue	padi			
Abca6	34	119	3 443	1 784	8 34323187989419e-6	0 00305430394819474			
Abcallh	54	115	2.075	1.704	2.001744560292250.6	0.00127604007407822			
Abca1	32	130	1 560	0.65	2.991744500565256-0	0.00137004907497833			
ADCg1	3060	4800	1.569	0.05	2.390803735742388-5	0.00739417880409428			
Auk Auk saus F	420	820	1.963	0.973	4.112088708219916-8	2.950505889921958-5			
Arngap5	566	959	1.699	0.765	1.4598619356449e-4	0.0311/5004049523/			
Atp6v0c-ps2	20	182	9.124	3.19	9.38486254275277e-16	1.5304151299263598e-12			
Ctse	744	4444	5.974	2.579	9./353/288912/41e-/3	8.731655944258379e-69			
Ctso	1906	3132	1.644	0./1/	6.89995361480135e-8	4.584124/3860395e-5			
Cxcr4	16384	24590	1.501	0.586	4.1/6/49/318/954e-/	2.49/41/8896818e-4			
Cyp2/a1	312	640	2.054	1.038	1.96906125445597e-7	1.21/9662338/69e-4			
D16Ertd472e	1156	2074	1.793	0.843	2.612311866037e-8	1.95248542720715e-5			
Dnah8	799	2186	2.732	1.45	1.4451414451258602e-15	2.16024560355564e-12			
Dyrk3	286	494	1.726	0.787	1.2085893782092e-4	0.026765032427553			
Eya1	342	653	1.908	0.932	7.95376312710286e-7	4.1025024564626e-4			
Gnb4	118	354	2.987	1.579	3.95858213616336e-10	3.38138315992849e-7			
Hdac9	2135	3452	1.616	0.693	3.56503696134364e-6	0.00155974714664835			
Hepacam2	320	894	2.793	1.482	4.3377055635727397e-13	4.57704484702164e-10			
Hmga1b	7	153	22.761	4.508	3.91084462440521e-16	7.62067242546415e-13			
Igha	843	2421	2.873	1.522	9.67511091545799e-28	4.33880349003714e-24			
lghg2b	593	1632	2.755	1.462	5.56283808835061e-20	1.42551699469762e-16			
Ighg2c	317	1088	3.437	1.781	5.3227352877163604e-14	5.967451599441e-11			
lgkv6-17	500	810	1.621	0.697	2.5144335575027e-4	0.0475590988698733			
Islr2	90	264	2.914	1.543	1.48135847141786e-7	9.49021723581916e-5			
Kcnh6	4	150	32.902	5.04	1.8605303978737203e-15	2.56724571361991e-12			
Kif18a	1568	2579	1.644	0.717	1.17474921008283e-6	5.6953111703961e-4			
Klf4	7503	11306	1.507	0.592	1.3516880439727e-4	0.0295690001619308			
Lgals3	174	333	1.922	0.943	5.29357234601036e-5	0.013761753730831			
Lmna	1108	1801	1.625	0.701	4.32716357675586e-5	0.0115851731701264			
Ltk	402	796	1.988	0.991	5.94914869933211e-6	0.00231990933410042			
Myadm	1032	3292	3.191	1.674	8.2306343006773e-32	4.92137060285164e-28			
Nampt	7695	16368	2.127	1.089	4.19944119758951e-14	5.02197174682404e-11			
Nap1l3	26	99	3.732	1.9	2.07392020698267e-5	0.00664321083443843			
Nrip1	1115	2313	2.075	1.053	1.38316010726254e-12	1.3783958891153e-9			
P2ry10	12306	18726	1.522	0.606	4.21001126677799e-5	0.0114971040042835			
Pira2	42	137	3.234	1.693	9.55066224216315e-6	0.00335921135882201			
Prf1	227	446	1.966	0.975	5.33331082939172e-6	0.0021742938558552			
Prkca	721	1170	1.622	0.698	3.90387775650536e-5	0.0109418373744052			
Prkcg	205	522	2.537	1.343	1.64034911064582e-10	1.47122911733823e-7			
Prss41	4	48	11.615	3.538	7.99628982718875e-6	0.00298828014416899			
Rfk	2376	3687	1.552	0.634	5.89754438873763e-7	3.2057621589447e-4			
Rgcc	864	1410	1.634	0.708	1.4458483240162e-4	0.0311750040495237			
Rnps1-ps	16	164	10.114	3.338	2.23727544966743e-15	2.86658907258102e-12			
Ryr2	448	3638	8.133	3.024	5.54885820139486e-101	9.953541841662109e-97			
Sestd1	19	110	5.761	2.526	5.04666230844608e-8	3.48180878803484e-5			
Sgk3	1817	2748	1.513	0.598	2.29052817756475e-5	0.00720833235950115			
Spp1	130	268	2.053	1.037	6.14590493314083e-5	0.0154680295637212			
Stt3b	4927	8259	1.676	0.745	2.81046981964686e-9	2.29155489203752e-6			
Sult2b1	15	73	4.733	2.243	3.12371572585334e-5	0.00889416074450114			
Syne1	2812	5927	2.108	1.076	1.65526094327379e-16	3.71150885005564e-13			
Tagap1	896	2046	2.284	1.191	4.24834007440303e-16	7.62067242546415e-13			
Thnsl1	304	508	1.676	0.745	2.51873920874e-4	0.0475590988698733			
Uchl3	1342	2130	1.587	0.666	4.79346376607084e-5	0.012644875446438			
Zfp619	312	564	1.805	0.852	3.07741978779807e-5	0.00889416074450114			

Genes downregulated in LPS activated B cells (Day2)									
MGI SYMBOL	WT	cKO	FoldChange	log2FoldChange	pvalue	padj			
Tbc1d23	1493	992	0.665	-0.589	1.4379663512243e-4	0.0154285330860781			
lgf2bp3	316	179	0.567	-0.818	1.9768790415222e-4	0.018342053761529			
St6galnac2	442	246	0.557	-0.844	2.26174031566037e-5	0.00352169516467702			
Oasl1	9256	4244	0.458	-1.125	9.28749197296647e-37	1.97637829184726e-33			
BC018473	1640	689	0.421	-1.25	4.44834189667717e-19	5.67964293367741e-16			
									
		G	enes upregula	ted in LPS activated	B cells (Day2)				
MGI SYMBOL	WI	CKO	FoldChange	log2FoldChange	pvalue	padj			
Apoe	298	540	1.816	0.801	1.815/3/3959/2556-5	0.00289791688397219			
Ctro	162	1492	4.066	2.031	1.98708405009020-4	5 02078/080/8717060 70			
Gdpd3	248	1462	9.115	0.844	1.572927028285408-82	0.0361042096081108			
Gupu3 Gnb4	248	202	1.730	0.829	1 9871185085713e-4	0.0301942090081108			
Henacam2	313	606	1.770	0.025	1.007110000077136-4	9 /1132970738//50-/			
Igha	83	176	2 12	1 084	3 6973674915831e-4	0.0289619559095296			
løhv1-12	361	714	1 986	0.99	5.06951090721622e-7	1 4710798923485e-4			
løhv1-15	1508	2324	1 541	0.624	7 40335530853516e-8	2 70074401655363e-5			
lghv1-4	493	899	1.825	0.868	3.53546764360655e-8	1.41065158979901e-5			
lghv1-5	324	606	1.874	0.906	4.0459821172115e-6	8.609849945426e-4			
Ighv1-59	574	876	1.525	0.608	2.9926435400817e-4	0.0248117355323144			
Ighv1-63	144	269	1.869	0.902	5.9253469477392e-4	0.0414736629072173			
lghv1-64	2602	3972	1.527	0.611	1.8496408629221902e-9	1.18081072688953e-6			
Ighv1-66	538	838	1.558	0.64	1.26166319526729e-5	0.0022067007776949			
lghv1-72	1966	2973	1.513	0.597	2.40844660273244e-6	5.3949203901206e-4			
Ighv1-74	523	948	1.813	0.858	1.22429770556603e-8	6.51326379361127e-6			
Ighv1-75	1150	1776	1.546	0.628	4.81417058761007e-9	2.67249261141762e-6			
Ighv1-78	734	1161	1.585	0.664	5.53927069622126e-5	0.00693386355385815			
lghv1-81	1140	1819	1.595	0.674	1.72190560641577e-8	8.34493367916676e-6			
lghv2-9-1	620	977	1.576	0.657	1.61387954854543e-5	0.00267610572413351			
lghv4-1	471	708	1.503	0.588	3.3048049394524e-4	0.0263723434168308			
Ighv5-12	371	598	1.615	0.692	1.6879600372217e-4	0.0171046617105132			
Ighv5-16	1089	2268	2.084	1.059	4.77433382396421e-13	4.68913032802885e-10			
lghv5-9-1	660	1096	1.661	0.732	3.49389624702796e-5	0.00474575183851628			
lghv7-1	268	586	2.192	1.132	8.74210264846859e-8	3.01984854471224e-5			
Ighv8-12	1012	1624	1.605	0.682	5.79361119675743e-7	1.5738899523446e-4			
lgkv15-103	884	1446	1.637	0.711	1.22433311217471e-5	0.00217115071892316			
lgkv17-121	1697	2604	1.534	0.618	1.13783903477559e-6	2.8486134894146e-4			
lgkv17-127	2162	3536	1.636	0.71	6.573807157500919e-11	4.93731586982187e-8			
lgkv3-12	1044	1871	1.793	0.842	3.83146231752191e-9	2.22364140318726e-6			
lgkv3-7	706	1224	1.734	0.794	2.8455666007439504e-9	1.73010449325232e-6			
lgkv4-55	876	1326	1.512	0.597	6.54042596310273e-6	0.00128474090302916			
lgkv4-57	1073	2028	1.891	0.919	3.3562498027467997e-12	2.8568398320980804e-9			
Igkv4-57-1	442	742	1.682	0.75	7.75445977469986e-6	0.0014/7/4540900549			
Igkv4-59	1852	2888	1.56	0.641	4.83655880379133e-8	1.8162/00825531/e-5			
Igkv4-61	202	382	1.895	0.922	1.609949687494446-5	0.00267610572413351			
Igkv4-63	412	1209	1.012	0.089	9.056811/0/503990/e-005	0.0103247653465545			
Igkv4-68	705	1308	1.711	0.775	1.09025550942995e-7	2.0054243083771e-4			
Igkv5-39	1219	2002	1.043	0.717	1.262/11269/9818e-/	4.133922434046986-5			
1gkv5-45	1417	2126	1.355	0.010	1 502380921720210 7	1.0414/300290/21/3			
Igkv6-12	486	748	1 539	0.622	3 57710546180523-5	0.00480762974066624			
løkv6-14	122	282	2 299	1 201	5 46043365617278-7	1 54930704271140-4			
Igkv6-15	2835	4390	1 549	0.632	1 851963081979330-8	8 34493367916676-6			
lgkv6-17	1384	2542	1 837	0.032	8.67158726982118-14	1.00653420382797-10			
Igkv6-73	1326	2087	1 575	0.655	8.751127518354716-9	3.019848544712240-5			
lgkv6-25	514	814	1.582	0,661	3.15389222964394e-5	0.00442515340528504			
lgkv8-19	1282	1964	1.532	0.616	6.14025172420464e-6	0.00122498021897883			
Igkv8-21	657	1012	1.542	0.625	5.52356193294069e-5	0.00693386355385815			
119r	221	524	2.371	1.245	1.0811900504023099e-11	8.6278966022104e-9			
Lax1	2834	4282	1.511	0.596	4.67891232373424e-7	1.3893105244055e-4			
Maged1	292	498	1.708	0.773	1.65786385160679e-5	0.00271379559709174			
Myadm	164	371	2.254	1.173	4.74959906327652e-8	1.81627008255317e-5			
Oasl2	72	588	8.259	3.046	6.047550256581949e-45	1.54430243352077e-41			
Pde8a	537	848	1.58	0.66	1.0115348773303e-5	0.00189930548731666			
Pon3	561	854	1.524	0.608	4.2294877988406e-4	0.0323365869554472			
Prdm16	234	400	1.71	0.774	8.25736604363825e-5	0.00949820267073632			
Ryr2	78	296	3.798	1.925	2.64953991271621e-13	2.81911046713004e-10			
Selplg	1664	2546	1.53	0.614	1.85267444878709e-8	8.34493367916676e-6			
Sord	515	775	1.502	0.587	2.2488993993367e-4	0.0199402413407862			
Spp1	86	228	2.622	1.391	1.55222797931981e-6	3.8113166999914e-4			
Tram2	646	982	1.52	0.604	7.25890543153912e-5	0.00858163931017513			
Ubc	3298	5570	1.688	0.756	9.853193214380549e-20	1.39783967734679e-16			

Supplementary Table S5: List of differentially expressed genes in in vitro-activated B cells (day 2)

Supplementary Table S6: List of differentially expressed genes in in vitro-differentiated plasmablasts (day 4)

	Genes upregulated in plasmablasts (Day4)											
MGI SYMBOL	WT	cKO	FoldChange log2FoldChange p		pvalue	padj						
Iglv3	18404	38273	2.079	1.056	1.79921733414964e-12	2.31613247425083e-8						
Rps7-ps3	1038	2096	2.02	1.015	4.144740942877341e-9	1.3338812539415e-5						
Ighv3-8	6327	11801	1.865	0.899	2.16216554785762e-5	0.0397622244251016						
Reep5	3030	5507	1.817	0.861	3.29776904916066e-5	0.0471690899664946						
Glb1	1322	2165	1.638	0.712	3.02476519318689e-5	0.0471690899664946						
Atf5	412	745	1.805	0.852	3.71673509239989e-5	0.0478455308444638						

Supplementary Table S7: Total number of mutations, total number of bp analyzed and mutation frequencies within intron 5' to $S\mu$ (A, B); 3' to J_{H4} (C, D) and 3' to $J_{\kappa}5$ (E, F) in GC B cells of wt and Satb1 cKO. For each region tested for SHM, data were obtained from spontaneous GC B cells sorted from Peyer's patches (n=6-9 individual mice) or splenic GC B cells sorted upon NP-CGG-immunization (n=7-8 individual mice).

	Intron 5' to Smu Peyer's patches GC											
		Satb1 ^{flx/+}		Satb1 ^{flx/flx} Cd79a ^{cre/+}								
N°	number of mutations	total number of pb analyzed	Frequency (mutation/Kb)	N°	number of mutation	total number of pb analyzed	Frequency (mutation/Kb)					
8692	167 611	143 504 465	1,17	8690	151 915	100 956 853	1,50					
8649	45 504	48 022 564	0,95	8645	54 050	38 428 176	1,40					
8753	143 998	96 361 943	1,50	8756	311 660	148 421 088	2,10					
8755	182 738	122 821 454	1,49	9601	144 996	73 409 771	1,98					
8644	109 695	63 612 833	1,72	9604	163 545	78 032 498	2,10					
7128	250 366	152 000 328	1,65	9877	162 887	85 164 912	1,91					
7129	176 860	139 941 043	1,26	9880	113 784	87 909 626	1,29					
9881	152 289	86 749 376	1,76	7111	485 120	187 778 619	2,58					
				7112	252 555	121 402 038	2,08					
Total	1 229 061	853 014 006	1,44	Total	1 840 512	921 503 581	1,88					

S7A

S7B

		In	tron 5' to Smu N	P CGG Spleni	c GC			
	ç	Satb1 ^{flx/+}		Satb1 ^{flx/flx} Cd79a ^{cre/+}				
N°	number of mutations	total number of pb analyzed	Frequency (mutation/Kb)	N°	number of mutation	total number of pb analyzed	Frequency (mutation/Kb)	
8139	19 700	111 850 026	0,18	6854	26 279	142 403 067	0,19	
6858	48 673	211 877 661	0,23	6857	56 795	146 983 925	0,39	
6859	8 202	129 181 296	0,06	6864	30 662	52 155 066	0,59	
6863	7 520	132 861 196	0,06	6687	106 971	229 058 581	0,47	
6692	25 891	179 825 690	0,14	6691	101 092	256 700 586	0,39	
6693	109 022	217 449 208	0,50	6791	33 527	118 595 323	0,28	
2544	67 300	178 614 933	0,38	2537	112 115	197 775 331	0,57	
Total	286 308	1 161 660 010	0,22	Total	467 441	1 143 671 879	0,41	

	Intron 3' to J _H 4 Peyer's patches GC											
		Satb1 ^{flx/+}		Satb1 ^{flx/flx} Cd79a ^{cre/+}								
N°	number of mutations	total number of pb analyzed	Frequency (mutation/Kb)	N°	number of mutation	total number of pb analyzed	Frequency (mutation/Kb)					
8692	57 561	7 906 004	7,28	8690	621 327	82 879 451	7,50					
8649	654 842	100 297 965	6,53	8645	328 574	32 909 115	9,98					
8753	4 064 096	339 723 680	11,96	8756	106 623	13 743 216	7,76					
8755	218 499	26 244 087	8,33	9601	1 718 084	140 896 971	12,19					
8644	136 754	10 382 456	13,17	9604	1 866 361	127 867 165	14,60					
8646	475 950	58 858 803	8,09	9605	2 112 619	142 861 789	14,79					
9881	195 215	21 355 525	9,14	9661	2 550 716	146 382 941	17,42					
				9877	757 522	57 471 525	13,18					
				9880	1 614 250	119 121 342	13,55					
Total	5 802 917	564 768 520	9,21	Total	10 061 826	745 012 173	12,33					

S7D

		Ir	ntron 3' to J _H 4 NI	P CGG Splenic	GC		
	9	Satb1 ^{flx/+}			Satb1 ^{fb}	^{c/flx} Cd79a ^{cre/+}	
N°	number of mutations	total number of pb analyzed	Frequency (mutation/Kb)	N°	number of mutation	total number of pb analyzed	Frequency (mutation/Kb)
8139	152 171	39 872 610	3,81	8133	137 111	28 459 587	4,82
6858	84 367	38 653 923	2,18	6854	252 934	92 925 446	2,72
6859	125 264	78 908 567	1,59	6857	141 510	37 358 940	3,79
6863	153 921	58 613 945	2,62	6864	335 616	40 332 921	8,32
6692	317 757	68 343 790	4,65	6687	777 955	152 063 704	5,12
6693	270 476	59 540 608	4,55	6691	551 228	96 233 795	5,73
2544	151 910	41 648 331	3,64	6791	249 260	54 111 722	4,61
				2537	176 658	32 694 946	5,40
Total	1 255 866	385 581 774	3,29	Total	2 622 272	534 181 061	5,06
Total	1 255 866	385 581 774	3,29	Total	2 622 272	534 181 061	5,06

S7C

	Intron 3' to Jk5 Peyer's patches GC											
		Satb1 ^{flx/+}		Satb1 ^{flx/flx} Cd79a ^{cre/+}								
N°	number of mutations	total number of pb analyzed	Frequency (mutation/Kb)	N°	number of mutation	total number of pb analyzed	Frequency (mutation/Kb)					
8692	64 352	8 109 925	7,94	8690	977 250	109 513 034	8,92					
8649	187 594	18 973 865	9,89	8645	133 351	11 622 636	11,47					
8753	41 647	2 737 783	15,21	8756	1 092 197	76 790 583	14,22					
8755	2 497 183	288 443 955	8,66	9601	1 097 124	100 505 774	10,91					
8644	400 715	30 094 611	13,32	9604	1 941 371	110 394 569	17,59					
9881	958 245	97 655 675	9,81	9605	779 895	62 212 383	12,54					
7128	1 571 163	146 409 208	10,73	9877	820 899	65 692 001	12,50					
7129	540 065	97 174 751	5,56	9880	2 136 606	163 662 781	13,05					
				7111	963 266	90 045 963	10,70					
				7112	1 256 410	223 536 225	6,07					
Total	6 260 964	689 599 773	10,14	Total	6 842 087	536 730 980	11,80					

*S7*F

Intron 3' to Jk5 NP CGG Splenic GC							
Satb1 ^{fix/+}				Satb1 ^{flx/flx} Cd79a ^{cre/+}			
N°	number of mutations	total number of pb analyzed	Frequency (mutation/Kb)	N°	number of mutation	total number of pb analyzed	Frequency (mutation/Kb)
8139	222 655	85 014 498	2,62	6854	171 154	69 778 869	2,45
6858	72 960	56 300 498	1,30	6857	271 677	110 895 960	2,45
6859	2 008	1 253 443	1,60	6864	280 371	67 161 110	4,16
6863	121 103	93 266 492	1,30	6687	371 949	94 961 964	3,92
6692	196 340	96 679 417	2,03	6691	249 263	71 580 665	3,48
6693	323 874	88 558 220	3,66	6791	247 551	102 051 591	2,43
2544	731 196	178 302 885	4,10	2537	622 428	91 007 705	6,84
Total	1 670 136	599 375 453	2,37	Total	2 214 393	607 437 864	3,68