
HAL Id: hal-04240838
https://hal.science/hal-04240838v1

Submitted on 13 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Dynamic-R: a “challenge-free” method for rating
problem statements

Oussama Raboun, Eric Chojnacki, Alexis Tsoukiàs

To cite this version:
Oussama Raboun, Eric Chojnacki, Alexis Tsoukiàs. Dynamic-R: a “challenge-free” method for rating
problem statements. Annals of Operations Research, 2023, 325 (2), pp.845-873. �10.1007/s10479-023-
05276-8�. �hal-04240838�

https://hal.science/hal-04240838v1
https://hal.archives-ouvertes.fr


Springer Nature 2021 LATEX template

Dynamic-R: a “Challenge-free” method for
rating problem statements

Oussama Raboun1, Eric Chojnacki2 and Alexis Tsoukiàs1*

1*LAMSADE, CNRS, PSL, Université Paris Dauphine, France.
2IRSN, Cadarache, France.

*Corresponding author(s). E-mail(s):
tsoukias@lamsade.dauphine.fr;

Contributing authors: o.raboun@gmail.com; eric.chojnacki@irsn.fr;

Abstract
In this paper, we are interested in decision aiding problems, aiming
at rating a set of objects with respect to several dimensions, called
criteria. A rating problem statement consists on partitioning a set of
objects into predefined ordered equivalence classes, called categories,
identified by ratings. Rating problems are widely studied in the liter-
ature, either based on the utility theory, rough sets or the majority
principle. The existing methods based on the majority principle present
some disadvantages potentially leading to an unconvincing rating be-
cause challenged by contradictory pairwise comparisons. In this work,
we present a new method providing a “convincing” (challenge-free) rat-
ing over a set of studied objects, based on the aggregation of positive
and negative reasons, respectively supporting and opposing a rating.
The method exploits comparisons among the objects and the profiles
characterizing the categories as well as comparisons among the objects.

Keywords: Multiple criteria decision analysis, Rating problem statements,
Decision support systems, Algorithmic Decision Theory

1 Introduction
In this paper, we propose a new MCDA (Multiple Criteria Decision Analysis)
method aiming at providing a “challenge-free” or “convincing” rating to a set
of objects, here after named A, such as geographic units, financial products,
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clients in an insurance company, to name but a few, evaluated by ordinal infor-
mation under at least one dimension. The work has been developed within the
framework of a larger research project aiming at informing the local authori-
ties about consequences (and decisions to be taken) in case of a major nuclear
accident near the French Mediterranean coast (see Raboun et al (2020)).

A rating problem statement (see Colorni and Tsoukiàs, 2013) consists in
partitioning A into predefined and ordered equivalence classes, called cate-
gories, identified by ratings. Since we are dealing with objects evaluated under
several dimensions, called criteria, we will consider rating problem statements
in the context of MCDA. By “convincing”, we refer to the following claims:

Claim 1. No object is assigned to a category worse than the categories to
which are assigned the objects to which this object is better if directly compared.

Claim 2. There are no unrated objects (complete rating).

Several MCDA methods have been developed to deal with rating problems.
These methods can be partitioned into three categories:

1. methods based on the majority principle, called outranking methods, see
(see Almeida-Dias et al, 2010, 2012; Fernandez et al, 2017; Leroy et al, 2011;
Vincke, 1999; Yu, 1992);

2. methods based on the assessment of utility functions, (see Bugera et al, 2002;
Dembczyński et al, 2006; Devaud et al, 1980; Greco et al, 2010; Köksalan
and Özpeynirci, 2009);

3. methods based on rough sets, (see Dembczyński et al, 2009; Greco et al,
2001, 2002a,b).

In this work, we are interested in the same type of problems for which out-
ranking methods fit. Outranking methods, in the context of rating problems,
are based on preference relations established between the set A and refer-
ence profiles without considering comparisons among objects. Because of this
feature, outranking methods may lead to non-convincing ratings, because of
cycles of preferences or because of incomparabilities. This is because outrank-
ing relations do not have any remarkable ordering properties, (see Bouyssou,
1996). Consider the following example:

Example 1. (Non convincing rating due to the Condorcet Paradox)
Let us consider a rating problem characterized by three necessary and suffi-

cient criteria, i.e. the three are exhaustive and none of them is a dictator. This
comes to considering any coalition of two criteria as a decisive coalition. We
consider that each criterion evaluates the set A on an ordinal scale: {B,A,A+}
such that B ≺ A ≺ A+, ≺ being a strict preference relation. In this problem
we aim at assigning two objects x = (A+, A,B) and y = (A,B,A+) into two
predefined ordered categories C1 (rate 1) and C2 (rate 2) such that C1 is the
best. The two categories are separated by a lower bound of C1: p = (B,A+, A).
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Using the majority rule to rate x and y, we obtain: y � p and p � x. Thus,
y will be rated 1 while x will be rated 2. The decision maker might be not
convinced by the result: indeed x is strictly preferred to y (assuming the same
majority rule).

The originality of this work consists in handling this type of inconsistencies,
through a new “dynamic” and “convincing” MCDA rating method, named
“Dynamic-R”, for problems characterized by ordinal information under at least
one criterion. In order to obtain a “convincing” rating ( see our claims 1 and
2) we make an explicit use of clear positive and negative reasons, respectively
supporting and opposing a rating, and we solve any potential contradiction.
The dynamic aspect of the method is related to the rating procedure associ-
ated to the method: the rated objects are added to the profiles characterizing
the categories and are used when new objects are considered for rating. Hence,
the positive and negative reasons will be updated in order to take into ac-
count preferential information coming from these just-rated objects. In order
to obtain a “convincing” rating, we address the following features:
• We allow comparison among elements in the set A;
• We allow both limiting and typical profiles;
• We separate positive and negative reasons;
• We distinguish the positive and negative reasons for or against an outrank-

ing from the positive and negative reasons for or against a rating;
• We provide a complete rating, as a result of our procedure.

The paper is organized as follows. Section 2, reviews the relevant litera-
ture. Section 3, introduces notations used all along the paper. In section 4,
we give an overall overview of the method presenting the central ideas within
it, without describing how these are implemented. Section 5, introduces four
basic concepts: minimal requirements, positive and negative reasons for a bi-
nary relation (outranking), distance of an object with respect to a profile,
incompatibility relation. Section 6, introduces the notion of positive and neg-
ative reasons for a rating, shows which are the properties satisfied by such
definitions, introduces our principal constraint: a “convincing property” to be
satisfied by ratings (see claim 1) and finally introduces how positive and neg-
ative reasons are updated in order to pass a consistency checking. Section
7, describes how the rating is constructed and which properties are satisfied.
Section 8, then shows that our procedure indeed satisfies our “convincing prop-
erty” and provides some information about the method’s performance. We
discuss the results and we conclude in Section 9.

2 Related Literature
Updating preferences is not really a new topic. It has been already intro-
duced in Falmagne (1996) from a general perspective and has been extensively
studied in marketing (for a presentation related to conjoint measurement see
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Ben-Akiva et al, 2019). Incremental preference modelling has been consid-
ered also in Greco et al (2011) and more recently in Khannoussi et al (2021),
Baarslag and Gerding (2015), Liu (2015), Perny et al (2016). However, it has
never been used for the purpose presented in this paper and, as far as we
know, it always requires an interaction protocol with a decision maker, while
in our case is an “automatic” procedure.

Several rating methods have been developed aiming at rating a set of ob-
jects with respect to a consistency rule. For example, in Rocha and Dias
(2008) the PASA (Progressive Assisted Sorting Algorithm) method has been
proposed, respecting the following consistency principle: an object cannot be
assigned to a category in case it is outranked by any example (reference pro-
file) assigned to a worse category. This principle seems very close to our work
since we also characterize the categories by a set of reference profiles and we
have a consistency rule. However, this method presents also many limitations
such as:
• the order of the selected objects for rating might bias the ratings of the next

selected objects;
• in case of an imprecise rating, either the decision maker is needed or the

rating is postponed;
• forcing the consistency might lead to bad quality of rating: objects involved

in cycles are placed in the same category (the worse category among the
ones to which objects can be assigned).

The THESEUS method (Fernandez and Navarro, 2011) is another rating
method, aiming at providing a rating minimizing inconsistencies with respect
to a learning set (reference profiles in our case). This method is based on an
original approach, transforming a rating problem into a ranking problem. Such
transformation consists on associating to each non rated object x, new alter-
natives xk: “assign x to the category k”. The generated alternatives xk are
assessed under the following criteria: inconsistencies with respect to the strict
preference, the weak preference, and the indifference. Hence, the problem of
rating x, comes to a ranking problem associated to selecting the best xk, mini-
mizing the inconsistencies. We address the following limitations of THESEUS
method:
• The provided rating minimizes inconsistencies. However, it does not prevent

an inconsistent rating;
• The dependency on the learning set: both small and very big learning sets

may lead to a poor rating either because of incomparabilities or the high
number of inconsistencies.

It is true that methods based on decision rules such as DRSA (Greco et al,
2001, 2002a,b), provide a rating respecting the convincing claims. However,
these methods require a large learning set. In many decision aiding problems,
all what we can have are few assignment examples given by the decision maker
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(the client). Methods using value functions or any other measure of “differ-
ence of preferences” may also be able to satisfy our claims, but this comes at
the price of more information which may be “costly” to get (for more about
differences of preference see Bouyssou et al, 2006).

3 Notations and concepts
All along this document we will use the following notation:
• T = {1, 2, 3, ...}: a set of time steps. Generally we will use t ∈ T to refer to

a time step in the process. For simplicity we will use the term step to refer
to a time step in which a new set of objects is considered for rating.

• At = {x, y, z, w, ...}: a set of studied objects considered for rating at each
step t ∈ T . The set At can be either known previously, or elicited during an
interactive process between a decision analyst and a client. This set is tradi-
tionally called in the literature associated to decision sciences, alternatives
or actions (Bouyssou et al, 2006).

• J ; K: the mathematical notation to refer to the integer interval.
• C = {C1, ..., Cq}, q ≥ 2: a set of predefined ordered categories, where Ck

refers to a category where all objects are rated k. Without loss of generality,
we assume that,∀k ∈ J1 ; q − 1K : Ck is better than Ck+1. Hence, C1 is the
best category.

• Zt = {Zt1, ..., Ztq}: Reference profiles. At a given time step t ∈ T we have a
set of sets of reference profiles, such that any element Zth is a set of {zh,k
elements where k = 1, ..., ih,t}, is an index depending from the category h
and the time step t, ih,t ≥ 1. Each Zth represents the set of reference profiles
characterizing the category Ch, at the step t. The initial set of reference
profiles Z0 is used as a learning set to generate the preferential information.
At the end of each step t ∈ T , objects in At will be assigned to the sets
of reference profiles associated to the corresponding categories. We will use
also the notation: ∀j, k ∈ J1 , qK, j < q : Ztj,k to refer to ∪

i∈Jj , kK
Zti .

• F = {1, ...,m} with m ≥ 3: a family of criteria under which objects are
evaluated. We associate to each criterion j ∈ F a weak order <j upon At.

• B = {b1, ..., bq}: a set of minimal requirements, characterizing categories
where performances of the profile bk = (bj,k)j∈F characterizing Ck, are the
minimal performances in order to be admissible in Ck. These minimum re-
quirements are characterized by the following condition: We assume that
∀j ∈ F , ∀k ∈ J1 ; q− 1K : bk <j bk+1. The profile bk should not be confused
with a limiting profile since it does not necessarily belong to Ck.

• At = ∪kZtk ∪ At ∪ B: the set of all objects considered at the step t of the
rating aggregation procedure.

• w: importance of coalitions of criteria. It is a capacity defined as: w : 2F →
[0, 1]. By definition of capacity we have w(F) = 1, w(∅) = 0, and for all
A,B ∈ 2F such that A ⊆ B, w(A) ≤ w(B). To simplify notations, we will
use wj to refer to w({j}).
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• V: importance of the discordant criteria to reject a preference relation. It
is a capacity defined as: V : 2F → [0, 1]. By definition of capacity we have
V(F) = 1 (all criteria reject a given preference), V(∅) = 0, and for all
A,B ∈ 2F such that A ⊆ B, V(A) ≤ V(B).

• λ: the majority, considered sufficient, enabling a coalition to be decisive,
called concordance threshold.

• v: the veto threshold.
• U−k ∀k ∈ J1 ; q − 1K: the set of objects having negative reasons to be rated
k or better, based on the comparison with reference profiles. The notation
U−0 will be used to refer to the set of objects not having negative reasons,
against being rated 1, based on the comparison with reference profiles: U−0 =
At ∩ ¬(U−1 ).

• U+
k : the set of objects having positive reasons to be rated k or worse, based

on the comparison with reference profiles.
• Ue−k : the set of objects for which negative reasons are enriched, due to the

comparison with the other objects in At, to a worse category k.
• Ur−k : the set of objects for which negative reasons are withdrawn, due to

the comparison with the other objects in At, to a better category k.
• Ue+

k : the set of objects for which positive reasons are enriched, due to the
comparison with the other objects in At, to a better category k.

• Ltk: the set of objects for which the worst possible rating is k (without taking
into account the way objects compare to each other).

• Ht
k: the set of objects for which the best possible rating is k (without taking

into account the way objects compare to each other).
• Ltu,k: the set of objects for which the worst possible rating is k, with respect

to reference profiles and objects in At.
• Ht

u,k: the set of objects for which the best possible rating is k, with respect
to reference profiles and objects in At.

• U2+
k : the set of objects in Ht

u,h ∩ Ltu,l (for h ≤ k and l ≥ k) rated k, based
on a distance from reference profiles.

4 General overview of Dynamic-R

The existing outranking based rating procedures use a majority principle
applied on aggregating positive reasons (typically known as concordance re-
lation). This relation is bounded by a minority principle (typically known
as discordance relation, usually a veto condition) which can invalidate the
aggregation of the positive reasons. Positive reasons are typically obtained
comparing objects either to limiting profiles (a vector or a set of vectors)
separating categories, or to typical profiles (a vector or a set of vectors) charac-
terising the categories. In the first case we make use of asymmetric comparisons
(intuitively an object x is rated k if it is better than the profile separating
category k from category k+1), while in the second case we make use of sym-
metric comparisons (intuitively an object x is rated into category k if it is



Springer Nature 2021 LATEX template

Dynamic-R 7

similar to a typical profile of such category). In both approaches objects are
never compared to each other.

Dynamic-R introduces three new ideas:

1. it does not make any distinction between limiting and typical profiles since
both of them might be available and provide positive or negative reasons
about the rating of a given object x;

2. it explicitly introduces the concept of minimal requirements, a disjunc-
tive constraint among the criteria, providing strong evidence that an
object CANNOT be rated to a certain category (because it fails to sat-
isfy a requirement on any of the criteria), without the vector of minimal
requirements being a profile of any category;

3. it accumulates reference profiles since objects, that are rated at step t, are
used as profiles both within step t as consistency checking, thus allowing
comparisons among objects, and at step t+ 1.

Dynamic-R is a MCDA rating method extending the use of the con-
cordance/discordance principles through the use of generalised positive and
negative reasons (see Tsoukiàs et al, 2002) for which a given object can belong
to a given category. The main inputs required by the method are: the set of
partitions of reference profiles characterizing the categories Zt, and the set of
minimum requirements B. At the basic level, the developed rating procedure,
at each time step t ∈ T , is based on the assessment of:
- on the one hand, subsets of objects U+

k ⊆ At, k ∈ J1 , qK, having reasons
supporting their rating at most k (k or worse). Such set is based on the pres-
ence of a sufficient majority of criteria, not disqualified by a veto, in favor of
an object in At, compared to a reference profile characterizing the category k;
- on the other hand, subsets of objects U−k ⊆ At, k ∈ J1 , q − 1K, having rea-
sons opposing their rating at least k (opposing a rating to k or better). Such
negative reasons might come either from the incompatibility with category k
due to the violation of the minimum requirements, or the dominance or the
strict preference (depending on the way negative reasons are defined) in favor
of a reference profile characterizing a worse category. The concept of minimum
requirements consists on profiles representing the minimum acceptable perfor-
mances, under each criterion, regardless the global performance, in order to
be admissible in a category.

Example 2. (Example of positive reasons) A new student in a school, might
have positive reasons to be in the category of excellent students, if he is better,
according to a majority of criteria, than a former excellent student. The reader
will note that having positive reasons to be in the category of excellent students
implies having positive reasons to be in any worse category, such as the one
of good or even bad students.
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Example 3. (Example of negative reasons) A student cannot be in the cat-
egory of excellent students if an average student is preferred to him/her.
Regardless the global mark, a student cannot be considered a good student
if he performs worse than 7/20 in any of the lectures. Minimum requirements
should not be confused with limiting profiles: the vector (7/20, ..., 7/20) is the
minimum requirement associated to the category of good students, however,
a student performing 7/20 in all the lectures “(7/20, ..., 7/20)” is not a good
student.

Remark 1. In case the set of minimum requirements B is not empty, and the
number of objects to be rated and reference profiles is important, it is better to
not consider the strict preference relation in negative reasons, for two reasons:

1. The negative discrimination power due to vetoes, with respect to limit-
ing profiles, might be substituted by the minimum requirements in the case
where reference profiles are not necessarily limiting profiles. This substitu-
tion provide many advantages as the assessment of minimum requirements
is directly related to the categories while their might exist a very high num-
ber of limiting profiles and thus an object discriminated by a limiting profile
might be not discriminated by another.

2. Negative reasons based on strict preference might influence badly the quality
of the obtained rating, due to non-transitivity: discriminating the assign-
ment of an object to a category due to a strict preference in favor of a
reference profile might be criticized since we might have cycles.

Hence, the use of the strict preference in negative reasons will be limited to
the cases where B = ∅ and the number of objects to be assigned is low. Here
after, negative reasons will be treated in two cases, whether strict preference
is considered or not.

When the decision maker or the quality of the rating problem require taking
into account the way objects compare to each other, new positive and negative
reasons might appear, and some reference profiles might need to be updated.
Considering the way objects compare to each other may lead to either enriching
negative reasons, in case strict preference is used in the assessment of negative
reasons, or enriching positive reasons, or withdrawing negative reasons.

The rating process associated to Dynamic-R, at a step t, can be structured
as follows:

1. For each object x ∈ At, we compute for each category k, the sets of objects
having respectively positive and negative reasons to be rated k: U+

k and
U−k .

2. We revise the positive and negative reasons for each object, and the ref-
erence profile based on the way they compare to each other. The possible
updates lead to
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(a) a set of objects Ue−k not having initially negative reasons opposing rating
k(not in U−k ), but for which their negative reasons were enriched to
oppose rating k.

(b) a set of objects Ue+
k not having initially positive reasons supporting

rating k(not in U+
k ), but for which their positive reasons were enriched

to support rating k.
(c) a set of objects Ur−k for which negative reasons opposing rating worse

than k are withdrawn to oppose a rating k.
We then compute the updated reference profiles Ztu and the updated set of
objects to be rated Atu.

3. We compute Ht
u,k and Ltu,k, ∀k ∈ J1 ; qK. All objects in Ht

u,k ∩Ltu,k will be
assigned to Zt+1

k . We distinguish two cases:
(a) Objects belonging to any among the sets Ht

u,1 ∩ Ltu,1, ...,Ht
u,q ∩ Ltu,q.

In other terms, objects having the same higher and lower rating. These
objects are rated k.

(b) Objects have different higher and lower rating (Atu \ ∪k(Ht
u,k ∩ Ltu,k));

we can consider them as interval rated. In such a case, we compute a
distance between objects and reference profiles characterizing the pos-
sible categories and we choose the “nearest” one. This is done through
the use of U2+

k . The distance is computed (see definition 8 later on in
subsection 4.2) first over objects in Ht

u,1, then over Ht
u,2,..., ending with

objects in Ht
u,q. Each time an object is rated based on the distance, we

assign it to the corresponding set in Zt+1
u and we update positive rea-

sons for objects in worse categories. This procedure is repeated until all
objects are rated.

Example 4. Imagine the situation of two students x and y, such that, one
the one hand, x might be either exceptional, or excellent, or good student.
On the other hand, y might be either excellent or good student. In case there
is a sufficient majority of criteria in favor of y, with respect to x, and x is
close to former exceptional students, x will provide y by positive reasons to
be assigned to the category of exceptional students. However, since the best
possible rating for y is excellent student, then y will be rated as excellent
student without computing his distance with former students in each category
(thanks to x). We will note U2+

k the set of objects close to a category k, for
which there are neither positive reasons nor valid negative reasons.

Remark 2. In case the strict preference relation is not considered in the
assessment of negative reasons, these will not be enriched: ∀k ∈ J1 , q − 1K :
Ue−k = ∅. This is due to the transitivity of both the dominance relation and
the non violation of minimum requirements (more details will be provided in
section 6.5).

The order of the assessment of the updated sets of positive and negative
reasons is important. The following example illustrates the case.
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Example 5. let’s consider three new students x, y and s, such that: x, y and
s have positive and no negative reasons to be considered as a good student,
an excellent student and an average student respectively. Let’s assume that
according to a sufficient majority of criteria, the student x is at least as good as
y. Hence, based on this information, positive reasons will be enriched in order
to support rating x as an excellent student. However, in case the student s is
strictly preferred (better) to y, and there are negative reasons against being
considered as an excellent student, the student y cannot be considered anymore
as excellent, this corresponds to the enrichment of negative reasons. As a result
of enriching negative reasons of y, the enrichment of positive reasons of x is no
more valid. For this reason, ∀k ∈ J1 , q− 1K : Ue−k should be computed before
∀k ∈ J1 , qK : Ue+

k . Furthermore, withdrawing negative reasons takes into
account the enriched negative reasons, and can be generated by the enriched
positive reasons. Let’s consider that the student s is considered as average
because his performance is strictly worst, according to a sufficient majority
of criteria, than the performance of a former average student z (a reference
profile in the category of average students). In this case, the rating of z has no
negative reasons against being in the category of excellent students, and his
positive reasons were enriched based on his comparison with the new students.
Thus, the rating of z will be improved leading to withdrawing negative reasons
against s. This will have an impact upon all students who are preferred to z,
but are rated not better than z.

For all k ∈ J1 , qK, the sets Ht
k and Ltk might give an idea about the quality

of the rating, by drawing a distribution of the precision of the rating. We can
also provide the decision maker by statistics such as the median and the mode
of the rated objects among the categories, or the percentage of objects rated
at this level: In other terms the cardinality of Ht

k ∩ Ltk for all k ∈ J1 , qK,
might be a good indicator for the quality of the rating.

The reader should note that Dynamic-R is a whole rating process, rather
a simple rating procedure. The flowchart of Dynamic-R, is displayed in Figure
1, representing the main operations in the rating procedure.

5 Basic concepts within Dynamic-R
Dynamic-R is a method based on defining and aggregating positive and neg-
ative reasons respectively supporting or opposing an outranking and positive
and negative reasons supporting or opposing a rating. These reasons are based
on some concepts used in different MCDA methods, and the new concept of
minimum requirements. These concepts will be used at the basic level. In this
section, we will present the way to define the set of minimum requirements
and the basic tools used in order to assess positive and negative reasons for
or against an outranking.
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5.1 Methodology for assessing the minimum
requirements

The minimum requirements represent the minimum performance, that can be
taken by an object, under each criterion and regardless on its performance on
the other criteria, in order to be admissible in a category. Hence, the profiles
in the set of minimum requirements B have to be dominated by an object x
to be admissible in a category: Let’s consider bk = (bj,k)j∈F , characterizing
the category Ck, an object x = (xj)j∈F cannot be rated k if ∃j ∈ F : bj,k �j
xj . In this section, we will present a methodology to assess the minimum
requirements characterizing each category.

Let’s name x∗ the ideal object: an object consisting on the best possible
performance under each criterion x∗ = (x∗j )j∈F , where x∗j is the best possible
performance under the scale of the criterion j (the best if j needs to be maxi-
mized, and the lowest if j needs to be minimized). In this section, we will use
the following notation: x = (xj , x−j) where xj is the performance of x under
the criterion j, and x−j the performance of x under the criteria F \ {j}.

In case the number of categories and criteria is not very important, the
developed procedure consists on asking the decision maker the following ques-
tions: “What is the worst performance that can be taken by xj to rate the
vector (xj , x∗−j), at category k?”. Asking this question m (m being the cardi-
nal of F) times leads to determining the minimum requirements to be rated
k: bk = (x1, ..., xm). This procedure requires (k − 1) ×m questions, to assess
the minimum requirements of all the categories (we assume that the worst
category does not require a minimum requirement by its nature).

Example 6. Imagine a headhunter aiming at performing an ordinal classifi-
cation of candidates (graduated students) for a client based on the following
criteria:

1. The global mark: to be maximized, assessed on a cardinal scale [0, 20],
representing the general mark of the degree;

2. Assiduity: to be maximized, assessed on an ordinal scale {1, ..., 10}, 1: refers
to a not serious student and 10: refers to a very serious student;

3. The physical aptitude: to be maximized, assessed on an ordinal scale
{1, ..., 5}, such that 1: not able to move, 2: bad health, 3: average health,
4: good health, 5: very high aptitude.

4. The requested annual salary: to be minimized, assessed on a cardinal scale
[40k, 70k] euros.

The headhunter aims at partitioning the candidates into three categories:
Good opportunities for the client; opportunities that need to be discussed with
the client; bad candidates for the client.
In this example the ideal candidate is characterized by the following per-
formance vector x∗ = (20, 10, 5, 40k). In order to assess the minimum
requirements, the headhunter might submit to the client the following “ceteris
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Figure 1: Dynamic-R rating algorithm.

paribus” questions:
- what is the minimum acceptable mark (m) such that x = (m, 10, 5, 40k) is
rated “good opportunity”?
- what is the minimum acceptable mark (m) such that x = (m, 10, 5, 40k) is
rated “opportunity to be discussed”?
- what is the minimum acceptable assiduity (d) such that x = (20, d, 5, 40k) is
rated “good opportunity”?
- what is the minimum acceptable assiduity (d) such that x = (20, d, 5, 40k) is
rated “opportunity to be discussed”?
- the same type of questions apply as far as a the minimum acceptable physi-
cal aptitude (p) and the maximum acceptable wage (w) are concerned.
Suppose the results to these questions provide the vector (12, 7, 3, 50k) as min-
imum requirements for being a good candidate. This means that a candidate
having less than 12 for Mark could never be considered good, the same rea-
soning applies for candidates with less than 7 for Assiduity, less than 3 for
Physical aptitude, and more than 50k for wage.
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5.2 Basic definitions
Definition 1. (Positive Reasons for an outranking)

Positive reasons for outranking relations are binary relations R+ defined on
(At)2 representing the capacity of a sufficient coalition of criteria, to influence
the relative preference between two objects. This can be expressed as:

xR+y ⇐⇒ w({j ∈ F : x �j y}) ≥ λ (1)

where λ is the majority threshold

Remark 3. Recall that At = ∪kZtk ∪At ∪ B.

Remark 4. In case the measure associated with the decisive coalition of
criteria is additive, the previous formulation would be:

xR+y ⇐⇒
∑

j∈F :x�jy

wj ≥ λ (2)

Definition 2. (Negative Reasons against an outranking)
Negative reason against an outranking R− is a binary relation defined on

(At)2 displaying the capacity of a subset of criteria to reject a possible out-
ranking in case its importance is greater than a veto v. This can be formulated
by:

xR−y ⇐⇒ V({j ∈ F : y �j x}) ≥ v (3)

Remark 5. A negative reason in many outranking methods (Ostanello,
1985; Roy, 1991; Vincke, 1999), called discordance principle, is defined as
the minimal difference vj under each criterion gj ∈ F not allowed to be
compensated.

Definition 3. (Outranking relation)
Outranking relation Sλ is a binary relation defined on (At)2. x outranks y

can be interpreted as “x is at least as good as y”. Sλ can be formulated as:

xSλy ⇐⇒ xR+y ∧ ¬(xR−y) (4)

Definition 4. (Basic binary relations)
Based on the Outranking relation, three possible binary relations might be

defined: for x, y ∈ At

• Strict Preference (Pλ): xPλy ⇐⇒ xSλy ∧ ¬(ySλx)
• Indifference (Iλ): xIλy ⇐⇒ xSλy ∧ ySλx
• Incomparability (Jλ): xJλy iff non of the previous binary relations hold.

Definition 5. (Dominance relation)
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Dominance relation D is a binary relation defined on (At)2. For x, y ∈ At,
we say that xDy if x is at least as good as y under each criterion and strictly
better than y under at least one criterion. This can be formulated by:

xDy ⇐⇒ ∃i ∈ F , ∀j ∈ F : x �j y ∧ x �i y (5)

Remark 6. xDy =⇒ xSλy.

In this paper, many definitions involve binary relations between objects
and the sets of reference profiles. We propose the following two definitions:

Definition 6. (Binary relations used in positive and negative reasons)
Consider the set A and a set of sets B. A binary relation R ⊆ A×B, such

that ∀(x, Y ) ∈ A × B : xRY should be read as “there are negative reasons
opposing x to belong to Y ”, or “there are positive reasons for x belonging to
Y ”.

Definition 7. (Preference between 2At
u and Ztu)

Consider the power set 2A and a set of sets B. A binary relation R ⊆
(2A×B)∪ (B× 2A), such that ∀(X,Y ) ∈ (2A×B)∪ (B× 2A) : XRY should
be read as “The class X is at least as good as the class Y ”.

Remark 7. In this work, we will consider only singletons in 2At
u .

In assignment problems, the case where categories are not necessarily or-
dered, the assignment is based on a similarity index. This last can be seen as
a distance between an object we aim to assign and a set of objects charac-
terizing a class. We will adapt this idea to the context where the objects are
described by ordinal information under at least one dimension.

Definition 8. (Distance between an object and a set of characteristic profiles)

Let Ztk be a set of reference profiles characterizing the category k at the
step t. We define the distance of an object x ∈ At from the set Ztk as:

dist(x, Ztk) = min

min
z∈Zt

k

| c(x, z)− c(z, x) |, 1
| Ztk |

|
∑
z∈Zt

k

c(x, z)− c(z, x) |


(6)

where c(x, y) = w({j ∈ F : x �j y}).

This distance represents the relative position of an object within the at-
tributes space with respect to a set of reference profiles. It computes the
minimum between two values:
• on the one hand, the way the object compares to the closest reference profile;
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• on the other hand, the way the object compares to all the reference profiles

The first component of the distance, minz∈Zt
k
| c(x, z)−c(z, x) |, represents

the minimum of distances between “x” and each profile in Ztk. Intuitively, it
can be seen as an answer to the question “is there any profile in Ztk close to
x?”. The second component of the distance, 1

|Zt
k
| |
∑
z∈Zt

k
c(x, z) − c(z, x) |,

represents the net flow evaluation: The difference between the total importance
of criteria in favor of x compared to the profiles in Ztk and the total importance
of criteria in favor of the reference profiles in Ztk compared to x. Figure 2
illustrates the defined distance. Objects ◦ are rated higher than objects •
within the bi-attribute space f1, f2. The object ? is rated as ◦ because the
nearest object to ? is a ◦. The object ∗ is rated as •; the nearest objects are
both a ◦ and a •, but the set of • is globally nearest.

-

6

f1

f2

• • •

• • •

• • • ∗ ◦ ◦ ◦

?

◦ ◦ ◦

◦ ◦ ◦

Figure 2: ? is a ◦ and ∗ is a • because of their respective distances.

In case the set of minimum requirements is not empty, we define an
incompatibility binary relation between categories and objects.

Definition 9. (Incompatibility binary relation)
Incompatibility binary relation Incomplower defined on At×Zt, represents

the non eligibility of an object to characterize a given category with respect
to some minimum requirements. For x ∈ At, Ztk ∈ Zt:

xIncomplowerZ
t
k ⇐⇒ ∃bk ∈ B : ¬(xDbk) (7)
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This means that, at a given step t ∈ T , if for an object x ∈ At,∃j ∈ F :
x ≺j bk, the assignment of x to the category Ck should be “questioned”, thus,
x cannot be rated k. The incompatibility binary relation and the discordance
index represent close concepts related to the respect of minority principle. It
consists on the existence of strong reasons to not approve a preference re-
lation, between two objects, even in the presence of a sufficient majority of
concordant criteria. However, these two concepts are different: the discordance
index characterizes the outranking between two objects, while the incompati-
bility binary relation characterizes the impossibility of an object to belong to
a category.

6 Positive and negative reasons in Dynamic-R
As already mentioned, in this paper we generalise the concept of concordance
and discordance through the use of positive and negative reasons (for a rating;
see Tsoukiàs et al, 2002). In this section we define what negative reasons
against a rating and positive reasons supporting a rating are, we define the
“convincing property” to satisfy, we show how to construct the sets U tl and
U−h without consistency checking (comparing objects to rates to profiles, but
not among them) and then how to update positive and negative reasons once
we allow to compare rated objects among them.

6.1 Negative reasons against a rating
Negative reasons represent information or premises against a rating. In our
approach, negative reasons represent, either the “inconsistency” of a rating,
or the incompatibility of an object with a category.

The “inconsistency” should be considered as a situation where an object
being potentially rated k is either weakly dominated or strictly preferred by
a reference profile of rate k + 1 which is worse. Incompatibility should be
understood as the situation where an object being potentially rated k fails to
meet one of the minimal requirements of category Ck.

In order to assess the negative reasons against a rating, the assignment
of objects to a given category will depend on the relative position of the non
assigned objects with reference profiles using the dominance and either the
strict preference relations or the absence of the incompatibility of objects with
the categories.

Definition 10. (U−k , For k ∈ J1 ; q − 1K)
The set of objects having negative reasons against being assigned to a given

category k, U−k can be formulated as

U−k = {x ∈ At ∪ Zt1,q, xR−Ztk},∀k ∈ J1 ; q − 1K (8)
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where R− is a binary relation defined on (At∪Zt1,q)×Zt. xR−Ztk should be
read as: “there are negative reasons against rating x, k”: For x ∈ At∪Zt1,q, Ztk ∈
Zt:
• Case using the incompatibility and the strict preference relation:

xR−Ztk ⇐⇒ ∃h ∈ Jk + 1 ; qK,∃z ∈ Zth : zPλx ∨ xIncomplowerZtk. (9)

• Case using the incompatibility and the dominance:

xR−Ztk ⇐⇒ ∃h ∈ Jk + 1 ; qK,∃z ∈ Zth : zDx ∨ xIncomplowerZtk. (10)

Remark 8. Objects b1, ..., bq do not necessarily belong respectively to the
categories C1, ..., Cq.

If Definition 10 holds then:

Proposition 1. (Monotonicity of negative reasons)

1. If there exist negative reasons against assigning an object to a given cat-
egory then there exist negative reasons against assigning it to any better
category:

∀x ∈ At ∪ Zt1,q,∀Zth ∈ Zt : xR−Zth =⇒ ∀k ∈ J1 ; hK : xR−Ztk; (11)

2. If there are no negative reasons to assign an object to a given category then
there are no negative reasons to assign it to any worse category:

∀x ∈ At ∪ Zt1,q, ∀Zth ∈ Zt : ¬(xR−Zth) =⇒ ∀k ∈ Jh ; qK : ¬(xR−Ztk).
(12)

Proof. (properties of negative reason). Obvious, by construction of R− in
definition 10.

�

Corollary 1. The monotonicity of negative reasons can also be formulated as:

∀k ∈ J2 ; q − 1K : U−k ⊆ U
−
k−1 (13)

Proof. Direct consequence of Proposition 1. �

Negative reasons prevent a rating that can be challenged. To confirm a rat-
ing, we need to verify the existence of reasons supporting an assignment to
categories for which no negative reasons are involved. In the next subsection,
we will define and discuss the forms of the reasons supporting a rating, called
positive reasons.
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6.2 Positive reasons supporting a rating
Positive reasons represent information or premises supporting a rating. These
reasons are built with respect to the “positive consistency” of the rating, that
could be understood as the situation where an object can be rated k because
it is at least as good as at least one reference profile belonging to Ck.

Definition 11. (U+
k , For k ∈ J1 ; qK)

The set of objects having positive reasons supporting the assignment to a
given category k, named U+

k , can be formulated as:

∀k ∈ J1 ; qK : U+
k = {x ∈ At ∪ Zt1,q, xR+Ztk} (14)

where R+ is a binary relation defined on (At ∪ Zt1,q) × Zt representing the
possibility to be at least as good as reference profiles characterizing a category.
R+ can be formulated as: For x ∈ At ∪ Zt1,q, Ztk ∈ Zt:

xR+Ztk ⇐⇒ ∃h ≤ k,∃z ∈ Zth : xSλz. (15)

Proposition 2. (Monotonicity of positive reasons)

1. If there exist positive reasons supporting the assignment of an object to a
given category then there exist positive reasons supporting its assignment
to any worse category:

∀x ∈ At ∪ Zt1,q, ∀Zth ∈ Zt : xR+Zth =⇒ ∀k ∈ Jh ; qK : xR+Ztk; (16)

2. If there are no positive reasons to assign an object to a given category then
there are no positive reasons to assign it to any better category:

∀x ∈ At ∪ Zt1,q,∀Zth ∈ Zt : ¬(xR+Zth) =⇒ ∀k ∈ J1 ; hK : ¬(xR+Ztk).
(17)

Proof. Obvious, by construction of R+ in Definition 11. �

Corollary 2. The monotonicity of positive reasons can also be formulated as:

∀k ∈ J2 ; qK : U+
k−1 ⊆ U

+
k (18)

Proof. Direct consequence of Proposition 2. �

6.3 Convincing Property
The aim of this paper is to provide a “convincing” rating. Hence, at all steps
in T of the process, the set of reference profiles should respect the following
“convincing” condition:
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Definition 12. “Convincing” property

∀y ∈ Ztk, @z ∈ Zth(k > h) : ySλz ∧ y /∈ U−h (19)

This property being central for our reasoning we try to present it extensively.
A rating satisfies the “convincing property” if
For all y rated k at time step t (∀y ∈ Ztk)
there is no z in profiles rated better than k (¬∃z ∈ Zth (k > h); remember the
lower the rate the better)
such that y is at least as good as z (ySλz)
and y is not among the objects having negative reasons for being rated h or
better(y /∈ U−h ).
In other terms, we guarantee that if y is rated k there are sufficient reasons
for doing so.
In the next two subsections, we will present the aggregation procedure of pos-
itive and negative reasons first without considering the way objects compare
to each other (without a consistency checking) and then checking whether
there are reasons for updating the rating because of inconsistent pairwise
comparisons among rated objects.

6.4 Aggregating of U+
l , U−

h , without consistency checking
Let’s assume that the decision maker only needs a rating without any consis-
tency checking. We need to aggregate the sets U+

l and U−h , for all l ∈ J1 ; qK
h ∈ J1 ; q − 1K.

Rating an object comes to assigning it to the best possible category, for
which there are no negative reasons. Thus, the aggregation is made in a “lex-
icographical” way: We first verify the absence of negative reasons, then the
existence of positive ones. Under this principle, we will assess two partitions
of At: Ht

h, for all h ∈ J1 ; qK, representing the objects for which the best pos-
sible rating is h; and Ltl , for all l ∈ J1 ; qK, representing the objects for which
the worst possible rating is l. These assessments are based only on the way
objects compare to reference profiles.

Definition 13. (Ht
h and Ltl , for h, l ∈ J1 ; qK)

For a given t ∈ T , the partitions of At, Ht
h and Ltl , for which the best and

the worst possible ratings are respectively h, l ∈ J1 ; qK, can be formulated as:

Ht
h = U−h−1 \ U

−
h (20)

Ltl = U+
l \

(
U−l ∪ (U+

l−1 \ U
−
l−1)

)
(21)

Proposition 3. (properties of Ht
h and Ltl)

For a given t ∈ T , the sets Ht
1, ...,H

t
q and Lt1, ..., Ltq, are two partitions of

At.
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Proof. For a given t ∈ T , let’s prove that

1. Ht
1, ...,H

t
q is a partition of At:

For all h, k ∈ J1 ; qK, we have Ht
h ∩Ht

k = ∅, (h < k), since: Using the
Definition 13, we have Ht

h ∩Ht
k = (U−h−1 \ U

−
h ) ∩ (U−k−1 \ U

−
k ). Due to the

monotonicity of negative reasons (see Corollary 1), U−k−1 ⊆ U
−
h . Hence:

Ht
h ∩Ht

k = ∅ (22)

It is also easy to check that

∪h Ht
h = At (23)

since U−0 = At \ U−1 and U−q = ∅. Hence: ∪qh=1H
t
h = At \ U−q = At. ‘

2. Lt1, ..., Ltq is a partition of At:
For all l, k ∈ J1 ; qK, we have Ltl ∩ Ltk = ∅, (k < l), since:

Ltl ∩ Ltk =
[
U+
l \

(
U−l ∪ (U+

l−1 \ U
−
l−1)

)]
∩
[
U+
k \

(
U−k ∪ (U+

k−1 \ U
−
k−1)

)]
=
(
(U+

l \ U
−
l ) \ (U+

l−1 \ U
−
l−1)

)
∩
(
(U+

k \ U
−
k ) \ (U+

k−1 \ U
−
k−1)

)
Based on Corollary 1: U−l−1 ⊆ U−k . And based on Corollary 2: U+

k ⊆
U+
l−1.
Hence: U+

k \ U
−
k ⊆ U

+
l−1 \ U

−
l−1.

Thus:
Ltl ∩ Ltk = ∅ (24)

It is easy to check that
∪l Ltl = At (25)

Since:
∪lLtl = ∪l (U+

l \ U
−
l ) \ (U+

l−1 \ U
−
l−1)

=(U+
q \ U−q ) \ (U+

, 0 \ U−0 )

U+
0 \ U

−
0 = ∅, U+

q = At and U−q = ∅. Thus, ∪lLtl = At.

�
Having computed the two series of sets Ht

h and Ltl we can identify the
objects for which the best possible rating and the worst possible rating is the
same (Ht

k ∩Ltk, ∀k ∈ J1 ; qK). It is clear that after performing this step there
will exist objects for which the best possible rating and the worst possible
rating do not coincide. We have two options here:
• either present an “interval rating” (x is rated between l and h);
• or try to reduce this imprecision by computing the “distance” of x with re-

spect to all such possible categories, as defined in Definition 8, and choosing
the rate k = arg minj dist(x, Ztj).
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6.5 Updating positive and negative reasons; consistency
checking

For t ∈ T , the assessment of U−h and U+
l , for l ∈ J1 ; qK, h ∈ J1 ; q −

1K is based on the sets of reference profiles. These last were updated in the
previous step. In this section, we will discuss and analyse two major features:
the way objects in At might modify the sets of reference profiles (for example
by enriching their positive reasons); and the way objects in At might change
positive and negative reasons supporting or against a given rating. Analysing
preferential information originated by At leads to three possible treatments:
enriching negative reasons (only when strict preference is considered in the
assessment of negative reasons), enriching positive reasons and withdrawing
negative reasons. In the following we will enhance our notation: Ue−k will stand
for enriched negative reasons, Ur−k will stand for withdrawn negative reasons,
and Ue+

k will stand for enriched positive reasons.

Definition 14. (Ue−k , For k ∈ Jh ; q − 1K; enriching negative reasons)
For a given k ∈ J1 ; q − 1K, the set of objects, Ue−k , for which negative

reasons were enriched to prevent a rating k ∈ J1 ; q−1K, can be formulated as

Ue−k = {x ∈ Zt1,q ∪At : (xRe−Ztk) ∧ ¬(xRe−Ztk+1)} (26)

where Re− is binary relation representing enriched negative reasons against a
rating. Re− can be formulated as:

For x ∈ U−h \ U
−
h+1:

xRe−Ztk ⇐⇒ ∃y ∈ ∪qj=kU
e−
j ∪ U−k : yPλx ∧ ¬(yIncomplowerZth+1). (27)

Definition 14, represents the assessment of the sets of objects or reference
profiles for which the negative reasons were enriched to prevent a rating to
a worse category. The intuitive idea of this definition is simple: if there is an
object y (in At or in Ztk) strictly preferred to or dominating x (the object to
rate), the category to which y is rated (let’s say k) becomes an upper bound
for the category to which x can be rated. However, this upper bound will not
hold in case y is rated k because incompatible with better than k categories.
In such cases the category of x will be bounded by the best category with
which y is not incompatible.

The following proposition presents a characteristic of the binary relation
used in the assessments of Ue−1 , ..., Ue−q−1.

Proposition 4. (properties of Re−)
For t ∈ T , for x ∈ U−h \U

−
h+1, if there are enriched negative reasons opposing

x being rated k then there are enriched negative reasons opposing any rating
between k and h. This can be formulated as:

xRe−Ztk =⇒ ∀j ∈ Jh ; kK : xRe−Ztj (28)
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Proof.
Obvious since, ∀j ∈ Jh ; kK we have ∪qh=kU

e−
h ∪ U−k ⊆ ∪

q
h=jU

e−
h ∪ U−j .

(∪qh=kU
e−
h ⊆ ∪qh=jU

e−
h and z ∈ U−k =⇒ z ∈ U−j , see equation 2) �

Remark 9. Under the hypothesis that at a given step t ∈ T , reference pro-
files are “convincing”, the enrichment of positive reasons or the withdrawn
of negative reasons cannot lead to the enrichment of negative reasons related
to any object or reference profile. This is justified by the fact that improving
the assignment of an object to a given category Ck cannot influence negatively
the assignment of any object in a better category (see proposition 2). For this
reason, enriching negative reasons will be processed first.

Definition 15. (Ue+
k , For k ∈ J1 ; q − 1K; enriching positive reasons).

For a given k ∈ J1 ; q − 1K, the set of objects, Ue+
k , for which positive

reasons were enriched to support a rating k, can be formulated as:

Ue+
k = {x ∈ Zt1,q ∪At : xRe+Ztk ∧ ¬(xRe+Ztk−1)} (29)

where Re+ is a binary relation representing enriched positive reasons support-
ing a rating. Re+ can be formulated as:

For x ∈ U+
l \ U

+
l−1, k < l:

xRe+Ztk ⇐⇒ ∃y ∈ (∪kj=1U
e+
j ∪ U

+
k ) \ (∪q−1

j=kU
e−
j ∪ U−k ) : xSλy (30)

Definition 15, represents the assessment of the sets of objects for which
positive reasons were enriched to support the assignment to a better category.
Enriching positive reasons for a given x is mainly due to the presence of
y ∈ (∪kj=1U

e+
j ∪U

+
k )\(∪q−1

j=kU
e−
j ∪U

−
k ), having positive and no negative reasons

to be assigned to a category better than x, such that xR+y. Hence, y will
provide x by new positive reasons that will potentially improve its possible
rating. In other terms if there is an object y rated better than x (let’s say k)
and x is at least as good as y then we can improve the rating of x at most at
the k level.

The following proposition presents a characteristic of the binary relation
used in the assessments of Ue+

1 , ..., Ue+
q .

Proposition 5. (properties of Re+) For t ∈ T , for x ∈ U+
l \U

+
l−1, for a given

k better than l (k < l), if there are enriched positive reasons supporting x
being rated k then there are enriched positive reasons supporting any rating
between l and k. This can be formulated as:

xRe+Ztk =⇒ ∀j ∈ Jk ; l − 1K : xRe+Ztj (31)

Proof.
Obvious since ∀j ∈ Jk ; t− 1K we have
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(∪kh=1U
e+
h ∪U

+
k ) \ (∪q−1

h=kU
e−
h ∪U

−
k ) ⊆ (∪jh=1U

e+
h ∪U

+
j ) \ (∪q−1

h=jU
e−
h ∪U

−
j ),

since:
(∪kh=1U

e+
h ∪U

+
k ) ⊆ (∪jh=1U

e+
h ∪U

+
j ) and (∪q−1

h=jU
e−
h ∪U

−
j ) ⊆ (∪q−1

h=kU
e−
h ∪

U−k ). �

Definition 16. (Ur−k , For k ∈ J1 ; q − 1K)
For a given k ∈ J1 ; q − 1K, the set of objects, Ur−k , for which negative

reasons are withdrawn to prevent a better rating k, can be formulated as:

Ur−j = {x ∈ Zt1,q ∪At : xRr−Ztj ∧ ¬(xRr−Ztj+1)} (32)

where Rr− is binary relation representing withdrawn negative reasons against
a rating. Rr− can be formulated as:

For x ∈ Ue−h ∪ (U−h \ U
−
h+1), k < h:

• case of negative reasons with strict preference

xRr−Ztk ⇐⇒


∀z ∈ (U−h ∪ U

e−
h ) \ ∪h−1

j=1U
r−
j : ¬(zPλx ∨ zDx)

And
∃y ∈

[
∪hj=1U

e+
j ∪ U

+
h

]
∩ U−h,k : yPλx ∨ xIncomplowerZtk

(33)
• case of negative reasons without strict preference

xRr−Ztk ⇐⇒


∀z ∈ (U−h ) \ ∪h−1

j=1U
r−
j : ¬(zDx)

And
∃y ∈

[
∪hj=1U

e+
j ∪ U

+
h

]
∩ U−h,k : yDx ∨ xIncomplowerZtk

(34)

with U−h,k = ∪h−1
j=k (Ue−j ∪Ur−j )∪U−k \

(
∪q−1
j=hU

e−
j ∪ (∪k−1

j=1U
r−
j ) ∪ U−h

)
rep-

resenting objects with valide negative reasons against ratings between h − 1
and k.

Definition 16, represents the assessment of the sets of objects for which
negative reasons were withdrawn to prevent a rating to a better category. The
binary relation Rr− associated to these sets, and characterizing the operation
of withdrawing negative reasons for a given x from a worse rating l, to a better
rating h, are defined by two conditions:

1. Eligibility for withdrawing negative reasons for an object x: The existence of
another object or reference profile y, having valid negative reasons against
being rated l − 1, and either strictly preferred to x or dominating x (in
case strict preference is not considered), will invalidate the ability of x to
improve its position (x will still have valid negative reasons against being
rated l).
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2. New negative reasons against a rating k: the improvement of the rating of
x will be at most limited by the improvement of the object or reference
profile, let’s name it y, at the origin of x’s negative reasons. The limitation
might also come from an other element strictly preferred or dominating x,
limiting its improvement to at most k + 1 (since the withdrawn negative
reasons will oppose being rated k). It is also possible that the withdrawn of
x’s negative reasons will not be limited by any object or reference profile,
but by its own performance not dominating the minimum requirement bk.

In other terms, if x is bounded to a category k because there is an object
y strictly preferred or dominating x rated at most k, then if for some reason
y improves its rating this will also improve the rating of x (withdrawing the
reasons for which x was bounded to k). Such “improvements” can be limited
because of the incompatibility relation (in case it holds) for x and y.

Proposition 6. (properties of Rr−)
For t ∈ T , ∀x ∈ Ue−h ∪(U−h \U

−
h+1), if there are withdrawn negative reasons

opposing x being rated k then there are withdrawn negative reasons opposing
any rating better than k. This can be formulated as:

xRr−Ztk =⇒ ∀j ∈ J1 ; kK : xRr−Ztj (35)

Proof.
Suppose that for a given object x ∈ Ue−h ∪ (U−h \ U

−
h+1) there exists a

k ∈ J1 ; h− 1K such that xRr−Ztk:
∀j ∈ J1 ; kK, we have: U−h,k ⊆ U−h,j since U−k ⊆ U−j ; ∪h−1

l=k (Ue−l ∪ Ur−l ) ⊆
∪h−1
l=j (Ue−l ∪ Ur−l ); and ∪j−1

l=1U
r−
l ⊆ ∪k−1

l=1 U
r−
l .

Hence ∃y ∈
[
∪hl=1U

e+
l ∪ U

+
h

]
∩U−h,k ⊆

[
∪hl=1U

e+
l ∪ U

+
h

]
∩U−h,j such that yPλx∨

yDx ∨ xIncomplowerZtk
Thus, xRr−Ztj . �

Remark 10. The updates of negative and positive reasons leads to a change
of some reference profiles, either to a better or to a worse category. In case
the strict preference relation is not used in the assessment of negative reasons,
positions of reference profiles cannot change to a worse category. The updated
sets of reference profiles can be formulated as:

Ztuk = Ztk \
(
∪k−1
j=1U

e+
j ∩ (∪k−2

j=1U
r−
j )
)
∪(

∪k−1
j=1U

e+
j \ U

−
k−1

)
∪
(
∪q−1
j=kU

e−
j \ (∪k−1

j=1U
r−
j )
)

(36)

Since the sets of reference profiles are updated, we have more objects to
rate. Thus, we note Atu the new set of objects that need to be rated at the
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current step t ∈ T . Atu can be formulated as:

Atu = At ∪
(
Zt1,q \ (∪q−1

j=1Z
t
uj)
)

(37)

7 Recommendation construction
Once the procedure of consistency checking terminated and the positive and
negative reasons updated we have the sets U+

k , Ue+
k , U−k , Ue−k , and Ur−k , for

all k. These are the basis for constructing a “challenge-free” rating of the set
Atu (see equation 37). The reader will recall that we already defined Ht

k (Ltk)
as the sets of objects for which the best (worst) rating is k before consistency
checking (using the set At). Updating the set to rate we need to construct the
new partition Ht

u,1, ...,H
t
u,q, and Ltu,1, ..., Ltu,q.

We proceed through four steps. We first define the binary relation allowing
to construct the partition. Then we show that this binary relation satisfies the
expected monotonicity properties. We then define the sets Ht

uj and Ltuj and
we show that these are exactly the partition we are looking for. At the end of
the section, in order to refine the obtained partition we introduce the set U2+

k

exploiting the notion of distance already introduced in Section 4.

Definition 17. <t is a weak order built on (2At
u × Ztu) ∪ (Ztu × 2At

u), rep-
resenting the preference between a subset of Atu and sets in Ztu. ∀t ∈ T,<t,
defined as follows:

1. On Ztu × 2At
u : ∀x ∈ Atu,∃k ∈ J1 ; qK such that:

Ztu,k <
t {x} ⇐⇒

x ∈
(
∪q−1
j=k−1U

e−
j ∪ U−k−1

)
\ ∪k−2

j=1U
r−
j k > 2;

x ∈ ∪q−1
j=k−1U

e−
j ∪ U−k−1 k ≤ 2;

(38)

2. On 2At
u × Ztu: ∀x ∈ Atu,∃k ∈ J1 ; qK such that:

{x} <t Ztu,k ⇐⇒
{
¬(Ztu,k+1 <

t {x}) ∧ (x ∈ ∪kj=1U
e+
j ∪ U

+
k ) k 6= q

x ∈ ∪qj=1U
e+
j ∪ U+

q

(39)

The binary relation <t, (to be used for the assessment of Ht
u,h and Ltu,l for

all h, l ∈ J1 ; qK), is characterized by the following proposition:

Proposition 7. (properties of <t) For a given t ∈ T , x ∈ Atu, Ztu,k ∈ Ztu, we
have the following properties:

1. If a set of reference profiles characterizing a rating k is at least as good
as x than any set of reference profiles characterizing a better rating is at least
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as good as x. This can be formulated as:

Ztu,k <
t {x} =⇒ ∀s ∈ J1 ; kK, Ztu,s <t {x} (40)

2. If x is as good as a set of reference profiles characterising the rating k
then x is at least as good as any reference profile characterising a worse rating
(from k to q).

{x} <t Ztu,k =⇒ ∀s ∈ Jk ; qK, {x} <t Ztu,s (41)

Proof. For a given step t ∈ T , and x ∈ Atu,

1. Let us assume that ∃Ztu,k ∈ Ztu such that Ztu,k <t {x}. We aim to prove
that ∀s ∈ J1 ; kK, Ztu,s <t {x}.

Since for s ∈ J1 ; kK, we have: ∪q−1
j=k−1U

e−
j ⊆ ∪q−1

j=s−1U
e−
j ; U−k−1 ⊆ U

−
s−1;

∪s−1
j=1U

r−
j ⊆ ∪k−1

j=1U
r−
j , then x ∈ (∪q−1

j=s−1U
e−
j ∪ U−s−1) \ (∪s−1

j=1U
r−
j ). Hence,

Ztu,s <
t {x}.

2. Let us assume that ∃Ztu,k ∈ Ztu such that {x} <t Ztu,k. We aim to prove
that ∀s ∈ Jk ; qK, {x} <t Zts.

Since for s ∈ Jk ; qK, we have: ¬(Ztu,k+1 <
t {x}) =⇒ ¬(Ztu,s+1 <

t {x})
(justified by 40); Also ∪kj=1U

e+
j ⊆ ∪sj=1U

e+
j ; U+

k ⊆ U+
s (see proposition 2

“1.”). Hence, {x} <t Ztu,k =⇒ ¬(Ztu,s+1 <
t {x}) ∧ (x ∈ ∪sj=1U

e+
j ∪ U+

s ).
Thus, {x} <t Ztu,s. �

We are now able to introduce the definition of the rating partition of the
set Atu.

Definition 18. (Ht
u,h and Ltu,l, for h, l ∈ J1 ; qK)

For a given t ∈ T , the partitions of Atu, Ht
u,h and Ltu,l, for which the best

and the worse possible ratings are respectively h, l ∈ J1 ; qK, can be formulated
as: {

Ht
u,h = {x ∈ Atu, Ztu,h <t {x} ∧ ¬(Ztu,h+1 <

t {x})} h 6= q

Ht
u,q = {x ∈ Atu, Ztu,q <t {x}}

(42)

{
Ltu,l = {x ∈ Atu, {x} <t Ztu,l ∧ ¬({x} <t Ztu,l−1)} l 6= 1
Ltu,1 = {x ∈ Atu, {x} <t Ztu,1}

(43)

Definition 18, represents the assessment of the two partitions of Atu: Ht
u,h

and Ltu,l for all h, l ∈ J1 ; qK. A set Ht
u,h contains objects for which the best

possible rating is h. In other terms the best category for which x has no valid
negative reasons is h.

Valid negative reasons preventing being rated h−1 or better are formulated
as: (

∪q−1
j=h−1U

e−
j ∪ U−h−1

)
\ ∪h−2

j=1U
r−
j
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. To detail this formula, negative reasons against a rating h − 1 or better
contains:
• the negative reasons against being rated h − 1 or better unless they were

withdrawn to a better category U−h−1 \ ∪
h−2
j=1U

r−
j .

• the enriched negative reasons to a worse category than h − 1 they were
withdrawn to a better category ∪q−1

j=h−1U
e−
j \ ∪h−2

j=1U
r−
j

Ltu,l contains objects for which the worst possible rating is l. The worst
possible rating for an object x is the best category for which x has no valid
negative reasons and valid positive reasons for being rated l. The absence of
valid negative reasons are represented by ¬(Ztu,k+1 <

t {x}). Valid positive
reasons are presented by ∪kj=1U

e+
j ∪ U+

k . At this point we only need to show
that the above defined sets form indeed a partition of the set Atu.

Proposition 8. For a given t ∈ T , the sets Ht
u,1, ...,H

t
u,q and Ltu,1, ..., Ltu,q,

are two partitions of Atu.

Proof. At a given step t ∈ T :

1. Let’s prove that Ht
u,1, ...,H

t
u,q is a partition of Atu.

Since, based on Proposition 7, for all h, j ∈ J1 ; qK, h < j, Ztu,j <t
{x} =⇒ Ztu,h+1 <

t {x}, we have:

Ht
u,h ∩Ht

u,j = ∅ (44)

For all x ∈ Atu, we have Ztu,1 <t {x} (even in case x has no valid negative
reasons x ∈ U−0 = At \ U−1 ) Hence:

x ∈ Atu =⇒ Ztu,1 <
t {x}

=⇒
(
Ztu,1 <

t {x} ∧ ¬(Ztu,2 <t {x})
)
∨ ...

∨
(
Ztu,q−1 <

t {x} ∧ ¬(Ztu,q <t {x})
)
∨ Ztu,q <t {x}

=⇒ ∪qj=1H
t
u,j

Also since for all h ∈ J1 ; qK: Ht
u,h ⊆ Atu, we have:

∪qh=1 H
t
u,h = Atu (45)

From 44 and 45, Ht
u,1, ...,H

t
u,q is a partition of Atu.

2. Let’s prove that Ltu,1, ..., Ltu,q is a partition of Atu. Based on Proposition 7,
for all l, j ∈ J1 ; qK, j < l, {x} <t Ztu,j =⇒ {x} <t Ztu,l−1, we have:

Ltu,l ∩ Ltu,j = ∅ (46)

For all x ∈ Atu, we have {x} <t Ztu,q (since the way positive and negative
reasons are assessed, we will always have valid positive reasons and no valid
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negative reasons to be in the worst category). Hence:

x ∈ Atu =⇒ {x} <t Ztu,q
=⇒

(
{x} <t Ztu,q ∧ ¬({x} <t Ztu,q−1)

)
∨ ...

∨
(
{x} <t Ztu,2 ∧ ¬({x} <t Ztu,1)

)
∨ {x} <t Ztu,1

=⇒ ∪qj=1L
t
u,j

Since for all l ∈ J1 ; qK: Ltu,l ⊆ Atu, we have:

∪ql=1 L
t
u,l = Atu (47)

From 46 and 47, Ltu,1, ..., Ltu,q is a partition of Atu. �

A first rating might be established based on this partition. This rating
concerns objects for which the best and worst possible rating lead to the same
category: objects in Ht

u,k ∩ Ltu,k, for all k. However, the rating of objects is
not always precise: objects in Atu \ (∪qk=1H

t
u,k ∩ Ltu,k). Such objects require

additional information in order to be rated. This information can be seen as
additional positive reasons supporting a rating to one of the categories located
between the best and the worst possible categories. For this aim, we define a
symmetric binary relation based in the distance function dist, see definition 8.
This function represents a similarity measure evaluating how close is an object
from an updated set of reference profiles Ztu.

Definition 19. (U2+
k , for k ∈ J1 ; qK)

U2+
k , for k ∈ J1 ; qK, refers to the set of objects for which the rating is

not precise and the closest updated reference profiles are the ones rated k. for
k ∈ J1 ; qK, U2+

k can be formulated as:

U2+
k = {x ∈

(
(∪kj=1H

t
u,j) ∩ (∪qj=kL

t
u,j)
)
\ (Ht

u,k ∩ Ltu,k);xR+
2rZ

t
u,k} (48)

where R+
2r is a binary relation defined on Atu×Ztu, that can be interpreted for

(x, Ztu,k) as “x is as good as reference profiles characterizing Ck”. For x ∈ Atu,
R+

2r can be formulated as:

xR+
2rZ

t
u,k =⇒ Ztu,k = arg min

Z∈Kx⊆Zt
u

dist(x, Z) (49)

where Kx = {Ztu,k ∈ Ztu;x ∈
(

(∪kj=1H
t
u,j) ∩ (∪qj=kLtu,j)

)
\ (Ht

u,k ∩ Ltu,k)}.
Kx consists on sets of reference profiles characterizing categories for which

the rating of the object x is not precise based on <t.

The use of the second level of positive reasons may lead to the violation
of the convincing “condition”. In order to avoid that, Algorithm 3, starts by
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Figure 3: Rating Algorithm

rating objects for which the rating is precise, then the ones for which the rating
requires using the distance. The assignment of objects for which the rating is
not precise is computed from the best to the worst category. This direction
of rating is followed because each object x rated k based on the second level
of positive reasons lead to enriching positive reasons of other objects in worse
categories: an object y ∈ Ht

u,s with k < s (worse than k), such that yR+x
will be rated s and thus assigned to Zt+1

s . Also, the objects for which the best
possible rating, Ht

u,j with j ≤ k (obviously their worst possible rating l is
worst then k: k < l, otherwise they would be previously rated) will be assigned
to Zt+1

s . x will be then removed from the considered objects (will be added to
the set Z2r see Algorithm 3) and we will move to the next object having the
best second level of positive reasons.
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8 Performance of Dynamic-R
In this section, we will show that the obtained rating is convincing in case the
initial set of reference profiles Z0 is convincing. In other terms we show that
our method satisfies the two claims (1 and 2) presented in the Introduction.
We will also provide statistics about the precision of the rating before using
the symmetric relation dist.

8.1 The respect of the convincing condition
Obtaining a “convincing” rating is guaranteed by the following theorem:

Theorem 1. For t ∈ T , if Zt respects the convincing condition then Zt+1

respects the convincing condition.

Proof. For t ∈ T , for k ∈ J1 ; qK, let x be a reference profile in Zt+1
k .

Let us consider that there exists a reference profile y ∈ Zt+1
s characterizing

a category worse than k (k < s) such that such that yR+x and y /∈ U−k at
beginning of the step t+ 1.
We have: x ∈ Zt+1

k =⇒ ∃h ∈ J1 ; kK, l ∈ Jk ; qK : x ∈ Ht
u,h ∩ Ltu,l

We distinguish two cases:
Case 1 h = l: In such case, since yR+x, x would provide positive reasons

to y supporting its rating k. Hence:

y ∈ U+
k ∪ (∪kj=1U

e+
j ) (50)

Based on Definition 18, we have:

¬(yR−Zt+1
k ) =⇒ ∃j ≥ k : y ∈ Ht

u,j (51)

Thus from 50 and 51, we have ∃j ≤ k : y ∈ Ltu,j (better than k). Absurd since
y was assigned to a worst category s > k.

Case 2: h < l. In such case, since x was assigned by Algorithm 3 to a
category better than the one to which y was assigned, then x will provide
positive reasons to y (because yR+x) to be assigned to the best possible (for
which it has no valid negative reasons) category worse than k. Since y /∈ U−k , at
the beginning of the step t+1, then y had no valid negative reasons preventing
being rated k at the end of the step t. Hence, it would be assigned by the
algorithm to at least Zt+1

k . Absurd since y was assigned to a set of reference
profiles Zt+1

s characterizing a worse category. �

Theorem 1 guarantees that the obtained rating is convincing at each step.
A direct deduction of this theorem is the following:

Corollary 3. If Z0 is convincing, then for all t ∈ T , Zt is convincing
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Proof. Obvious: direct conclusion of Theorem 1. �
At the end of each step, the obtained rating is complete. This is formulated

in the following proposition.

Theorem 2. For t ∈ T , the resulting rating of Dynamic-R is complete:
Zt+1

1,q = Zt1,q ∪At.

Proof. By construction we have Zt+1
1,q ⊆ Zt1,q ∪ At. Let’s consider z ∈ Ztk.

In case neither positive nor negative reasons were updated, z will be in Ztu,k
and thus in Zt+1

k . Otherwise z will be in Atu. By construction we have At ⊆
Atu. Using Proposition 8: Ht

u,1, ...,H
t
u,q and Ltu,1, ..., L

t
u,q, are two partitions

of Atu. Also R+
2r is computed for all objects in Atu \ ∪k((Ht

u,k ∩ Ltu,k)). Hence
∪k(Ht

u,k ∪ Ltu,k)) = ∪k(U2+
k ∪ (Ht

u,k ∩ Ltu,k)). �

8.2 Statistics about the precision of the rating
In order to derive statistics about the precision of Dynamic-R before using
R+

2r, we will define a fitness index for each object. The fitness index represents
the precision of a given rating associated to an object. For instance, the best
fitness index corresponds to the case where the best and the worst possible
rating for any object refers to the same category, while the worst fitness index
corresponds to the case where for all objects the best possible rating is 1 and
the worst is q.

Definition 20. (fitness index)
The fitness index, for t ∈ T , is a function ft : Atu → [1/q, 1] assessing

the precision level of rating associated to objects based on best and the worst
possible rating. “ft” is defined as follow:

∀t ∈ T, ∀x ∈ Atu, ft(x) = q + ht(x)− lt(x)
q

(52)

where ht, lt : Atu → J1 ; qK, and ht ≤ lt, being respectively the best and the
worst ratings that can be taken by an object at a step t ∈ T .

Remark 11. ∀l, h ∈ J1 ; qK, x ∈ Ltl ∩Ht
h =⇒ (ht(x) = h) ∧ (lt(x) = l)

Definition 20 concerns the case where some objects might be interval rated
between a lower category l and a higher category h. Depending on how distant
these two categories are we establish the rating precision or fitness. There
might be several such objects which, for several different reasons, are not
precisely rated, but interval rated. For this reason we might define equivalence
classes of objects having the same fitness. These equivalence classes can be
defined as follow:

Definition 21. (The class of objects with an equivalent priority)
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The class of objects with equivalent priority Btj , at the step t, is an equiv-
alence class where all objects have the same fitness value. Such equivalence
class can be defined as follow: ∀j ∈ J0 ; q − 1K,

Btj = {x ∈ Atu; ft(x) = q − j
q
} (53)

Remark 12. Btj represents the set of objects for which the imprecision is j
q :

for an object x ∈ Btj , j = lt(x)− ht(x).

The set of equivalence classes can be used to describe the quality of the
rating based on the previously defined positive and negative reasons. Based
on the cardinality of Btj , Ht

u,j and Ltu,j for all j, we can draw a distribution
function related to the precision and the diversity of the rating (based on Ht

u,j

and Ltu,j for all j) before computing a symmetric binary relation. The mode,
the median and the mean can be provided to the decision maker.

These distributions can be also indicators about the quality of the reference
profiles and the objects to be rated: In case the number of objects rated with a
high precision is important, and the cardinalities of Ht

u,1∩Ltu,1, ...,Ht
u,q ∩Ltu,q

converge to a discrete uniform distribution, this means that the set of reference
profiles and the objects to be rated are very rich.

9 Conclusion and Discussion
This paper is aimed at presenting a new MCDA rating method, named
Dynamic-R which satisfies two important properties generally missing by other
similar at scope methods. Dynamic-R is “complete”: each object to be rated
can potentially be rated to a single category and no object can remain un-
rated at the end of a finite number of iterations of the procedure. Dynamic-R
is “convincing”: when an object x is definitely rated at a certain category k
there is no object y rated worst which is also preferred to x in direct com-
parison (y � x). In other terms Dynamic-R, despite being based on ordinal
information and the majority principle manages to avoid the well know Con-
dorcet paradox due to the intransitivity of the ordering relation. This result
is obtained because the method dynamically updates the positive and nega-
tive reasons thanks to which ratings are computed. Such updates take into
account each single object as soon as it is rated, which means that ratings are
dynamically updated as well until the whole set rating becomes stable.

More precisely the procedure uses a set of reference profiles which are ei-
ther typical objects of each category or boundary objects. We also introduce
“minimal requirements” which are not reference profiles for the categories, but
allow to establish negative reasons for certain ratings. Each rated object be-
comes on its turn a reference profile, implicitly allowing direct comparisons
among the objects to be rated. Ratings are computed using positive (support-
ing a rating) and negative reasons (adverse to a rating), which are dynamically
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updated. We compute the best and worst rating for all objects until ratings be-
come stable and in case of “interval assignments” we choose a precise category
using a distance function.

There are a number of features to which attention is needed. First, the
sequence of computing and updating the rating reasons is not free. We need
to start from the negative reasons before turning our attention to the positive
ones. Second, it appears that the use of a dominance relation instead of a
strict preference one provides more interesting results mainly when minimal
requirements are necessary in order to belong to certain categories (minimal
requirements not being profiles of the categories). Another point which needs
attention is the fact that although Dynamic-R is independent from the rating
sequence for any time step it is not formally proven that independence holds
all along the time steps. We strongly conjecture it is the case (due to Theorem
1), but we still need to prove it (in a forthcoming paper).

We see two possible improvements of this method. The first, quite straight-
forward, considers the use of ordering relations among subsets of objects, this
allowing to generalise the ideas introduced in this paper. This topic is the
subject of a forthcoming paper. The second, concerns the use of the method
within the framework of automatic rating devices (such as recommender sys-
tems, see Ricci et al, 2011; Rahutomo et al, 2018). The fact that the method
satisfies completeness and provides clear reasons for any rating computed al-
lows to use it automatically, although this may result in further challenges as
far as learning, updating and revising is concerned.

There are two issues which may be worth discuss further. The first con-
siders the “danger” in using a totally automated rating procedure. There are
certainly advantages in using a procedure which satisfies a number of desirable
properties (like the “convincing” property in our case), but excluding the clien-
t/decision maker is an issue to handle with care (see Tsoukiàs, 2021). It could
be that a reasonable compromise consists in implementing a hybrid version
where recommendations are submitted to the client/decision maker exploiting
the fact that the reasons for such recommendations are “clear” and (following
our definition) “convincing”. The second issue consists in raising the question
of why using majority based procedures which are subject to the Condorcet
paradox, which means that in case of a preference cycle the alternatives will
belong to the same category, unless minimal requirements allow to make a dis-
tinction. Dynamic-R overcomes the problem using further information (which
is strictly necessary as shown in Vincke, 1982). However, if further information
is available then why not using preference difference measures (such as value
functions)? The issue opens interesting topics of investigation to be discussed
in a forthcoming paper about rating robustness.
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