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NOTE ON LINEAR INDEPENDENCE OF ALTERNATING

MULTIPLE ZETA VALUES IN POSITIVE CHARACTERISTIC

BO-HAE IM, HOJIN KIM, KHAC NHUAN LE, TUAN NGO DAC, AND LAN HUONG PHAM

Dedicated to Professor Ngô Viêt Trung with admiration

Abstract. We discuss certain results related to the linear independence of

alternating multiple zeta values introduced by Harada in 2021.

Contents

1. Introduction

The present paper was initially conceived in January 2021 as an extension of
some results of [22] to the setting of alternating multiple zeta values (AMZV’s) in-
troduced by Harada [14]. At that time, we endeavored to explore Zagier-Hoffman’s
conjectures in positive characteristic for both MZV’s and AMZV’s, by establish-
ing certain results related to the linear independence of specific sets of AMZV’s.
Subsequently, in their work [17], the authors discovered a more successful approach
by substituting these sets with those of alternating Carlitz multiple polylogarithms
(ACMPL’s). For the MZV’s version of Zagier-Hoffman’s conjectures in positive
characteristic, we would like to refer the reader to the work [9] which adopts the
same approach and yields the same results. Consequently, we made the decision to
briefly reference the findings of this paper in the aforementioned work (see Propo-
sition 4.6 of the first version of loc. cit.), deferring the complete exposition of the
details to the present article.

1.1. Background.
Let A = Fq[θ] be the polynomial ring in the variable θ over a finite field Fq of q

elements of characteristic p > 0. We denote by A+ the set of monic polynomials in
A. Let K = Fq(θ) be the fraction field of A equipped with the rational point∞. Let
K∞ be the completion of K at ∞ and C∞ be the completion of a fixed algebraic
closure K of K at∞. We denote by v∞ the discrete valuation on K corresponding to
the place ∞ normalized such that v∞(θ) = −1, and by |·|∞ = q−v∞ the associated
absolute value on K. The unique valuation of C∞ which extends v∞ will still be
denoted by v∞.
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Let N = {1, 2, . . . } be the set of positive integers and Z≥0 = {0, 1, 2, . . . } be the
set of non-negative integers. In [6] Carlitz introduced the Carlitz zeta values ζA(n)
for n ∈ N given by

ζA(n) :=
∑
a∈A+

1

an
∈ K∞

which are analogues of classical special zeta values in the function field setting.
For any tuple of positive integers s = (s1, . . . , sr) ∈ Nr, Thakur [24] defined the
characteristic p multiple zeta value (MZV for short) ζA(s) or ζA(s1, . . . , sr) by

ζA(s) :=
∑ 1

as11 . . . asrr
∈ K∞

where the sum runs through the set of tuples (a1, . . . , ar) ∈ Ar+ with deg a1 > · · · >
deg ar. We call r the depth and w(s) = s1 + · · · + sr the weight of s and ζA(s).
We note that Carlitz zeta values are exactly depth one MZV’s. Thakur [25] showed
that all the MZV’s do not vanish.

For w ∈ N we denote by Zw the K-vector space spanned by the MZV’s of weight
w. We denote by Iw the set of tuples s = (s1, . . . , sr) ∈ Nr of weight w with
1 ≤ si ≤ q for 1 ≤ i ≤ r − 1 and sr < q, and by Tw is the set of ζA(s) with s ∈ Iw.
We also define I0w to be the set of tuples s = (s1, . . . , sr) ∈ Nr of weight w such
that 1 ≤ si < q for all 1 ≤ i ≤ r and T0

w to be the set of MZV’s ζA(s) such that
s ∈ I0w. Note that T0

w is a subset of Tw. We now recall two results of [22]:

Theorem 1.1 ([22, Theorems B]). Let w ∈ N. Then the MZV’s in T0
w are linearly

independent over K.

Theorem 1.2 ([22, Theorems D]). Let w ≤ 2q − 2. Then the MZV’s in Tw are
linearly independent over K.

1.2. Statement of the results.
In [14] Harada introduced the alternating MZV’s (AMZV’s) in positive character-

istic. For any tuple of positive integers s = (s1, . . . , sr) ∈ Nr and ε = (ε1, . . . , εr) ∈

(F×q )r, we consider the array

(
ε
s

)
and the corresponding AMZV is given by

ζA

(
ε
s

)
:=
∑ εdeg a11 . . . εdeg arr

as11 . . . asrr
∈ K∞

where the sum runs through the set of tuples (a1, . . . , ar) ∈ Ar+ with deg a1 > · · · >
deg ar. We call r the depth, w(s) = s1 + · · · + sr the weight and χ(ε) = ε1 . . . εr

the character of

(
ε
s

)
and ζA

(
ε
s

)
. We note all the AMZV’s do not vanish [14]. For

w ∈ N we denote by AZw the K-vector space spanned by the AMZV’s of weight
w. We refer the reader to [12, 14] for more details about these objects. Note that
in the classical setting the reader could consult [16, p. 536] for a discussion about
the dimensions of the Q-vector space spanned by all the AMZV’s of fixed weight.

We now introduce several sets of AMZV’s. First, we define the sets Jw and ATw
by

Jw :=

{(
ε
s

)
: s ∈ Iw

}
, ATw :=

{
ζA

(
ε
s

)
:

(
ε
s

)
∈ Jw

}
.
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Second, we introduce the following sets

J0w :=

{(
ε
s

)
: s ∈ I0w

}
, AT0

w :=

{
ζA

(
ε
s

)
:

(
ε
s

)
∈ J0w

}
,

J1w :=

{(
ε
s

)
: s ∈ Iw, and εi = 1 whenever si = q

}
,

AT1
w :=

{
ζA

(
ε
s

)
:

(
ε
s

)
∈ J1w

}
.

We remark that in general,

AT0
w ( AT1

w ( ATw.

Finally, for 1 ≤ w ≤ 3q−2, we denote by I′w the set of tuples s = (s1, . . . , sr) ∈ Nr
of weight w as follows:

• For 1 ≤ w ≤ 2q − 2, I′w consists of tuples s = (s1, . . . , sr) ∈ Nr of weight w
where si 6= q for all i.
• For 2q − 1 ≤ w ≤ 3q − 3, I′w consists of tuples s = (s1, . . . , sr) ∈ Nr of

weight w of the form
– either si 6= q, 2q − 1, 2q for all i,
– or there exists a unique integer 1 ≤ i < r such that (si, si+1) =

(q − 1, q).
• For w = 3q − 2 and q > 2, I′w consists of tuples s = (s1, . . . , sr) ∈ Nr of

weight w of the form
– either si 6= q, 2q − 1, 2q, 3q − 2 for all i,
– or there exists a unique integer 1 ≤ i < r such that (si, si+1) ∈ {(q −

1, q), (2q − 2, q)}, but s 6= (q − 1, q − 1, q),
– or s = (q − 1, 2q − 1).

• For q = 2 and w = 3q − 2 = 4, I′w consists of the following tuples: (2, 1, 1),
(1, 2, 1) and (1, 3).

Then we denote by J′w the set given by

J′w :=

{(
ε
s

)
: s ∈ I′w, and εi = 1 whenever si ∈ {q, 2q − 1}

}
and by AT′w the subset of AMZV’s given by

AT′w :=

{
ζA

(
ε
s

)
:

(
ε
s

)
∈ J′w

}
.

We mention that as already noticed in [10, 19], the case q = 2 is somewhat
special and needs a careful examination.

Here are some basic properties of these sets that are crucial for linear indepen-
dence of AMZV’s.

Proposition 1.3. We define a Fibonacci-like sequence s(w) as follows. We put

s(w) =

{
(q − 1)qw−1 if 1 ≤ w < q,

(q − 1)(qw−1 − 1) if w = q,

and for w > q, s(w) = (q − 1)
q−1∑
i=1

s(w − i) + s(w − q). Then for all w ∈ N,

|AT1
w| = s(w).
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Proposition 1.4. Let 1 ≤ w ≤ 3q − 2. Then

1) If 1 ≤ w ≤ 3q − 3, then we have

|AT′w| = s(w).

2) For q > 2 and any (s; ε) = (s1, . . . , sr; ε1, . . . , εr) ∈ Nr× (F×q )r, if ζA

(
ε
s

)
∈

AT′w, then ζA

(
ε1 . . . εr−1
s1 . . . sr−1

)
belongs to AT′w−sr .

We are now ready to state some results for linear independence of AMZV’s which
extend Theorems 1.1 and 1.2:

Theorem 1.5. Let w ∈ N. Then the AMZV’s in AT0
w are linearly independent

over K.

Theorem 1.6. Let 1 ≤ w ≤ 3q − 2. Then the AMZV’s in AT′w are all linearly
independent over K. In particular, if 1 ≤ w ≤ 3q − 3, then

dimK AZw ≥ s(w).

We would like to mention several comments. First, Theorem 1.6 is exactly [17,
Proposition 4.6]. Second, the proofs of both previous theorems are based on the
theory of dual t-motives introduced by Anderson [1] and the Anderson-Brownawell-
Papanikolas criterion [2]. Finally, it is proved in [17] that dimK AZw = s(w) for
all weights w ∈ N (see [17, Theorem A]). However, the approach given in loc. cit.
goes beyond the scope of this paper as we have mentioned in the beginning of the
introduction.

1.3. Organization of the paper.
In §2 we recall the notion of dual t-motives following Anderson and the Anderson-

Brownawell-Papanikolas criterion for linear independence. Then we state some ap-
plications for linear independence of MZV’s and AMZV’s (see Theorems 2.4 and
2.5). In §3 we prove Propositions 1.3 and 1.4. The main theorems 1.5 and 1.6 will
be shown in §4 and §5 respectively.
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2. Dual t-motives and linear independence

We continue with the notation given in the Introduction and follow closely the
presentation given as in [17, 22] (see also [9]). In particular, a large part of this
section is line-by-line parallel to [17, §2].

2.1. Notation.
In what follows, letting t be another independent variable, we denote by T the

Tate algebra in the variable t with coefficients in C∞ equipped with the Gauss norm
‖.‖∞.

We denote by E the ring of series
∑
n≥0 ant

n ∈ K[[t]] such that limn→+∞
n
√
|an|∞ =

0 and [K∞(a0, a1, . . .) : K∞] <∞. Then any f ∈ E is an entire function.
For a ∈ A = Fq[θ], we set a(t) := a|θ=t ∈ Fq[t].

2.2. Dual t-motives and Anderson-Brownawell-Papanikolas (ABP) crite-
rion.

We recall the notion of dual t-motives due to Anderson (see [5, §4] and [15, §5]
for more details). We refer the reader to [1] for the related notion of t-motives.

For i ∈ Z we consider the i-fold twisting of C∞((t)) defined by

C∞((t))→ C∞((t))

f =
∑
j

ajt
j 7→ f (i) :=

∑
j

aq
i

j t
j .

We extend i-fold twisting to matrices with entries in C∞((t)) by twisting entry-wise.
Let K[t, σ] be the non-commutative K[t]-algebra generated by the new variable

σ subject to the relation σf = f (−1)σ for all f ∈ K[t].

Definition 2.1. An effective dual t-motive is a K[t, σ]-module M′ which is free
and finitely generated over K[t] such that for `� 0 we have

(t− θ)`(M′/σM′) = {0}.

We mention that effective dual t-motives are called Frobenius modules in [10,
12, 14, 18]. Note that Hartl and Juschka [15, §4] introduced a more general notion
of dual t-motives. In particular, effective dual t-motives are always dual t-motives.

Throughout this paper, we will always work with effective dual t-motives. There-
fore, we will sometimes drop the word “effective” where there is no confusion.

Let M and M′ be two effective dual t-motives. Then a morphism of effective dual
t-motives M → M′ is just a homomorphism of left K[t, σ]-modules. We denote by
F the category of effective dual t-motives equipped with the trivial object 1.

We say that an object M of F is given by a matrix Φ ∈ Matr(K[t]) if M is a
K[t]-module free of rank r and the action of σ is represented by the matrix Φ on
a given K[t]-basis for M. We say that an object M of F is uniformizable or rigid
analytically trivial if there exists a matrix Ψ ∈ GLr(T) satisfying Ψ(−1) = ΦΨ. The
matrix Ψ is called a rigid analytic trivialization of M.

We now recall the Anderson-Brownawell-Papanikolas criterion which is crucial
in the sequel (see [2, Theorem 3.1.1]).

Theorem 2.2 (Anderson-Brownawell-Papanikolas). Let Φ ∈ Mat`(K[t]) be a ma-

trix such that det Φ = c(t− θ)s for some c ∈ K× and s ∈ Z≥0. Let ψ ∈ Mat`×1(E)
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be a vector satisfying ψ(−1) = Φψ and ρ ∈ Mat1×`(K) such that ρψ(θ) = 0. Then
there exists a vector P ∈ Mat1×`(K[t]) such that

Pψ = 0 and P (θ) = ρ.

2.3. First construction of dual t-motives.
We briefly review some constructions of dual t-motives introduced in [10] (see

also [7, 12, 14]). Let s = (s1, . . . , sr) ∈ Nr be a tuple of positive integers and
Q = (Q1, . . . , Qr) ∈ K[t]r satisfying the condition

(2.1) (‖Q1‖∞/|θ|
qs1
q−1
∞ )q

i1
. . . (‖Qr‖∞/|θ|

qsr
q−1
∞ )q

ir → 0

as 0 ≤ ir < · · · < i1 and i1 →∞.
We consider the dual t-motives Ms;Q and M′s;Q attached to (s;Q) given by the

matrices

Φs;Q =



(t− θ)s1+···+sr 0 0 . . . 0

Q
(−1)
1 (t− θ)s1+···+sr (t− θ)s2+···+sr 0 . . . 0

0 Q
(−1)
2 (t− θ)s2+···+sr

. . .
...

...
. . . (t− θ)sr 0

0 . . . 0 Q
(−1)
r (t− θ)sr 1


∈ Matr+1(K[t]),

and Φ′s;Q ∈ Matr(K[t]) is the upper left r × r sub-matrix of Φs;Q.
Throughout this paper, we work with the Carlitz period π̃ which is a fundamental

period of the Carlitz module (see [13, 24]). We fix a choice of (q−1)-th root of (−θ)
and set

Ω(t) := (−θ)−q/(q−1)
∏
i≥1

(
1− t

θqi

)
∈ T×

so that

Ω(−1) = (t− θ)Ω and
1

Ω(θ)
= π̃.

Given (s;Q) as above, Chang introduced the following series (see [7, Lemma 5.3.1]
and also [10, Eq. (2.3.2)])

L(s;Q) = L(s1, . . . , sr;Q1, . . . , Qr) :=
∑

i1>···>ir≥0

(ΩsrQr)
(ir) . . . (Ωs1Q1)(i1).(2.2)

Recall that E denotes the ring of series
∑
n≥0 ant

n ∈ K[[t]] such that limn→+∞
n
√
|an|∞ =

0 and [K∞(a0, a1, . . .) : K∞] < ∞. It is proved that L(s;Q) ∈ E (see [7, Lemma
5.3.1]). In the sequel, we will use the following crucial property of this series (see
[7, Lemma 5.3.5] and [10, Proposition 2.3.3]): for all j ∈ Z≥0, we have

(2.3) L(s;Q)
(
θq

j
)

= (L(s;Q)(θ))
qj
.
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Then the matrix given by

Ψs;Q =



Ωs1+···+sr 0 0 . . . 0
L(s1;Q1)Ωs2+···+sr Ωs2+···+sr 0 . . . 0

... L(s2;Q2)Ωs3+···+sr
. . .

...
...

. . .
. . .

...
L(s1, . . . , sr−1;Q1, . . . , Qr−1)Ωsr L(s2, . . . , sr−1;Q2, . . . , Qr−1)Ωsr . . . Ωsr 0

L(s1, . . . , sr;Q1, . . . , Qr) L(s2, . . . , sr;Q2, . . . , Qr) . . . L(sr;Qr) 1


∈ GLr+1(T)

satisfies

Ψ
(−1)
s;Q = Φs;QΨs;Q.

Thus Ψs;Q is a rigid analytic trivialization associated to the dual t-motive Ms;Q.
We also denote by Ψ′s;Q the upper r × r sub-matrix of Ψs;Q. It is clear that Ψ′s

is a rigid analytic trivialization associated to the dual t-motive M′s;Q.

Further, combined with Eq. (2.3), the above construction of dual t-motives im-
plies that π̃wL(s;Q)(θ) where w = s1 + · · · + sr has the MZ (multizeta) property
in the sense of [7, Definition 3.4.1]. By [7, Proposition 4.3.1], we get

Proposition 2.3 ([17, Proposition 2.3]). Let (si;Qi) as before for 1 ≤ i ≤ n. We
suppose that all the tuples of positive integers si have the same weight, says w. Then
the following assertions are equivalent:

i) L(s1;Q1)(θ), . . . ,L(sn;Qn)(θ) are K-linearly independent.
ii) L(s1;Q1)(θ), . . . ,L(sn;Qn)(θ) are K-linearly independent.

2.4. Second construction of dual t-motives.
Based on the first construction, we present another construction which will be

useful when working with linear combinations of MZV’s or related objects.
Let w ∈ N be a positive integer and n ∈ N. Let {(si;Qi)}1≤i≤n be a collection

of pairs satisfying Condition (2.1) such that si always has weight w. We write si =
(si1, . . . , si`i) ∈ N`i and Qi = (Qi1, . . . , Qi`i) ∈ K[t]`i so that si1 + · · · + si`i = w.
We introduce the set of tuples

I(si;Qi) := {∅, (si1;Qi1), . . . , (si1, . . . , si(`i−1);Qi1, . . . , Qi(`i−1))},

and set

I := ∪iI(si;Qi).

Let ai ∈ A \ {0} for all 1 ≤ i ≤ n. For all (t;Q) ∈ I, we denote by J(t;Q) the set
of indices i such that (t;Q) = (si1, . . . , sik;Qi1, . . . , Qik) for some 0 ≤ k ≤ `i − 1
and set

(2.4) ft;Q :=
∑
i

ai(t)L(si(k+1), . . . , si`i ;Qi(k+1), . . . , Qi`i),

where the sum runs through the set J(t;Q). In particular, f∅ =
∑
i ai(t)L(si;Qi).

We now construct a new matrix Φ′ by merging the same rows of Φ′s1;Q1
, . . . ,Φ′sn;Qn

as follows. Then the matrix Φ′ will be a matrix indexed by elements of I, says

Φ′ =
(

Φ′(t;Q),(t′;Q′)

)
(t;Q),(t′;Q′)∈I

∈ Mat|I|(K[t]). For the row which corresponds to
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the empty pair ∅ we put

Φ′∅,(t′;Q′) =

{
(t− θ)w if (t′;Q′) = ∅,
0 otherwise.

For the row indexed by (t;Q) = (si1, . . . , sij ;Qi1, . . . , Qij) for some i and 1 ≤ j ≤
`i − 1 we put

Φ′(t;Q),(t′;Q′) =


(t− θ)w−w(t′) if (t′;Q′) = (t;Q),

Q
(−1)
ij (t− θ)w−w(t′) if (t′;Q′) = (si1, . . . , si(j−1);Qi1, . . . , Qi(j−1)),

0 otherwise.

Note that Φ′si;Qi
=
(

Φ′(t;Q),(t′;Q′)

)
(t;Q),(t′;Q′)∈I(si;Qi)

for all i.

We define Φ ∈ Mat|I|+1(K[t]) by

Φ =

(
Φ′ 0
v 1

)
∈ Mat|I|+1(K[t]), v = (vt;Q)(t;Q)∈I ∈ Mat1×|I|(K[t]),

where

vt;Q =
∑
i

ai(t)Q
(−1)
i`i

(t− θ)w−w(t).

Here the sum runs through the set of indices i such that (t;Q) = (si1, . . . , si(`i−1);Qi1, . . . , Qi(`i−1))
and the empty sum is defined to be zero.

We now introduce a rigid analytic trivialization matrix Ψ for Φ. We define Ψ′ =(
Ψ′(t;Q),(t′;Q′)

)
(t;Q),(t′;Q′)∈I

∈ GL|I|(T) as follows. For the row which corresponds

to the empty pair ∅ we define

Ψ′∅,(t′;Q′) =

{
Ωw if (t′;Q′) = ∅,
0 otherwise.

For the row indexed by (t;Q) = (si1, . . . , sij ;Qi1, . . . , Qij) for some i and 1 ≤ j ≤
`i − 1 we put

Ψ′(t;Q),(t′;Q′) =
L(t;Q)Ωw−w(t) if (t′;Q′) = ∅,
L(si(k+1), . . . , sij ;Qi(k+1), . . . , Qij)Ω

w−w(t) if (t′;Q′) = (si1, . . . , sik;Qi1, . . . , Qik) for some 1 ≤ k ≤ j,
0 otherwise.

Note that Ψ′si;Qi
=
(

Ψ′(t;Q),(t′;Q′)

)
(t;Q),(t′;Q′)∈I(si;Qi)

for all i. Here we agree that

L(∅) = 1.
We define Ψ ∈ GL|I|+1(T) by

Ψ =

(
Ψ′ 0
f 1

)
∈ GL|I|+1(T), f = (ft;Q)t∈I ∈ Mat1×|I|(T).

Here we recall (see Eq. (2.4))

ft;Q =
∑
i

ai(t)L(si(k+1), . . . , si`i ;Qi(k+1), . . . , Qi`i)
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where the sum runs through the set of indices i such that (t;Q) = (si1, . . . , sik;Qi1, . . . , Qik)
for some 0 ≤ k ≤ `i − 1. In particular,

f∅ =
∑
i

ai(t)L(si;Qi).

By construction and by §2.3, we get Ψ(−1) = ΦΨ, that means Ψ is a rigid analytic
trivialization for Φ.

2.5. A result for linear independence.
We are now ready to state an application of ABP criterion for linear independence

(see [17, 22] and also [9]).

Theorem 2.4. We keep the above notation. We suppose further that {(si;Qi)}1≤i≤n
satisfies the following conditions:

(LW) For any weight w′ < w, the values L(t;Q)(θ) with (t;Q) ∈ I and w(t) = w′

are all K-linearly independent. In particular, L(t;Q)(θ) is always nonzero.
(LD) There exist ai ∈ A \ {0} for 1 ≤ i ≤ n such that

n∑
i=1

aiL(si;Qi)(θ) = 0.

Then

• ft;Q(θ) belongs to K where ft;Q is given as in (2.4) for all (t;Q) ∈ I.

• There exist b ∈ Fq[t] \ {0} and δ := (δt;Q)(t;Q)∈I ∈ Mat1×|I|(K[t]) such that(
Id 0
δ 1

)(−1)(
Φ′ 0
bv 1

)
=

(
Φ′ 0
0 1

)(
Id 0
δ 1

)
.

Here we note that LW stands for Lower Weights and LD for Linear Dependence.
We mention below some comments about the above result.

(1) In [10] Chang, Papanikolas and Yu studied zeta-like MZV’s and proved
Theorem 2.4 in the case where n = 2, s1 is of weight w, and s2 = (w) (see
Theorem 2.5.2 of loc. cit.).

(2) In [18, 21], the authors apply the previous theorem of Chang-Papanikolas-
Yu to obtain several results concerning zeta-like MZV’s.

(3) In [8, 12], the authors generalized the aforementioned theorem of Chang-
Papanicolas-Yu and obtain some particular cases of Theorem 2.4. In all
these works, Condition (LW) is replaced by a stronger condition: one re-
quires that for any weight w′ < w, there exists at most one pair (t;Q) ∈ I
such that w(t) = w′ and further L(t;Q)(θ) is always nonzero for all (t;Q) ∈
I.

(4) In [22], the author proved a version of Theorem 2.4 for MZV’s (see The-
orem 2.5) and applied it to obtain some results towards Zagier-Hoffman’s
conjectures in positive characteristic. Theorem 2.4 is a generalization of the
previous result and is proved in [17, Theorem 2.4] (see also [9]).

(5) The curious reader is invited to read the previous works for more details
and an exhaustive list of related works.

2.6. Example: dual t-motives connected to MZV’s and AMZV’s.
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2.6.1. First construction.
Following Anderson and Thakur [3, 4] we introduce dual t-motives connected to

MZV’s and AMZV’s. We briefly review Anderson-Thakur polynomials introduced

in the seminal work of Anderson and Thakur [3]. For k ≥ 0, we set [k] := θq
k − θ

and Dk :=
∏k
`=1[`]q

k−`

. For n ∈ N we write n− 1 =
∑
j≥0 njq

j with 0 ≤ nj ≤ q− 1
and define

Γn :=
∏
j≥0

D
nj

j .

We set γ0(t) := 1 and γj(t) :=
∏j
`=1(θq

j − tq`) for j ≥ 1. Then Anderson-Thakur
polynomials αn(t) ∈ A[t] are given by the generating series

∑
n≥1

αn(t)

Γn
xn := x

1−
∑
j≥0

γj(t)

Dj
xq

j

−1 .
Finally, we define Hn(t) by switching θ and t

Hn(t) = αn(t)
∣∣
t=θ, θ=t

.(2.5)

By [3, Eq. (3.7.3)] we get

(2.6) degθHn ≤
(n− 1)q

q − 1
<

nq

q − 1
.

Let s = (s1, . . . , sr) ∈ Nr be a tuple and ε = (ε1, . . . , εr) ∈ (F×q )r. For all

1 ≤ i ≤ r we fix a fixed (q − 1)-th root γi of εi ∈ F×q and set Qsi;εi := γiHsi .
Then we set Qs;ε := (Qs1;ε1 , . . . , Qsr;εr ) and put L(s; ε) := L(s;Qs;ε). By (2.6) we

know that ‖Hn‖∞ < |θ|
nq
q−1
∞ for all n ∈ N, thus Qs;ε satisfies Condition (2.1). Thus

we can define the dual t-motives Ms;ε = Ms;Qs;ε and M′s;ε = M′s;Qs;ε
attached to

s whose matrices and rigid analytic trivializations will be denoted by (Φs;ε,Ψs;ε)
and (Φ′s;ε,Ψ

′
s;ε), respectively. These dual t-motives are connected to MZV’s and

AMZV’s by the following result (see [12, Proposition 2.12] for more details):

(2.7) L(s; ε)(θ) =

γ1 . . . γrΓs1 . . .ΓsrζA

(
ε
s

)
π̃s1+···+sr

.

By a result of Thakur [26], one can show (see [14, Theorem 2.1]) that ζA

(
ε
s

)
6= 0.

Thus L(s; ε)(θ) 6= 0.

2.6.2. Second construction.
Let w ∈ N be a positive integer and n ∈ N. Let {(si; εi)}1≤i≤n be a collection of

pairs such that si always has weight w and ai ∈ A \ {0} for all 1 ≤ i ≤ n. Recall
from §2.6 that the collection {(si;Qsi;εi)}1≤i≤n satisfies Condition (2.1). We write
si = (si1, . . . , si`i) ∈ N`i and εi = (εi1, . . . , εi`i) ∈ (F×q )`i so that si1 + · · ·+si`i = w.

We introduce the following sets

I(si; εi) := {∅, (si1; εi1), . . . , (si1, . . . , si(`i−1); εi1, . . . , εi(`i−1))},
I+(si; εi) := I(si; εi) ∪ {(si; εi)},

and set

I := ∪iI(si; εi), I+ := ∪iI+(si; εi).
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For all (t; ε) ∈ I, we denote by J(t; ε) the set of indices i such that (t; ε) =
(si1, . . . , sik; εi1, . . . , εik) for some 0 ≤ k ≤ `i − 1 and set

(2.8) ft;ε :=
∑
i

ai(t)L(si(k+1), . . . , si`i ; εi(k+1), . . . , εi`i),

where the sum runs through the set J(t; ε). In particular,

f∅ =
∑
i

ai(t)L(si; εi).

By §2.4 we get a new matrix Φ′ by merging the same rows of Φ′s1;ε1 , . . . ,Φ
′
sn;εn .

Then we obtain Φ ∈ Mat|I|+1(K[t]) by

Φ =

(
Φ′ 0
v 1

)
∈ Mat|I|+1(K[t]), v = (vt;ε)(t;ε)∈I ∈ Mat1×|I|(K[t]),(2.9)

where

vt;ε =
∑
i

ai(t)Q
(−1)
si`i ;εi`i

(t− θ)w−w(t).

Here the sum runs through the set of indices i such that (t; ε) = (si1, . . . , si(`i−1); εi1, . . . , εi(`i−1))
and the empty sum is defined to be zero.

Next we get a rigid analytic trivialization matrix Ψ ∈ GL|I|+1(T) for Φ which is
of the form

Ψ =

(
Ψ′ 0
f 1

)
∈ GL|I|+1(T)

where Ψ′ =
(

Ψ′(t;ε),(t′;ε′)

)
(t;ε),(t′;ε′)∈I

∈ GL|I|(T) and f = (ft;ε)t∈I ∈ Mat1×|I|(T)

with ft;ε given by Eq. (2.8).

2.6.3. Linear independence for AMZV’s.
Theorem 2.4 applied to this case yields

Theorem 2.5. We keep the above notation. We suppose further that {(si; εi)}1≤i≤n
satisfies the following conditions:

(LW) For any weight w′ < w, the values L(t; ε)(θ) with (t; ε) ∈ I and w(t) = w′

are all K-linearly independent.
(LD) There exist ai ∈ A \ {0} for 1 ≤ i ≤ n such that

n∑
i=1

aiL(si; εi)(θ) = 0.

Then

1) ft;ε(θ) belongs to K where ft;ε is given as in (2.8) for all (t; ε) ∈ I.

2) There exist b ∈ Fq[t] \ {0} and δ := (δt;ε)(t;ε)∈I ∈ Mat1×|I|(K[t]) such that(
Id 0
δ 1

)(−1)(
Φ′ 0
bv 1

)
=

(
Φ′ 0
0 1

)(
Id 0
δ 1

)
.(2.10)

From now on, as we will work with MZV’s and AMZV’s, we will use freely the
notation given as in this section.
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3. Proof of Propositions 1.3 and 1.4

3.1. Proof of Proposition 1.3.
We see that |AT1

w| = |J1w|. By induction on w, we prove that |J1w| = s(w) for all
w ∈ N. The proposition follows.

3.2. Proof of Proposition 1.4.
Part 2 follows immediately from the construction of AT′w.

For Part 1, following [17, §1.4], we consider the set J2w consisting of

(
ε1 . . . εn
s1 . . . sn

)
of weight w such that for all i, si ∈ N, q - si and εi ∈ F×q and define a map

ϕ : J2w −→ J1w

as follows: for

(
ε
s

)
=

(
ε1 . . . εn
s1 . . . sn

)
∈ J2w, since q - si, we can write si = hiq + ri

where 0 < ri < q and hi ∈ Z≥0. The image ϕ

(
ε
s

)
is the array

ϕ

(
ε
s

)
=

((
1 . . . 1
q . . . q

)
︸ ︷︷ ︸

h1 times

(
ε1
r1

)
. . .

(
1 . . . 1
q . . . q

)
︸ ︷︷ ︸

hn times

(
εn
rn

))
.

Then one sees that ϕ is a bijection, hence |J2w| = |J1w| = s(w) by the proof of
Proposition 1.3.

Thus, to finish the proof, it suffices to construct of a bijection

ψ : J2w → J′w

for 1 ≤ w ≤ 3q − 3. For

(
ε
s

)
=

(
ε1 . . . εn
s1 . . . sn

)
∈ J2w, we know that for all i, q - si,

which implies si 6= q, 2q. We distinguish two cases:

• If si 6= q, 2q − 1, 2q for all i, then

ψ

(
ε
s

)
=

(
ε
s

)
.

• If there exists a unique integer 1 ≤ i < r such that si = 2q − 1, then

ψ

(
ε
s

)
=

(
ε1 . . . εi−1 εi 1 εi+1 . . . εn
s1 . . . si−1 q − 1 q si+1 . . . sn

)
.

Then we see that ψ is a bijection and Part 1 follows.

4. Proof of Theorem 1.5

4.1. Preliminaries.
We begin this section by proving several auxiliary lemmas which will be useful

in the sequel. Here we can refer to the readers [17, §3].

Lemma 4.1 ([17, Lemma 3.1]). Let ε1, . . . , εn be different elements in F×q . We

denote by γi ∈ Fq a (q − 1)-th root of εi for all 1 ≤ i ≤ n. Then γ1, . . . , γn are all
Fq-linearly independent.
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Proof. We refer the reader to [17, Lemma 3.1] for a proof of this lemma. We give
here another proof using the Moore determinant (see [13, Section 1.3]). Suppose
that ε1, . . . , εn are distinct elements in F×q . The Moore determinant associated to
γ1, . . . , γn is defined as

∆(γ1, . . . , γn) := det


γ1 . . . γn
γq1 . . . γqn
...

...

γq
n−1

1 . . . γq
n−1

n

 .

Since γi is a (q − 1)-th root of εi, one verifies by induction that γq
k

i = γiε
k
i for

0 ≤ k ≤ n− 1. It follows that

∆(γ1, . . . , γn) = det


γ1 . . . γn
γ1ε1 . . . γnεn

...
...

γ1ε
n−1
1 . . . γnε

n−1
n

 = γ1 · · · γndet


1 . . . 1
ε1 . . . εn
...

...
εn−11 . . . εn−1n


= γ1 · · · γn

∏
1≤j<i≤n

(εi − εj).

The last equality follows from the Vandermonde determinant. We thus deduce that
∆(γ1, . . . , γn) 6= 0 since ε1, . . . , εn are distinct elements in F×q . From [13, Lemma
1.3.3], we conclude that γ1, . . . , γn are linearly independent over Fq, as desired. �

Recall that for any tuple ε = (ε1, . . . , εr) ∈ (F×q )r, we recall that the character

of ε is given by χ(ε) = ε1 . . . εr ∈ F×q (see §1.2).

Lemma 4.2. Let ζA

(
εi
si

)
∈ ATw and ai ∈ A \ {0} satisfying

∑
i

aiL(si; εi)(θ) = 0.

For ε ∈ F×q we denote by I(ε) = {i : χ(εi) = ε} the set of indices i such that the

corresponding character equals ε. Then for all ε ∈ F×q ,∑
i∈I(ε)

aiL(si; εi)(θ) = 0.

Proof. We adapt the proof given as in [17, Lemma 3.2] for the convenience of the
reader. Suppose that we have a relation∑

i

γiai = 0

with ai ∈ K∞. By Lemma 4.1 and the fact that K∞ = Fq((1/θ)), we deduce that
ai = 0 for all i.

By (2.7) the relation
∑
i aiL(si; εi)(θ) = 0 is equivalent to the following one∑
i

aiγi1 . . . γi`iζA

(
εi
si

)
= 0.
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By the previous discussion, since aiζA

(
εi
si

)
∈ K∞ for all i, we deduce that for all

ε ∈ F×q , ∑
i∈I(ε)

aiγi1 . . . γi`iζA

(
εi
si

)
= 0.

By (2.7) again we deduce the desired relation∑
i∈I(ε)

aiL(si; εi)(θ) = 0.

�

Lemma 4.3. Let m ∈ N, δ ∈ K[t] and F (t, θ) ∈ Fq[t, θ] (resp. F (t, θ) ∈ Fq[t, θ])
satisfying

δ = δ(−1)(t− θ)m + F (−1)(t, θ).

Then δ ∈ Fq[t, θ] (resp. δ ∈ Fq[t, θ]) and

degθ δ ≤ max

{
qm

q − 1
,

degθ F (t, θ)

q

}
.

Proof. The proof follows the same line as that of [18, Theorem 2]. See also [17,
Lemma 3.3]. �

4.2. Proof of Theorem 1.5.
The proof of Theorem 1.5 follows the same line as that of [22, Theorem B].

By (2.7) it suffices to show that all the values L(s; ε)(θ) such that ζA

(
ε
s

)
∈ AT0

w

are K-linearly independent. The proof is by induction on the weight w ∈ N.

For w = 1 suppose that there exist ζA

(
εi
1

)
∈ AT0

1 and ai ∈ A \ {0} such that∑
i

aiL(1; εi)(θ) = 0.

By Lemma 4.2, for all i, we have aiL(1; εi)(θ) = 0. As L(1; εi)(θ) 6= 0, ai = 0 and
we get a contradiction.

Now suppose that for w′ < w the values L(s; ε)(θ) such that ζA

(
ε
s

)
∈ AT0

w′ are

all linearly independent over K. We claim that the values L(s; ε)(θ) such that

ζA

(
ε
s

)
∈ AT0

w are all linearly independent over K. Suppose that there exist

ζA

(
εi
si

)
∈ AT0

w and ai ∈ A \ {0} such that

(4.1)
∑
i

aiL(si; εi)(θ) = 0.

We write si = (si1, . . . , si`i) ∈ N`i and εi = (εi1, . . . , εi`i) ∈ (F×q )`i . By Lemma

4.2 we can suppose further that εi has the same character, i.e., there exists ε ∈ F×q
such that for all i,

(4.2) χ(εi) = εi1 . . . εi`i = ε.

We show that the relation (4.1) leads to a contradiction.
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By the previous discussion, we can apply Theorem 2.5 for the above tuples
(si; εi). With the notation of Theorem 2.5, we deduce that that for all (t; ε) ∈ I,
ft;ε(θ) belongs to K. Here we recall that J(t; ε) denotes the set of indices i such
that (t; ε) = (si1, . . . , sik; εi1, . . . , εik) for some 0 ≤ k ≤ `i − 1, and ft;ε is given by

ft;ε :=
∑
i

ai(t)L(si(k+1), . . . , si`i ; εi(k+1), . . . , εi`i),

where the sum runs through the set J(t; ε).
We now deduce a contradiction from this fact. For (si; εi) we denote by mi ∈ Z≥0

the biggest index such that (si1, . . . , simi ; εi1, . . . , εimi) belongs to I(sj ; εj) for some
j 6= i. Note that si(mi+1) 6= 0 since the weights of si and sj (j 6= i) are the same.
For mi + 1 ≤ k < `i we consider (t; ε) = (si1, . . . , sik; εi1, . . . , εik). Thus (2.8) gives
ft;ε = ai(t)L(si(k+1), . . . , si`i ; εi(k+1), . . . , εi`i) and we have seen that ft;ε belongs to
K. By (2.7) we get

aiγi(k+1) . . . γi`iΓi(k+1) . . .Γi`iζA

(
εi(k+1) . . . εi`i
si(k+1) . . . si`i

)
/π̃si(k+1)+···+si`i ∈ K.

Since ai ∈ K×, this forces that si(k+1) + · · · + si`i is divisible by q − 1 and
εi(k+1) . . . εi`i = 1 by Lemma 4.2. Since this condition holds for all mi + 1 ≤ k < `i,
it follows that si(k+1) is divisible by q − 1 and εi(k+1) = 1 for all mi + 1 ≤ k < `i.
Since 1 ≤ si(k+1) ≤ q − 1, we conclude that

si(k+1) = q − 1, εi(k+1) = 1, for all mi + 1 ≤ k < `i.

Let m := maximi. Then we can find two different tuples, says (s1; ε1) and (s2; ε2)
be such that m1 = m2 = m. Thus

(s11, . . . , s1m; ε11, . . . , ε1m) = (s21, . . . , s2m; ε21, . . . , ε2m)

and (s1(m+1), ε1(m+1)) 6= (s2(m+1), ε2(m+1)). The previous discussion shows that if
mi < `i−1, then s1(m+2) = · · · = q−1, ε1(m+2) = · · · = 1 and s2(m+2) = · · · = q−1,
ε2(m+2) = · · · = 1. Combining with the fact that s1 and s2 have the same weight
yields s1(m+1) ≡ s2(m+1) (mod q−1). Since 1 ≤ s1(m+1), s2(m+1) ≤ q−1, we deduce
s1(m+1) = s2(m+1). Finally, combining with the fact that ε1 and ε2 have the same
character (see (4.2)), we obtain ε1(m+1) = ε2(m+1). Thus we get a contradiction
since (s1(m+1); ε1(m+1)) = (s2(m+1); ε2(m+1)).

The proof of Theorem 1.5 is finished.

5. Proof of Theorem 1.6

5.1. Strategy of the proof.
Recall that w ≤ 3q − 2. We use Proposition 1.4 and prove Theorem 1.6 by

induction on w.
For w ≤ q, Theorem 1.6 follows immediately from Theorem 1.5 (see §5.2).
We suppose that for w′ < w AMZV’s in AT′w′ are all linearly independent over

K. We claim that AMZV’s in AT′w are all linearly independent over K.
By (2.7) and Proposition 2.3, it suffices to show that all the values L(s; ε)(θ)

such that ζA

(
ε
s

)
∈ AT′w are all linearly independent over K. Suppose that there
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exist ζA

(
εi
si

)
∈ AT′w and ai ∈ A \ {0} such that

∑
i

aiL(si; εi)(θ) = 0.

We write si = (si1, . . . , si`i) ∈ N`i and εi = (εi1, . . . , εi`i) ∈ (F×q )`i . By Lemma 4.2

we can suppose further that εi has the same character, i.e., there exists ε ∈ F×q such
that for all i,

χ(εi) = εi1 . . . εi`i = ε.

The proof of Theorem 1.6 will be divided into two steps.

• Step 1: as Proposition 1.4 implies that Condition (LW) holds, we apply
Theorem 2.5 for the tuples (si; εi). Part 1 of Theorem 2.5 gives a shortlist
of tuples (si; εi) which often contains few elements.
• Step 2: we write down explicitly the system of equations (2.10) given in

Part 2 of Theorem 2.5 (we note that in this system we can suppose that
b = 1) and manage to show that either ai = 0 for all i or it does not have
a nontrivial solution δ 6= 0. This completes the proof.

In what follows we carry out this strategy in detail.

5.2. Proof of Theorem 1.6 for w ≤ q.
We suppose that w ≤ q. As a direct consequence of Theorem 1.5, we deduce that

Theorem 1.6 holds when w ≤ q. In fact, we note that AT′w = AT1
w = AT0

w when
w ≤ q.

5.3. Proof of Theorem 1.6 for q + 1 ≤ w ≤ 2q − 2.
We suppose that q > 2 and q+ 1 ≤ w ≤ 2q− 2. We want to prove that AMZV’s

in AT′w are all linearly independent over K.
The proof is done by induction on w. For q + 1 ≤ w ≤ 2q − 2, we suppose that

for w′ < w AMZV’s in AT′w′ are all linearly independent over K. We claim that
AMZV’s in AT′w are all linearly independent over K.

By (2.7) and Proposition 2.3, it suffices to show that all the values L(s; ε)(θ)

such that ζA

(
ε
s

)
∈ AT′w are all linearly independent over K. Suppose that there

exist ζA

(
εi
si

)
∈ AT′w and ai ∈ A \ {0} such that

∑
i

aiL(si; εi)(θ) = 0.

We write si = (si1, . . . , si`i) ∈ N`i and εi = (εi1, . . . , εi`i) ∈ (F×q )`i . By Lemma 4.2,

we can suppose further that εi has the same character, i.e., there exists ε ∈ F×q such
that for all i,

χ(εi) = εi1 . . . εi`i = ε.

We show that this relation leads to a contradiction.
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5.3.1. Step 1.
We apply Theorem 2.5 for the above tuples (si; εi). With the notation of Theorem

2.5, we deduce that that for all (t; ε) ∈ I, ft;ε(θ) belongs to K. Here we recall that
J(t; ε) denotes the set of indices i such that (t; ε) = (si1, . . . , sik; εi1, . . . , εik) for
some 0 ≤ k ≤ `i − 1, and ft;ε is given by

ft;ε :=
∑
i

ai(t)L(si(k+1), . . . , si`i ; εi(k+1), . . . , εi`i),

where the sum runs through the set J(t; ε).
We claim that for all (t; ε) ∈ I \ {∅}, (q − 1) | (w − w(t)). In fact, suppose that

q − 1 does not divide w − w(t). Then π̃w−w(t) 6∈ K∞, so

∑
i∈J(t;ε)

ai(t)γi(k+1) . . . γi`iΓsi(k+1)
. . .Γsi`i ζA

(
εi(k+1) . . . εi`i
si(k+1) . . . si`i

)
= 0,

which contradicts to the induction hypothesis on AT′w−w(t).

Thus, we have (q − 1)|sij for all 2 ≤ j ≤ `i. With our assumption w ≤ 2q − 2,
we get the shortlist of (si; εi) as follows:

(w; ε), (k, q − 1; ε1, εε
−1
1 )

where ε1 ∈ F×q and k := w − (q − 1). For (t; ε) = (k; ε1), it follows that fk;ε1(θ) =

a(k,q−1;ε1,εε−1
1 )L(q−1; εε−11 )(θ) ∈ K. By (2.7) and Proposition 2.3, if εε−11 6= 1, then

a(k,q−1;ε1,εε−1
1 ) = 0. Hence the first shortlist of (si; εi) is reduced to the following

list

(w; ε), (k, q − 1; ε, 1)

Thus we have the following relation,

(5.1) a1ζA

(
ε
w

)
+ a2ζA

(
ε 1
k q − 1

)
= 0 for some a1, a2 ∈ A \ {0}.

5.3.2. Step 2.
We claim that (5.1) leads to a contradiction. In fact, we put s1 = k and s2 = q−1.

Then s1 ≤ q − 1. Also fix γ a (q − 1)-th root of ε. By Theorem 2.5, we recall that
the matrix Φ′ is given by

Φ′ =

(
(t− θ)w 0

(γHs1)(−1)(t− θ)w (t− θ)s2

)
for I = {∅, (k; ε)}. For some δ1, δ2 ∈ K[t], Eq. (2.10) induces

δ1 =
(
δ
(−1)
1 + δ

(−1)
2 (γHs1)(−1) + a1(t) · (γHw)(−1)

)
(t− θ)w,(5.2)

δ2 =
(
δ
(−1)
2 + a2(t) ·H(−1)

s2

)
(t− θ)s2 .(5.3)

We know that Hs1 = Hs2 = 1 and Hw = (tq − t) + (k − 1)(tq − θq). So (5.3) is
reduced to

δ2 =
(
δ
(−1)
2 + a2(t)

)
(t− θ)s2 .

By Lemma 4.3 we deduce that δ2 ∈ Fq[t, θ] and degθ δ2 ≤
q(q−1)
q−1 = q. We put

δ2 = (aθ + b)(t− θ)q−1 with a, b ∈ Fq[t]. This yields

δ2 = f(θq − tq), a2(t) = f(tq − t) for some f ∈ Fq[t] \ {0}
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after calculations (twisting once and comparing the coefficients of θq−1-terms).
Now for δ1, by Lemma 4.3 again, δ1 ∈ Fq[t, θ] and degθ δ1 ≤

qw
q−1 . We treat the

cases when 1 < k < q − 1 and k = q − 1 separately.
If 1 < k < q − 1, we have degθ δ1 ≤ w + 1, i.e., δ1 = (aθ + b)(t − θ)w for some

a, b ∈ Fq[t]. After twisting, comparing the coefficients of θk−1- and θk- terms yields
a = b = 0, and then comparing the coefficients of θq-terms gives a1(t)(tq − t) = 0.
Since a1 6= 0, we have a contradiction.

Next consider when k = q − 1, i.e., when w = 2q − 2. Since degθ δ1 ≤ w + 2, we
let

δ1 = (aθ2 + bθ + c)(t− θ)w for some a, b, c ∈ Fq[t].

Then twisting once and comparing the coefficients of θ2q−1- and θ2q−2 terms give
aθ2 + bθ + c = a(t− θ)2, i.e.,

a(1)(t− θq)2 = a(t− θ)2q + γf(θq − tq) + a1(t)γ ((tq − t)− 2(tq − θq)) .

Comparing the coefficients of θ2q yields a(1) = a, which implies a ∈ Fq[t]. Hence

a(t− θq)2 = a(t− θ)2q + γf(θq − tq) + a1(t)γ ((tq − t)− 2(tq − θq)) .

Multiplying by (tq − t), we get

γf(θq − tq)(tq − t) =
(
(t− θq)2 − (t− θ)2q

)
(a(tq − t)− a1(t)γ)

by using the identity (tq − t)[(tq − t)− 2(tq − θq)] = (t− θq)2− (tq − θq)2. Since the
right-hand side is not divided by t − θ unless it is zero, we have f = 0, which is a
contradiction.

As a direct consequence of the previous proof, we obtain

Corollary 5.1. Suppose that q > 2. Then ζA

(
1 1

q − 1 q − 1

)
/ζA

(
1

2q − 2

)
/∈ K.

5.4. Proof of Theorem 1.6 for 2q − 1 ≤ w ≤ 3q − 2: auxiliary lemmas.
In this section we consider the case when 2q − 1 ≤ w ≤ 3q − 2. We recall that

I′w denotes the set of tuples s = (s1, . . . , sr) ∈ Nr of weight w as follows:

• For 2q − 1 ≤ w ≤ 3q − 3, I′w consists of tuples s = (s1, . . . , sr) ∈ Nr of
weight w of the form

– either si 6= q, 2q − 1, 2q for all i,
– or there exists a unique integer 1 ≤ i < r such that (si, si+1) =

(q − 1, q).
• For w = 3q − 2 and q > 2, I′w consists of tuples s = (s1, . . . , sr) ∈ Nr of

weight w of the form
– either si 6= q, 2q − 1, 2q, 3q − 2 for all i,
– or there exists a unique integer 1 ≤ i < r such that (si, si+1) ∈ {(q −

1, q), (2q − 2, q)}, but s 6= (q − 1, q − 1, q),
– or s = (q − 1, 2q − 1).

• For q = 2 and w = 3q − 2 = 4, I′w consists of the following tuples: (2, 1, 1),
(1, 2, 1) and (1, 3).

Then we recall that J′w denotes the set given by

J′w :=

{(
ε
s

)
: s ∈ I′w, and εi = 1 whenever si ∈ {q, 2q − 1}

}
.
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and by AT′w the subset of AMZV’s given by

AT′w :=

{
ζA

(
ε
s

)
:

(
ε
s

)
∈ J′w

}
.

We want to prove that AMZV’s in AT′w are all linearly independent over K.

Suppose that there exist ζA

(
εi
si

)
∈ AT′w and ai ∈ A \ {0} such that

∑
i

aiL(si; εi) = 0.(5.4)

By Lemma 4.2, we can suppose further that εi has the same character, i.e., there
exists ε ∈ F×q such that for all i,

χ(εi) = ε.

We will proceed by induction to lead a contradiction. We write si = (si1, . . . , si`i)
and εi = (εi1, . . . , εi`i), and recall

I(si; εi) = {∅, (si1; εi1), . . . , (si1, . . . , si(`i−1); εi1, . . . , εi(`i−1))},
I+(si; εi) = I(si; εi) ∪ {(si; εi)},

and

I = ∪iI(si; εi),

I+ = ∪iI+(si; εi).

For all (t; ε) ∈ I, we recall

ft;ε =
∑
i

ai(t)L(si(k+1), . . . , si`i ; εi(k+1), . . . , εi`i)

where the sum runs over the set J(t; ε) consisting of indices i such that (t; ε) =
(si1, . . . , sik; εi1, . . . , εik) for some 0 ≤ k ≤ `i − 1,

By Theorem 2.5 and referring to (2.7) and (2.8),

ft;ε(θ) =
∑

i∈J(t,ε)

aiγi(k+1) . . . γi`iΓsi(k+1)
. . .Γsi`i ζA

(
εi(k+1) . . . εi`i
si(k+1) . . . si`i

)
/π̃w−w(t) ∈ K.

(5.5)

We now prove several lemmas that will be useful in the sequel.

Lemma 5.2. Let (t; ε) ∈ I and t 6= ∅. Recall that J(t; ε) denotes the set of indices
i such that (t; ε) = (si1, . . . , sik; εi1, . . . , εik) for some 0 ≤ k ≤ `i − 1. Then

• either (t, q; ε, 1) or (t, 2q − 1; ε, 1) belongs to I+,
• or w − w(t) is divisible by q − 1 and there exists a ∈ K such that∑

i∈J(t;ε)

aiγi(k+1) . . .γi`iΓsi(k+1)
. . .Γsi`i ζA

(
εi(k+1) . . . εi`i
si(k+1) . . . si`i

)

+ aΓw−w(t)ζA

(
1

w − w(t)

)
= 0.
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Proof. Suppose that the tuples (t, q; ε, 1) and (t, 2q − 1; ε, 1) do not belong to I+

and w − w(t) is not divisible by q − 1. Then π̃w−w(t) /∈ K∞ as w − w(t) is not
divisible by q − 1. Referring to (2.7), since ft;ε(θ) ∈ K by (5.5), this implies that∑

i∈J(t;ε)

aiγi(k+1) . . . γi`iΓsi(k+1)
. . .Γsi`i ζA

(
εi(k+1) . . . εi`i
si(k+1) . . . si`i

)
= 0.(5.6)

Since (t, q; ε, 1) and (t, 2q − 1; ε, 1) do not belong to I+, the AMZV’s appearing
in (5.6) belong to AT′w−w(t). Then, recalling that ai 6= 0 for i ∈ J(t; ε), we obtain a

contradiction by the induction hypothesis. Hence, we have shown that if (t, q; ε, 1)
and (t, 2q − 1; ε, 1) do not belong to I+, then w − w(t) is divisible by q − 1.

If q − 1 divides w − w(t), then since ft;ε(θ) ∈ K and ζA

(
1

w − w(t)

)
/π̃w−w(t) ∈

K×, we conclude that there exists some a ∈ K such that∑
i∈J(t;ε)

aiγi(k+1) . . .γi`iΓsi(k+1)
. . .Γsi`i ζA

(
εi(k+1) . . . εi`i
si(k+1) . . . si`i

)

+ aΓw−w(t)ζA

(
1

w − w(t)

)
= 0.

�

As a direct consequence of the proof of the previous lemma, we obtain

Lemma 5.3. Let (t; ε) ∈ I and t 6= ∅ satisfying both conditions:

• the tuples (t, q; ε, 1) and (t, 2q − 1; ε, 1) do not belong to I+,
• w − w(t) is divisible by q − 1.

Then there exists a ∈ K× such that∑
i∈J(t;ε)

aiγi(k+1) . . .γi`iΓsi(k+1)
. . .Γsi`i ζA

(
εi(k+1) . . . εi`i
si(k+1) . . . si`i

)

+ aΓw−w(t)ζA

(
1

w − w(t)

)
= 0.

Further, for all i ∈ J(t; ε), we have εi(k+1) . . . εi`i = 1.

Proof. As q−1 divides w−w(t), then since ft;ε(θ) ∈ K and ζA

(
1

w − w(t)

)
/π̃w−w(t) ∈

K×, we conclude that there exists some a ∈ K such that∑
i∈J(t;ε)

aiγi(k+1) . . .γi`iΓsi(k+1)
. . .Γsi`i ζA

(
εi(k+1) . . . εi`i
si(k+1) . . . si`i

)

+ aΓw−w(t)ζA

(
1

w − w(t)

)
= 0.

Since (t, q; ε, 1) and (t, 2q−1; ε, 1) do not belong to I+, the AMZV’s appearing in the
first sum belong to AT′w−w(t). By the induction hypothesis, we deduce that a 6= 0.

Further, by Lemma 4.2, it follows that for all i ∈ J(t; ε), we have εi(k+1) . . . εi`i =
1. �
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Remark 5.4. 1) Note that if w = 2q − 1, then (t, 2q − 1; ε, 1) /∈ I+,and the
condition (t, q; ε, 1) ∈ I+ forces sik = q− 1 and so (t; ε) = (q− 1; εi1) and (si; εi) =
(q − 1, q; εi1, 1).

2) If 2q ≤ w ≤ 3q − 3, then (t, 2q − 1; ε, 1) /∈ I+ since w ≤ 3q − 3, and the

condition (t, q; ε, 1) ∈ I+ forces sik = q − 1 and
k−1∑
j=1

sjk ≤ w − (2q − 1) ≤ q − 2.

3) If w = 3q − 2 and q > 2, then the condition (t, 2q − 1; ε, 1) ∈ I+ forces
sik = q− 1, so (t; ε) = (q− 1; εi1) and (si; εi) = (q− 1, 2q− 1; εi1, 1). The condition
(t, q; ε, 1) ∈ I+ forces sik = q − 1 or 2q − 2.

Lemma 5.5. Let (t; ε) ∈ I. Suppose that t = (si1, . . . , sik) 6= ∅ for some i with
k < `i and w − w(t) is divisible by q − 1. Then we have εi(k+1) = · · · = εi`i = 1.

Proof. We claim that for all k < j ≤ `i, sij is divisible by q − 1. In fact, suppose
that there exists k < j ≤ `i such that si(k+1), . . . , si(j−1) are divisible by q− 1, but
sij is not divisible by q − 1. Since w − w(t) is divisible by q − 1, it follows that
(t′; ε′) = (si1, . . . , sij ; εi1, . . . , εij). Then w−w(t′) is not divisible by q−1. It follows
that (t′; ε′) belongs to I. Combining the definition of AT′w and the fact that sij is
not divisible by q− 1 implies that the tuples (t′, q; ε′, 1) and (t′, 2q− 1; ε′, 1) do not
belong to I+. Thus Lemma 5.2 applied to (t′; ε′) ∈ I yields a contradiction.

Now, for all j such that k < j < `i, we consider (t′; ε′) = (si1, . . . , sij ; εi1, . . . , εij)
which verifies the hypothesis of Lemma 5.3. By Lemma 5.3, we get εi(j+1) . . . εi`i =
1. It follows that εi(k+1) = · · · = εi`i = 1. �

5.5. Proof of Theorem 1.6 for q > 2 and w = 2q − 1.
In this section we keep the notation of §5.4 and finish the proof of Theorem 1.6

for q > 2 and w = 2q−1 by following the strategy given in §5.1. Further, by Lemma
4.2, we can suppose further that for all tuples (si; εi), εi has the same character,
i.e., there exists ε ∈ F×q such that for all i,

χ(εi) = ε.

5.5.1. Step 1.
By Lemma 5.2 and Lemma 5.5, we have the first shortlist as follows:

(1, 2q − 2; ε, 1), (1, q − 1, q − 1; ε, 1, 1),

(q − 1, q; ε, 1), (q − 1, 1, q − 1; ε1, ε2, 1),

with ε1, ε2 ∈ F×q such that ε1ε2 = ε.
Applying Lemma 5.2 with (t; ε) = (1; ε), there exists some a ∈ K such that

a(1,2q−2;ε,1)Γ2q−2ζA

(
1

2q − 2

)
+ a(1,q−1,q−1;ε,1,1)Γq−1Γq−1ζA

(
1 1

q − 1 q − 1

)
+ aΓ2q−2ζA

(
1

2q − 2

)
= 0.

By Corollary 5.1, we deduce that a(1,q−1,q−1;ε,1,1) = 0. So we reduce to the second
shortlist as follows:

(1, 2q − 2; ε, 1), (q − 1, q; ε, 1),

(q − 1, 1, q − 1; ε1, ε2, 1)

with ε1, ε2 ∈ F×q such that ε1ε2 = ε.
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5.5.2. Step 2.
We proceed as done in the discussion preceding Theorem 2.5 to examine the

linear independence. We construct Φ′ with respect to the following tuples in I:

∅, (1; ε), (q − 1; ε1), (q − 1, 1; ε1, ε2),

with ε1, ε2 ∈ F×q such that ε1ε2 = ε. Also γ, γ1, γ2 are (q − 1)-th roots of ε, ε1, ε2,
respectively as chosen in Lemma 5.2.

Recalling the constructions of Φ′ and v in Theorem 2.5, we get

Φ′∅,∅ = (t− θ)2q−1,

Φ′(1;ε),∅ = (γH1)(−1)(t− θ)2q−1,

Φ′(1;ε),(1;ε) = (t− θ)2q−2,

Φ′(q−1;ε1),∅ = (γ1Hq−1)(−1)(t− θ)2q−1,
Φ′(q−1;ε1),(q−1;ε1) = (t− θ)q,

Φ′(q−1,1;ε1,ε2),(q−1;ε1) = (γ2H1)(−1)(t− θ)q,

Φ′(q−1,1;ε1,ε2),(q−1,1;ε1,ε2) = (t− θ)q−1,
others = 0,

and

v∅ = 0,

v(1;ε) = a(1,2q−2;ε,1)(t)H
(−1)
2q−2(t− θ)2q−2,

v(q−1;ε) = a(q−1,q;ε,1)(t)H
(−1)
q (t− θ)q,

v(q−1;ε1) = 0, for ε1 6= ε,

v(q−1,1;ε1,ε2) = a(q−1,1,q−1;ε1,ε2,1)(t)H
(−1)
q−1 (t− θ)q−1.

Note that if 1 ≤ n ≤ q, then Hn = 1, and if q + 1 ≤ n ≤ q2, then

Hn(t) =

k∑
j=0

(
(n− 1)− jq + j

j

)
(tq − t)k−j(tq − θq)j

where k = bn−1q c (see [21]). Thus H2q−2 = 2θq − t− tq.
Hence, for some δi’s in K[t] for corresponding indices i, Eq. (2.10) induces

δ∅ =

(
δ
(−1)
∅ + δ

(−1)
(1;ε) (γH1)(−1) +

∑
ε1

δ
(−1)
(q−1;ε1)(γ1Hq−1)(−1)

)
(t− θ)2q−1(5.7)

δ(1;ε) =
(
δ
(−1)
(1;ε) + a(1,2q−2;ε,1)(t)H

(−1)
2q−2

)
(t− θ)2q−2(5.8)

δ(q−1;ε) =
(
δ
(−1)
(q−1;ε) + δ

(−1)
(q−1,1;ε,1)H

(−1)
1 + a(q−1,q;ε,1)(t)H

(−1)
q

)
(t− θ)q(5.9)

δ(q−1;ε1) =
(
δ
(−1)
(q−1;ε1) + δ

(−1)
(q−1,1;ε1,ε2)(γ2H1)(−1)

)
(t− θ)q, for ε1 6= ε

(5.10)

δ(q−1,1;ε1,ε2) =
(
δ
(−1)
(q−1,1;ε1,ε2) + a(q−1,1,q−1;ε1,ε2,1)(t)H

(−1)
q−1

)
(t− θ)q−1

(5.11)
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First, we consider (5.11). Lemma 4.3 shows that δ(q−1,1;ε1,ε2) ∈ Fq[t, θ] and

degθ δ(q−1,1;ε1,ε2) ≤ q. We can put δ(q−1,1;ε1,ε2) = (fθ+g)(t−θ)q−1 with f, g ∈ Fq[t],
and plug it into (5.11). Canceling terms and twisting once yield

fθq + g = (fθ + g)(t− θ)q−1 + a(q−1,1,q−1;ε1,ε2,1)(t).

Comparing the θq−1-terms yields g = −tf , i.e., δ(q−1,1;ε1,ε2) = f(θq − tq) and
a(q−1,1,q−1;ε1,ε2,1)(t) = f(tq − t). Since f here is parametrized by ε1, we write fε1 =
f ∈ Fq[t], to have

δ(q−1,1;ε1,ε2) = fε1(θq − tq), and a(q−1,1,q−1;ε1,ε2,1)(t)= fε1(tq − t).

Second, for (5.10), Lemma 4.3 shows that δ(q−1;ε1) ∈ Fq[t, θ] and degθ δ(q−1;ε1) ≤
q2

q−1 = (q + 1) + 1
q−1 , i.e., δ(q−1;ε1) = (f ′θ + g′)(t− θ)q with f ′, g′ ∈ Fq[t]. We plug

it into (5.10), cancel terms, twist and compare the θq+1-terms to have f ′ = 0, and
compare the θq-terms to have g′ = γ2fε1 . Further, comparing the θ0-terms yields

g′
(1)

= (g′ − γ2fε1)tq = 0, i.e., g′ = fε1 = 0, and

δ(q−1;ε1) = 0 for ε1 6= ε.(5.12)

Third, for (5.9), we proceed similarly to have

δ(q−1;ε) = fε(t− θ)q, and a(q−1,q;ε,1)(t)= fε, with fε ∈ Fq[t] given as above.

Next, for (5.8), recall H
(−1)
2q−2 = (t−θ)2−(tq−θ)2

tq−t = −t− tq + 2θ. Then, Lemma 4.3

shows that δ(1;ε) ∈ Fq[t, θ] with degθ δ(1;ε) ≤ 2q. Let δ(1,ε) = (cθ2 +dθ+e)(t−θ)2q−2
for some c, d, e ∈ Fq[t]; in a similar process, we have δ(1,ε) = c(t − θ)2q for some
c ∈ Fq[t]. This c is paramatrized by ε, so we write cε = c ∈ Fq[t] to have

δ(1;ε) = cε(t− θ)2q = cε(t
q − θq)2, and a(1,2q−2;ε,1)(t)= cε(t

q − t).

Finally for (5.7), Lemma 4.3 shows that δ∅ ∈ Fq[t, θ] with degθ δ∅ ≤ 2q + 1, i.e.,

δ∅ = (c′θ2 − d′θ + e′)(t − θ)2q−1 for some c′, d′, e′ ∈ Fq[t]. Proceeding similarly,
comparing the θ2q+1- and the θ2q−1- coefficients yields c′ = 0 and e′ = d′t, i.e.,
δ∅ = d′(t− θ)2q for some d′ ∈ Fq[t]. Thus, recalling (5.12),

d′(1)(t− θq) = d′(t− θ)2q + γcε(t− θ)2q + γ(t− θ)qfε.

The right hand side is divisible by t − θ, which forces d′(1) = 0, i.e., d′ = 0. By
canceling common factors of the remaining terms, we have

fε = −cε(t− θ)q.

Again the right hand side of this is divisible by t − θ, i.e., fε = cε = 0. Thus we
have a(1,2q−2;ε,1)(t) = cε(t

q − t) = 0, a(q−1,q;ε,1)(t) = fε = 0, a(q−1,1,q−1;ε1,ε2,1)(t) =
fε1(tq − t) = 0. This completes the proof.

5.6. Proof of Theorem 1.6 for q = 2 and w = 2q − 1.
In this section we keep the notation of §5.4 and finish the proof of Theorem 1.6

for q = 2 and w = 2q − 1 = 3.
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5.6.1. Step 1.
As q = 2 and w = 2q − 1 = 3, all characters are trivial and the set J′w consists

of two tuples

(1, 1, 1; 1, 1, 1), (1, 2; 1, 1).

We can skip Step 1.

5.6.2. Step 2.
We verify that these tuples satisfy the condition (LW) of Theorem 2.5. We con-

struct Φ′ with respect to the following tuples in I:

∅, (1; 1), (1, 1; 1, 1),

Then,

Φ′ =

 (t− θ)3 0 0

H
(−1)
1 (t− θ)3 (t− θ)2 0

0 H
(−1)
1 (t− θ)2 (t− θ)

 ,

and

v =
(

0, a(1,2;1,1)(t)H
(−1)
2 (t− θ)2, a(1,1,1;1,1,1)(t)H

(−1)
1 (t− θ)

)
.

Since q = 2, we recall that H1 = H2 = 1. For some δi’s in K[t] for corresponding
indices i, Eq. (2.10) induces

δ∅ =
(
δ
(−1)
∅ + δ

(−1)
(1;1)H

(−1)
1

)
(t− θ)3(5.13)

δ(1;1) =
(
δ
(−1)
(1;1) + δ

(−1)
(1,1;1,1)H

(−1)
1 + a(1,2;1,1)(t)H

(−1)
2

)
(t− θ)2(5.14)

δ(1,1;1,1) =
(
δ
(−1)
(1,1;1,1) + a(1,1,1;1,1,1)(t)H

(−1)
1

)
(t− θ).(5.15)

For (5.15), it follows from Lemma 4.3 that δ(1,1;1,1) ∈ Fq[t, θ] and degθ δ(1,1;1,1) ≤
2, hence we can write δ(1,1;1,1) = (bθ+ c)(t− θ), where b, c ∈ Fq[t]. From (5.15), we
have

bθ2 + c = (bθ + c)(t− θ) + a(1,1,1;1,1,1)(t).

Consider the coefficients of θ and θ0, we deduce that c = −bt and

δ(1,1;1,1) = b(θ − t)2

a(1,1,1;1,1,1)(t) = b(t2 − t).

For (5.14), it follows from Lemma 4.3 that δ(1;1) ∈ Fq[t, θ] and degθ δ(1;1) ≤ 4,

hence we can write δ(1;1) = F (t − θ)2, where F ∈ Fq[t, θ] and degθ F ≤ 2. From
(5.14), we have

F (1) = F (t− θ)2 + b(θ2 − t2) + a(1,2;1,1)(t).

It follows that F ∈ Fq[t, θ2], hence we can write F = fθ2 + g , where f, g ∈ Fq[t].
From the above equation, we have

fθ4 + g = (fθ2 + g)(t2 − θ2) + b(θ2 − t2) + a(1,2;1,1)(t).

Consider the coefficients of θ2 and θ0, we deduce that g = b−ft2 and a(1,2;1,1)(t) =

g + ft4, hence

δ(1;1) = f(θ − t)4 + b(θ − t)2
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a(1,2;1,1)(t) = f(t4 − t2) + b.

For (5.13), it follows from Lemma 4.3 that δ∅ ∈ Fq[t, θ] and degθ δ∅ ≤ 6, hence
we can write δ∅ = F (t − θ)3, where F ∈ Fq[t, θ] and degθ F ≤ 3. From (5.13), we
have

F (1) = F (t− θ)3 + f(θ4 − t4) + b(θ2 − t2).

It follows that F (t− θ)3 ∈ Fq[t, θ2], hence we can write F = (t− θ)(uθ2 + v), where
u, v ∈ Fq[t]. From the above identity, we have

(t− θ2)(uθ4 + v) = (t− θ)4(uθ2 + v) + f(θ4 − t4) + b(θ2 − t2).

Comparing the coefficients of θ4, θ2 and θ0 gives

tu = −v + f(5.16)

−v = t4u+ b(5.17)

vt = t4v − ft4 − bt2.(5.18)

From (5.16) and (5.18), we have vt = t4(v − f) − bt2 = −t5u − bt2, hence v =
−t4u− bt. Combining with (5.17), we deduce that b = bt, hence b = 0. This implies
that a(1,1,1;1,1,1)(t) = b(t2 − t) = 0. From the relation a(1,2;1,1)L(1, 2; 1, 1)(θ) +
a(1,1,1;1,1,1)L(1, 1, 1; 1, 1, 1)(θ) = 0, we deduce that a(1,2;1,1)L(1, 2; 1, 1)(θ) = 0,
hence a(1,2;1,1) = 0 since L(1, 2; 1, 1)(θ) 6= 0. This completes the proof.

5.7. Proof of Theorem 1.6 for w = 2q.
In this section we keep the notation of §5.4 and finish the proof of Theorem 1.6

for w = 2q by following the strategy given in §5.1. As we are interested in the case
w = 2q ≤ 3q − 3, we can suppose that q > 2.

5.7.1. Step 1.
By Lemma 5.2 and Lemma 5.5, the first shortlist of tuples (si; εi) appearing (5.4)

is

(2, q − 1, q − 1; ε, 1, 1), (2, 2q − 2; ε, 1), (q + 1, q − 1; ε, 1).

Note that any component of integer parts in the above list is not q as q > 2.
Applying Lemma 5.2 with (t; ε) = (w − (2q − 2); ε), we obtain that there exists

some a ∈ K such that

a(w−(2q−2),q−1,q−1;ε,1,1)Γq−1Γq−1ζA

(
1 1

q − 1 q − 1

)
+ a(w−(2q−2),2q−2;ε,1)Γ2q−2ζA

(
1

2q − 2

)
+ aΓ2q−2ζA

(
1

2q − 2

)
= 0,

By Corollary 5.1, we deduce that a(w−(2q−2),q−1,q−1;ε1,1,1) = 0. Thus we reduce to
the following second shortlist

(2, 2q − 2; ε, 1), (q + 1, q − 1; ε, 1).

We note that a(2,2q−2;ε,1) 6= 0 and a(q+1,q−1;ε,1) 6= 0.
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5.7.2. Step 2.
We proceed as done in the discussion preceding Theorem 2.5 to examine the

linear independence. We construct Φ′ with respect to the following tuples in I:

∅, (2; ε), (q + 1; ε).

Then,

Φ′ =

 (t− θ)2q 0 0
(γH2)(−1)(t− θ)w (t− θ)2q−2 0

(γHq+1)(−1)(t− θ)w 0 (t− θ)q−1

 ,

and

v =
(

0, a(2,2q−2;ε,1)(t)H
(−1)
2q−2(t− θ)2q−2, a(q+1,q−1;ε,1)(t)H

(−1)
q−1 (t− θ)q−1

)
.

Recall H2 = Hq−1 = 1, Hq+1 = 2tq − t− θq and H2q−2 = 2θq − t− tq.
For some δi’s in K[t] for corresponding indices i, Eq. (2.10) induces

δ∅ =
(
δ
(−1)
∅ + δ

(−1)
(2;ε) (γH2)(−1) + δ

(−1)
(q+1;ε)(γHq+1)(−1)

)
(t− θ)w(5.19)

δ(2;ε) =
(
δ
(−1)
(2;ε) + a(2,2q−2;ε,1)(t)H

(−1)
2q−2

)
(t− θ)2q−2(5.20)

δ(q+1;ε) =
(
δ
(−1)
(q+1;ε) + a(q+1,q−1;ε,1)(t)H

(−1)
q−1

)
(t− θ)q−1.(5.21)

First, for (5.21) and (5.20), we obtain

δ(q+1;ε) = fε(θ − t)q, and a(q+1,q−1;ε,1)(t) = fε (tq − t) ,(5.22)

δ(2;ε) = f ′ε(θ − t)2q, and a(2,2q−2;ε,1)(t) = f ′ε(t
q − t),

for some fε, f
′
ε ∈ Fq[t].

Next, for (5.19), we have δ∅ ∈ Fq[t] with degθ δ∅ ≤ 2q+3. Let δ∅ = F (t, θ)·(t−θ)2q
with F := F (t, θ) ∈ Fq[t, θ] with degθ F ≤ 3. Then by direct calculation,

F (1) = (t− θ)2qF + γf ′ε(θ − t)2qH2 + γfε(θ − t)qHq+1

= (θ − t)2qF + γf ′ε(θ − t)2q + γfε(θ − t)q(2tq − t− θq)

We claim that F 6= 0; if F = 0 then comparing the θq- and θ2q-coefficients yield
fε = f ′ε = 0, i.e., a(q+1,q−1;ε,1)(t) = a(2,2q−2;ε,1)(t) = 0, which is a contradiction.

Since (θ − t)q | F (1), we have F = (θ − tq)G(t, θ) for some G(t, θ) ∈ Fq[t]. Note
that degθ G ≤ 2. Then we have

G(1) = (θ − tq)(θ − t)qG+ γf ′ε(θ − t)q + γfε(2t
q − t− θq).

Let d = degθ G. Then dq = q+ 1 + d, and 0 ≤ d ≤ 2, which leads to that d = 2 and
q = 3. Let G(t, θ) = aθ2 + bθ + c with a, b, c ∈ Fq[t]. Then recall that q = 3, we get

a(1)θ6 + b(1)θ3 + c(1) = (θ − t3)(θ3 − t3)(aθ2 + bθ + c)

+ γf ′ε(θ
3 − t3) + γfε(2t

3 − t− θ3).

Comparing the θ6-, θ5-, θ4-coefficients yields a(1) = a, b = at3, c = bt3. Thus
a ∈ F3[t], b = at3 and c = at6. Replacing these in the previous equation gives

aθ6 + at3θ3 + at6 = a(θ3 − t9)(θ3 − t3) + γf ′ε(θ
3 − t3) + γfε(2t

3 − t− θ3).

Comparing the θ3-, θ0-coefficients yields

at3 = −a(t3 + t9) + γf ′ε − γfε
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at6 = at12 − γf ′εt3 + γfε(2t
3 − t).

Multiplying the first equation by t3 and adding it to the second equation gives
γfε(t

3 − t) = 0. This leads to fε = 0. By (5.22), a(q+1,q−1;ε,1)(t) = 0. Thus
a(q+1,q−1;ε,1) = 0, which is a contradiction, so this completes the proof.

5.8. Proof of Theorem 1.6 for 2q + 1 ≤ w ≤ 3q − 3.
In this section we keep the notation of §5.4 and finish the proof of Theorem 1.6

for 2q+1 ≤ w ≤ 3q−3 by following the strategy given in §5.1. As we are interested
in the case 2q + 1 ≤ w ≤ 3q − 3, we can assume that q > 3.

5.8.1. Step 1.
By Lemma 5.2 and Lemma 5.5, the first shortlist of tuples (si; εi) appearing (5.4)

is

(w − (2q − 2), q − 1, q − 1; ε, 1, 1), (w − (2q − 2), 2q − 2; ε, 1),

(w − (q − 1), q − 1; ε, 1), (w; ε),

Note that any component of integer parts in the above list is not q as 2q+ 1 ≤ w ≤
3q − 3.

Applying Lemma 5.2 with (t; ε) = (w − (2q − 2); ε), we obtain that there exists
some a ∈ K such that

a(w−(2q−2),q−1,q−1;ε,1,1)Γq−1Γq−1ζA

(
1 1

q − 1 q − 1

)
+ a(w−(2q−2),2q−2;ε,1)Γ2q−2ζA

(
1

2q − 2

)
+ aΓ2q−2ζA

(
1

2q − 2

)
= 0,

By Corollary 5.1, we deduce that a(w−(2q−2),q−1,q−1;ε1,1,1) = 0. Thus we reduce to
the following second shortlist

(w − (2q − 2), 2q − 2; ε, 1), (w − (q − 1), q − 1; ε, 1), (w; ε).

5.8.2. Step 2.
We proceed as done in the discussion preceding Theorem 2.5 to examine the

linear independence. We construct Φ′ with respect to the following tuples in I:

∅, (w − (2q − 2); ε), (w − (q − 1); ε).

Then, we get

Φ′ =

 (t− θ)w 0 0
(γHw−(2q−2))

(−1)(t− θ)w (t− θ)2q−2 0
(γHw−(q−1))

(−1)(t− θ)w 0 (t− θ)q−1

 ,

and

v =
(
a(w;ε)(t)(γHw)(−1)(t− θ)w, a(w−(2q−2),2q−2;ε,1)(t)H

(−1)
2q−2(t− θ)2q−2,

a(w−(q−1),q−1;ε,1)(t)H
(−1)
q−1 (t− θ)q−1

)
.

Recall Hq−1 = 1, H2q−2 = 2θq − t − tq, and for 1 ≤ k ≤ q (noting that q ≥ 3),
Hq+k = (tq − t) + k(tq − θq), and

H2q+k = (tq − t)2 + k(tq − t)(tq − θq) +
k(k + 1)

2
(tq − θq)2.
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For some δi’s in K[t] for corresponding indices i, Eq. (2.10) induces:

δ∅ =
(
δ
(−1)
∅ + δ

(−1)
(w−(2q−2);ε)(γHw−(2q−2))

(−1)(5.23)

+δ
(−1)
(w−(q−1);ε)(γHw−(q−1))

(−1) + a(w;ε)(t)(γHw)(−1)
)

(t− θ)w

δ(w−(2q−2);ε) =
(
δ
(−1)
(w−(2q−2);ε) + a(w−(2q−2),2q−2;ε,1)(t)H

(−1)
2q−2

)
(t− θ)2q−2

(5.24)

δ(w−(q−1);ε) =
(
δ
(−1)
(w−(q−1);ε) + a(w−(q−1),q−1;ε,1)(t)H

(−1)
q−1

)
(t− θ)q−1

(5.25)

First, we consider (5.25). Lemma 4.3 shows that δ(w−(q−1);ε) ∈ Fq[t, θ] with

degθ δ(w−(q−1);ε) ≤ q. Let δ(w−(q−1);ε) = (aθ + b)(t − θ)q−1 for some a, b ∈ Fq[t],
cancel terms and twist once to have

(aθq + b) = (aθ + b)(t− θ)q−1 + a(w−(q−1),q−1;ε,1)(t).

Comparing the θq−1-coefficients yields at + b = 0, so rewriting a as fε ∈ Fq[t], we
have

δ(w−(q−1);ε) = fε(θ − t)q, and a(w−(q−1),q−1;ε,1)(t)= fε (tq − t) .

Second, for (5.24), by Lemma 4.3, δ(w−(2q−2);ε) ∈ Fq[t] and degθ δ(w−(2q−2);ε) ≤
2q. Let δ(w−(2q−2);ε) = (a′θ2 + b′θ + c′)(t− θ)2q−2 then it is reduced to

δ(w−(2q−2);ε) = f ′ε(θ − t)2q, and a(w−(2q−2),2q−2;ε,1)(t)= f ′ε(t
q − t)

for some a′ = f ′w;ε ∈ Fq[t].

Finally, for (5.23), we have δ∅ ∈ Fq[t] with degθ δ∅ ≤ w + 3 by Lemma 4.3. Let

δ∅ = (t− θ)wF for some F ∈ Fq[t, θ] with degθ F ≤ 3. Then by direct calculation,

F (1) = (t− θ)wF + γf ′ε(θ − t)2qHw−(2q−2) + γfε(θ − t)qHw−(q−1) + γa(w;ε)(t)Hw

= (t− θ)wF + γf ′ε(θ − t)2q + γfε(θ − t)qHq+(w−2q+1) + γa(w;ε)(t)H2q+(w−2q)

= (t− θ)wF + γf ′ε(θ
q − tq)2

+ γfε(θ
q − tq)(tq − t+ (w + 1)(tq − θq))

+ γa(w;ε)(t)

(
(tq − t)2 + w(tq − t)(tq − θq) +

(w − 2q)(w − 2q + 1)

2
(tq − θq)2

)
It follows that that (t − θ)wF ∈ Fq[t, θq]. We claim that F 6= 0; otherwise, by

comparing the coefficients of powers of the (t−θ)-term, F = 0 implies a(w;ε)(t) = 0,
and then fε = f ′ε = 0, i.e., a(w−(q−1),q−1;ε,1)(t) = a(w−(2q−2),2q−2;ε,1)(t) = 0, which
is a contradiction, so F 6= 0. Thus, the only possibility arises for w = 3q − 3,
F = γ(t− θ)3g for some g ∈ Fq[t]. Since w = 3q − 3, we have

F (1) = F (t− θ)3q−3 + f ′ε(θ
q − tq)2γ

+ fε(θ
q − tq)(tq − t− 2(tq − θq))γ

+ a(3q−3;ε)
(
(tq − t)2 − 3(tq − t)(tq − θq) + 3(tq − θq)2

)
γ,

ε(t− θq)3g(1) =(tq − θq)3g + f ′ε(θ
q − tq)2 + fε(θ

q − tq)(2θq − t− tq)

+ a(3q−3;ε)(t)
(tq − θq)3 − (t− θq)3

tq − t
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and by comparing the coefficients of powers of the (tq−θq)-term, we have a(3q−3;ε)(t) =
−(tq − t)g, and fε = f ′ε = 0. Thus, a(2q−2,q−1;ε,1)(t) = a(q−1,2q−2;ε,1)(t) = 0, so
a(3q−3;ε)(t) = 0, which is a contradiction.

5.9. Proof of Theorem 1.6 for q > 2 and w = 3q − 2.
In this section we keep the notation of §5.4 and finish the proof of Theorem 1.6

for w = 3q − 2 and q > 2 by following the strategy given in §5.1.

5.9.1. Step 1.
By Lemma 5.2, and Lemma 5.5, the first shortlist of tuples (si; εi) appearing

(5.4) is

(2q − 2, q; ε, 1), (1, q − 1, q − 1, q − 1; ε, 1, 1, 1),

(1, q − 1, 2q − 2; ε, 1, 1), (1, 2q − 2, q − 1; ε, 1, 1),

(1, 3q − 3; ε, 1), (q − 1, 2q − 1; ε, 1),

(q − 1, 1, q − 1, q − 1; ε3, ε
′
3, 1, 1), (q − 1, 1, 2q − 2; ε1, ε

′
1, 1),

(q − 1, q, q − 1; ε, 1, 1), (2q − 2, 1, q − 1; ε2, ε
′
2, 1),

with ε1ε
′
1 = ε2ε

′
2 = ε3ε

′
3 = ε.

Applying Lemma 5.2 with (t; ε) = (1, q − 1; ε, 1), there exists a ∈ K such that

a(1,q−1,q−1,q−1;ε,1,1,1)Γ1Γ1ζA

(
1 1

q − 1 q − 1

)
+ a(1,q−1,2q−2;ε,1,1)Γ1ζA

(
1

2q − 2

)
+ aΓ2q−2ζA

(
1

2q − 2

)
= 0.

By Corollary 5.1, we deduce that a(1,q−1,q−1,q−1;ε,1,1,1) = 0.
Similarly applying Lemma 5.2 with (t; ε) = (q − 1, 1; ε3, ε

′
3) where ε3ε

′
3 = ε, we

deduce that a(q−1,1,q−1,q−1;ε3,ε′3,1,1) = 0. Since the choice of ε3 is free in F×q , all
candidates of the form can be removed from the list.

With (t; ε) = (1; ε), Lemma 5.2 asserts that there exists b ∈ K such that

a(1,q−1,2q−2;ε,1,1)Γq−1Γ2q−2ζA

(
1 1

q − 1 2q − 2

)
+ a(1,2q−2,q−1;ε,1,1)Γ2q−2Γq−1ζA

(
1 1

2q − 2 q − 1

)
+ a(1,3q−3;ε,1)Γ3q−3ζA

(
1

3q − 3

)
+ bΓ3q−3ζA

(
1

3q − 3

)
= 0,

Since the AMZV’s ζA

(
1 1

q − 1 2q − 2

)
, ζA

(
1 1

2q − 2 q − 1

)
, ζA

(
1

3q − 3

)
belong

to AT′3q−3, the induction hypothesis implies that a(1,q−1,2q−2;ε,1,1) = a(1,2q−2,q−1;ε,1,1) =
0.

Next, we consider (t; ε) = (q − 1; ε). By (5.5), f(q−1;ε)(θ) ∈ K, so

a(q−1,2q−1;ε,1)Γ2q−1ζA

(
1

2q − 1

)
+ a(q−1,1,2q−2;ε,1,1)Γ1Γ2q−2ζA

(
1 1
1 2q − 2

)
+ a(q−1,q,q−1;ε,1,1)ΓqΓq−1ζA

(
1 1
q q − 1

)
= 0.
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Since ζA

(
1

2q − 1

)
and ζA

(
1 1
1 2q − 2

)
are colinear, but ζA

(
1

2q − 1

)
and ζA

(
1 1
q q − 1

)
are not colinear (see for example [21]), we have a(q−1,q,q−1;ε,1,1) = 0.

Thus we reduce to the following second shortlist:

(2q − 2, q; ε, 1), (1, 3q − 3; ε, 1), (q − 1, 2q − 1; ε, 1),

(q − 1, 1, 2q − 2; ε1, εε
−1
1 , 1), (2q − 2, 1, q − 1; ε2, εε

−1
2 , 1),

with ε1, ε2 ∈ F×q .

5.9.2. Step 2.
From here, we proceed as done in the discussion preceding Theorem 2.5 to exam-

ine the linear independence. We construct Φ′ with respect to the following tuples
in I. Note that ε ∈ F×q is given throughout the remaining part of the proof, and

ε1, ε2 ∈ F×q are free.

∅, (1; ε), (q − 1; ε1), (q − 1, 1; ε1, εε
−1
1 ),

(2q − 2; ε2), (2q − 2, 1; ε2, εε
−1
2 ).

Recalling the construction of Φ′ and v, we get

Φ′∅,∅ = (t− θ)3q−2,

Φ′(1;ε),∅ = (γH1)(−1)(t− θ)3q−2,

Φ′(1;ε),(1;ε) = (t− θ)3q−3,

Φ′(q−1;ε1),∅ = (γ1Hq−1)(−1)(t− θ)3q−2,

Φ′(q−1;ε1),(q−1;ε1) = (t− θ)2q−1,

Φ′
(q−1,1;ε1,εε−1

1 ),(q−1;ε1)
= (γγ−11 H1)(−1)(t− θ)2q−1,

Φ′
(q−1,1;ε1,εε−1

1 ),(q−1,1;ε1,εε−1
1 )

= (t− θ)2q−2,

Φ′(2q−2;ε2),∅ = (γ2H2q−2)(−1)(t− θ)3q−2,
Φ′(2q−2;ε2),(2q−2;ε2) = (t− θ)q,

Φ′
(2q−2,1;ε2,εε−1

2 ),(2q−2;ε2)
= (γγ−12 H1)(−1)(t− θ)q,

Φ′
(2q−2,1;ε2,εε−1

2 ),(2q−2,1;ε2,εε−1
2 )

= (t− θ)q−1,

others = 0,

and

v(1;ε) = a(1,3q−3;ε,1)(t)H
(−1)
3q−3(t− θ)3q−3

v(q−1;ε) = a(q−1,2q−1;ε,1)(t)H
(−1)
2q−1(t− θ)2q−1

v(q−1,1;ε1,εε−1
1 ) = a(q−1,1,2q−2;ε1,εε−1

1 ,1)(t)H
(−1)
2q−2(t− θ)2q−2

v(2q−2;ε) = a(2q−2,q;ε,1)(t)H
(−1)
q (t− θ)q

v(2q−2,1;ε2,εε−1
2 ) = a(2q−2,1,q−1;ε2,εε−1

2 ,1)(t)H
(−1)
q−1 (t− θ)q−1,

others = 0,
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where γ and γj are (q − 1)-th roots of unity of ε and εj , for j = 1, 2, respectively.
Recall again that H1 = Hq−1 = Hq = 1, H2q−1 = θq − t, H2q−2 = 2θq − t− tq, and

H3q−3 =

{
(t− tq)2 + 3(tq − θq)(t− θq), if q > 3,

(tq − t), if q = 3.

For some δi’s in K[t] for corresponding indices i, Eq. (2.10) induces: for ε1, ε2 ∈
F×q ,

δ∅ =

δ(−1)∅ +
∑
ε2∈F×q

(γ2H2q−2)(−1)δ
(−1)
(2q−2;ε2) +

∑
ε1∈F×q

(γ1Hq−1)(−1)δ
(−1)
(q−1;ε1)(5.26)

+(γH1)(−1)δ
(−1)
(1;ε)

)
(t− θ)3q−2

δ(1;ε) =
(
δ
(−1)
(1;ε) + a(1,3q−3;ε,1)(t)H

(−1)
3q−3

)
(t− θ)3q−3

(5.27)

δ(2q−2;ε) =
(
δ
(−1)
(2q−2;ε) + δ

(−1)
(2q−2,1;ε,1)H

(−1)
1 + a(2q−2,q;ε,1)(t)H

(−1)
q

)
(t− θ)q

(5.28)

δ(2q−2;ε2) =
(
δ
(−1)
(2q−2;ε2) + δ

(−1)
(2q−2,1;ε2,εε−1

2 )
(γγ−12 H1)(−1)

)
(t− θ)q for ε2 6= ε

(5.29)

δ(q−1;ε) =
(
δ
(−1)
(q−1;ε) + δ

(−1)
(q−1,1;ε,1)H

(−1)
1 + a(q−1,2q−1;ε,1)(t)H

(−1)
2q−1

)
(t− θ)2q−1

(5.30)

δ(q−1;ε1) =
(
δ
(−1)
(q−1;ε1) + δ

(−1)
(q−1,1;ε1,εε−1

1 )
(γγ−11 H1)(−1)

)
(t− θ)2q−1 for ε1 6= ε

(5.31)

δ(q−1,1;ε1,εε−1
1 ) =

(
δ
(−1)
(q−1,1;ε1,εε−1

1 )
+ a(q−1,1,2q−2;ε1,εε−1

1 ,1)(t)H
(−1)
2q−2

)
(t− θ)2q−2

(5.32)

δ(2q−2,1;ε2,εε−1
2 ) =

(
δ
(−1)
(2q−2,1;ε2,εε−1

2 )
+ a(2q−2,1,q−1;ε2,εε−1

2 ,1)(t)H
(−1)
q−1

)
(t− θ)q−1

(5.33)

First, we consider (5.33). Lemma 4.3 shows that δ(2q−2,1;ε2,εε−1
2 ) ∈ Fq[t, θ] and

degθ δ(2q−2,1;ε2,εε−1
2 ) ≤ q. We let δ(2q−2,1;ε2,εε−1

2 ) = (fε2θ + gε2)(t − θ)q−1 with

fε2 , gε2 ∈ Fq[t]. Then we plug it into (5.33) and compare the coefficients of powers
of θ-terms, to obtain

δ(2q−2,1;ε2,εε−1
2 ) = fε2(θ − t)q,

a(2q−2,1,q−1;ε2,εε−1
2 ,1)(t) = fε2(tq − t).

Second, for (5.32), δ(q−1,1;ε1,εε−1
1 ) ∈ Fq[t, θ] and degθ δ(q−1,1;ε1,εε−1

1 ) ≤ 2q. We let

δ(q−1,1;ε1,εε−1
1 ) = (f ′ε1θ

2 + g′ε1θ + h′ε1)(t − θ)2q−2 with f ′ε1 , g
′
ε1 , h

′
ε1 ∈ Fq[t]. Then, we

plug it into (5.32) and compare the coefficients of powers of θ-terms, to obtain

δ(q−1,1;ε1,εε−1
1 ) = f ′ε1(θ − t)2q,

a(q−1,1,2q−2;ε1,εε−1
1 ,1)(t) = f ′ε1(tq − t).
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Third, for (5.31), Lemma 4.3 shows that δ(q−1;ε1) ∈ Fq[t, θ] with degθ δ(q−1;ε1) ≤
2q + 1. We let δ(q−1;ε1) = (aθ2 + bθ + c)(t− θ)2q−1 for a, b, c ∈ Fq[t] to obtain

a(1)θ2q + b(1)θq + c(1) =
(
aθ2 + bθ + c

)
(t− θ)2q−1 + γ′1f

′
ε1(θq − tq)2.

Here γ′1 = γγ−11 . Comparing the coefficients of the θ2q+1-, θ2q- and θ2q−1-terms
yields a = 0, b = γ′1f

′
ε1 and c = −bt = −γ′1f ′ε1t.

Thus for ε1 6= ε,

δ(q−1;ε1) = (γ′1f
′
ε1θ − γ

′
1f
′
ε1t)(t− θ)

2q−1 = γ′1f
′
ε1(θ − t)(t− θ)2q−1 = −γ′1f ′ε1(θ − t)2q.

Now we replace a = 0, b = γ′1f
′
ε1 , c = −γ′1f ′ε1t and δ(q−1;ε1) = −γ′1f ′ε1(θ − t)2q in

(5.31). Then we have

γ
′(1)
1 f ′ε1(θq − t) = −γ′1f ′ε1(θ − t)2q + γ′1f

′
ε1(θ − t)2q = 0,

hence f ′ε1 = 0 for all ε1 6= ε, which shows that for all ε1 6= ε,

δ(q−1;ε1) = 0.

Moreover, for all ε1 6= ε, we have

a(q−1,1,2q−2;ε1,εε−1
1 ,1)(t) = f ′ε1(tq − t) = 0.

Fourth, for (5.30), Lemma 4.3 shows that δ(q−1;ε) ∈ Fq[t, θ] with degθ δ(q−1;ε) ≤
2q + 1. We let δ(q−1;ε) = (aθ2 + bθ + c)(t− θ)2q−1 for a, b, c ∈ Fq[t] to obtain

aθ2q + bθq + c =
(
aθ2 + bθ + c

)
(t− θ)2q−1

+ f ′ε(θ
q − tq)2 + a(q−1,2q−1;ε,1)(θ

q − t).

Comparing the coefficients of the θ2q+1-, θ2q- and θ2q−1-terms yields a = 0, b = f ′ε,
c = −tf ′ε. Thus

δ(q−1;ε) = −f ′ε(θ − t)2q,(5.34)

a(q−1,2q−1;ε,1)(t) = f ′ε.

Fifth, for (5.29), Lemma 4.3 shows that when ε2 6= ε, δ(2q−2;ε2) ∈ Fq[t, θ] with

degθ δ(2q−2;ε2) ≤ q+1. Letting δ(2q−2;ε2) = (aθ+b)(t−θ)q for a, b ∈ Fq[t], cancelling,

twisting once and comparing the θq- and θq+1-terms yields a = 0, b = γγ−12 fε2 , i.e.,
δ(2q−2;ε2) = −γγ−12 fε2(θ− t)q, and plugging it into (5.29) yields fε2 = 0, for ε2 6= ε.
Note that this implies that for ε2 6= ε,

(5.35) δ(2q−2;ε2) = 0, a(2q−2,1,q−1;ε2,εε−1
2 ,1)(t) = 0.

Next, for (5.28), Lemma 4.3 shows that δ(2q−2;ε) ∈ Fq[t, θ] with degθ δ(2q−2;ε) ≤
q + 1. Letting δ(2q−2;ε) = (aθ + b)(t − θ)q for a, b ∈ Fq[t], cancelling, twisting once

and comparing the θq-and θq+1-terms yield a = 0, b = fε, i.e.,

(5.36) δ(2q−2;ε) = −fε(θ − t)q, a(2q−2,q;ε,1)(t) = fε.

For (5.27), Lemma 4.3 shows that δ(1;ε) ∈ Fq[t, θ] with degθ δ(1;ε) ≤ 3q. Letting

δ(1;ε) = (aθ3 + bθ2 + cθ2 + d)(t − θ)3q−3 with some a, b, c, d ∈ Fq[t], cancelling,

twisting once and comparing the θ3q−2- and θ3q−1-terms yield b = −3at, c = 3at2.
When q > 3, comparing the θ3q−3-terms yields d = −at3, i.e., δ(1;ε) = a(θ − t)3q;
when q = 3, comparing the θ3q−3-terms yield d = −at3, i.e., δ(1;ε) = a(θ − t)3q. So

in any case δ(1;ε) = f ′′(θ − t)3q for f ′′ = a ∈ Fq[t]. Again, when q > 3, one can
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put this into (5.27), cancel terms, twist once and compare the θ0-terms to have
a(1,3q−3;ε,1)(t) = f ′′(tq − t); when q = 3, one have a(1,3q−3;ε,1)(t) = f ′′(tq − t)2. In
summary,

(5.37) δ(1;ε) = f ′′(θ − t)3q, and a(1,3q−3;ε,1) =

{
f ′′(tq − t), if q > 3,

f ′′(tq − t)2, if q = 3.

Finally, with (5.34), (5.35), (5.36) and (5.37), (5.26) is written as

δ∅ =
(
δ
(−1)
∅ + (γ(2θq − t− tq)δ(2q−2;ε))(−1) + (γδ(q−1;ε))

(−1) + (γδ(1;ε))
(−1)

)
(t− θ)3q−2.

Lemma 4.3 shows that δ∅ ∈ Fq[t, θ] with degθ δ∅ ≤ 3q+1. Let δ∅ = γ(t−θ)3q−2G
for some G ∈ Fq[t, θ] with degθ G ≤ 3, then canceling terms and twisting once yields

εG(1) =(t− θ)3q−2G− (θ − t)q (fε(2θ
q − t− tq) + f ′ε(θ − t)q) + f ′′(θ − t)3q,

so (t− θ)3q−2G ∈ Fq[t, θq], i.e., G = (t− θ)2g with g ∈ Fq[t]. Then

(t− θ)3q(g − f ′′)− ε(t− θq)2g(1)

= (θ − t)q (fε(2θ
q − t− tq) + f ′ε(θ − t)q)

= (θ − t)q(θq − t)fε + (θ − t)2qfε + (θ − t)2qf ′ε.

Considering the factors of powers of the (t−θq)- and (t−θ)-terms, we have g(1) = 0,
i.e., g = 0, fε = 0, f ′ε = 0, and f ′′ = 0, so a(2q−2,q;ε,1)(t) = a(1,3q−3;ε,1)(t) =
a(2q−2,1,q−1;ε2,εε−1

2 ,1)(t) = a(q−1,2q−1;ε,1)(t) = a(q−1,1,2q−2;ε1,εε−1
1 ,1)(t) = 0 for all

ε1, ε2 ∈ F×q , which is a contradiction. This completes the proof.

5.10. Proof of Theorem 1.6 for q = 2 and w = 3q − 2.
In this section we keep the notation of §5.4 and finish the proof of Theorem 1.6

for q = 2 and w = 3q − 2 = 4.
In what follows, we assume q = 2 and w = 4. Then all characters are trivial and

therefore, all AMZV’s are MZV’s. The set J′w consists of three tuples

(2, 1, 1; 1, 1, 1), (1, 2, 1; 1, 1, 1), (1, 3; 1, 1).

5.10.1. Step 1.
We will keep all three tuples so that we can skip Step 1 of the strategy given in

§5.1.

5.10.2. Step 2.
We claim that the previous tuples verify the condition (LW) of Theorem 2.5. In

fact, it suffices to see that ζA(1, 2; 1, 1) and ζA(2, 1; 1, 1) are K-linearly independent.
For the weight w′ = 3 (and recall q = 2), the set AT′3 consists of ζA(1, 1, 1; 1, 1, 1)
and ζA(1, 2; 1, 1) (see §5.5.1). Then in loc. cit. we have proved that ζA(1, 1, 1; 1, 1, 1)
and ζA(1, 2; 1, 1) are K-linearly independent. By [30, Theorem 6.1 (1)], we set D1 :=
θ2 − θ and get the following relation

D1ζA(1, 1, 1; 1, 1, 1) +D1ζA(2, 1; 1, 1) + ζA(1, 2; 1, 1) = 0.

It follows that ζA(1, 2; 1, 1) and ζA(2, 1; 1, 1) are K-linearly independent as claimed.
Thus we can proceed as done in the discussion preceding Theorem 2.5 to examine

the linear independence. We construct Φ′ with respect to the following tuples in I:

∅, (1; 1), (2; 1), (1, 2; 1, 1), (2, 1; 1, 1).
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Then,

Φ′ =


(t− θ)4 0 0 0 0

H
(−1)
1 (t− θ)4 (t− θ)3 0 0 0

H
(−1)
2 (t− θ)4 0 (t− θ)2 0 0

0 H
(−1)
2 (t− θ)3 0 t− θ 0

0 0 H
(−1)
1 (t− θ)2 0 t− θ

 ,

and

v =
(

0, a(1,3;1,1)(t)H
(−1)
3 (t− θ)3, 0, a(1,2,1;1,1,1)(t)H

(−1)
1 (t− θ), a(2,1,1;1,1,1)(t)H

(−1)
1 (t− θ)

)
.

Here we recall that H1 = H2 = 1, H3 = θ2 − t.
For some δi’s in K[t] for corresponding indices i, Eq. (2.10) induces

δ∅ =
(
δ
(−1)
∅ + δ

(−1)
(1;1)H

(−1)
1 + δ

(−1)
(2;1)H

(−1)
2

)
(t− θ)4(5.38)

δ(1;1) =
(
δ
(−1)
(1;1) + δ

(−1)
(1,2;1,1)H

(−1)
2 + a(1,3;1,1)(t)H

(−1)
3

)
(t− θ)3(5.39)

δ(2;1) =
(
δ
(−1)
(2;1) + δ

(−1)
(2,1;1,1)H

(−1)
1

)
(t− θ)2(5.40)

δ(1,2;1,1) =
(
δ
(−1)
(1,2;1,1) + a(1,2,1;1,1,1)(t)H

(−1)
1

)
(t− θ)(5.41)

δ(2,1;1,1) =
(
δ
(−1)
(2,1;1,1) + a(2,1,1;1,1,1)(t)H

(−1)
1

)
(t− θ).(5.42)

First, for (5.42) and (5.41), we obtain

δ(2,1;1,1) = f(θ − t)2, and a(2,1,1;1,1,1)(t) = f(t2 − t),
δ(1,2;1,1) = g(θ − t)2, and a(1,2,1;1,1,1)(t) = g(t2 − t).

for some f, g ∈ F2[t].

Second, for (5.40), by Lemma 4.3 we have δ(2;1) ∈ F2[t] with degθ δ(2;1) ≤ 4. Let

δ(2;1) = F (t, θ) ·(t−θ)2 with F := F (t, θ) ∈ F2[t, θ] with degθ F ≤ 2. Then canceling
terms and twisting once yields

F (1) = (t− θ)2F + f(θ − t)2.

It follows that F ∈ F2[t, θ2]. We can express F = aθ2 + b for some a, b ∈ F2[t].
Replacing this expression into the previous equation yields b = at4 and ft2 =
b(t2 − 1).

Thus

f = at2(t2 − 1),

δ(2;1) = a(t− θ)2(t2 − θ)2.

Next, for (5.39), by Lemma 4.3 we have δ(1;1) ∈ F2[t] with degθ δ(1;1) ≤ 6. Let

δ(1;1) = G(t, θ)·(t−θ)3 with G := G(t, θ) ∈ F2[t, θ] with degθ G ≤ 3. Then canceling
terms and twisting once yields

G(1) = (t− θ)3G+ g(θ − t)2 + a(1,3;1,1)(t)(θ
2 − t).
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It follows that (t− θ)3G ∈ F2[t, θ2]. We can express G = (t− θ)(cθ2 + d) for some
c, d ∈ F2[t]. We replace this expression into the previous equation and compare the
coefficients to conclude that g = 0, d = ct and a(1,3;1,1)(t) = c(t4− t). In particular,

δ(1,2;1,1) = a(1,2,1;1,1,1)(t) = 0,

δ(1;1) = c(t− θ)4(θ2 − t),
a(1,3;1,1)(t) = c(t4 − t).

Finally, for (5.38), by Lemma 4.3 we have δ∅ ∈ F2[t] with degθ δ∅ ≤ 8. Let
δ∅ = H(t, θ) · (t− θ)4 with H := H(t, θ) ∈ F2[t, θ] with degθH ≤ 4. Then

H(1) = (t− θ)4H + c(t− θ)4(θ2 − t) + a(t− θ)2(t2 − θ)2.

Then H ∈ F2[t, θ2] and H(1) is divisible by (t − θ)2. Thus we can express H =
a′(θ4−t8)+b′(θ2−t4) with a′, b′ ∈ F2[t]. Replacing this expression into the previous
equation gets

a′(t−θ)8+b′(t−θ)4 = (t−θ)4(a′(θ4−t8)+b′(θ2−t4))+c(t−θ)4(θ2−t)+a(t−θ)2(t2−θ)2.
Comparing the powers of t−θ yields a = 0. It implies f = 0 and a(2,1,1;1,1,1)(t) = 0.

We have shown that a(1,2,1;1,1,1) = 0 and a(2,1,1;1,1,1) = 0. It follows that
a(1,3;1,1) = 0 and we get a contradiction.
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