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Introduction

The present paper was initially conceived in January 2021 as an extension of some results of [START_REF] Dac | On Zagier-Hoffman's conjectures in positive characteristic[END_REF] to the setting of alternating multiple zeta values (AMZV's) introduced by Harada [START_REF] Harada | Alternating multizeta values in positive characteristic[END_REF]. At that time, we endeavored to explore Zagier-Hoffman's conjectures in positive characteristic for both MZV's and AMZV's, by establishing certain results related to the linear independence of specific sets of AMZV's. Subsequently, in their work [START_REF] Im | Zagier-Hoffman's conjectures in positive characteristic[END_REF], the authors discovered a more successful approach by substituting these sets with those of alternating Carlitz multiple polylogarithms (ACMPL's). For the MZV's version of Zagier-Hoffman's conjectures in positive characteristic, we would like to refer the reader to the work [START_REF] Chang | On Thakur's basis conjecture for multiple zeta values in positive characteristic[END_REF] which adopts the same approach and yields the same results. Consequently, we made the decision to briefly reference the findings of this paper in Proposition 4.6 of the aforementioned work (loc. cit.), deferring the complete exposition of the details to the present article.

Background.

Let A = F q [θ] be the polynomial ring in the variable θ over a finite field F q of q elements of characteristic p > 0. We denote by A + the set of monic polynomials in A. Let K = F q (θ) be the fraction field of A equipped with the rational point ∞. Let K ∞ be the completion of K at ∞ and C ∞ be the completion of a fixed algebraic closure K of K at ∞. We denote by v ∞ the discrete valuation on K corresponding to the place ∞ normalized such that v ∞ (θ) = -1, and by |•| ∞ = q -v∞ the associated absolute value on K. The unique valuation of C ∞ which extends v ∞ will still be denoted by v ∞ .

Let N = {1, 2, . . . } be the set of positive integers and Z ≥0 = {0, 1, 2, . . . } be the set of non-negative integers. In [START_REF] Carlitz | On certain functions connected with polynomials in Galois field[END_REF] Carlitz introduced the Carlitz zeta values ζ A (n) for n ∈ N given by

ζ A (n) := a∈A+ 1 a n ∈ K ∞
which are analogues of classical special zeta values in the function field setting. For any tuple of positive integers s = (s 1 , . . . , s r ) ∈ N r , Thakur [START_REF] Thakur | Function field arithmetic[END_REF] defined the characteristic p multiple zeta value (MZV for short) ζ A (s) or ζ A (s 1 , . . . , s r ) by

ζ A (s) := 1 a s1 1 . . . a sr r ∈ K ∞
where the sum runs through the set of tuples (a 1 , . . . , a r ) ∈ A r + with deg a 1 > • • • > deg a r . We call r the depth of ζ A (s) and w(s) = s 1 + • • • + s r the weight of ζ A (s). We note that Carlitz zeta values are exactly depth one MZV's. Thakur [START_REF] Thakur | Power sums with applications to multizeta and zeta zero distribution for Fq[t][END_REF] showed that all the MZV's do not vanish.

For w ∈ N we denote by Z w the K-vector space spanned by the MZV's of weight w, and by T w is the set of ζ A (s) with s = (s 1 , . . . , s r ) of weight w with 1 ≤ s i ≤ q for 1 ≤ i ≤ r -1 and s r < q. We also define T 0 w to be the set of MZV's ζ A (s 1 , . . . , s r ) such that 1 ≤ s i < q for all 1 ≤ i ≤ r. We now recall two results of [START_REF] Dac | On Zagier-Hoffman's conjectures in positive characteristic[END_REF]: Theorem 1.1 ([22, Theorems B]). Let w ∈ N. Then the MZV's in T 0 w are linearly independent over K. Theorem 1.2 ([22,Theorems D]). Let w ≤ 2q -2. Then the MZV's in T w are linearly independent over K.

Statement of the results.

In [START_REF] Harada | Alternating multizeta values in positive characteristic[END_REF] Harada introduced the alternating MZV's in positive characteristic. For any tuple of positive integers s = (s 1 , . . . , s r ) ∈ N r and = ( 1 , . . . , r ) ∈ (F × q ) r , the corresponding AMZV is given by We note all the AMZV's do not vanish [START_REF] Harada | Alternating multizeta values in positive characteristic[END_REF]. For w ∈ N we denote by AZ w the K-vector space spanned by the MZV's of weight w. We refer the reader to [START_REF] Chen | On lower bounds of the dimensions of multizeta values in positive characteristic[END_REF][START_REF] Harada | Alternating multizeta values in positive characteristic[END_REF] for more details about these objects. Note that in the classical setting the reader could consult [16, p. 536] for a discussion about the dimensions of the Q-vector space spanned by all the AMZV's of fixed weight.

We now introduce several sets of AMZV's. First, we denote the set AT w by

AT w := ζ A s : ζ A (s) ∈ T w .
Next, we denote by AT 0 w the set of AMZV's ζ A s such that ζ A (s) ∈ T 0 w .

We also denote by AT 1 w the subset of AMZV's ζ A (s, ) of AT w such that i = 1 whenever s i = q (i.e., the character corresponding to q is always 1). We remark that in general, AT 0 w AT 1 w AT w . Finally, for w ≤ 3q -2, we denote by AT w the subset of AMZV's as follows.

• For 1 ≤ w ≤ 2q -2, AT w consists of ζ A s
of weight w such that if we write s = (s 1 , . . . , s r ), then q -1 s i . • For 2q -1 ≤ w ≤ 3q -2, we consider I w the set of tuples s = (s 1 , . . . , s r ) of weight w where s i = q, 2q -1, 2q, 3q -2 for all i satisfying if s i+1 = q or 2q -1 for some i = 1, 2, . . . , r -1, then q -1|s i , -s i = (q -1, q -1, q) when w = 3q -2, and define

AT w := ζ A s
: s ∈ I w , and i = 1 whenever s i = q .

Here are some basic properties of these sets that are crucial for linear independence of AMZV's. Proposition 1.3. We define a Fibonacci-like sequence s(w) as follows. We put s(w) = (q -1)q w-1 if 1 ≤ w < q, (q -1)(q w-1 -1) if w = q, and for w > q, s(w) = (q -1) q-1 i=1 s(w -i) + s(w -q). Then for all w ∈ N,

|AT 1 w | = s(w). Proposition 1.4. Let w ≤ 3q -2. Then 1) We have |AT w | = s(w).
2) For any

(s; ) = (s 1 , . . . , s r ; 1 , . . . , r ) ∈ N r × (F × q ) r , if ζ A s ∈ AT w , then ζ A 1 . . . r-1 s 1 . . . s r-1 belongs to AT w-sr .
We are now ready to state some results for linear independence of AMZV's which extend Theorems 1.1 and 1.2: Theorem 1.5. Let w ∈ N. Then the AMZV's in AT 0 w are linearly independent over K.

Theorem 1.6. Let w ≤ 3q -2. Then the AMZV's in AT w are all linearly independent over K. In particular,

dim K AZ w ≥ s(w).
We would like to mention several comments. First, Theorem 1.6 is exactly [START_REF] Im | Zagier-Hoffman's conjectures in positive characteristic[END_REF]Proposition 4.6]. Second, the proofs of both previous theorems are based on the theory of dual t-motives introduced by Anderson [START_REF] Anderson | t-motives[END_REF] and the Anderson-Brownawell-Papanikolas criterion [START_REF] Anderson | Determination of the algebraic relations among special Γ-values in positive characteristic[END_REF]. Finally, it is proved in [START_REF] Im | Zagier-Hoffman's conjectures in positive characteristic[END_REF] that dim K AZ w = s(w) for all weights w ∈ N (see [START_REF] Im | Zagier-Hoffman's conjectures in positive characteristic[END_REF]Theorem A]). However, the approach given in loc. cit. goes beyond the scope of this paper as we have mentioned in the beginning of the introduction.

Organization of the paper.

In §2 we recall the notion of dual t-motives following Anderson and the Anderson-Brownawell-Papanikolas criterion for linear independence. Then we state some applications for linear independence of MZV's and AMZV's (see Theorems 2.4 and 2.5). In §3 we prove Propositions 1.3 and 1.4. The main theorems 1.5 and 1.6 will be shown in §4 and §5 respectively. 

Dual t-motives and linear independence

We continue with the notation given in the Introduction and follow closely the presentation given as in [START_REF] Im | Zagier-Hoffman's conjectures in positive characteristic[END_REF][START_REF] Dac | On Zagier-Hoffman's conjectures in positive characteristic[END_REF] (see also [START_REF] Chang | On Thakur's basis conjecture for multiple zeta values in positive characteristic[END_REF]). In particular, a large part of this section is line-by-line parallel to [17, §2]. Further, letting t be another independent variable, we denote by T the Tate algebra in the variable t with coefficients in C ∞ equipped with the Gauss norm . ∞ .

Dual t-motives and Anderson-Brownawell-Papanikolas (ABP) criterion.

We recall the notion of dual t-motives due to Anderson (see [5, §4] and [15, §5] for more details). We refer the reader to [START_REF] Anderson | t-motives[END_REF] for the related notion of t-motives.

For i ∈ Z we consider the i-fold twisting of C ∞ ((t)) defined by

C ∞ ((t)) → C ∞ ((t)) f = j a j t j → f (i) := j a q i j t j .
We extend i-fold twisting to matrices with entries in C ∞ ((t)) by twisting entry-wise.

Let K[t, σ] be the non-commutative K[t]-algebra generated by the new variable σ subject to the relation σf = f (-1) σ for all f ∈ K[t]. Definition 2.1. An effective dual t-motive is a K[t, σ]-module M which is free and finitely generated over K[t] such that for 0 we have

(t -θ) (M /σM ) = {0}.
We mention that effective dual t-motives are called Frobenius modules in [START_REF] Chang | An effective criterion for Eulerian multizeta values in positive characteristic[END_REF][START_REF] Chen | On lower bounds of the dimensions of multizeta values in positive characteristic[END_REF][START_REF] Harada | Alternating multizeta values in positive characteristic[END_REF][START_REF] Kuan | Criterion for deciding zeta-like multizeta values in positive characteristic[END_REF]. Note that Hartl and Juschka [15, §4] introduced a more general notion of dual t-motives. In particular, effective dual t-motives are always dual t-motives.

Throughout this paper, we will always work with effective dual t-motives. Therefore, we will sometimes drop the word "effective" where there is no confusion.

Let M and M be two effective dual t-motives. Then a morphism of effective dual t-motives M → M is just a homomorphism of left K[t, σ]-modules. We denote by F the category of effective dual t-motives equipped with the trivial object 1.

We say that an object M of F is given by a matrix Φ ∈ Mat r (K[t]) if M is a K[t]-module free of rank r and the action of σ is represented by the matrix Φ on a given K[t]-basis for M. We say that an object M of F is uniformizable or rigid analytically trivial if there exists a matrix Ψ ∈ GL r (T) satisfying Ψ (-1) = ΦΨ. The matrix Ψ is called a rigid analytic trivialization of M.

We now recall the Anderson-Brownawell-Papanikolas criterion which is crucial in the sequel (see [START_REF] Anderson | Determination of the algebraic relations among special Γ-values in positive characteristic[END_REF]Theorem 3.1.1]).

Theorem 2.2 (Anderson-Brownawell-Papanikolas). Let Φ ∈ Mat (K[t]) be a matrix such that det Φ = c(t -θ) s for some c ∈ K and s ∈ Z ≥0 . Let ψ ∈ Mat ×1 (E) be a vector satisfying ψ (-1) = Φψ and ρ ∈ Mat 1× (K) such that ρψ(θ) = 0. Then there exists a vector P ∈ Mat 1× (K[t]) such that P ψ = 0 and P (θ) = ρ.

First construction of dual t-motives.

We briefly review some constructions of dual t-motives introduced in [START_REF] Chang | An effective criterion for Eulerian multizeta values in positive characteristic[END_REF] (see also [START_REF] Chang | Linear independence of monomials of multizeta values in positive characteristic[END_REF][START_REF] Chen | On lower bounds of the dimensions of multizeta values in positive characteristic[END_REF][START_REF] Harada | Alternating multizeta values in positive characteristic[END_REF]). Let s = (s 1 , . . . , s r ) ∈ N r be a tuple of positive integers and

Q = (Q 1 , . . . , Q r ) ∈ K[t] r satisfying the condition (2.1) ( Q 1 ∞ /|θ| qs 1 q-1 ∞ ) q i 1 . . . ( Q r ∞ /|θ| qsr q-1 ∞ ) q ir → 0 as 0 ≤ i r < • • • < i 1 and i 1 → ∞.
We consider the dual t-motives M s,Q and M s,Q attached to (s, Q) given by the matrices

Φ s,Q =          (t -θ) s1+•••+sr 0 0 . . . 0 Q (-1) 1 (t -θ) s1+•••+sr (t -θ) s2+•••+sr 0 . . . 0 0 Q (-1) 2 (t -θ) s2+•••+sr . . . . . . . . . . . . (t -θ) sr 0 0 . . . 0 Q (-1) r (t -θ) sr 1          ∈ Mat r+1 (K[t]), and Φ s,Q ∈ Mat r (K[t]
) is the upper left r × r sub-matrix of Φ s,Q . Throughout this paper, we work with the Carlitz period π which is a fundamental period of the Carlitz module (see [START_REF] Goss | Basic Structures of function field arithmetic[END_REF][START_REF] Thakur | Function field arithmetic[END_REF]). We fix a choice of (q -1)st root of (-θ) and set Ω(t) := (-θ) -q/(q-1)

i≥1 1 - t θ q i ∈ T × so that Ω (-1) = (t -θ)Ω and 1 Ω(θ) = π.
Given (s, Q) as above, Chang introduced the following series (see [START_REF] Chang | Linear independence of monomials of multizeta values in positive characteristic[END_REF]Lemma 5.3.1] and also [START_REF] Chang | An effective criterion for Eulerian multizeta values in positive characteristic[END_REF]Eq. (2.3.2)]) [START_REF] Chang | Linear independence of monomials of multizeta values in positive characteristic[END_REF]Lemma 5.3.1]). In the sequel, we will use the following crucial property of this series (see [START_REF] Chang | Linear independence of monomials of multizeta values in positive characteristic[END_REF]Lemma 5.3.5] and [START_REF] Chang | An effective criterion for Eulerian multizeta values in positive characteristic[END_REF]Proposition 2.3.3]): for all j ∈ Z ≥0 , we have

L(s; Q) = L(s 1 , . . . , s r ; Q 1 , . . . , Q r ) := i1>•••>ir≥0 (Ω sr Q r ) (ir) . . . (Ω s1 Q 1 ) (i1) . (2.2) If we denote E the ring of series n≥0 a n t n ∈ K[[t]] such that lim n→+∞ n |a n | ∞ = 0 and [K ∞ (a 0 , a 1 , . . .) : K ∞ ] < ∞, then any f ∈ E is an entire function. It is proved that L(s, Q) ∈ E (see
(2.3) L(s; Q) θ q j = (L(s; Q)(θ)) q j .
Then the matrix given by

Ψ s,Q =           Ω s1+•••+sr 0 0 . . . 0 L(s 1 ; Q 1 )Ω s2+•••+sr Ω s2+•••+sr 0 . . . 0 . . . L(s 2 ; Q 2 )Ω s3+•••+sr . . . . . . . . . . . . . . . . . . L(s 1 , . . . , s r-1 ; Q 1 , . . . , Q r-1 )Ω sr L(s 2 , . . . , s r-1 ; Q 2 , . . . , Q r-1 )Ω sr . . . Ω sr 0 L(s 1 , . . . , s r ; Q 1 , . . . , Q r ) L(s 2 , . . . , s r ; Q 2 , . . . , Q r ) . . . L(s r ; Q r ) 1           ∈ GL r+1 (T) satisfies Ψ (-1)
s,Q = Φ s,Q Ψ s,Q . Thus Ψ s,Q is a rigid analytic trivialization associated to the dual t-motive M s,Q .

We also denote by Ψ s,Q the upper r × r sub-matrix of Ψ s,Q . It is clear that Ψ s is a rigid analytic trivialization associated to the dual t-motive M s,Q .

Further, combined with Eq. (2.3), the above construction of dual t-motives implies that π w L(s; Q)(θ) where w = s 1 + • • • + s r has the MZ (multizeta) property in the sense of [START_REF] Chang | Linear independence of monomials of multizeta values in positive characteristic[END_REF]Definition 3.4.1]. By [START_REF] Chang | Linear independence of monomials of multizeta values in positive characteristic[END_REF]Proposition 4.3.1], we get Proposition 2.3 ([17, Proposition 2.3]). Let (s i ; Q i ) as before for 1 ≤ i ≤ m. We suppose that all the tuples of positive integers s i have the same weight, says w. Then the following assertions are equivalent:

i) L(s 1 ; Q 1 )(θ), . . . , L(s m ; Q m )(θ) are K-linearly independent. ii) L(s 1 ; Q 1 )(θ), . . . , L(s m ; Q m )(θ) are K-linearly independent.

Second construction of dual t-motives.

Based on the first construction, we present another construction which will be useful when working with linear combinations of MZV's or related objects.

Let w ∈ N be a positive integer and n ∈ N. Let {(s i ; Q i )} 1≤i≤n be a collection of pairs satisfying Condition (2.1) such that s i always has weight w. We write

s i = (s i1 , . . . , s i i ) ∈ N i and Q i = (Q i1 , . . . , Q i i ) ∈ K[t] i so that s i1 + • • • + s i i = w.
We introduce the set of tuples

I(s i ; Q i ) := {∅, (s i1 ; Q i1 ), . . . , (s i1 , . . . , s i( i-1) ; Q i1 , . . . , Q i( i-1) )},
and set

I := ∪ i I(s i ; Q i ). Let a i ∈ A \ {0} for all 1 ≤ i ≤ n. For all (t; Q) ∈ I, we set (2.4) f t,Q := i a i (t)L(s i(k+1) , . . . , s i i ; Q i(k+1) , . . . , Q i i ),
where the sum runs through the set of indices i such that (t;

Q) = (s i1 , . . . , s ik ; Q i1 , . . . , Q ik ) for some 0 ≤ k ≤ i -1. In particular, f ∅ = i a i (t)L(s i ; Q i ).
We now construct a new matrix Φ by merging the same rows of Φ s1,Q1 , . . . , Φ sn,Qn as follows. Then the matrix Φ will be a matrix indexed by elements of

I, says Φ = Φ (t;Q),(t ;Q ) (t;Q),(t ;Q )∈I ∈ Mat |I| (K[t]).
For the row which corresponds to the empty pair ∅ we put

Φ ∅,(t ;Q ) = (t -θ) w if (t ; Q ) = ∅, 0 otherwise.
For the row indexed by (t;

Q) = (s i1 , . . . , s ij ; Q i1 , . . . , Q ij ) for some i and 1 ≤ j ≤ i -1 we put Φ (t;Q),(t ;Q ) =      (t -θ) w-w(t ) if (t ; Q ) = (t; Q), Q (-1) ij (t -θ) w-w(t ) if (t ; Q ) = (s i1 , . . . , s i(j-1) ; Q i1 , . . . , Q i(j-1) ), 0 otherwise. Note that Φ si,Qi = Φ (t;Q),(t ;Q ) (t;Q),(t ;Q )∈I(si;Qi) for all i. We define Φ ∈ Mat |I|+1 (K[t]) by Φ = Φ 0 v 1 ∈ Mat |I|+1 (K[t]), v = (v t,Q ) (t;Q)∈I ∈ Mat 1×|I| (K[t]),
where

v t,Q = a i (t)Q (-1) i i (t -θ) w-w(t) if (t; Q) = (s i1 , . . . , s i( i-1) ; Q i1 , . . . , Q i( i-1) ), 0 otherwise.
We now introduce a rigid analytic trivialization matrix Ψ for Φ. We define Ψ = Ψ (t;Q),(t ;Q ) (t;Q),(t ;Q )∈I ∈ GL |I| (T) as follows. For the row which corresponds to the empty pair ∅ we define

Ψ ∅,(t ;Q ) = Ω w if (t ; Q ) = ∅, 0 otherwise.
For the row indexed by (t;

Q) = (s i1 , . . . , s ij ; Q i1 , . . . , Q ij ) for some i and 1 ≤ j ≤ i -1 we put Ψ (t;Q),(t ;Q ) =      L(t; Q)Ω w-w(t) if (t ; Q ) = ∅, L(s i(k+1) , . . . , s ij ; Q i(k+1) , . . . , Q ij )Ω w-w(t) if (t ; Q ) = (s i1 , . . . , s ik ; Q i1 , . . . , Q ik ) for some 1 ≤ k ≤ j, 0 otherwise. Note that Ψ si,Qi = Ψ (t;Q),(t ;Q ) (t;Q),(t ;Q )∈I(si;Qi) for all i.
We define Ψ ∈ GL |I|+1 (T) by

Ψ = Ψ 0 f 1 ∈ GL |I|+1 (T), f = (f t,Q ) t∈I ∈ Mat 1×|I| (T).
Here we recall (see Eq. (2.4))

f t,Q = i a i (t)L(s i(k+1) , . . . , s i i ; Q i(k+1) , . . . , Q i i )
where the sum runs through the set of indices i such that (t;

Q) = (s i1 , . . . , s ik ; Q i1 , . . . , Q ik ) for some 0 ≤ k ≤ i -1. In particular, f ∅ = i a i (t)L(s i ; Q i ).
By construction and by §2.2, we get Ψ (-1) = ΦΨ, that means Ψ is a rigid analytic trivialization for Φ.

A result for linear independence.

We are now ready to state an application of ABP criterion for linear independence (see [START_REF] Im | Zagier-Hoffman's conjectures in positive characteristic[END_REF][START_REF] Dac | On Zagier-Hoffman's conjectures in positive characteristic[END_REF] and also [START_REF] Chang | On Thakur's basis conjecture for multiple zeta values in positive characteristic[END_REF]).

Theorem 2.4. We keep the above notation. We suppose further that {(s i ; Q i )} 1≤i≤n satisfies the following conditions:

(LW) For any weight w < w, the values L(t; Q)(θ) with (t; Q) ∈ I and w(t) = w are all K-linearly independent. In particular, L(t; Q)(θ) is always nonzero. (LD) There exist

a i ∈ A \ {0} for 1 ≤ i ≤ n such that n i=1 a i L(s i ; Q i )(θ) = 0. Then • f t,Q (θ) belongs to K where f t,Q is given as in (2.4) for all (t; Q) ∈ I. • There exist b ∈ F q [t] \ {0} and δ := (δ t,Q ) (t;Q)∈I ∈ Mat 1×|I| (K[t]) such that Id 0 δ 1 (-1) Φ 0 bv 1 = Φ 0 0 1 Id 0 δ 1 .
Here we note that LW stands for Lower Weights and LD for Linear Dependence. We mention below some comments about the above result.

(1) In [START_REF] Chang | An effective criterion for Eulerian multizeta values in positive characteristic[END_REF] Chang, Papanikolas and Yu studied zeta-like MZV's and proved Theorem 2.4 in the case where n = 2, s 1 is of weight w, and s 2 = (w) (see Theorem 2.5.2 of loc. cit.). (2) In [START_REF] Kuan | Criterion for deciding zeta-like multizeta values in positive characteristic[END_REF][START_REF] Le | Zeta-like multiple zeta values in positive characteristic[END_REF], the authors apply the theorem of Chang-Papanikolas-Yu to obtain several results concerning zeta-like MZV's. (3) In [START_REF] Chang | Linear relations among double zeta values in positive characteristic[END_REF][START_REF] Chen | On lower bounds of the dimensions of multizeta values in positive characteristic[END_REF], the authors generalized the aforementioned theorem of Chang-Papanicolas-Yu and obtain some particular cases of Theorem 2.4. In all these works, Condition (LW) is replaced by a stronger condition: one requires that for any weight w < w, there exists at most one pair (t; Q) ∈ I such that w(t) = w and further L(t; Q)(θ) is always nonzero for all (t; Q) ∈ I.

(4) In [START_REF] Dac | On Zagier-Hoffman's conjectures in positive characteristic[END_REF], the author proved a version of Theorem 2.4 for MZV's (see Theorem 2.5) and applied it to obtain some results towards Zagier-Hoffman's conjectures in positive characteristic. Theorem 2.4 is a straightforward generalization of the previous result and is proved in [START_REF] Im | Zagier-Hoffman's conjectures in positive characteristic[END_REF]Theorem 2.4] (see also [START_REF] Chang | On Thakur's basis conjecture for multiple zeta values in positive characteristic[END_REF]). ( 5) The curious reader is invited to read the previous works for more details and an exhaustive list of related works.

2.5.

Example: dual t-motives connected to MZV's.

First construction.

Following Anderson and Thakur [START_REF] Anderson | Tensor powers of the Carlitz module and zeta values[END_REF][START_REF] Anderson | Multizeta values for Fq[t], their period interpretation, and relations between them[END_REF] we introduce dual t-motives connected to MZV's and AMZV's. We briefly review Anderson-Thakur polynomials introduced in the seminal work of Anderson and Thakur [START_REF] Anderson | Tensor powers of the Carlitz module and zeta values[END_REF]. For k ≥ 0, we set [k] := θ q k -θ and

D k := k =1 [ ] q k-. For n ∈ N we write n -1 = j≥0 n j q j with 0 ≤ n j ≤ q -1 and define Γ n := j≥0 D nj j .
We set γ 0 (t) := 1 and γ j (t) := j =1 (θ q j -t q ) for j ≥ 1. Then Anderson-Thakur polynomials α n (t) ∈ A[t] are given by the generating series

n≥1 α n (t) Γ n x n := x   1 - j≥0 γ j (t) D j x q j   -1
. 

Finally
deg θ H n ≤ (n -1)q q -1 < nq q -1 .
Let s = (s 1 , . . . , s r ) ∈ N r be a tuple and = ( 1 , . . . , r ) ∈ (F × q ) r . For all 1 ≤ i ≤ r we fix a fixed (q -1)-th root

γ i of i ∈ F × q and set Q si, i := γ i H si . Then we set Q s, := (Q s1, 1 , . . . , Q sr, r ) and put L(s; ) := L(s; Q s, ). By (2.6) we know that H n ∞ < |θ| nq q-1 ∞
for all n ∈ N, thus Q s, satisfies Condition (2.1). Thus we can define the dual t-motives M s, = M s,Qs, and M s, = M s,Qs, attached to s whose matrices and rigid analytic trivializations will be denoted by (Φ s, , Ψ s, ) and (Φ s, , Ψ s, ), respectively. These dual t-motives are connected to MZV's and AMZV's by the following result (see [START_REF] Chen | On lower bounds of the dimensions of multizeta values in positive characteristic[END_REF]Proposition 2.12] for more details):

(2.7) L(s; )(θ) = γ 1 . . . γ r Γ s1 . . . Γ sr ζ A s π s1+•••+sr .
By a result of Thakur [START_REF] Thakur | Relations between multizeta values for Fq[t][END_REF], one can show (see [14, Theorem 2.1]) that ζ A s = 0. Thus L(s; )(θ) = 0.

Second construction.

Let w ∈ N be a positive integer and n ∈ N. Let {(s i ; i )} 1≤i≤n be a collection of pairs such that s i always has weight w and a i ∈ A \ {0} for all 1 ≤ i ≤ n. Recall from §2.5 that the collection {(s i ; Q si; i )} 1≤i≤n satisfies Condition (2.1). We write

s i = (s i1 , . . . , s i i ) ∈ N i and i = ( i1 , . . . , i i ) ∈ (F × q ) i so that s i1 + • • • + s i i = w.
We introduce the set of tuples I(s i ; i ) := {∅, (s i1 ; i1 ), . . . , (s i1 , . . . , s i( i-1) ; i1 , . . . , i( i-1) )},

I + (s i ; i ) := I(s i ; i ) ∪ {(s i ; i )},
and set

I := ∪ i I(s i ; i ), I + := ∪ i I + (s i ; i ). For all (t; ) ∈ I, we set (2.8) f t, := i a i (t)L(s i(k+1) , . . . , s i i ; i(k+1) , . . . , i i ),
where the sum runs through the set of indices i such that (t; ) = (s i1 , . . . , s ik ; i1 , . . . , ik ) for some 0 ≤ k ≤ i -1. In particular,

f ∅ = i a i (t)L(s i ; i ).
By §2.3 we get a new matrix Φ by merging the same rows of Φ s1, 1 , . . . , Φ sn, n . Then we obtain Φ

∈ Mat |I|+1 (K[t]) by Φ = Φ 0 v 1 ∈ Mat |I|+1 (K[t]), v = (v t, ) (t; )∈I ∈ Mat 1×|I| (K[t]), (2.9) 
where

v t, := a i (t)Q (-1)
s i i ; i i (t -θ) w-w(t) if (t; ) = (s i1 , . . . , s i( i-1) ; i1 , . . . , i( i-1) ), 0 otherwise.
Next we get a rigid analytic trivialization matrix Ψ ∈ GL |I|+1 (T) for Φ which is of the form

Ψ = Ψ 0 f 1 ∈ GL |I|+1 (T)
where Ψ = Ψ (t; ),(t ; ) (t; ),(t ; )∈I ∈ GL |I| (T) and f = (f t, ) t∈I ∈ Mat 1×|I| (T) with f t, given by Eq. (2.8).

2.5.3. Linear independence for MZV's. Theorem 2.4 applied to this case yields Theorem 2.5. We keep the above notation. We suppose further that {(s i ; i )} 1≤i≤n satisfies the following conditions: (LW) For any weight w < w, the values L(t; )(θ) with (t; ) ∈ I and w(t) = w are all K-linearly independent. (LD) There exist

a i ∈ A \ {0} for 1 ≤ i ≤ n such that n i=1 a i L(s i ; i )(θ) = 0.
Then 1) f t, (θ) belongs to K where f t, is given as in (2.8) for all (t; ) ∈ I.

2) There exist b ∈ F q [t] \ {0} and δ := (δ t,

) (t; )∈I ∈ Mat 1×|I| (K[t]) such that Id 0 δ 1 (-1) Φ 0 bv 1 = Φ 0 0 1 Id 0 δ 1 . (2.10)
From now on, as we will work with MZV's and AMZV's, we will use freely the notation given as in this section. In fact, we consider the set AT 

s i = h i q + r i where 0 < r i < q and h i ∈ Z ≥0 . The image ϕ s is the array ϕ s = 1 . . . 1 q . . . q h1 times 1 r 1 . . . 1 . . . 1 q . . . q hn times n r n .
Then one sees that ϕ is a bijection, hence |AT Part 2 follows immediately from the construction of AT w . For Part 1, it is easy to construct a bijection between AT w and AT 2

w . We leave it as an exercise for the reader.

4. Proof of Theorem 1.5

Preliminaries.

We begin this section by proving several auxiliary lemmas which will be useful in the sequel. Here we can refer to the readers [17, §3].

Lemma 4.1 ([17, Lemma 3.1]). Let i ∈ F ×
q be different elements. We denote by γ i ∈ F q a (q -1)-th root of i . Then γ i are all F q -linearly independent.

Proof. We refer the reader to [17, Lemma 3.1] for a proof of this lemma. We give here another proof using the Moore determinant (see [START_REF] Goss | Basic Structures of function field arithmetic[END_REF]Section 1.3]). Suppose that 1 , . . . , n are distinct elements in F × q . The Moore determinant associated to γ 1 , . . . , γ n is defined as

∆(γ 1 , . . . , γ n ) := det      γ 1 . . . γ n γ q 1 . . . γ q n . . . . . . γ q n-1 1 . . . γ q n-1 n      .
Since γ i is a (q -1)-th root of i , one verifies by induction that γ

q k i = γ i k i for 0 ≤ k ≤ n -1. It follows that ∆(γ 1 , . . . , γ n ) = det      γ 1 . . . γ n γ 1 1 . . . γ n n . . . . . . γ 1 n-1 1 . . . γ n n-1 n      = γ 1 • • • γ n det      1 . . . 1 1 . . . n . . . . . . n-1 1 . . . n-1 n      = γ 1 • • • γ n 1≤j<i≤n ( i -j ).
The last equality follows from the Vandermonde determinant. We thus deduce that ∆(γ 1 , . . . , γ n ) = 0 since 1 , . . . , n are distinct elements in F × q . From [13, Lemma 1.3.3], we conclude that γ 1 , . . . , γ n are linearly independent over F q , as desired.

Lemma 4.2. Let ζ A i s i ∈ AT 0 w and a i ∈ A \ {0} satisfying i a i L(s i ; i )(θ) = 0.
For ∈ F × q we denote by I( ) = {i : χ( i ) = } the set of pairs such that the corresponding character equals . Then for all ∈ F × q , i∈I( )

a i L(s i ; i )(θ) = 0. Proof. See [17, Lemma 3.2]. Lemma 4.3. Let m ∈ N, δ ∈ K[t] and F (t, θ) ∈ F q [t, θ] (resp. F (t, θ) ∈ F q [t, θ]) satisfying δ = δ (-1) (t -θ) m + F (-1) (t, θ).
Then δ ∈ F q [t, θ] (resp. δ ∈ F q [t, θ]) and

deg θ δ ≤ max qm q -1 , deg θ F (t, θ) q .
Proof. The proof follows the same line as that of [START_REF] Kuan | Criterion for deciding zeta-like multizeta values in positive characteristic[END_REF]Theorem 2]. See also [ For w = 1 suppose that there exist

ζ A i 1 ∈ AT 0 1 and a i ∈ A \ {0} such that i a i L(1; i )(θ) = 0. Then i a i γ i ζ A i 1 = 0. Since ζ A i 1 ∈ K × ∞ , we get a contradiction.
Now suppose that for w < w the values L(s; )(θ) such that ζ A s ∈ AT 0 w are all linearly independent over K. We claim that the values L(s; )(θ) such that ζ A s ∈ AT 0 w are all linearly independent over K. Suppose that there exist

ζ A i s i ∈ AT 0 w and a i ∈ A \ {0} such that (4.1) i a i L(s i ; i )(θ) = 0.
We write s i = (s i1 , . . . , s i i ) ∈ N i and i = ( i1 , . . . , i i ) ∈ (F × q ) i . Then by (2.7) and the fact that s i has the same weight w, we get

i a i γ i1 . . . γ i i Γ si1 . . . Γ s i i ζ A i s i = 0.
By Lemma 4.2 we can suppose further that i has the same character, i.e., there exists ∈ F × q such that for all i, (4.2)

χ( i ) = i1 . . . i i = .
We show that the relation (4.1) leads to a contradiction. By the previous discussion, we can apply Theorem 2.5 for the above tuples (s i ; i ). With the notation of Theorem 2.5, we deduce that that for all (t; ) ∈ I, f t, (θ) belongs to K. Here we recall that f t, is given by f t; := i a i (t)L(s i(k+1) , . . . , s i i ; i(k+1) , . . . , i i ), where the sum runs through the set of indices i such that (t; ) = (s i1 , . . . , s ik ; i1 , . . . , ik ) for some 0 ≤ k ≤ i -1.

We now deduce a contradiction from this fact. For (s i ; i ) we denote by m i ∈ Z ≥0 the biggest index such that (s i1 , . . . , s imi ; i1 , . . . , imi ) belongs to I(s j ; j ) for some j = i. Note that s i(mi+1) = 0 since the weights of s i and s j (j = i) are the same. For m i + 1 ≤ k < i we consider (t; ) = (s i1 , . . . , s ik ; i1 , . . . , ik ). Thus (2.8) gives f t, = a i (t)L(s i(k+1) , . . . , s i i ; i(k+1) , . . . , i i ) and we have seen that f t, belongs to K. By (2.7) we get

a i γ i(k+1) . . . γ i i Γ i(k+1) . . . Γ i i ζ A i(k+1) . . . i i s i(k+1) . . . s i i / π s i(k+1) +•••+s i i ∈ K.
Since a i ∈ K * , this forces that s i(k+1) + • • • + s i i is divisible by q -1 and i(k+1) . . . i i = 1. Since this condition holds for all m i + 1 ≤ k < i , it follows that s i(k+1) is divisible by q -1 and i(k+1) = 1 for all m i + 1 ≤ k < i . Since 1 ≤ s i(k+1) ≤ q -1, we conclude that

s i(k+1) = q -1, i(k+1) = 1, for all m i + 1 ≤ k < i . Let m := max i m i .
Then we can find two different tuples, says (s 1 ; 1 ) and (s 2 ; 2 ) be such that m 1 = m 2 = m. Thus (s 11 , . . . , s 1m ; 11 , . . . , 1m ) = (s 21 , . . . , s 2m ; 21 , . . . , 2m ) and (s 1(m+1) , 1(m+1) ) = (s 2(m+1) , 2(m+1) ). The previous discussion shows that

s 1(m+2) = • • • = q -1, 1(m+2) = • • • = 1 and s 2(m+2) = • • • = q -1, 2(m+2) = • • • = 1.
Combining with the fact that s 1 and s 2 have the same weight yields s 1(m+1) ≡ s 2(m+1) (mod q -1). Since 1 ≤ s 1(m+1) , s 2(m+1) ≤ q -1, we deduce s 1(m+1) = s 2(m+1) . Finally, combining with the fact that 1 and 2 have the same character (see (4.2)), we obtain 1(m+1) = 2(m+1) . Thus we get a contradiction since (s 1(m+1) ; 1(m+1) ) = (s 2(m+1) ; 2(m+1) ).

The proof of Theorem 1.5 is finished.

5. Proof of Theorem 1.6

Strategy of the proof.

Recall that w ≤ 3q -2. We use Proposition 1.4 and prove Theorem 1.6 by induction on w.

For w ≤ q, Theorem 1.6 follows immediately from Theorem 1.5 (see §5.2).

We suppose that for w < w AMZV's in AT w are all linearly independent over K. We claim that AMZV's in AT w are all linearly independent over K. By (2.7) it suffices to show that all the values L(s; )(θ) such that ζ A s ∈ AT w are all linearly independent over K. Suppose that there exist ζ A i s i ∈ AT w and

a i ∈ A \ {0} such that i a i L(s i ; i )(θ) = 0.
As Proposition 1.4 implies that Condition (LW) holds, we apply Theorem 2.5 for the tuples (s i ; i ). Part 1 of Theorem 2.5 gives a shortlist of tuples (s i ; i ) which often contains few elements. Then we write down explicitly the system of equations (2.10) given in Part 2 of Theorem 2.5 (we note that in this system we can suppose that b = 1) and manage to show that it does not have a nontrivial solution δ = 0. This completes the proof.

In what follows we carry out this strategy in detail.

5.2.

Weight w ≤ q.

Proposition 5.1. Suppose that w ≤ q. Then AMZV's in AT w are all linearly independent over K.

Proof. As a direct consequence of Theorem 1.5, we deduce that Theorem 1.6 holds when w ≤ q. In fact, we note that AT w = AT 1 w = AT 0 w when w ≤ q. 5.3. Weight q + 1 ≤ w ≤ 2q -2. Proposition 5.2. Suppose that q > 2 and q + 1 ≤ w ≤ 2q -2. Then AMZV's in AT w are all linearly independent over K.

Proof. The proof is done by induction on w. For w ≤ 2q -2, we suppose that for w < w AMZV's in AT w are all linearly independent over K. We claim that AMZV's in AT w are all linearly independent over K. By (2.7) it suffices to show that all the values L(s; )(θ) such that ζ A s ∈ AT w are all linearly independent over K. Suppose that there exist ζ A i s i ∈ AT w and

a i ∈ A \ {0} such that i a i L(s i ; i )(θ) = 0.
We write s i = (s i1 , . . . , s i i ) ∈ N i and i = ( i1 , . . . , i i ) ∈ (F × q ) i . Then by (2.7) and the fact that s i has the same weight w, we get

i a i γ i1 . . . γ i i Γ si1 . . . Γ s i i ζ A i s i = 0.
As before, by Lemma 4.2 we can suppose further that i has the same character, i.e., there exists ∈ F × q such that for all i, χ( i ) = i1 . . . i i = .

We show that this relation leads to a contradiction. We apply Theorem 2.5 for the above tuples (s i ; i ). With the notation of Theorem 2.5, we deduce that that for all (t; ) ∈ I, f t, (θ) belongs to K. Here we recall that f t, is given by

f t; = i a i (t)L(s i(k+1) , . . . , s i i ; i(k+1) , . . . , i i ),
where the sum runs through the set of indices i such that (t; ) = (s i1 , . . . , s ik ; i1 , . . . , ik ) for some 0 ≤ k ≤ i -1.

We have (q -1)|(w -w(t)); assume not, then π w-w(t) ∈ K ∞ , so

i∈J(t) a i (t)γ i(k+1) . . . γ i i Γ s i(k+1) . . . Γ s i i ζ A s = 0,
which contradicts to the induction hypothesis on AT w-w(t) . Thus, we have (q -1)|s i2 , s i3 , . . . , s i i . With our assumption w ≤ 2q -2, it suffices to consider either s = (w) or s = (k, q -1) where k = w -(q -1) with 1 < k ≤ q -1. We need to consider only (w; ) or (k, q -1; , 1) as in the proof of Theorem 1.5. Thus we have the following relation, (5.1)

a 1 ζ A w + a 2 ζ A 1 k q -1 = 0 for some a 1 , a 2 ∈ A \ {0}.
We claim that (5.1) leads to a contradiction. In fact, we put s 1 = k and s 2 = q-1. Also fix γ a (q -1)th root of . By Theorem 2.5, we recall that the matrix Φ is given by

Φ = (t -θ) w 0 (γH s1 ) (-1) (t -θ) w (t -θ) s2
for I = {∅, (k; )}. For some δ 1 , δ 2 ∈ K[t], Eq. (2.10) induces

δ 1 = δ (-1) 1 + δ (-1) 2 (γH s1 ) (-1) + a 1 (t) • (γH w ) (-1) (t -θ) w , (5.2) δ 2 = δ (-1) 2 + a 2 (t) • H (-1) s2 (t -θ) s2 . (5.3)
We know that H s1 = H s2 = 1 and H w = (t q -t) + (k -1)(t q -θ q ). So (5.3) is reduced to

δ 2 = δ (-1) 2 + a 2 (t) (t -θ) s2 .
By Lemma 4.3 and the fact that deg θ H n < nq q-1 for all n ∈ N (see (2.6)), we deduce that δ 2 ∈ F q [t, θ] and deg θ δ 2 ≤ q(q-1) q-1 = q. We put δ 2 = (aθ + b)(t -θ) q-1 with a, b ∈ F q [t]. This yields

δ 2 = f (θ q -t q ), a 2 (t) = f (t q -t) for some f ∈ F q [t] \ {0}
after calculations (twisting once and comparing the coefficients of θ q-1 -terms). Now for δ 1 , by Lemma 4.3 again, δ 1 ∈ F q [t, θ] and deg θ δ 1 ≤ qw q-1 . We treat the cases when 1 < k < q -1 and k = q -1 separately.

If 1 < k < q -1, we have deg θ δ 1 ≤ w + 1, i.e., δ 1 = (aθ + b)(t -θ) w for some a, b ∈ F q [t]. After twisting, comparing the coefficients of θ k-1 -and θ k -terms yields a = b = 0, and then comparing the coefficients of θ q -terms gives a 1 (t)(t q -t) = 0. Since a 1 = 0, we have a contradiction.

Next consider when k = q -1, i.e., when w = 2q -2. Since deg

θ δ 1 ≤ w + 2, we let δ 1 = (aθ 2 + bθ + c)(t -θ) w for some a, b, c ∈ F q [t].
Then twisting once and comparing the coefficients of θ 2q-1 -and θ 2q-2 terms give

aθ 2 + bθ + c = a(t -θ) 2 , i.e., a (1) (t -θ q ) 2 = a(t -θ) 2q + γf (θ q -t q ) + a 1 (t)γ ((t q -t) -2(t q -θ q )) .
Comparing the coefficients of θ 2q yields a (1) = a, which implies a ∈ F q [t]. Hence

a(t -θ q ) 2 = a(t -θ) 2q + γf (θ q -t q ) + a 1 (t)γ ((t q -t) -2(t q -θ q )) .
Multiplying by (t q -t), we get γf (θ q -t q )(t q -t) = (t -θ q ) 2 -(t -θ) 2q (a(t q -t) -a 1 (t)γ) by using the identity (t q -t)[(t q -t) -2(t q -θ q )] = (t -θ q ) 2 -(t q -θ q ) 2 . Since the right-hand side is not divided by t -θ unless it is zero, we have f = 0, which is a contradiction. This completes the proof.

Weight 2q

-1 ≤ w ≤ 3q -2.
In this subsection, we consider the case when 2q -1 ≤ w ≤ 3q -2. We recall that I w is the set of MZV's of weight w of the form ζ A (s 1 , . . . , s r ) where s i = q, 2q -1, 2q, 3q -2 for all i satisfying

• if s i+1 = q or 2q -1 for some i = 1, 2, . . . , r -1, then q -1|s i , • s i = (q -1, q -1, q) when w = 3q -2,
and that the set AT w is defined by

AT w = {ζ A s : ζ A (s) ∈ I w
, and i = 1 whenever s i = q}.

Proposition 5.3. Suppose that q > 2 and 2q -1 ≤ w ≤ 3q -2. Then AMZV's in AT w are all linearly independent over K.

Proof. Suppose that there exist

ζ A i s i ∈ AT w and a i ∈ A \ {0} such that i a i γ i1 . . . γ i i Γ si1 . . . Γ s i i ζ A i s i = 0. (5.4)
We set a i (t) := a i | θ=t ∈ F q [t] \ {0}. We will proceed by induction to lead a contradiction. We write s i = (s i1 , . . . , s i i ) and i = ( i1 , . . . , i i ), and recall I(s i ; i ) = {∅, (s i1 ; i1 ), . . . , (s i1 , . . . , s i( i-1) ; i1 , . . . , i( i-1) )},

I + (s i ; i ) = I(s i ; i ) ∪ {(s i ; i )},
and

I = ∪ i I(s i ; i ), I + = ∪ i I + (s i ; i ).
As done previously in (2.8) for (t; ) ∈ I, we set

f t; = i a i (t) L(s i(k+1) , . . . , s i i ; i(k+1) , . . . , i i )
where the sum runs over indices i with (t; ) = (s i1 , . . . , s ik ; i1 , . . . , ik ) for some 0 ≤ k < i . Let (t; λ) ∈ I and t = ∅. Let J(t, λ) be a set of all tuples with ζ A 1 . . . s 1 . . . s ∈ AT w such that (t; λ) = (s k+1 , . . . , s ; k+1 , . . . , ). Then

f t; = i∈J(t; ) a i L(s i(k+1) , . . . , s i i ; i(k+1) , . . . , i i ).
. By Theorem 2.5 and referring to (2.7) and (2.8),

f t; (θ) = i∈J(t, ) a i γ i(k+1) . . . γ i i Γ s i(k+1) . . . Γ s i i ζ A s i(k+1) . . . s i i i (k+1) 
. . .

i i / π w-w(t) ∈ K. (5.5) 
Proposition 5.3 follows from Lemma 5.4 and Propositions 5.7, 5.8, and 5.9 which will be proved in the sequel.

Lemma 5.4. Recall that (t; ) ∈ I and t = ∅. Then for each i ∈ F × q we can choose a (q -1) th root γ i , which satisfy

• either the tuple (t, q; , 1) or (t, 2q -1; , ) belongs to I + ,

• or w -w(t) is divisible by q -1 and there exists a ∈ K such that i∈J(t; )

a i γ i(k+1) . . .γ i i Γ s i(k+1) . . . Γ s i i ζ A i(k+1) . . . i i s i(k+1) . . . s i i + aΓ w-w(t) ζ A 1 w -w(t) = 0.
Proof. Suppose that the tuples (t, q; , 1) and (t, 2q -1; , ) do not belong to I + and w -w(t) is not divisible by q -1. Then π w-w(t) / ∈ K ∞ as w -w(t) is not divisible by q -1. Referring to (2.7) and Steps 1 and 2 above, since f t; (θ) ∈ K by (5.5), this implies that i∈J(t; )

a i γ i(k+1) . . . γ i i Γ s i(k+1) . . . Γ s i i ζ A i(k+1) . . . i i s i(k+1) . . . s i i = 0. (5.6)
Since (t, q; , 1) and (t, 2q -1; , ) do not belong to I + , the AMZV's appearing in (5.6) belong to AT w-w(t) . Then, recalling that a i = 0 for i ∈ J(t), we obtain a contradiction by the induction hypothesis. Hence, we have shown that if (t, q; , 1) and (t, 2q -1; , ) do not belong to I + , then w -w(t) is divisible by q -1.

If q -1 divides w -w(t), then since ζ A 1 n / π w-w(t) ∈ K ∞ for any integer n such that (q -1) | n, we conclude that there exists some a ∈ K such that i∈J(t; )

a i γ i(k+1) . . .γ i i Γ s i(k+1) . . . Γ s i i ζ A i (k+1) 
. . .

i i s i(k+1) . . . s i i + aΓ w-w(t) ζ A 1 w -w(t) = 0.
Remark 5.5. 1) Note that if w = 2q -1, then (t, 2q -1; , ) ∈ I + and the condition (t, q; , 1) ∈ I + forces s ik = q -1 and so (t; ) = (q -1; i1 ) and (s i ; i ) = (q -1, q; i1 , 1).

2) If 2q ≤ w ≤ 3q -3, then (t, 2q -1; , ) ∈ I + since w ≤ 3q -3, and the condition (t, q; , 1) ∈ I + forces s ik = q -1 and

k-1 j=1 s jk ≤ w -(2q -1) ≤ q -2.
3) If w = 3q -2, then the condition (t, 2q -1; , ) ∈ I + forces s ik = q -1, so (t; ) = (q -1; i1 ) and (s i ; i ) = (q -1, 2q -1; i1 , 1). The condition (t, q; , 1) ∈ I + forces s ik = q -1 or 2q -2.

Remark 5.6. As shown in the proof of Theorem 1.5, whenever q -1 | w -w(t) for some t = (s i1 , . . . , s ik ) = ∅ with k < i , we have ik = • • • = i i = 1. This can be also seen by successive applications of Lemma 5.4.

5.4.1.

The case w = 2q -1.

Consider w = 2q -1 and the set I w consisting of MZV's of weight w of the form • ζ A (s 1 , . . . , s r ) where s i = q, 2q -1 for all i,

• ζ A (q -1, q), then from our setting, AT w := {ζ A s : ζ A (s) ∈ I w , and i = 1 whenever s i = q}.

Proposition 5.7. Suppose that q > 2 and w = 2q -1. Then AMZV's in AT w are all linearly independent over K.

Proof. By Lemma 5.4, the first shortlist of tuples (s i , i ) appearing in (5.4) has the integer tuples,

s 1 = (1, 2q -2), s 2 = (1, q -1, q -1), s 3 = (q -1, q), s 4 = (q -1, 1, q -1),
and the character tuples over F × q (and characters corresponding to q is 1). As in Remark 5.6 and Lemma 4.2, we have the first shortlist as follows: for each ∈ F × q , (1, 2q -2; , 1), (1, q -1, q -1; , 1, 1), (q -1, q; , 1), (q -1, 1, q -1; 1 , 2 , 1), with 1 , 2 ∈ F × q such that 1 2 = . Applying Lemma 5.4 with (t; ) = (1; ), there exists some a ∈ K such that

a (1,2q-2; ,1) Γ 2q-2 ζ A 1 2q -1 + a (1,q-1,q-1; ,1,1) Γ q-1 Γ q-1 ζ A 1 1 q -1 q -1 + aΓ 2q-2 ζ A 1 2q -2 = 0.
Recalling that ζ A (q -1, q -1) is not zeta-like, we can deduce that a (1,q-1,q-1; ,1,1) = 0. So we reduce to the second shortlist as follows:

(1, 2q -2; , 1), (q -1, q; , 1), (q -1, 1, q -1; 1 , 2 , 1) with 1 , 2 ∈ F × q such that 1 2 = for each given ∈ F × q . From now on, we fix and proceed as done in the discussion preceding Theorem 2.5 to examine the linear independence. We construct Φ with respect to the following tuples in I: ∅, (1; ), (q -1; 1 ), (q -1, 1; 1 , 2 ), where = 1 2 . Note that in the following is given, 1 is free, and 2 = -1 1 is determined by 1 . Also γ, γ 1 , γ 2 are (q -1)th roots of , 1 , 2 , respectively as chosen in Lemma 5.4.

Recalling the constructions of Φ and v in Theorem 2.5, we get

Φ ∅,∅ = (t -θ) 2q-1 , Φ (1; ),∅ = (γH 1 ) (-1) (t -θ) 2q-1 , Φ (1; ),(1; 
) = (t -θ) 2q-2 , Φ (q-1; 1),∅ = (γ 1 H q-1 ) (-1) (t -θ) 2q-1 ,
Φ (q-1; 1),(q-1; 1) = (t -θ) q , Φ (q-1,1; 1, 2),(q-1; 1 ) = (γ 2 H 1 ) (-1) (t -θ) q , Φ (q-1,1; 1, 2),(q-1,1; 1, 2) = (t -θ) q-1 , others = 0, and

v ∅ = 0, v (1; ) = a (1,2q-2; ,1) H (-1)
2q-2 (t -θ) 2q-2 , v (q-1; ) = a (q-1,q; ,1) H (-1)

q (t -θ) q , v (q-1; 1) = 0, for 1 = , v (q-1,1; 1, 2) = a (q-1,1,q-1; 1, 2,1) H (-1) q-1 (t -θ) q-1 .
Hence, for some δ i 's in K[t] for corresponding indices i, Eq. (2.10) induces

δ ∅ = δ (-1) ∅ + δ (-1) (1; ) (γH 1 ) (-1) + 1 δ (-1) (q-1; 1) (γ 1 H q-1 ) (-1) (t -θ) 2q-1 (5.7) δ (1; ) = δ (-1) (1; ) + a (1,2q-2; ,1) H (-1) 2q-2 (t -θ) 2q-2 (5.8) δ (q-1; ) = δ (-1) (q-1; ) + δ (-1) (q-1,1; ,1) H (-1) 1
+ a (q-1,q; ,1) H (-1) q (t -θ) q (5.9) δ (q-1; 1) = δ (-1) (q-1; 1) + δ (-1) (q-1,1; 1, 2) (γ 2 H 1 ) (-1) (t -θ) q , for 1 = (5.10)

δ (q-1,1; 1 , 2 ) = δ (-1) (q-1,1; 1 , 2 ) + a (q-1,1,q-1; 1, 2,1) H (-1) q-1 (t -θ) q-1
(5.11) Note that if (1 ≤ n ≤ q), H n = 1, and if q + 1 ≤ n ≤ q 2 , then

H n (t) = k j=0 (n -1) -jq + j j (t q -t) k-j (t q -θ q ) j
where k = n-1 q (see [START_REF] Le | Zeta-like multiple zeta values in positive characteristic[END_REF]). Thus H 2q-2 = 2θ q -t -t q . Consider (5.11). Lemma 4.3 shows that δ (q-1,1; 1, 2) ∈ F q [t, θ] and deg θ δ (q-1,1; 1, 2) ≤ q. We can put δ (q-1,1; 1, 2 ) = (f θ + g)(t -θ) q-1 with f, g ∈ F q [t], and plug it into (5.11). Canceling terms and twisting once yield f θ q + g = (f θ + g)(t -θ) q-1 + a (q-1,1,q-1; 1, 2,1) .

Comparing the θ q-1 -terms yields g = -tf , i.e., δ (q-1,1; 1, 2) = f (θ q -t q ) and a (q-1,1,q-1; 1, 2 ,1) = f (t q -t). Since f here is parametrized by 1 , 2 , we write

f 1, 2 = f ∈ F q [t], to have δ (q-1,1; 1, 2 ) = f 1, 2 (θ q -t q ),
and a (q-1,1,q-1; 1, 2,1) = f 1 , 2 (t q -t).

Next, for (5.10), Lemma 4.3 shows that δ (q-1; 1) ∈ F q [t, θ] and deg θ δ (q-1; 1) ≤ q 2

q-1 = (q + 1) + 1 q-1 , i.e., δ (q-1; 1) = (f θ + g )(t -θ) q with f , g ∈ F q [t]. We plug it into (5.10), cancel terms, twist and compare the θ q+1 -terms to have f = 0, and compare the θ q -terms to have g = γ 2 f 1, 2 . Further, comparing the θ 0 -terms yields g (1) = (g -γ 2 f 1, 2 )t q = 0, i.e., g = f 1 , 2 = 0, and δ (q-1; 1) = 0 for 1 = . (5.12) For (5.9), we proceed similarly to have δ (q-1; ) = f ,1 (t -θ) q , and a (q-1,q; ,1) = f ,1 , for some f ,1 ∈ F q [t].

For (5.8), recall H (-1) 2q-2 = (t-θ) 2 -(t q -θ) 2 t q -t = -t -t q + 2θ. Then, Lemma 4.3 shows that δ (1; ) ∈ F q [t, θ] with deg θ δ (1; ) ≤ 2q. Let δ (1, ) = (cθ 2 + dθ + e)(t -θ) 2q-2 for some c, d, e ∈ F q [t]; in a similar process, we have δ (1, ) = c(t -θ) 2q for some c ∈ F q [t]. This c is paramatrized by , so we write c = c ∈ F q [t] to have δ (1; ) = c (t -θ) 2q = c (t q -θ q ) 2 , and a (1,2q-2; ,1) = c (t q -t).

Finally for (5.7), Lemma 4.3 shows that δ ∅ ∈ F q [t] with deg θ ≤ 2q + 1, i.e., δ ∅ = (c θ 2 -d θ + e )(t -θ) 2q-1 for some c , d , e ∈ F q [t]. Proceeding similarly, comparing the θ 2q+1 -and the θ 2q-1 -coefficients yields c = 0 and e = d t, i.e., δ ∅ = d (t -θ) 2q for some d ∈ F q [t]. Thus, recalling (5.12),

d (1) (t -θ q ) = d (t -θ) 2q + γc (t -θ) 2q + γ(t -θ) q f ,1 .
The right hand side is divisible by t -θ, which forces d (1) = 0, i.e., d = 0. By canceling common factors of the remaining terms, we have

f ,1 = -c (t -θ) q .
Again the right hand side of this is divisible by t -θ, i.e., f ,1 = c = 0. Thus we have a (1,2q-2; ,1) = c (t q -t) = 0, a (q-1,q; ,1) = f ,1 = 0, a (q-1,1,q-1; 1, 2,1) = f 1 , 2 (t q -t) = 0. This completes the proof. 5.4.2. The case 2q ≤ w ≤ 3q -3. Proposition 5.8. Suppose that q > 2 and 2q ≤ w ≤ 3q -3. Then AMZV's in AT w are all linearly independent over K.

Proof. By Lemma 5.4, the first shortlist of tuples (s i , i ) appearing (5.4) has get the integer tuples,

s 1 = (w -(2q -2), q -1, q -1), s 2 = (w -(2q -2), 2q -2), s 3 = (w -(q -1), q -1)
for 2q ≤ w ≤ 3q -3, and additional s 4 = (w) when w = 2q, with characters in F × q (and characters corresponding to q is 1). With Remark 5.6 and Lemma 4.2, for fixed ∈ F × q , the first shortlist is if w = 2q, (w -(2q -2), q -1, q -1; , 1, 1), (w -(2q -2), 2q -2; , 1), (w -(q -1), q -1; , 1), (w; ), if w = 2q, (2, q -1, q -1; , 1, 1), (2, 2q -2; , 1), (q + 1, q -1; , 1).

Note that any component of integer parts in the above list is not q when 2q ≤ w ≤ 3q -3. Applying Lemma 5.4 with (t; ) = (w -(2q -2); ), we obtain that there exists some a ∈ K such that

a (w-(2q-2),q-1,q-1; ,1,1) Γ q-1 Γ q-1 ζ A 1 1 q -1 q -1 + a (w-(2q-2),2q-2; ,1) Γ 2q-2 ζ A 1 2q -2 + aΓ 2q-2 ζ A 1 2q -2 = 0,
Since ζ(q -1, q -1) is not zeta-like, we deduce that a (w-(2q-2),q-1,q-1; 1,1,1) = 0. Thus we reduce to the following second shortlist:

if w = 2q, (w -(2q -2), 2q -2; , 1), (w -(q -1), q -1; , 1), (w; ), if w = 2q, (2, 2q -2; , 1), (q + 1, q -1; , 1).

First consider the cases when 2q + 1 ≤ w ≤ 3q -3. Note that we can assume q > 3. (If q = 3, this case is empty.) It is enough to show the linear independence of the following linear combination for each ∈ F × q :

a (w-(2q-2),2q-2; ,1) γΓ w-(2q-2) Γ 2q-2 ζ A 1 w -(2q -2) 2q -2 + a (w-(q-1),q-1; ,1) γΓ w-(q-1) Γ q-1 ζ A 1 w -(q -1) q -1 + a (w; ) γΓ w ζ A w = 0,
From this, we proceed as done in the discussion preceding Theorem 2.5 to examine the linear independence. We construct Φ with respect to the following tuples in I: ∅, (w -(2q -2); ), (w -(q -1); ). a (w; ) = 0 by (5.4), which is a contradiction, so F = 0. Thus, the only possibility arises for w = 3q -3, F = γ(t -θ) 3 g for some g ∈ F q [t]. Since w = 3q -3, we have (t -θ q ) 3 g (1) =(t q -θ q ) 3 g + f 3q-3; (θ q -t q ) 2 + f 3q-3; (θ q -t q )(2θ q -t -t q ) + a (3q-3; ) (t q -θ q ) 3 -(t -θ q ) 3 t q -t and by comparing the coefficients of powers of the (t q -θ q )-term, we have a (3q-3; ) = -(t q -t)g, and f 3q-3; = f 3q-3; = 0. Thus, a (2q-2,q-1; ,1) = a (q-1,2q-2; ,1) = 0, so a (3q-3; ) = 0, which is a contradiction. This completes this case.

When w = 2q, there are two candidates, ζ A 1 2 2q -2 and ζ A 1 q + 1 q -1 for each given for (5.4). We construct Φ with respect to the following tuples in I: ∅, (2; ), (q + 1; ).

Then,

Φ =   (t -θ) 2q 0 0 (γH 2 ) (-1) (t -θ) w (t -θ) 2q-2 0 (γH q+1 ) (-1) (t -θ) w 0 (t -θ) q-1   , and v = 0, a (2,2q-2; ,1) H (-1) 2q-2 , a (q+1,q-1; ,1) H (-1) q-1
.

For some δ i 's in K[t] for corresponding indices i, Eq. (2.10) induces

δ ∅ = δ (-1) ∅ + δ (-1) (2; ) (γH 2 ) (-1) + δ ( -1) 
(q+1; ) (γH q+1 ) (-1) (t -θ) w (5.16) δ (2; ) = δ (-1) (2; ) + a (2,2q-2; ,1) H (-1) 2q-2 (t -θ) 2q-2 (5.17) δ (q+1; ) = δ (-1) (q+1; ) + a (q+1,q-1; ,1) H (-1) q-1 (t -θ) q-1 .

(5.18) Recall H 2 = H q-1 = 1, H q+1 = 2t q -t -θ q and H 2q-2 = 2θ q -t -t q .

In the very same way, by analyzing (5.18) and (5.17), we obtain δ (q+1; ) = f (θ -t) q , and a (q+1,q-1; ,1) = f (t q -t) , δ (2; ) = f (θ -t) 2q , and a (2,2q-2; ,1) = f (t q -t),

for some f , f ∈ F q [t]. Next, for (5.16), we have δ ∅ ∈ F q [t] with deg θ δ ∅ ≤ 2q+3. Let δ ∅ = F (t, θ)•(t-θ) 2q with F := F (t, θ) ∈ F q [t, θ] with deg θ F ≤ 3. Then by direct calculation, F (1) = (t -θ) 2q F + γf (θ -t) 2q H 2 + γf (θ -t) q H q+1 = (θ -t) 2q F + γf (θ -t) 2q + γf (θ -t) q (2t q -t -θ q )
We claim that F = 0; if F = 0 then comparing the θ q -and θ 2q -coefficients yield f = f = 0, i.e., a (q+1,q-1; ,1) = a (2,2q-2; ,1) = 0, which is a contradiction.

Since (θ -t) q | F (1) , we have F = (θ -t q )G(t, θ) for some G(t, θ) ∈ F q [t]. Note that deg θ G ≤ 2. Then we have G (1) = (θ -t q )(θ -t) q G + γf (θ -t) q + γf (2t q -t -θ q ). Let d = deg θ G. Then dq = q + 1 + d, and 0 ≤ d ≤ 2, which leads to that d = 2 and q = 3. Let G(t, θ) = aθ 2 + bθ + c with a, b, c ∈ F q [t]. Then comparing the θ 2q-1 -, θ 2q-2 -, θ 0 -coefficients yields c (1) = ct 2q , c = bt q , b = at q , i.e., a = b = c = 0. This leads to F = 0, which is a contradiction, so this completes the proof. 5.4.3. The case w = 3q -2. Proposition 5.9. Suppose that q > 2 and w = 3q -2. Then AMZV's in AT w are all linearly independent over K.

Proof. By Lemma 5.4, and by considering Remark 5.6 and Lemma 4.2, the first shortlist of tuples (s i , i ) appearing (5.4) has the integer tuples; for each given ∈ F × q , (2q -2, q; , 1), (1, q -1, q -1, q -1; , 1, 1, 1),

(1, q -1, 2q -2; , 1, 1), (1, 2q -2, q -1; , 1, 1),

(1, 3q -3; , 1), (q -1, 2q -1; 1 , 2 ), (q -1, 1, q -1, q -1, ; 1 , 2 , 1, 1), (q -1, 1, 2q -2; 1 , 2 , 1), (q -1, q, q -1; , 1, 1), (2q -2, 1, q -1; 1 , 2 , 1), with 1 2 = 1 2 = 1 2 = 1 2 = . Applying Lemma 5.4 with (t; ) = (1, q -1; , 1), there exist a ∈ K such that a (1,q-1,q-1,q-1; ,1,1,1) Γ 1 Γ 1 ζ A 1 1 q -1 q -1 + a (1,q-1,2q-2; ,1,1)

Γ 1 ζ A 1 2q -2 + aΓ 2q-2 ζ A 1 2q -2 = 0.
Since ζ A (q -1, q -1) is not zetalike, we deduce that a (1,q-1,q-1,q-1; ,1,1,1) = 0. Similarly with (t; ) = (1, q-1; 1 , 2 ) where 1 2 = , we deduce that a (q-1,1,q-1,q-1; 1 , 2 ,1,1) = 0; since the choice of 1 is free, all candidates of the form are deleted. With (t; ) = (1; ), Lemma 5.4 asserts that there exists b ∈ K such that a (1,q-1,2q-2; ,1,1) Γ q-1 Γ 2q-2 ζ A 1 1 q -1 2q -2 + a (1,2q-2,q-1; ,1,1) Γ 2q-2 Γ q-1 ζ A 1 1 2q -2 q -1 + a (1,3q-3; ,1) Γ 3q-3 ζ A 1 3q -3 + bΓ 3q-3 ζ A 1 3q -3 = 0, and since ζ A (q -1, 2q -2), ζ A (2q -2, q -1), ζ A (3q -3) ∈ T 3q-3 , we deduce that a (1,q-1,2q-2; ,1,1) = a (1,2q-2,q-1; ,1,1) = 0. Next, we consider (t; ) = (q -1; ). By (5.5), f (q-1; ) ∈ K, so a (q-1,2q-1; ,1) Γ 2q-1 ζ A 1 2q -1 + a (q-1,1,2q-2; ,1,1) Γ 1 Γ 2q-2 ζ A 1 1 1 2q -2 + a (q-1,q,q-1; ,1,1) Γ q Γ q-1 ζ A 1 1 q q -1 = 0.

Since ζ A (2q -1) and ζ A (1, 2q -2) are colinear, but ζ A (2q -1) and ζ A (q, q -1) are not colinear, and ζ(q, q -1) is not zeta-like, we have a (q-1,q,q-1; ,1,1) = 0. Further, similarly for (t; ) = (q -1; 1 ) for arbitrary 1 ∈ F × q , by (5.5) f (q-1; 1) ∈ K, so a (q-1,2q-1; 1, -1 ) γγ -1 1 Γ 2q-1 ζ A 1 2q -1 + a (q-1,1,2q-2; 1, -1 1 ,1,1) γγ -1

1 Γ 1 Γ 2q-2 ζ A 1 1 1 2q -2 = 0
Note that Γ 1 = 1, Γ 2q-1 = Γ 2q-2 = (θ q -θ), and ζ A (2q -1) = -(θ q -θ)ζ A (1, 2q -2) is transcendental over K. Thus we have (5.19) a (q-1,1,2q-2; 1, -1 1 ,1) -a (q-1,2q-1; 1 , -1 1 ) (t q -t) = 0. Thus we reduce to the following second shortlist: (2q -2, q; , 1), (1, 3q -3; , 1), (q -1, 2q -1; 1 , -1 1 ), (q -1, 1, 2q -2; 2 , -1 2 , 1), (2q -2, 1, q -1; 3 , -1 3 , 1), with each given ∈ F × q and 1 , 2 , 3 ∈ F × q . We note that we have reindexed the characters for the sake of convenience.

From here, we proceed as done in the discussion preceding Theorem 2.5 to examine the linear independency. We construct Φ with respect to the following tuples in I. Note that ∈ F × q is given throughout the remaining part of the proof, and 1 , 2 , 3 , 4 ∈ F × q are free. ∅, (1; ), (q -1; 1 ), (q -1, 1; 2 , -1

2 ), (2q -2; 3 ), (2q -2, 1; 4 , -1 4 ).

Recalling the construction of Φ and v, we get

Φ ∅,∅ = (t -θ) 3q-2 , Φ (1; 
),∅ = (γH 1 ) (-1) (t -θ) 3q-2 , Φ (1; ),(1; ) = (t -θ) 3q-3 , Φ (q-1; 1),∅ = (γ 1 H q-1 ) (-1) (t -θ) 3q-2 , Φ (q-1; 1),(q-1; 1) = (t -θ) 2q-1 , Φ (q-1,1; 2, -1

2 ),(q-1; 2)

= (γγ -1 2 H 1 ) (-1) (t -θ) 2q-1 , Φ (q-1,1; 2, -1

2 ),(q-1,1; 2, -1

2 ) = (t -θ) 2q-2 , Φ (2q-2; 3),∅ = (γ 3 H 2q-2 ) (-1) (t -θ) 3q-2 , Φ (2q-2; 3),(2q-2; 3) = (t -θ) q , Φ (2q-2,1; 4, -1 4),(2q-2; 4) = (γγ -1 4 H 1 ) (-1) (t -θ) q , Φ (2q-2,1; 4, -1 4),(2q-2,1; 4 , -1 4 ) = (t -θ) q-1 , others = 0, and v (1; ) = a (1,3q-3; ,1) H (-1) 3q-3 (t -θ) 3q-3 v (q-1; 1)

= a (q-1,2q-1; 1, -1 1 ) (γγ -1 1 H 2q-1 ) (-1) (t -θ) 2q-1 v (q-1,1; 2 , -1 2 ) = a (q-1,1,2q-2; 2, -1 2 ,1) H (-1) 2q-2 (t -θ) 2q-2 v (2q-2; ) = a (2q-2,q; ,1) H (-1) q (t -θ) q v (2q-2,1; 3, -1 3 ) = a (2q-2,1,q-1; 3, -1 3 ,1) H (-1)

q-1 (t -θ) q-1 , others = 0,

  where the sum runs through the set of tuples (a 1 , . . . , a r )∈ A r + with deg a 1 > • • • > deg a r . We call r the depth of ζ A s and w(s) = s 1 + • • • + s r the weight of ζ A (s).
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3 . 4 3. 1 .

 341 Proof of Propositions 1.3 and 1.Proof of Proposition 1.3. The proof of Proposition 1.3 follows exactly the same line as that of [17, §1.4].

2 .

 2 Proof of Theorem 1.5. The proof of Theorem 1.5 follows the same line as that of [22, Theorem B]. By (2.7) it suffices to show that all the values L(s; )(θ) such that ζ A s ∈ AT 0 w are K-linearly independent. The proof is by induction on the weight w ∈ N.

Then, we get Φ =   (t -θ) w 0 0 (γH w-(2q-2) ) (-1) (t -θ) w (t -θ) 2q-2 0 (γH w-(q-1) ) (-1) (t -θ) w 0 (t -θ) q-1   , and v = a (w; ) (γH w ) (-1) , a (w-(2q-2),2q-2; ,1) H

2q-2 , a (w-(q-1),q-1; ,1) H (-1) q-1 .

For some δ i 's in K[t] for corresponding indices i, Eq. (2.10) induces:

(w-(2q-2); ) (γH w-(2q-2) ) (-1) (5.13) +δ (-1) (w-(q-1); ) (γH w-(q-1) ) (-1) + a (w; ) (γH w ) (-1) (t -θ) w δ (w-(2q-2); ) = δ (-1) (w-(2q-2); ) + a (w-(2q-2),2q-2; ,1) H (-1) 2q-2 (t -θ) 2q-2 (5. [START_REF] Harada | Alternating multizeta values in positive characteristic[END_REF] δ (w-(q-1); ) = δ (-1) (w-(q-1); ) + a (w-(q-1),q-1; ,1) H

Recall H q-1 = 1, H 2q-2 = 2θ q -t -t q , and for 1 ≤ k ≤ q (noting that q ≥ 3), H q+k = (t q -t) + k(t q -θ q ), and

Consider (5.15). Lemma 4.3 shows that δ (w-(q-1); ) ∈ F q [t, θ] with deg θ δ (w-(q-1); ) ≤ q. Let δ (w-(q-1); ) = (aθ + b)(t -θ) q-1 for some a, b ∈ F q [t], cancel terms and twist once to have (aθ q + b) = (aθ + b)(t -θ) q-1 + a (w-(q-1),q-1; ,1) .

Comparing the θ q -coefficients yields at + b = 0, so rewriting a as f w; ∈ F q [t], we have δ (w-(q-1); ) = f w; (θ -t) q , and a (w-(q-1),q-1; ,1) = f w; (t q -t) .

Similarly for (5.14), we have

and a (w-(2q-2),2q-2; ,1) = f w; (t q -t)

for some a = f w; ∈ F q [t]. Now for (5.13), we have

Then by direct calculation,

It follows that that (t -θ) w F ∈ F q [t, θ q ]. We claim that F = 0; otherwise, by comparing the coefficients of powers of the (t -θ)-term, F = 0 implies a (w; ) = 0, and then f w; = f w; = 0, i.e., a (w-(q-1),q-1; ,1) = a (w-(2q-2),2q-2; ,1) = 0, so where γ and γ j are (q -1)th roots of unity of and j , for j = 1, . . . , 4, respectively. For some δ i 's in K[t] for corresponding indices i, Eq. (2.10) induces: for given ∈ F × q and for free

(5.23)

(5.24)

(5.25)

(5.26)

Recall again that H 1 = H q-1 = H q = 1, H 2q-1 = θ q -t, H 2q-2 = 2θ q -t -t q , and

Consider (5.26). Lemma 4.3 shows that δ (2q-2,1;

. The, we plug it into (5.26) and compare the coefficients of powers of θ-terms, to obtain

Then, we plug it into (5.25) and compare the coefficients of powers of θ-terms, to obtain

, and a (q-1,1,2q-2; 1 , -1 1 ,1) = f 1 (t q -t). For (5.24), Lemma 4.3 shows that δ (q-1; 1) ∈ F q [t, θ] with deg θ δ (q-1; 1) ≤ 2q + 1. We let δ (q-1; 1) = (aθ 2 + bθ + c)(t -θ) 2q-1 for a, b, c ∈ F q [t] to obtain a (1) 

Here γ 2 = γγ -1 1 . Comparing the coefficients of the θ 2q-1 -and θ 2q-2 -terms yields

Further, recalling (5.19), the above equations yields (t q -t)f 1 = (t q -t) -1 1 f 1 , i.e., ( -1 )f 1 = 0. Thus f 1 = 0 for all 1 = , and

For (5.23), Lemma 4.3 shows that when 1 = , δ (2q-2; 1 ) ∈ F q [t, θ] with deg θ δ (2q-2; 1) ≤ q + 1. Letting δ (2q-2; ) = (aθ + b)(t -θ) q for a, b ∈ F q [t], cancelling, twisting once and comparing the θ q -and θ q+1 -terms yields a = 0, b = γγ -1 1 f 1 , i.e., δ (2q-2; 1 ) = -γγ -1

1 f 1 (θ -t) q , and plugging it into (5.23) yields f 1 = 0, for 1 = . Note that this implies that (5.28) δ (2q-2; 1) = 0 and a (2q-2,1,q-1; 1, -1 1 ,1) = 0 if 1 = . Similarly for (5.22), Lemma 4.3 shows that δ (2q-2; ) ∈ F q [t, θ] with deg θ δ (2q-2; ) ≤ q + 1. Letting δ (2q-2; ) = (aθ + b)(t -θ) q for a, b ∈ F q [t], cancelling, twisting once and comparing the θ q -and θ q+1 -terms yield a = 0, b = f , i.e., δ (2q-2; ) = -f (θ -t) q , and a (2q-2,q; ,1) = f . Now, for (5.21), Lemma 4.3 shows that δ (1; ) ∈ F q [t, θ] with deg θ δ (1; ) ≤ 3q. Letting δ (1; ) = (aθ 3 +bθ 2 +cθ 2 +d)(t-θ) 3q-3 with some a, b, c, d ∈ F q [t], cancelling, twisting once and comparing the θ 3q-2 -and θ 3q-1 -terms yield b = -3at, c = 3at 2 . When q > 3, comparing the θ 3q-3 -terms yields d = -at 3 , i.e., δ (1; ) = a(θ -t) 3q ; when q = 3, comparing the θ 3q-3 -terms yield d = -at 3 , i.e., δ (1; ) = a(θ -t) 3q . So in any case δ (1; ) = f (θ -t) 3q for f = a ∈ F q [t]. Again, when q > 3, one can put this into (5.21), cancel terms, twist once and compare the θ 0 -terms to have a (1,3q-3; ,1) = f (t q -t); when q = 3, one have a (1,3q-3; ,1) = f (t q -t) 2 . In summary,

Finally, with (5.27) and (5.28), (5.20) is written as

then by canceling and twisting, G (1) =(t -θ) 3q-2 G -(θ -t) q (f (2θ q -t -t q ) + f (θ -t) q ) + f (θ -t) 3q , so (t -θ) 3q-2 G ∈ F q [t, θ q ], i.e., G = (t -θ) 2 g with g ∈ F q [t]. Then (t -θ) 3q (g -f ) -(t -θ q ) 2 g (1) = (θ -t) q (f (2θ q -t -t q ) + f (θ -t) q ) = (θ -t) q (θ q -t)f + (θ -t) 2q f + (θ -t) 2q f .

Considering the factors of powers of the (t -θ q )-and (t -θ)-terms, we have g (1) = 0, i.e., g = 0, f = 0, f = 0, and f = 0, so a (2q-2,q; ,1) = a (1,3q-3; ,1) = a (2q-2,1; 1, -1 1 ) = a (q-1,2q-1; 1, -1 1 ) = a (q-1,1,2q-2; 1 , -1 1 ,1) = 0 for arbitrary 1 ∈ F × q , which is a contradiction. This completes the proof.