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HYDRODYNAMIC LIMIT FOR THE NON-CUTOFF BOLTZMANN
EQUATION

CHUQI CAO AND KLEBER CARRAPATOSO

ABSTRACT. This work deals with the non-cutoff Boltzmann equation for all type of po-
tentials, in both the torus T® and in the whole space R®, under the incompressible
Navier-Stokes scaling. We first establish the well-posedness and decay of global mild
solutions to this rescaled Boltzmann equation in a perturbative framework, that is for
solutions close to the Maxwellian, obtaining in particular integrated-in-time regulariza-
tion estimates. We then combine these estimates with spectral-type estimates in order to
obtain the strong convergence of solutions to the non-cutoff Boltzmann equation towards
the incompressible Navier-Stokes-Fourier system.
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1. INTRODUCTION

Since Hilbert [50], an important problem in kinetic theory concerns the rigorous link
between different scales of description of a gas. More precisely, one is interested in pass-
ing rigorously from a mesoscopic description of a gas, modeled by the kinetic Boltzmann
equation, towards a macroscopic description, modeled by Euler or Navier-Stokes fluid
equations, through a suitable scaling limit. We are interested in this paper on the conver-
gence of solutions to the Boltzmann equation towards the incompressible Navier-Stokes
equation, and we refer to the book [66] and the references therein to a detailed description
of this type of problem as well as to different scalings and fluid limit equations.

We introduce in Section 1.1 below the (rescaled) Boltzmann equation, and then in
Section 1.2 we describe the incompressible Navier-Stokes-Fourier system, which is the
expected limit. We finally present our main results in Section 2.

1.1. The Boltzmann equation. The Boltzmann equation is a fundamental model in
kinetic theory that describes the evolution of a rarefied gaz out of equilibrium by taking
into account binary collisions between particles. More precisely, it describes the evolution
in time of the unknown F'(¢,z,v) > 0 which represents the density of particles that at
time ¢t > 0 and position z € Q, = T? or Q, = R? move with velocity v € R3?. It was
introduced by Maxwell [62] and Boltzmann [15] and reads

(1.1) OF +v-V,F = éQ(F,F),

which is complemented with an initial data Fj;—o = Fp and where ¢ € (0, 1] is the Knudsen
number, which corresponds to the ration between the mean-free path and the macroscopic
length scale.
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The Boltzmann collision operator () is a bilinear operator acting only on the velocity
variable v € R3, which means that collisions are local in space, and it is given by

(1.2) Q(G, F)(v) = /RS [ Bl = 0..0)(GLF — G.F) do .

where here and below we use the standard short-hand notation F' = F(v), G, = G(vs),
F' = F(v'), and G, = G(v},), and where the pre- and post-collision velocities (v',v}) and
(v, vy) are related through
v v |v— v
(1.3) o =2 +‘ ’o and v, =
2 2
The above formula is one possible parametrization of the set of solutions of an elastic
collision with the physical laws of conservation (momentum and energy)

v+ve =0 4+v, and |u]* 4 |v? = |V + [Vl

The function B(v — v,, 0) appearing in (1.2), called the collision kernel, is supposed to be
nonnegative and to depend only on the relative velocity |v —v,| and the deviation angle 6
through cos @ := ﬂ:g:‘ - 0. As it is customary, we may suppose without loss of generality
that 6 € [0,7/2], for otherwise B can be replaced by its symmetrized form.

In this paper we shall consider the case of non-cutoff potentials that we describe now.

The collision kernel B takes the form

B(v —ws,0) = |v — v,]7b(cos 0),

for some nonnegative function b, called the angular kernel, and some parameter v € (-3, 1].
We assume that the angular kernel b is a locally smooth implicit function which is not
locally integrable, more precisely that it satisfies

KO~172* <sinfb(cosf) < K197 with 0<s <1,

for some constant K > 0. Moreover the parameters satisfy the condition

3
(1.4) max{—3,—§—23}<’y§1, 0<s<l1l, ~v+2s>-1.
We shall consider in this paper the full range of parameters v and s satisfying (1.4), and
we classify them into two cases: When v 4+ 2s > 0 we speak of hard potentials, and when
v+ 2s < 0 of soft potentials. We also mention that cutoff kernels correspond to the case
in which we remove the singularity of the angular kernel b and assume that b is integrable.

Remark 1.1. When particles interact via a repulsive inverse-power law potential ¢(r) =

r~=1) with p > 2, then it holds (see [62, 25]) that v = 1;%‘;’ and s = ]ﬁ. It is easy to

check that v + 4s = 1 which means the above assumption is satisfied for the full range of
the inverse power law model.

Formally if F' is a solution to equation (1.1) with the initial data Fj, then it enjoys the
conservation of mass, momentum and the energy, that is,

d
S Ftave@deds =0, o) = Lol
dt Jo,xR3

which is a consequence of the collision invariants of the Boltzmann operator
|, QUE )W) dv =0, () = Lo, bl

Moreover the Boltzmann H-theorem asserts on the one hand that the entropy

H(F) :/Q XRSFlongvdaz,
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is non-increasing in time. Indeed, at least formally, since (x—y)(log z—log y) is nonnegative,
we have the following inequality for the entropy dissipation D(f):

D(f) = —%H(F) - —/Q QR F)dvda

1
4 Q:xR3xR3x8S2

F'F]
B(v —vs,0)(F'F, — F,F)log (FF*) do dv, dvdz > 0.

*

On the other hand, the second part of the H-theorem asserts that local equilibria of the
Boltzmann equation are local Maxwellian distributions in velocity, more precisely that

p(t,x) v — u(t, z)[?
( ) <:> Q( ) ) <:> ( 7'%'71}) (2779(t,$))3/2 eXp ( 29(t,l‘) )
with p(t,z) > 0, u(t,z) € R? and (¢,z) > 0. In what follows, we denote by u = u(v) the
global Maxwellian

Observing that the effect of collisions are enhanced when taking small parameter ¢ €
(0,1], one can expect from the above H-Theorem that, at least formally, in the limit ¢ — 0
the solution F' approaches a local Maxwellian equilibrium. One therefore considers, see
for instance in [12], a rescaling of the solution F' of (1.1) in which an additional dilatation
of the macroscopic time scale has been performed in order to be able to reach the Navier-
Stokes equation in the limit. This procedure gives us the following rescaled Boltzmann
equation for the new unknown F¢ = F¢(t,x,v):

1 1
(1.5) OFF + —v -V, F* = S Q(F, F°),
g £

with initial data Fﬁ:o = F§.

In the torus case €, = T? (normalized as |T?| = 1), we shall always assume, thanks to
the conservation laws, that the initial datum F{ satisfies the normalization

(1.6) [, [ B ol ol dvds = [1,0,3]
T3 JR3

that is, the initial data F{j has the same mass, momentum and energy as p, and the
Maxwellian g is the unique global equilibrium to (1.5).

In order to relate the above rescaled Boltzmann equation (1.5) to the expected incom-
pressible Navier-Stokes-Fourier system (described below in (1.13)) in the limit ¢ — 0, we
are going to work with the perturbation f¢ defined by

(1.7) P =pu+ey/ufs,

which then satisfies the equation

€ 1 e _ i € 1 e re
(18) O+ 0 Vaft = LI+ ST (f7 f°),
with initial data f§ = i‘?fuﬂ, and where we denote
(1.9) L(f,9) = u *Q(Vif. Vhg),
and
(1.10) Lf =TV f) + T(f, V).

In the case of the torus €2, = T3, we observe from (1.6) that f§ satisfies

(1.11) / / Fe(a, o)1, 0, [o]2| /() dvdz = 0,
T3 JR3
and from the conservation laws recalled above that

(1.12) /TS /RS £t @, 0)[L, v, |02 VE(v) dode = 0.
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1.2. The Navier-Stokes-Fourier system. We recall the Navier-Stokes-Fourier system
associated with the Boussinesq equation which writes

O+ u - Vau — v1Azu = Vap,
00 +u -Vl —1uA0 =0,
div,u =0,

Vai(p+0)=0,

(1.13)

with positive viscosity coefficients vy, 5 > 0. In this system, the temperature 0 = (¢, x) :
R x Q, — R of the fluid, the density p = p(t,z) : Ry x Q, — R of the fluid, and the
pressure p = p(t,x) : Ry x Q, — R of the fluid are scalar unknowns, whereas the velocity
u=u(t,z) : Ry x Q, — R3 of the fluid is an unknown vector field. The pressure p can
actually be eliminated from the equation by applying to the first equation in (1.13) the
Leray projector P onto the space of divergence-free vector fields. In other words, for u we
have

Ou — 1 Azu = Qns(u, u),
where the bilinear operator (g is defined by

3
Qns(v,u) = —%P(div(v @u) +diviu ®v)), diviv@u) = Z O (vuk) = div(viu),
k=1

and the Leray projector P on divergence-free vector fields is as follows, for 1 < j < 3 and
all £ € Q,

3
Fo(PFY(©) = Fulf)(€) |£|st]skf by(e) = Z(éj,k—lﬁjﬁ L(F9)(),
k=1

where F, denotes the Fourier transform in the spatial variable z € €}, see for instance
[10, Section 5.1].
We therefore consider the system
Ou — 1 Azu = Qns(u, u),
0:0 +u - V0 — 1A 0 =0m
divyu =0,

Va(p+6) =0,

(1.14)

for the unknown (p,u,#), which is complemented with a initial data (pg,uo,8p) that we
shall always suppose to verify

(1.15) div, ug = 0, Vx(po + 60) =0.

In the case of the torus Q, = T3, we suppose moreover that the initial data is mean-free,

namely
/ po(x)dex = / uo(x)de = / Oo(z)dx =
T3 T3 T3

which then implies that the associated solution (p,u,6) also is mean-free

(1.16) /1“3 p(t,x)dx = / u(t,z)de = 0(t,x)dx = 0.

T3 T3

2. MAIN RESULTS

Before stating our results we introduce some notation. Given a function f = f(z,v) we
denote f(&,v) = Fu(f(-,v))(§) the Fourier transform in the space variable, for § € €y = Z3
(if Q, = T3) or Q= R3 (if Q, = R?), more precisely

1

fEv) = @n)h /RS e f(z,v) dz.
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In particular, we observe that if f satisfies (1.8), then for all £ € Q, its Fourier transform

in space f€(5 ) satisfies the equation

2.1) 0F(6) = (L ~iev - OF(©) + T )(E),
where R ~
L(f,9)€) = > U (Fe—n).am) if Q=T

nez?

or
ro© = [ T(Fe-m.gm)dn if © —R
R3
For functions f = f(x,v) we write the micro-macro decomposition
(2.2) f=Ptf+Pf, P-=1-P,
where P is the orthogonal projection onto Ker(L) = {,/k, v/, [v|*\/i} given by
v|? —

(23 Pl = {pm (@) + ulfl(a) v+ emmw} V().
where

@) = [ o) Vi) do,

ulfl(@) = [ | flavoyit) do,

v|? —
0[f](z) =/R3f(:c,v)w\/ﬁ(v) dv.

The function P f is called the the microscopic part of f, whereas Pf is the macroscopic
part of f.

We now introduce the functional spaces we work with. For every £ > 0 we denote by
L2((v)*) the weighted Lebesgue space associated to the inner product

oDz = (O F @ o)z = [ Fo0)* do,

and the norm
£ 22 (yey = 10 Fll 2

where L2 = L?(R}) is the standard Lebesgue space. We denote by H2* the Sobolev-type
space associated to the dissipation of the linearized operator L defined in [4] (see also [44]
for the definition of a different but equivalent anisotropic norm), more precisely we denote

(2.4) 1 e ey = 1€0) Fll g

where

”f”fqgv* = /R3 /RS /52 b(cos0)|v _U*‘,YM(U*)[f(U/) _ f(U)]QdUdU* dv
* /R /R /S b(cos 0)|v — v, |7 f (0)2[V(v') — E(v)]? do dv, dv,

which verifies, see [4, 44],

)72 Fll 22 oyey + 1072 Fll s vy S NF s ey S 160258 Fll s ey -
We also define the space (HS*)" as the dual of H*, namely
(2.6) Hf”(Hﬁ’*)’ = sup (f, ¢>Lg-

*<1
I6ll75.+ <

(2.5)

We further define the space HS**({v)?) as the space associated to the norm

(2.7) 115 pey = NP P gy + (D) P 2,
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where a(D,,) is the Fourier multiplier a(§) = %, which gives, in Fourier variable,
(2.8 B ety = IP-FE ey + S IPFCE)IE
. Hs ** [) = HE,*(< L%

G

Finally, given a functional space X in the variables (t,&,v), we shall denote by F, }(X)
the Fourier-based space defined as

FX) = {f = ftw) | Fe X},

Hereafter, in order to deal with the torus case 2, = T2 and the whole space case 0, = R?
simultaneously, we denote Lp = (P(Z3) in the torus case and Lp LP(R3) in the whole
space case, moreover we abuse notation and write

> (6 it Q=2
[ o adg= 57
A / sE)de  if O =R3,
R3
In particular, we shall consider below functional spaces of the type F, 1(L§L?L%((v>£))

;I(ld fw)l(L’gL%Hi’*((vV)) (or f;l(LgL%Hg’**(@y))) and the respective norms, for f =
t’ x’ v )

1/p
||fHL§L§°L%((U)Z) = (/Q’ igg ||f(ta£a )HI[)/%((v)Z) dg) for pe [1,—|—OO),

E -
and
1/p

~ p/2
AN e L2 g (yy = (/ {/0 I1F(t,€,- Mz (o df} dE) for pe[l,+00),
3

with the usual modification for p = 4o00.

2.1. Well-posedness for the rescaled Boltzmann equation. Our first result concerns
the global well-posedness, regularization and decay for equation (1.8) for small initial data.

Theorem 2.1 (Global well-posedness and decay for the Boltzmann equation). Let ¢ > 0.
There is ng > 0 small enough such that for all € € (0,1] the following holds:

(1) Torus case Q, = T3: For any initial data f§ € f;l(LéLg(@y)) satisfying (1.12) and
HJ?SHLéL%(@)@) < no, there exists a unique global mild solution f¢ € f;l(L%LfOL%(@)K) N
L%L%Hg’*(@)g)) to (1.8) satisfying (1.12) and the energy estimate

(2.9) Hf||L1L°°L2(< —||P f||L1L2HS *(wye) T HPf||L1L2L2 S ||fo||L1L2 y)-

Moreover we have the following decay estimates: In the hard potentials case v+ 2s > 0,
there exists A > 0 such that

N 1 - N -
(2.10) He/\f”LéL;ng((v)f) + gHeAPlfHL%LfHﬁ’*((vV) + HeAPf”LéLfL% < Hf()gHLng(@)f)’

where we denote ey : t e M. In the soft potentials case v+ 2s < 0, if £ > 0 then for any

O<w< T +2 | there holds

- 1 15 . -
(2.11) ||pquHLéL§°L% + g”PwP fHL%L%HS’* + ||PwPf||L§L§Lg < HfSHLéL%((v)f),
where we denote py, 1 t — (1 +1)“.

(2) Whole space case QmA: R3: Letp € (A3/2, oo]. For any initial data f§ € f;l(LéL%(@)é)ﬂ
L{L3((v)")) satisfying Hf(ii:HLng((v)f) + HfSHngL%(@y) < o, there exists a unique global mild
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solution f* € F 1 (LELY° Ly ({v) )NLELE Hy ™ ((v)))NF H(LELY Ly ((0) )NLELL Hy ™ ((v)"))
to (1.8) satisfying the energy estimate

(2.12)
€
1Pl sts 3o + 0P Flis ez H pJ
L1L2L2
A €l
P lzpe sz + 1P Flozszmeo H S Blezaqe + 1B lzzezwo
et L§L§L2

Moreover we hcwe the following decay estimates: In the hard potentials case v+ 2s > 0,
for any 0 <9 < 3(1— —) there holds
Elpj

G

S ”]%HL%L%((U)Z) + HJ?SHLng((v)f)-

where we denote py : t — (1+t)7. In the soft potentials case y+2s < 0, if 0 < ¥ < %(1—%)

and £ > Y|y + 2s| there holds
PﬂﬁPJ?’
€ “lrizrs

S ”]\.OEHLéL%((U)Z) + HJ%”LE’L%(@)“)'

P21l 5o 20090 —”PﬂP Plgczas o) ’

(2.13) LeLiLy

N 1 ~
HpﬂfHLéLgoLﬁ + gHPﬁPLfHLgL%Hﬁ’* + ‘
(2.14)

The Cauchy theory and the large time behavior for Boltzmann equation for ¢ = 1 have
been extensively studied. Concerning the theory for large data, we only mention the global
existence of renormalized solutions [32] for the cutoff Boltzmann equation, and the global
existence of renormalized solutions with defect measure [6] for the non-cutoff Boltzmann
equation.

We now give a very brief review for solutions to the Boltzmann equation in a perturba-
tive framework, that is, for solutions near the Maxwellian. For the case of cutoff potentials,
we refer to the works [43, 70, 71, 17, 72] as well as the more recent [73, 31] for global so-
lutions in spaces of the form L HY ; and to [54, 61, 47, 69, 33] for solutions in Hﬁfv or
HYL2. On the other hand, for the non-cutoff Boltzmann equation, we refer to [44, 45]
in the torus case and to [4, 2, 3] in the whole space case, for the first global solutions
in spaces of the form Hé\fv by working with anisotropic norms (see (2.5)). The optimal
time-decay was obtained in [67] for the whole space, and recently [30] constructed global
solutions in the whole space.

All the above results concern solutions with Gaussian decay in velocity, that is, they
hold in functional spaces of the type H. é\fv for the perturbation f defined in (1.7), which

means that F' — u € Hé\fv(ufl/ 2). By developing decay estimates on the resolvents and
semigroups of non-symmetric operators in Banach spaces, Gualdani-Mischler-Mouhot [46]
proved nonlinear stability for the cutoff Boltzmann equation with hard potentials in
LILP((0)Ept/?), k > 2, that is, in spaces with polynomial decay in velocity (f € LLL((v)kul/?)
means F—p € LLL((v)¥)). In the same framework, the case of non-cutoff hard potentials

was treated in [49, 7], and that of non-cutoff soft potentials in [22].

The aforementioned results were obtained in Sobolev-type spaces, very recently Duan,
Liu, Sakamoto and Strain [34] obtained the well-posedness of the Boltzmann equation in
Fourier-based spaces L%L?"Li in the torus case, which was then extended to the whole
space case by Duan, Sakamoto and Ueda in [35], see also [23] for the whole space case in
polynomial weighted spaces. We also refer to the works [8, 21] for recent results on the
well-posedness for non-cutoff Boltzmann using De Giogi arguments.

In our paper, we establish uniform in € estimates for the rescaled non-cutoff Boltzmann
equation (1.8). Our result in Theorem 2.1 is similar to [34, 35], but the proof is quite
different. We first investigate the semigroup U¢ associated to the linearized operator 6% (L—
ev-V,) appearing in (1.8). We provide boundedness and integrated-in-time regularization
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estimates for U¢ (see Proposition 3.2), as well as for its integral in time against a source
JyUS(t — 5)S(s)ds (see Proposition 3.4). Together with nonlinear estimates for T' (see
Lemma 4.1), we are then able to take S equal to the nonlinear term I'(f, f) and prove the
global well-posedness of mild solutions of (1.8), namely

PO = U055 + 2 [ U= 9P 6), () s,

by applying a fixed point argument. The decay estimate is then obtained as a consequence
of decay estimates for U® (see Propositions 3.6 and 3.10) and for [J US(t — 5)S(s) ds (see
Propositions 3.7 and 3.11). It is important to notice that the fixed point takes place in the
space ]:x_l(L%LE’OL%((UV)ﬂLéL%H{f’*((v)g)) for the torus case, and in f;l(L%LfOL%(@)Z)ﬂ
L%LgHg’**(@y)) N f;l(ngLfoL%((vV) N ngL%Hi’**((vy)) for the whole space, that is,
the integrated-in-time regularization appears in the functional space. Furthermore, the
estimate for [J US(t — s)S(s) ds is a key ingredient for our fixed point argument, and on
the other hand it is also crucial for establishing the strong convergence in the proof of the
hydrodynamic limit established below in Theorem 2.3.

2.2. Well-posedness for the Navier-Stokes-Fourier system. Our second result con-
cerns the global well-posedness of the incompressible Navier-Stokes-Fourier system (1.14)
for small initial data.

Theorem 2.2 (Global well-posedness for the Navier-Stokes-Fourier system). There exists
m > 0 small enough such that the following holds:

orus case ), = : For any tnitial data (pg,ug, o) € F satisfying (1. an
1) T Q, =T3: F initial data (p bo) € F, ' (Lg sfying (1.16) and
H(ﬁoﬁoﬁo)HLé < m, there exists a unique global mild solution (p,u,0) € f;l(L%L;X’ N

L%((&))L?) to the Navier-Stokes-Fourier system (1.14) satisfying (1.16) and the energy
estimate

1P, @ O) |y e + [1€€) (2, 6, D)l iz S (1(Pos o, B0)l -

(2) Whole space case Q0 = R?’:A Let p € (3/2,00]. For any initial data (po,uo,00) €
f;l(L% OLE) satisfying ||(po, Uo, 90)||Lé + || (po, o, HO)HLg < m, there exists a unique global
mild solution (p,u,0) € f;l(L%Lfo N L%(\g!)Lf N L§L§° N Lé’(\ﬂ)Lf) to the Navier-Stokes-
Fourier system (1.14) satisfying the energy estimate

-~ -~ -~ -~

H(ﬁ? a? Q)HLEL;X’ + “‘5’(//)\7 a? Q)HLéLf + ”(ﬁ? a70)HL§L?° + H‘ﬂ(ﬁa ﬁv H)HLgL%
< 11o. 0. B0l + 1o 0, B .-

The incompressible Navier-Stokes equation, that is, the first equation in (1.14), possesses
a vast literature so we only mention a few works in the three dimensional case below, and
we refer the reader to the monographs [57, 10] and the references therein for more details.
On the one hand, global weak solutions for large initial data were obtained in the pioneering
work [58] (see also [51]). On the other hand, global mild solutions for small initial data
were obtained in [37, 53, 28, 19, 20, 38] in different Lebesgue and Sobolev spaces, and
we refer again to the book [57] for results in Besov and Morrey spaces. We mention in
particular the work of Lei and Lin [56] where global mild solutions in the whole space R?
were constructed in the Fourier-based space L{(|¢|~")Lg°.

Our results in Theorem 2.2 are maybe not completely new, but we do not have a refer-
ence for this precise functional setting (observe that the functional spaces in Theorem 2.2
correspond exactly to the same functional setting as in the global well-posedness for the
Boltzmann equation in Theorem 2.1). Therefore, and also for the sake of completeness,
we shall provide a complete proof of them in Section 5.

Our strategy for obtaining the global solution u for the incompressible Navier-Stokes
equation follows a standard fixed point argument. As in the proof of Theorem 2.1, we first
obtain boundedness and integrated-in-time regularization estimates for the semigroup V'
associated to the operator 1A, (see Proposition 5.1), as well as for its integral in time
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against a source [JV(t — s)S(s)ds (see Proposition 5.3). We then combine this with
estimates for the nonlinear term @Qng (see Lemma 5.4) to obtain, thanks to a fixed point
argument, the global well-posedness of mild solutions of the first equation in (1.14), namely

u(t) = V(t)ug + /Ot V(t — s)Qns(u(s),u(s))ds.

Once the solution u is constructed, we can obtain in a similar (and even easier way) the
well-posedness of mild solutions of the second equation in (1.14) for the temperature 6.
Finally we easily obtain the result for the density p thanks to the last equation in (1.14).

2.3. Hydrodynamic limit. Our third result regards the hydrodynamic limit of the
rescaled Boltzmann equation, that is, we are interested in the behavior of solutions
(f%)ee(o,1) to (1.8) in the limit e — 0.

Let (po,ug, 6p) be an initial data and consider the associated global solution (p,u,#) to
the incompressible Navier-Stokes-Fourier system (1.14) given by Theorem 2.2, where the
viscosity coefficients 11,5 > 0 are given as follows (see [12]): Let us introduce the two
unique functions ® (which is a matrix-valued function) and ¥ (which is a vector-valued
function) orthogonal to Ker L such that

1 v |2
\FL(f@)

then the viscosity coeﬂiments are defined by
2
v = / (V/p@)®\/pdv, VQZ—/ V- L(/p¥)y/pdo.
10 15 /g3
We define the initial kinetic distribution gy € Ker L associated to (po, ug,fo) by

v 2 _
(215)  gola.v) = Paola.0) = lﬂo@) Fugla) v+ %(x)LQ?’)] V),

and then we consider the kinetic distribution g(¢) € Ker L associated to (p(t),u(t),0(t))
by

5— |vf?
v

1
P s — L(JpY) =
3x3 — VR U, i (V1Y) 5 ,

(Iv]* = 3)

2| Vo).

Theorem 2.3 (Hydrodynamic limit). Let (f§)cc(0,1) satisfy the hypotheses of Theorem 2.1
and consider the associated global unique mild solution (f)cc(0,1) to (1.8). Let also (po,uo, o)
satisfy the hypotheses of Theorem 2.2 and consider the associated global unique mild solu-
tion (p,u,0) to (1.14). Finally, let go = Pgo be defined by (2.15) and g = Pg by (2.16).
There exists 0 < ng < min(ng,n1) such that if

(2.16) g(t,x,v) = Py(t,x,v) = [p(t,x) +u(t,x)-v+0(t,x)

max (|| f5llyze: 1Gollaze) S in the case Q= T,

max (HfSHL;Lg + 1752z ez 190l rezz + Hﬁol!Lng) <y in the case Q, =R,
for all e € (0,1] and
. AE _ -~ —
gg%”fo gO”LéL% 0,
then there holds
. AE‘ o~ _
(2.17) glg(l) [ gHL%L;’OL% = 0.

Remark 2.4. One can get a explicit rate of convergence in (2.17) if we suppose that the
initial data gy has some additional regularity in z, namely a rate of €° if the initial data
go satisfies

H<£>6:CJ\OHL%L% < 0,
for 0 € (0,1]. We refer to (6.25) and (6.26) for a quantitative version of this result.

Remark 2.5. Our methods can also be applied to the Landau equation with Coulomb
potential, and we obtain similar results as in Theorem 2.1 and in Theorem 2.3.
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Before giving some comments on the above result and its strategy, we start by providing
a short overview of the existing literature on the problem of deriving incompressible Navier-
Stokes fluid equations from the kinetic Boltzmann one, and we refer to the book by Saint-
Raymond [66] for a thorough presentation of the topic including other hydrodynamic limits.
The first justifications of the link between kinetic and fluid equations were formal and
based on asymptotic expansions by Hilbert, Chapman, Cowling and Grad (see [50, 27, 42]).
The first rigorous convergence proofs based also on asymptotic expansions were given by
Caflisch [18] (see also [55] and [29]). In those papers, the limit is justified up to the first
singular time for the fluid equation. Guo [48] has justified the limit towards the Navier-
Stokes equation and beyond in Hilbert’s expansion for the cutoff Boltzmann and Landau
equations.

In the framework of large data solutions, the weak convergence of global renormalized
solutions of the cutoff Boltzmann equation of [32] towards global weak solution to the
fluid system were obtained in [12, 11, 40, 41, 59, 60, 66]. Moreover, for the case of non-
cutoff kernels, we refer to [9] who proved the hydrodynamic limit from global renormalized
solutions with defect measure of [6].

We now discuss results in the framework of perturbative solutions, that is, solutions near
the Maxwellian. Based on the spectral analysis of the linearized cutoff Boltzmann operator
performed in [64, 26, 36], some hydrodynamic results were obtained in [65, 13, 39], see also
[24] for the Landau equation. Moreover, for the non-cutoff Boltzmann equation, we refer
to [52] where the authors obtained a result of weak-* convergence in L;X’(Hgv) towards
the fluid system by proving uniform in ¢ estimates. Up to our knowledge, our paper is
the first to prove a strong convergence towards the incompressible Navier-Stokes-Fourier
system for the non-cutoff Boltzmann equation. We also note here that, compared to former
hydrodynamical limit results, in our work we do not need any derivative assumption on
the initial data.

We now describe our strategy in order to obtain strong convergence results. Our ap-
proach is inspired by the one used in [13] for the cutoff Boltzmann equation, which was also
used more recently in [16, 39] still for cutoff kernels and in [24] for the Landau equation.
Indeed, as in [39, 24], using the spectral analysis performed in [36, 74, 75], in order to
prove our main convergence result, we reformulate the fluid equation in a kinetic fashion
and we then study the equation satisfied by the difference between the kinetic and the
fluid solutions. More precisely, we denote the kinetic solution by

fE) = Us(@) f5 + Vo5, £1),

and we observe, thanks to [13], that the kinetic distribution ¢ associated to the fluid
solution (p,u,6) through (2.16) satisfies

where U is obtained as the limit of U® and V¥ as the limit of ¥® when € — 0. The idea is
then to compute the norm of the difference f¢— g by using convergence estimates from U®
to U (see Lemma 6.3) and from W€ to ¥ (see Lemma 6.4), which are based on the spectral
study of [74, 75], together with uniform in e estimates for the kinetic solution f¢ from
Theorem 2.1. This was achieved in [39] for the cutoff Boltzmann equation by applying
a fixed point method, however, as explained in [24], this can not be directly applied to
the non-cutoff Boltzmann and Landau equations due to the anisotropic loss of regularity
in the nonlinear collision operator I'. To overcome this difficult for the Landau equation,
the authors in [24] proved new pointiwe-in-time regularization estimates not only for the
semigroup U but also for the solution to the nonlinear rescaled kinetic equation, which
were then used to close the estimates and obtain a result of strong convergence.

In our work, we propose a new method in order to obtain strong convergence using
only the integrated-in-time regularization estimates (as opposed to pointiwe-in-time regu-
larization estimates in [24]) for the semigroup U* as well as for [j US(t — 5)S(s) ds. More
precisely, the fixed point argument in the space F, I(L%LSOL% N L%L%Hf)*) for the torus
case, or in F, N(LELYLy N L Ly Hy*™) 0 F (LY L Ly N LYLEHy**) for the whole space,
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used for the global well-posedness in Theorem 2.1 above together with the corresponding
energy estimates are sufficient to estimate the 7 1(L%LtooL%)—norm of the difference f¢—g
and obtain strong convergence.

2.4. Organization of the paper. In Section 3, we first establish basic properties for
the rescaled linearized non-cutoff Boltzmann collision operator and then compute the
basic estimates for the associate semigroup. In Section 4 we prove the well-posedness for
the rescaled non-cutoff Boltzmann equation. We establish well-posedness for the Navier-
Stokes-Fourier system in Section 5. Finally we obtain the hydrodynamical limit result in
Section 6.

3. LINEARIZED BOLTZMANN OPERATOR

It is well-known, see for instance [63] and the references therein, that the linearized
Boltzmann collision operator L, defined in (1.10), satisfies the following coercive-type
inequality

(3.1) (Lf, iz < =P flFe-
where we recall that PX = I — P and P is the orthogonal projection onto Ker L given by
(2.3). For all € € (0,1] and all £ € Q, we denote by A®(£) the Fourier transform in space

of the full linearized operator E%L — %v - Vg, namely

(3.2) AS() = 6—12(L Ciev-£).

We first gather dissipativity results for the operator A®(€) obtained for instance in [68],
that we reformulate below as in [23] and inspired from [24, 14] in order to take into account
the different scales related to the parameter € € (0,1]. For every £ € € we define
i .~ oi

5 E0Lf(&)] - M[PH5(9)] + e M[P*f(€)]

€@ ulfE)>™ : {eP+g(e)] + 0 |

Blf,gl(§) =

(©)?
0o -

+ 25 (€ @ulge)™™ : {O[PF()] + 0[f(&)]1}

o

+ e plF(©) - ulg(€)] + )] -ulf (e

with constants 0 < 03 < d9 < §; < 1, where [ is the 3 x 3 identity matrix and the
moments M and © are defined by

M) :/RS Fo(lol? - 5)V/i(v) do, @[f]:/Raf(v@w—I) Jii(v) dv,

and where for vectors a,b € R? and matrices A, B € R3*3, we denote

1 3
(a & b)sym = §(ajbk + akbj)lgjkgg, A:B= Z AjkBjk-
Jk=1

We then define the inner product (-, -))z2 on L7 (depending on &) by

(3.3) (F(€), 3N 12 = (F(©),5(&) 12 + £BIf. 91(&),
and the associated norm
(3.4) IF N2 = (F©), FE)Dzz-

In a similar fashion, for any £ > 0, we define the inner product (-, ")) 72 () on L2((v))
(depending on &) by
(F(©), GO L2 pyey = (F(€),5(E)) 12 + S0P F(€), PHG(E)) 12 1wy

(3.5)
+eBlf,91(§),
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with §; < 0y < 1, and the associated norm
(3.6) IF N2 ey = (FE)s FED L2 (qwye)-

It is important to notice the factor € in front of the last term in the right-hand side of
(3.3) and (3.5).

Arguing as in [68], the main difference being the factor ¢ at the second term of (3.3)
and (3.5), we obtain the following dissipativity result.

Proposition 3.1. We can choose 0 < §3 < dy < §1 < dp < 1 appropriately such that:

(1) The new norm |||~ [||p2(w)e) s equivalent to the usual norm || - || 12 () on L2((v)%) with
bounds that are independent of & and e.

(2) If Qp = T3, for every f satisfying (1.12) we have, for all £ € Z3,

Re((A°(€) F(€), FE)D1a(wyry < — ( S I F s ey + HPf(f)H%g) ,
for some constant Ag > 0.
(3) If Q. = R3, for every f we have, for all £ € R3,

Re((A*()f(€), FE Lawyr) < — ( SIP e ) +%HPf( )Hig>,

for some constant Ag > 0.

The aim of this remainder section is to obtain, using the dissipativity result of Proposi-
tion 3.1, decay and regularization estimates for the semigroup associated to the linearized
operator A°. We denote in the sequel by

(3.7) U(t,€) = MO,
the semigroup associated to A®(€), and by
(3.8) US(t) = F, 'US(t) Fo,

the semigroup associated to e%(L —ev-Vy).

3.1. Boundedness and regularization estimates. We first provide boundedness and
integrated-in-time regularization estimates for the semigroup U (see Proposition 3.2) as
well as its integral in time against a source [j US(t — s)S(s)ds (see Proposition 3.4).
These are the key estimates we shall use later in order to prove the well-posedness results
for the rescaled Boltzmann equation (1.8) in Theorem 2.1. They are also crucial for
establishing the convergence of some of the terms in the proof of the hydrodynamic limit
in Theorem 2.3.

Proposition 3.2. Let £ > 0 and p € [1,00]. Let fy € L%L%((v)f) and suppose moreover
that fo verifies (1.12) in the torus case Q, = T3. Then

~ —~ 5 ~
10 Al sgory £ VPO ollpszne o+ PO o

S 1 foll 2z oy
— PL3((0)%)>

and moreover, in the torus case, we also have that U®(t) fo verifies (1.12) for all t > 0.
Remark 3.3. Observe that, in the torus case €, = T, one can replace the term %Pﬁa(-)ﬁ]
in above estimate by PU®(-) fo since U*(t) fo verifies (1.12).

Proof. Let f(t) = U¢(t)fo for all ¢ > 0, which satisfies the equation

(3.9 0f = 5(L—c0-Va)f, fima=fo

We already observe that in the case of the torus, f(t) verifies (1.12) thanks to the properties
of L. Moreover, for all £ € Z3 (if Q, = T3) or all £ € R? (if Q, = R?), the Fourier
transform in space f satisfies

~ ~

(3.10) Of(€) = A(OF(E),  F(E)=0 = Fo(&).
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Using Proposition 3.1 we have, for all ¢t > 0,

o~ o~

thH\f( MZ2 ey = Re@A () F(E): FION L2 0y

2
<o ( 1P oy +%|Pf< >||ig>,

which implies, for all £ > 0,
T2 L 1€ 2
17Oz ey + 5 [ IP4T0 Ol ds+ [ (o3 IPF6, Ol d5 S 1Az e

where we have used that |||f(£)|||L% is equivalent to ||f( )| z2 independently of £ and e.
Taking the supremum in time and then taking the square-root of previous estimate yields

Iz 3o + 2P FON 2z H'g' < 1A©llzz

L?L%

and we conclude by taking the Lé’ norm. O

Proposition 3.4. Let £ > 0 and p € [1,00]. Let S = S(t,x,v) verify PS = 0 and
(v)'S € Lé’L%(Hgv*)’, and denote
t
t):/ U=(t — 5)S(s) ds.
0

i

1951 e ra ey + 1P Fslliprzaze ) + H@Pgs

Then

o
< el @ Sl zsy-

2
LYL2L3

Remark 3.5. As in Remark 3.3, we observe that in the torus case 2, = T? one can replace

the term %Pﬁs in above estimate by Pggs.

Proof. We first observe that gg satisfies the equation

1
(3.11) Orgs = g_z(L —ev-Vg)gs +5, Ggu=o =0,
thus, for all for all ¢ € Z3 (if Q, = T3) or all £ € R3 (if Q, = R?),
(3.12) 0igs(€) = A°(§)s(€) + 5(8),  §(©)j=0 =0,
that is, for all t > 0 ,
t A~ ~
(313) s(t.6) = | U%(t = 5,9)8(s,)ds

We remark from (3.3) and the fact that P.S = 0 that
(S(€), 35N 12 (qwyey = (5(€),35(€)) 12 + 60 (PS(€), PLG5() 12 (1uyey + €BIS, gs](€)

= (S(&), P1Gs()) 12 + 00(PH5(€), PG5 (€)) 12 (pye) + € BIS. 951 (6).
Using again that PS = 0, so that p[S] = u[S] = 6[S] = 0, we have
5 . 1a 5 sym . 1a
BIS.05)(€) = €015 O] MIPAS(0) + 1 (€ © ulas() ™ : O[P-5(¢)]
therefore observing that for any polynomial p = p(v) there holds
[, S©pw)V) dv] £ 18l e-y-
we get

1€l
"€

(5(6),P49s5(€)) 1z SIS rrzy PG5 (E)ll g

|BIS. g1(€) S IPHSE)zz3+y 777 PG5 (€)]] 2.

Moreover
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and

(S(), PG5 (&) r2 ey = ()7 5(8), (0) PG5 () 12

S Y SN gz 1(0) PG () e
Gathering previous estimates yields
(3.14)
~ ~ < La 1L~ ﬂ
(S(€), s (N r2(wyey < 1K0) Sl earzy (HP G5 s (1)) +€< >HPQS( )HLg) :

Using Proposition 3.1 and arguing as in Proposition 3.2 we have, for all ¢ > 0 and all
§ € 9,

(3.15)
;i’”gS( )‘H%g((vyz) < =X <€ PG (¢ )”Hs (o) T %HP%(OH%)
+ I BOlry (P8 e + 151 1PTS(O 12
<—%< IR 12e, m%u §S(§)”%g>
+ CE SO sy
where we have used Young’s inequality in last line, which implies
195060y 5 ] 106 Dl s + [ LG €

<e? / ()55, €)1 ye ds.

Taking the supremum in time and then taking the square-root of previous estimate yields

H €l 5

195 ()l 5o 22wy —IIP 95l 22 mrz= ((w)e S ell) Sz sy

L?L%

and we conclude by taking the Lg norm. O

3.2. Decay estimates: Hard potentials in the torus. In this subsection we shall
always assume v + 2s > 0 and €, = T3, and we shall obtain decay estimates for the
semigroup U¢ (see Proposition 3.6) as well as its integral in time against a source fg Us(t—
5)S(s)ds (see Proposition 3.7). We recall that given any real number A € R we denote
ey:t— et

Proposition 3.6. Let £ > 0. Let fy € L%L%((v)f), then

lexUc (- )fOHLlLooL2(< —He/\PLU ( )f0HL1L2HS *(wye) T He,\PU (- )fOHLéLfL?)
< Hf0||L§Lg((u)€),
for some X\ > 0 (depending on Ay of Proposition 3.1).

Proof. Let f(t) = US(t)fo for all ¢ > 0 which satisfies (3.9), so that f(t,&) = US(t,€)f(€)
satisfies (3.10) for all ¢ € Z3. Using Proposition 3.1 we have, for all ¢ > 0 and some \g > 0,

2 1 17 2 N 2
5 TIF Oy < =0 (IO ) + IPFOIE; )

which implies, since || - [|gs=((ye) = [|(w)7/2Fs . lzz > |l - llz2¢)ey and the fact that
[FRE Ell 2 (wyey is equivalent to 1f2(¢ M 22 ((yey independently of & and g, that

3 IOy < ~MF Oy — o (IPLFOI oy + IPFEE: )
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for some positive constants A\,o > 0 depending only on the implicit constants in Proposi-
tion 3.1-(1) and on A9 > 0 appearing in Proposition 3.1-(2). We therefore deduce

d R 1
a {62”””(5)”&%(@)0} < et (6_2||Plf( )HHS* + ||Pf( )H%g) )

which implies, for all £ > 0,

~ 1 t ~ t ~
NI () + = /0 [P F(s, )| 2me ey ds + /0 P f(s,6)]2 ds
Gl

where we have used again that ||| f(€)|| 12 is equivalent to 17l 12 independently of § and
e. Taking the supremum in time and then taking the square-root of previous estimate
yields

lexf(€)llee 21y —HeAP FOlzzmz o) + 1xPFElrzez S 1oz o),
and we conclude by taking the L% norm. O

Proposition 3.7. Let { > 0. Let X > 0 be given in Proposition 3.6. Let S = S(t,z,v)
verify PS = 0 and ey (v)'S € L%L%(Hi’*)', and denote

£) = /Ot U=(t — 5)5(s) ds.

Then

~ 1 1IPN ~ LaQ
HeAgs”LéLgOLg(@y) + gHeAP gSHL%Lij’*((v)Z) + HeAPgSHLéLng S ellex(v) S”LéLf(Hﬁ’*)/'
Proof. Recall that gg satisfies equation (3.11) and § verifies (3.12) for all ¢ € Z3 as well

as (3.13). Thanks to (3.15) and using that || || s+ ey > (| (v)1/24s.. lz2(wyey 2 11 L2yt
as in the proof of Proposition 3.6, we get for all t > 0

1d R .
5 19s(€ Mz ey < —AGs 172 (ruyey — 0 ( S IPHGs ()15 yey + ||PQS(5)H%3>
+ O (0) SO E ey

for some constants A, o, C' > 0. We therefore deduce

d g ax > oxt (L ipLla oy2 S 2
aq { llgs (& )H’Lg(@y)} < —oe (;HP 95Oz =y + ”PQS(QHLg)

+ C2N [ (0) S (O)Egsy

which implies, for all £ > 0,
G5 (8 I ey + ig /t MNP Gs (s, )G (yey ds
i e2 Jo v
+ [ IPgs(s, Ol ds 5 [ PS5, g s
Taking the supremum in time and then taking the square-root of previous estimate yields
llexds ()l Lge £z () —HeAP 35Oz iy yy + 103PFs () 1212 S ellex () S r2azy-

and we conclude by taking the L% norm. O
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3.3. Decay estimates: Soft potentials in the torus. In this subsection we shall always
assume v+ 2s < 0 and Q, = T3, and we shall obtain decay estimates for the semigroup U®
(see Proposition 3.8) as well as its integral in time against a source [ U®(t—s)S(s) ds (see
Proposition 3.9). We recall that given any real number w € R we denote p,, : t — (141)%.

Proposition 3.8. Let £ > 0 and f, € L%L%(( v)Y), then for any 0 < w < we have

W+2S|
P 1 P PN

P U () foll iz + g”pwPLUE(')fOHL%LfHS’* + PP U () fo)ll iz

S HfOHLéL% + HUE(')JCOHLngoLg((u)Z)-

Proof. Arguing as in the proof of Proposition 3.6, denoting f(t) = U¢(t) fo and using that
|- [+ > [[{0)?/2+2 || 12, we obtain

316) 3 TIF@IE: < MR, - o (SIP-FOI:- +IPFEIE;).

for some positive constants A, o > 0.
We now observe the following interpolation inequality: for any R > 0 there holds

(3.17) IF N2 S Ry 2 )72 + (RYF N2 quye)-
Therefore coming back to (3.16) and choosing (R) = [(A/w)(1 + )]/ 425l yields

GIFOIE: <~ + 07 NFOE - o (FIP-FO - + IPFOIE)

R | T e

for some constant C' > 0 (independent of ¢ and ). Multiplying both sides by (1 + )%
gives

2dt

FO(L+t)

Q|Q

@+ 02T OB} < —o1+ 0% (1P FQ - + IPFOI; )

+ O+ 02712 e

Integrating last estimate in time gives, for all ¢ > 0,

N |

w | T 1 ¢ w n ¢ w ny
(1402 1F 0O + % [0+ 92 IR Fs e ds+ [ (1492 [RFs, €)1 ds
~ o ~ 9 t 21— 2L
S 1fo@)llze + sup Hf(5,5)||L2(<U>e)/ (1+5) el ds,
s€[0,t] v 0
where we have used again that ||| f(¢)| 12 is equivalent to £ 12 independently of { and

e. Observing that (1 +¢ ﬁ,
supremum in time in last estimate and then its square-root to obtain

Ipe f(E)ll e 2 + —prPl FOlz g + 0P (s, 22 S 170z + 1)l L2

and we conclude the proof by taking the L% norm. O

20
Iv+2sl s integrable since 0 < w < we can take the

Proposition 3.9. Let S = S(t,z,v) verify PS = 0 and p,S € L%L%(H;f’*)’ for some
O<w< and £ > 0, and denote

£) = /Ot U=(t — 5)S5(s) ds.

Assume that gs € L%LSOL?)((UV), then we have

|+2\

~ 1 La ~
||pwgS||L%L§°L% + ngwP gSHLéL?Hf,’* + prPQSHLéLfL%

S ellpwSlipirz gy + 195l L5 L2 ()



HYDRODYNAMIC LIMIT FOR THE NON-CUTOFF BOLTZMANN EQUATION 17

Proof. Arguing as in the proof of Proposition 3.7, but using now that || - || gs«(yey >
[|(v)¥/2+s . |2 ((wy¢) as in Proposition 3.8, we have

1d 2 /24 2
(3.18) 5195 ©llzz < =) gs(©)lI7z — o QH sz + IPFs(E)I72

+ C52||§(£)||(Hg’*y-

for some constants \,o,C > 0. Using the interpolation (3.17) as in the proof of Proposi-
tion 3.8, we obtain

1d . . ~
GBS <~ + 07 g — o ( ZIP4as@ - + IPFs(©)IE:

2 dt
_ 135518
+C2SO sy + O+ G5 ()72 ((0ye):

for some constant C' > 0 (independent of £ and €). We can then conclude exactly as in
the proof of Proposition 3.8. U

3.4. Decay estimates: Hard potentials in the whole space. In this subsection we
shall always assume v + 2s > 0 and Q, = R?, and we shall obtain decay estimates for
the semigroup U® (see Proposition 3.10) as well as its integral in time against a source
J3U=(t — 5)S(s)ds (see Proposition 3.11). We recall that given any real number w € R
we denote p,, : t — (1 +1)%.

Proposition 3.10. Let { >0, p € (3/2,00] and 0 < 9 < 3(1—1). Let fo € LLL2((v)"),
then

Bl ppey 7

S HJ?OHL;Lg(@y) + H(/js(')ﬁ)HLé’Lg"L%((v)z)'

00T Ofolzgazez s + ZIPaP TV allgzzm e + o
LLL2L3((0)")

Proof. Let f(t) = US(t)fo for all £ > 0 which satisfies (3.9), so that f(t,&) = Ue(t,€)f(€)
satisfies (3.10) for all ¢ € R3. Using Proposition 3.1 we have, for all + > 0 and some
Ao > 0,

1 - &
Ay < o (6—2||Plf<£>||§fg,* o+ el >||%g> |
and we already observe that, using || - || s () > || (v)¥/2Fs . z2(wyey = [+ 22 (wye) and
€ (0,1],
| ¢? 3
SIPL RO + iz IPTEIE: 2 1653 |>2|||f( Mayers

where we have used that ]Hf@)\HL%((U)z) is equivalent to Hf(§)HL%(<U>z) independently of &
and e. Therefore it follows
(3 19)

L2000 < =22 1
L2 ({v)*)

2
SR IF Ol o (QHPW My + P )”%g)

for some constants A\, > 0. We now split our analysis into two cases: high frequencies
|€] > 1 and low frequencies |¢] < 1.

2dt

€12

For high frequencies || > 1 we remark that @7 = 3, hence we obtain

1
2

1d - N
5&1|g|21Wf(f)”’%g((@f) < ALl FEONZ2 e

g

1 o~
-3 ( S1e>1[PEF(E WEzses qyey + 1|£|21HPf(§)”%%)'
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Arguing as in the proof of Proposition 3.6 we hence deduce

. 1 _ _
Lig>alleaf ()l oo pzyey + gl|§|21HeAPlf(é)HLfHS’*((U)Z) + Lgz1llexPf(E)llzzr2
S L1l F0(E) 22 gy

We now investigate the case of low frequencies |£| < 1. We denote by p’ the conjugate
exponent of p, that is 1/p + 1/p’ = 1 with the convention p’ = 1 if p = oo, and consider
a real number r verifying 1+ p'/3 < r < 1+ 1/(249), which we observe is possible thanks
to the conditions on p and 9. Remarking that |£]? < 2[¢|?/(¢)? if |¢] < 1, by Young’s
inequality we get: for any 6 > 0 there is C5 > 0 such that, for all |{| < 1 and ¢ > 0, we
have

(3.20)

€I
(©)?

We therefore obtain, coming back to (3.19) and choosing é > 0 appropriately,

(3.21) 1< 8(1+8) 2 1 O5(1 + ) 71 g] .

1d 1 P o 72
2dt |§|<1|||f( )|||L2 § 1\§\<1HP ( )HHS* ((v)® )+ 1|§|<1—2\|Pf(5)\|Lg

()
—9(1+ t)_11|g|<1Wf@)m%g((v)fv’)
11 __2 N
+C(1+t) g Ligj<a lF 172 pye)-
for some constant C' > 0. Multiplying both sides by (1 + t)w gives

1d —~
Sq {(1 + t)2191|§|<1H\f(f)”’%g((@f)}

—ﬁu+ﬂw<11@dm PO oy +1@3Hgmﬂ>ﬁﬁ
+O(1+ )P \5’731\§\<1|’J?(§)”Lg(<v>f)-
Integrating in time implies, for all ¢ > 0,
ﬂ+¢fﬁkkﬂﬁﬁﬁﬂﬁﬂwé+"%/71+3y%MKNPLﬂ&§W2y«wqu
+ [+ gt ipfe o, a
< egaalFo() 122 yey + Lt l€l™ IO 0 120y

where we have used that (1 +¢)* 7177 T s integrable since r < 1+ 1/(29). We now take

the supremum in time and finally the square-root of the resulting estimate, which gives

(3.22)
€]

G) 1212
~ 1
S Lg<all fo(E)l Lz ey + Ligg<a €l T () oo 2wyt -

N 1 N .
Ligi<1llpo f (€l oo L2 (0ye) + gl\§\<1||p19PLf(£)HL?HS’*((U)Z) + Ligj<1 ||[Po A Pf(E)

Gathering the estimate for high frequencies (3.20) together with the one for low fre-
quencies (3.22), it follows

IPof©llzz sy + HIpaP* F@ gy + @Pﬂa

L212

~ 1~
S o2 wyey + Ligg<al€l™ T 1A oo L2 ((wye)-
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Taking the Lé norm above, we use Holder’s inequality to obtain

e s 1/p"
/RS e <t | ™I F N pe r2 oyey 46 S </R3 Ligj<al€] 71 d5) 1122 2o 23y
S HfHLgL?OL%((UV)’

since r > 1 4 p’/3, which implies

el
Po ey i

N HﬁJHL%L%(@V) + ||f||L§L§°Lg(<v>e),

~ 1 1 7
Do Fll 2 rge r2 ye) + ngﬁP Hlziez s e + ‘ g
el

and concludes the proof. O

Proposition 3.11. Let £ > 0, p € (3/2,00] and 0 < 9 < 2(1 — %) Let S = S(t,z,v)
verify PS = 0 and py(v)'S € L%L?(Hg’*)’, and denote

= /t Us(t —s)S(s)ds.
0

Assume that gs € LZ’LE’OL%((U)K), then

€]
G

VXl ~
S ellpo(v) SHL%L%(Hf,’*)’ + ”gSHLf;LgOLg((v)f) :

~ 1 LA
IPoGsllzy ree 2 qwyey + ZIPoP~GsllLirz iy (o) + ’ - Pys

172
LLL?L3

Proof. Recalling that gg satisfies (3.12), we can argue as for obtaining (3.19) to get

1d as@e —2A'5'2||| g — o [ L IP G512 '5'2||P ©I2
2t 198 Ezz ey < 22731195 Oz o) = | w5 () T gy IPIs©NILs

+ CE2[[(0) S(E) 7 ey

for some constants A, o,C > 0. By separating the cases of high and low frequencies, we
can conclude exactly as in the proof of Proposition 3.10. O

3.5. Decay estimates: Soft potentials in the whole space. In this subsection we
shall always assume v + 2s < 0 and Q, = R3, and we shall obtain decay estimates for
the semigroup U® (see Proposition 3.12) as well as its integral in time against a source
JyUS(t — 5)S(s)ds (see Proposition 3.13). We recall that given any real number w € R
we denote p,, : t — (1 +1)%.

Proposition 3.12. Let p € (3/2,00] and 0 < 9 < 2(1 — %) Let fo € f;l(L%L%((vV) N
L’gL%) with ¢ > Oy + 2s|, then we have

Ll
g

S W follpize U O follpirgerz ey + 1V foll Ly rge Lz

Proof. Arguing as in the proof of Proposition 3.10, denoting f(t) = U¢(¢)fo and using
that || - || s (wye) = [|(v)¥/2+s . 22 ((wy), we first obtain

P(U*(-) o)

000" () follpzers + = I0oPT° ) foll sz + ]
LIL3L2

: e
S SNF©I, < ~Alw)/?+PL )3, - Mgz PFEIE;

2
o (PR + L pie2, )
2 G

for some positive constants A, > 0. We now split the analysis into high frequencies and
low frequencies.

(3.23)
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For high frequencies |£| > 1 we observe that % > 1 which yields

1d

5 L=l FOII; < —Almzl||<v>v/2+SPLf<s>uig - AnPﬂf)nig

1
= _)‘1\5\21||<U>V/2+3f( )HL2

1
—a( 1\§\>1HP ( )HHS* +1\£\>1HPf( )”%%) ’

for some other constants A\, > 0. Thanks to the interpolation inequality (3.17) of the
proof of Proposition 3.8, we hence deduce

1d

S Ll F O3 < —wo(1+ 0 s FOI13,

1
—a( 1‘5‘>1HP ( )HHS* +1\5\>1\|Pf( )||%g)

IR FE) 122y

and some constant C' > 0. With this inequality we can thus argue

+C(1+1)

for any ¥ < w < \7+25|

2w—1—

20
as in the proof of Proposition 3.8, which gives, recalling that (1+t) Iv+2s] i integrable

i _t
since 0 < w < 42s]

. 1 . .
Ligsallpwf(E)llpserz + gl|£|21|’pwPJ_f(§)HLfH5’* + 1|§|21prPf(§)”L§Lg

S ezl o(©)llzz + g1l F ) nse 2 (quye)-

We now turn our attention to the low frequencies case |{| < 1. First of all, from (3.23),
we use the interpolation inequality (3.17) of the proof of Proposition 3.8 to deduce
L, IF N7 < —w(@ + 5 g IPEFENF2 — A1 ﬁHPJ?(ﬁ)II2
9 dr lé<t p="v €l<1 L3 €1<17¢)2 L2

1 ~ 2 -
o (6—215<1|’Plf(§)“12g;* " 15<1%\\Pf<s>uig>

(3.24)

+Cﬂ+01\wmy$ﬂmL(ﬂh2 )

for any ¥ < w < and some constant C > 0. As in the proof of Proposition 3.10,

\’Y+2s|
we denote by p’ the conjugate exponent of p, and consider a real number r verifying

1+p'/3 <r <141/(2¢9). Using inequality (3.21) we hence deduce

1d - _
5 el FOIZ < =90+ g I F©I13;

2
- <1l|g|<1uP <>HHH+1|§|<1<'5'> 1P >H%g)

1—
£ O+ T L [P 12
11— _
+ O+ ) T T L [P F(E )Nzz
for some constant C' > 0. Multiplying both sides by (1 + ¢)?? gives

1d
2dt

~ 2
{(1+t>2’915<1|||f<5>|||%g}s—o<1+t>”(115<1\|P FOe- + iger s IPA(E >||%g>

Lo+ t)20—1

F O+ )1

‘”*23‘1|§|<1HP ()HL2 ()%
T‘1|5|_T‘11\§\<1\|Pf( )||Lg-




HYDRODYNAMIC LIMIT FOR THE NON-CUTOFF BOLTZMANN EQUATION 21

Integrating in time implies, for all £ > 0,

N 1 gt .
L+ 0" L all /6T + = [ (149> g |[PH (5,615 ds
v 8 0 v

‘14 21, P )
+/0 (1+5) 1\§\<1< >2”Pf( )HLg ds

. . T
N 1\§\<1Hf0(§)”%g + 1|§|<1”f(§)”%°°L2(<v>“) + g <1l 7T Hf(f)H%goLg7

29—1— 29—1—
) )

2¢
where we have used that (1 4 ¢ +2sl and (14 ¢ T are integrable since 0 <
U <w < gy +23\ and r < 14 1/(29), respectively. We can now take the supremum in time
and then the square-root of the resulting estimate, which gives

1€l
9 1212
= 1\£\<1Hﬁ)(f)HL% + 1|§|<1||f(f)||L§°Lg(<v>4) + 1|£|<1|£|_ﬁ‘|f(£)”L§<’L%-

Gathering the estimate for high frequencies (3.24) together with the one for low fre-
quencies (3.25) and oberving that ¥ < w, it follows

Pf(¢)

. 1 N
: Ligi<illpof ()l pserz + gl\g\<1||P19Plf(5)\|LgH3»* + Ligj<1 ||Po
3.25

€]
G

S 1@l + 17Ol e 2y + 1\§\<1|£|7ﬁ‘|f(5)”L§<’L3-

Taking the L% norm above, we use Holder’s inequality to control the last term in the
right-hand side as in the proof of Proposition 3.10, to obtain

1
L, el T sz 2 ¢ S IFlugezepaqpe

since r > 1+ p'/3, which implies

=PF(E)

b0 F€) 30 + S0P F@ e + oo
LIL}

§
HPﬁfHLlLooL?(( —||P0P f\|L1L2H “(()0) H | ‘PJ?‘

LLLPL3
S M follzzes + 1 fllzzser2 ey + Hf”LngOLg(@)ff)
and concludes the proof. O

Proposition 3.13. Let p € (3/2,00] and 0 < ¥ < 3(1 — %) Let S = S(t,z,v) verify
PS =0 and pyS € L%L%(H;f’*)’, and denote

_ /t U(t — 5)S(s) ds.
0

Assume that gs € f;l(LéLg((vV) N L’gL%) with £ > Y|y + 2s|, then

. 1 . €l s
||P1995||L1L§°Lg + _HpﬁPlgSHLlLfHS’* + ’ Pﬂupgs
¢ € N (€) LLLZL?
S 5Hp195HL%Lf(HS’*)’ + ‘|§SHL%L§°L%((U>5) + ||§S||L§L§°Lg-
Proof. Recalling that gg satisfies (3.12), we can argue as for obtaining (3.23) to get
1d N

2dt <£>

ﬂmwﬂﬁﬁ+cﬂﬁwwmw,

—llgs@©)lIZ; < =All{) > Pgs(©)l7; —

—a(QMﬂ“<wm*+f£

for some constants A, o,C > 0. By separating the cases of high and low frequencies, we
can conclude exactly as in the proof of Proposition 3.12. U

7 IPgs €)1z



22 C. CAO AND K. CARRAPATOSO

4. WELL-POSEDNESS AND REGULARIZATION FOR THE RESCALED BOLTZMANN
EQUATION

Consider the equation (1.8) that we rewrite here
1 1
{&:F = (L —ev Vo) f + ST f)
fizo = f5-

We shall consider mild solutions of (1.8), that is, we shall prove the well-posedness of a
solution f¢ to (1.8) in Duhamel’s form

t

(41) PO = USOf; + % [ U = )T((9). F(5) d.
Taking the Fourier transform in space of (1.8), we have

05 (6) = NOF(©) + (7 £)(E)
(€m0 = F5(9),

(4.2)

and by Duhamel’s formula
— N —~ t . ~
@3 FeO=T0OF© + 1 [ 070 - sONEE). FE)©ds

4.1. Nonlinear estimates. We start by recalling some well-known trilinear estimates on
the collision operator I'. We start with estimates without velocity weight. From [44, 5],
for the hard potentials case v + 2s > 0 there holds

(4.4) (T (F,9) m 2| S 1F 2 gl s
Moreover from [1], for the soft potentials case v 4 2s < 0 one has

‘(F(f, 9): M) 12 ()
(4.5) S (1) Fllza gl s + 1F g 10) 2 gll 2 ) 17l gz

+ min {0725 L2 llgl 2 112210}/ gll 2 1Al g

From these estimates we already obtain

Pl s+

ITCf Dl rzy = sup  (I'(£,9), D) 12 (w0
||¢||H3v*(<v>€)§1
(4.6) S @Y= fllallgl gee + Il gse 11 0) 0729 g 1

+ min {009l llgllzz . 171122 1 )2 gll 2}

which holds for both hard and soft potentials.

Furhtermore, we also have estimates when adding velocity weight (v)¢. For any £ > 0,
from [44, 1, 5] (see for instance [34, Lemma 4.1] for a summary) for the hard potentials
case v + 2s > 0 there holds
(4.7)

‘<F(f7 9),P) 12 ((wyt)

and for the soft potentials case v + 2s < 0 one has
(4.8)

’(P(f, 9): M) 2 ()0
S (||<U>7/2+sf\|Lg(<v>f)||9\|H3»*(<v>t’) + ||f||Hgv*(<v>f)\|<U>7/2+59\|Lg(<v>2)) 1Pl s oy
+ ||<v>’\//2+sf”L%(<v)[)HgHL%«v)f)||hHHS’*((v)Z)'

S (HfHL%((U)Z)”gHHﬁ’*((U)Z) + HfHHﬁ’*((U)Z)Hg”L%(@)Z)) IRl f5 (qwyeys
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Therefore we also deduce
(4.9)

1) T(f, ) ey = sup  (I'(£,9),9) 2wy

”¢|IH5’*(<U)4)§1
S @O Fllza 9l s ey + 1Tz 1027 gl 2 (o)
+ W)= £l 2 ey gl 22 e

which again gathers both hard and soft potentials cases.
Thanks to (4.6) we deduce our main nonlinear estimate without weight.

Lemma 4.1. Let p € [1,00]. For any smooth enough functions f,g there holds
IT(f, g)HL’EJLf(Hj’*)' ST+ T2+ min{l's, Ty}
where
Ty = min { | 0) > Fllpepee 190 2 200y

H<U>(q//2+s)7f”L1L§°L% ”g”LPLfo,’*,

|<v>(7/2+8)7f||Lé’Lng H/Q\HL%L?HS’*
2 O ~

()= Fll i caraldl g e sy
2 ~

()0 Gll 212

< >('y/2+s

(v)(1/2+9)- A”L1L00L27 ”f”LPLOOHS i

< >('y/2+s

Iy = min{HfHLgLfo,’*

3llizrger2: 1 71l s e illzizis )
T = min { | (0) > Fll e pee 1903 2202 1000 Fllprz 19l e

149 Fll s el izazcas 10009 Fllcacanaallosens b

1A ez

and
= min {72222 1000727 8l ez, NPl gl )Gl 12y

HfHL%L%L%”( >(7/2+s g”L”L%L?a ”f”LlLOOL2 [I{v >(7/2+s _g”L’gLfL%}'

Proof. Using (4.6) we write
1/2

{10 G000 @ sy dt] ST+ B+ min{Ts, 1)

with 2 y
{/ [ 102 1t € =l 77)\|H8*d77> dt} |
2 1/2
{/OOO o n)HHs*u<v><'v/2+s>-a<t,n>uLgdn> dt} |
2 1/2
2= 11, — )12 [, n>|rL2dn> dt} |
and

(L (o
L

9 1/2
Hft§ )z [ (0)/25)- (tm)lhgdn) dt} :

We now investigate the term I;. Thanks to Minkowski and Hélder inequalities we then
obtain

o0 - 1/2
ns [ ([T 109 fee - nBlat - dt)
n

S /Q ()29 F(& = )l e 121G (0) | 2 5 -

n
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Taking the ng norm in above estimate and using Young’s inequality for convolution we
first obtain

L < ||<v>(7/2+s)_f”L’gL§°L%H:q\HLéLfHS’* and I S ||<v>(7/2+s)_f||LéL§°L%H:q\HL’EJLfHS’*'

Arguing exactly as above but exchanging the role of f and g when performing Hoélder’s
inequality, we also obtain

L < ”(U>(7/2+8)7f”L’E’LfL%H./q\HL%L;’OHﬁ’* and I ”(U>(7/2+8)7f”L§LfL%|’§|’L§L§°H§’*a

that is Il 5 Fl.
The estimates for the other terms Io, I3 and I4 can be obtained exactly as for I, so we
omit it. ]

Arguing exactly as in the proof of Lemma 4.1 but using the weighted estimate (4.9), we
also obtain the main weighted nonlinear estimate below, the proof of which we omit for
simplicity.

Lemma 4.2. Let £ > 0 and p € [1,00]. For any smooth enough functions f,g there holds
() T(f, DN rezrzayy S Iy + T2+,
where
Ty = min{H<U>(q//2+s)7f”L§L§°L2 )”9HL1L2H3 () v > 7/2+e)- fHLpL2L2 HQHLlLOOHS *((0)0)

[ <v>(v/2+8)— 7

f||L§L;>°L2 )HQHL”LQHS (00> [1{v) (1/%ve)=

fHL%LfL%(@)Z) \|9HL§L§°HS’*(<U>‘)}’

1:2 mln{”fHLpLQHf,*( )”( >(7/2+) A”LILOOLQ( f)7HJ?HLpL°°HS’* U)Z)H< >W2+S QHLlL2L2(( Vo)

o l[{0) O72) ol {0y 072+~

171123 223 (o Gz Il o dllzr2ia(w I+

and
Iy = min{”<v>(w2+s f”L”L‘X’LQ ”9HL1L2L2 v)) H<U>(y/2+8)7J?HLQ’L%L%(@)Z)”‘/g\HL%L?oL%((U)Z)

1{0)/2 ) 0, ()02 i

f||L§L;;<>Lg(<v>€)H9\|L§L§Lg(<v> fHL%LfL%((v)“)H/g\HLgL?oL%((U)Z)}'

4.2. Proof of Theorem 2.1—(1). We consider the torus case , = T3.
4.2.1. Global existence. Let £ > 0 be fixed and define the space
— {f € FrULALPLA(0)) N LLLZH ((0)")) | £ satisfies (1.12), [|f]l < oo}
with
[ fll2 = Hf”LlLOOL2(( _”P f”L1L2HS *((v)f) + HPfHL1L2L2
Let f§ € F, (L%L%((w )) verify
HfOEHLéL% < o,
and consider the map ® : 2" — 2, f¢ — ®[f¢] defined by, for all t > 0,
(4.10) B0 = U (Of5 + 1 [ U7 07 (6), £ (5) s
thus, for all £ € Z3,
(1) B = TR + - / (s, T (9), F())(€) ds

Thanks to Proposition 3.2 we deduce, for some constant Cy > 0 independent of €, that

1T S5l < Coll follprre-
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Moreover thanks to Proposition 3.4 we get, for some constant C'; > 0 independent of ¢,
t ~
2| [ U= ar ). Fenas| < GIRGT Pl
< ”fEHL%L;X’L% Hfa”LéLfHS’*
< Cill eI
where we have used Lemma 4.2 in the second line. Gathering previous estimates yields
(4.12) 12N < CollfGllneez + Coll 115

Moreover for f¢, g° € 2  we observe that
BN — 210 = £ [ VS = T £6) — o () d
+ 1 [0 = ) - )70 s,

hence Proposition 3.4 and Lemma 4.2 yields, for some constant C; > 0 independent of &,
(4.13)
[@[f°] — @lg°]ll2

< Gyl () T(f°, 7 - Itz agey + C1l[(w)T(f° - &, I iz agey
< GIff lzizse 2o oy llFE =3 I leiezmp oy + Cillff—g “zizse 2o 18 iz ms (o)
< Cl(”feH,% + |lg° H,%)er — 9l

As a consequence of estimates (4.12)—(4.13) we can construct a global solution f¢ € 2
to the equation (4.1) if 79 > 0 is small enough. Indeed let Bo-(n) ={f € 2" | |fll2- < n}
for n > 0 be the closed ball in 2" of radius n. Choose

1
—2¢, d n < ,
n 070 all o = 8CoCh

and observe that 7y does not depend on . Then for any f¢ € By (n) we have from (4.12)
that

1@[f<]ll2 < 2Como =,
and for any f¢,¢° € By (n) we have from (4.13) that

1
12[f°] = @lglllr < 4CoCrmollf* = o7l < 511 F° = ol

Thus ® : By (n) — Ba(n) is a contraction and therefore there is a unique f € By (n)
such that ®[f¢] = f¢, which is then a solution to (4.1). This completes the proof of global
existence in Theorem 2.1-(1) together with estimate (2.9).

4.2.2. Uniqueness. Consider two solutions f¢, g% € f;l(L%LfoLg((vV) N L%L?Hj”*((vy))
to (4.1) associated to the same initial data f§ € ]:x_l(L%L%((v)f)) satisfying ‘|%‘|L%L%(<v>l) <

1o with ng > 0 small enough and
Hf8”L§L§>OL2( 0+ 172 ”L1L2Hf,*(< ”f0”L1L2 (v)€)>
HﬁEHLéLgoLg(@y) +lg° ”L%Lst *((v) ”f0”L1L2 ()t)-
Arguing as in the existence proof above, we obtain
177 = Lt rgerzqoyey + 17 = S leiezme=
S (1o gy + 197 zarz o) (1F° = 0 ez + 17 = 0 liazzms o)) -

Using that HJ%HL%L?OL?)((U)Z) + HQEHL%Lst’*((U)Z) < no is small enough we conclude the proof

of uniqueness in Theorem 2.1—-(1).
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4.2.3. Decay for hard potentials. Let f¢ be the solution to (4.1) constructed in Theo-
rem 2.1-(1) associated to the initial data f§, and let A > 0 be given by Proposition 3.2.
Using Proposition 3.6 and Proposition 3.7 we obtain

HeAfEHLéLfOL?(( o+ —He,\P e ”L1L2HS*( ) T lexP f* HL1L2L2
S ||fo||L§Lg(<v>f) + [lex(v)’ (fgafa)HL%Lf(Hf,’*)'
Thanks to Lemma 4.2 we have
[[ex(v > (fs fa)HLlLQ HY™) < He/\fa“LlLOOL2 ”f ”L1L2Hf,*(< Yy

therefore using that ||f6||L§L§HS (o) S | e ||L1L2 (y¢y from the existence result in Theo-

rem 2.1—(1), we obtain
He/\feuLgL;ng(() _||e>\P f HLlLQHS*( ) T ||e>\Pf ||L1L2L2
< HfoHLng oy + lleaf® i z5e 2wyt 172 lzizzm* (wye)
S5l zz e + ||foHL1L2 o leafe 25 r2 0y

Since ||| LL2(()") < 1o is small eonugh, the last term in the right-hand side can be ab-

sorbed into the left-hand side, which thus concludes the proof of the decay estimate (2.10)
in Theorem 2.1—-(1).

4.2.4. Decay for soft potentials. Let f¢ be the solution to (4.1) constructed in Theorem 2.1—
(1) associated to the initial data f§ with £ > 0, and let 0 < w <
Using Proposition 3.8 and Proposition 3.9 we obtain

W+2S|

- 1 - -
Peo f Mt ez + _prPJ_fs‘|L1L2HS’* PP fllrizzes
S ”f0”L1L2 + “fa“LlLDOL2( )+ IpoT(f, £ )HL1L2(H5 )
and from Lemma 4.2 we have
”pwr(feafe)”LéLf(Hﬁ’*)’ < prfe”LéLfoL%er“L%LfHS’*'

Using that HJ&HL%L?L%(@)‘Z) + HJ?EHL%LfHS’* < H]%HL%L%«W) from the existence result in in
Theorem 2.1—(1), we deduce

N 1 - -
IPeo f Nl 2 e 2 + g”pwPLfEHLlL?HS’* PP Nz
S ”fSHL%LQ yey T ”fo”L1L2 ”pwaHLlLOOLQ

Since || /] LLL2((0)") < 1o is small eonugh, the last term in the right-hand side can be ab-

sorbed into the left-hand side, which thus concludes the proof of the decay estimate (2.11)
in Theorem 2.1—(1).

4.3. Proof of Theorem 2.1—(2). We consider the whole space case €, = R3.
4.3.1. Global existence. Recall that p € (3/2,00] and define the space, with ¢ > 0,

= {§ €FT LALE L)) N L™ (o)) 1 LELELE(()) 1 LELEH™ (0)) | £l < o0},
with

17l = 1Pl sz + 1P Py e H"S‘Pﬂ
o+ [e7

L1L2L2

+ ||f||LPL°°L2(( —HP fHL”LQHS -
L{LIL3



HYDRODYNAMIC LIMIT FOR THE NON-CUTOFF BOLTZMANN EQUATION 27
Let f§ € f;l(LgL?,((vyf) N Lng(@y)) verify

1£5 1 22z wye + 1l e Lz ey < m0s

and consider the map ® : % — %, f¢ — ®[f¢] given by (4.10), which in particular satisfies
(4.11) for all £ € R3.
Thanks to Proposition 3.2 we deduce, for some constant Cy > 0 independent of €, that

1U=() 5l < Co (152 + 15z -
Moreover thanks to Proposition 3.4 we get
¢
~| [ Ut - o). 7)) ds
0 &
ST I g pzzey + M TEE P ez

S (H}%HL%L;’OL%((UV) + HFHLQ’LrLg((u)Z)) H}%HL%LfHS’*((U)Z),

where we have used Lemma 4.2 in the second line line. We now observe that, splitting
f¢ =PLfe+Pf¢ on the one hand we have

172 HL1L2H5 *((v) S|Pty HL1L2H3*( )y T P fe ||L1L2L2
On the other hand
HPfEHL%L§L2 S ||1\5\>1Pf€||L§L§Lg + ||1\5\<1Pf€||L§L§Lg

oo

+ H15<1\§!_1 %PJ?E

L2132
€]
()

where we have used Holder’s inequality in last line, using that p > 3/2 so that 1j¢1[£|™! €

LLLZL?

<|d [

|

Sipge

9

172 2
LLL2L3 LYL2L3

Lg. Putting together the two last estimates, we have

3 §
(4.14) Hf ”LILQHS*« <”P f HLngHH H| |Pf€ H| |sz—:

LIL?L2 LPLZL3

We hence deduce that there is some constant C; > 0, independent of ¢, such that
t
H T EDAGONEOIEE )

< &1 (IFlsprzon + I Hmw« ")

x [ ||[PtFe 5% ((y +H@PAE
(H f ”LéLfHU ({v)t) (€) f

[iger

L2z LngLg) '
Therefore, gathering previous estimates, we obtain
(4.15) |20/ la < Co (175 sz + 1751222z ) + Cull <15

Moreover, for f¢,¢° € % we obtain arguing as above, thanks to Proposition 3.4 and
Lemma 4.2, that

t
S| [ U= or o). £ — g ds
z
<Ci (Hf ”L1L°°L2( ) T 172 ”L1L2HS *(wyey T 17 ”LPL°°L2( vyt) T ”fAEHLIEJLfHS’*((U)Z))

% (1FF = lliseszon + 1F =8 lzms o)
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as well as
€ /ot US(t — )0 (f5(s) — g°(s), 97) ds

< C1 (1 2o racoy + 1 Nwazzms ey + 187 2oy + 18222 o))

Z

< (172 = Fllgzeerageo + 17 = Fliizas o)) -
Together with (4.14) for the term || f* — -/q\EHLéLij’*((v)‘P this imples that

(4.16) 19[f°] = @lglllz < Cr(llFllo + lgllz)1f = gllo-

As a consequence of estimates (4.15)—(4.16) we can construct a global solution f¢ € &%
to the equation (4.1) if 779 > 0 is small enough by arguing as in Section 4.2.1. This
completes the proof of global existence in Theorem 2.1—(2) together with estimate (2.12).

4.3.2. Uniqueness. Using the above estimates, we can argue as in Section 4.2.2.

4.3.3. Decay for hard potentials. Let f¢ be the solution to (4 1) constructed in Theo-
rem 2.1-(2) associated to the initial data f§, and let 0 < ¥ < 5 (1 - —) Arguing as above,
using Proposition 3.10 and Proposition 3.11 we obtain

ﬂpfa

Py
€ " lrizrs
- P
S ”fég”Lng )+ Hfa”LpLWH( )+ Ipy(v) F(f87f6)|’L§L§(H§’*)'

Thanks to Lemma 4.2 we have

Do S22 e n2 e _HPﬁP Ptz >‘>+‘

||P19<U>Zf(f€a fE)HL%Lf(HS’*) S HpﬁfEHL%Lf;OL%((v)‘)HfEHL%LfHﬁ’*((vV)a
and by (4.14) we have

§ 3
”f ”LILQHf)*( ”P f HL1L2HS* H’ ‘Pfe ‘ ’Pf{;‘

L1L2L2 LYL3L2

S follzizz oy + “f§|’L§L%((v>Z)7
where we have used the estimate of Theorem 2.1-(2) in last line. Observing that we also
have [| /]l e Lgoz(wy) S I f6llcica ey + 175112222 ((0p)- it follows

@ re
Po ey B

S5l zizz e + 1560 e ca

+ Ipo ¥l e ey (15N ey + 155 ez ) -

Hpﬁf HLlLOOL2(( _”PﬂP f HLlLQHS*(( ) +‘
L¢L7L3

Since H]%:HL%L%«UV) + |’f(£]-:HL§L%(<U>Z) < no is small eonugh, the last term in the right-hand
side can be absorbed into the left-hand side, which thus concludes the proof of the decay
estimate (2.13) in Theorem 2.1-(2).

4.3.4. Decay for soft potentials. Let 0 < ¥ < %( — %) Let f¢ be the solution to (4.1)

constructed in Theorem 2.1-(2) associated to the initial data f§ with ¢ > ¥|y+2s|. Arguing
as above, using Proposition 3.12 and Proposition 3.13 we obtain

polsl €]
(€

S ||foHL1L2 + Hf8||L1L°°L2( ) T Hf8||LpL°°L2 + Ipol (€, f )HL1L2(HS -

Pf:

0o liprs + SIooP  Flis sz + \
L%LQLQ
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b
2
L213 Lg)

For the nonlinear term above, we argue as in Section 4.3.3 so that

1oL Cf%s fMizz iy

) ) €l
5 ||p19f€HL§L?°L3 (HPJ-fEHLéLfHﬁv* + H@Pfs

ger

172
LLL2L2

Therefore, using the estimate of Theorem 2.1-(2), we obtain

ﬂPAE
Poey P

S HJ%HL%L%((U)“) + HJ?OSHLng((u)Z)

N 1 N
IooF lcpspss + T I0oP* Fllyupmee +
€ ¢ LILZL2

+ b llingers (175 aza ey + 155 I zzzaqus) -

Since ||]?05HL%L%(<U>¢) + ||f06HL§Lg((v>f) < np is small eonugh, the last term in the right-hand
side can be absorbed into the left-hand side, which thus concludes the proof of the decay
estimate (2.14) in Theorem 2.1-(2).

5. WELL-POSEDNESS FOR THE NAVIER-STOKES-FOURIER SYSTEM

We start by considering the incompressible Navier-Stokes equation, that is, the first
equation in (1.14). We denote by V the semigroup associated to the operator v1A,, and
we also denote, for all ¢ > 0 and & € Q,

V(t, &) = Fo(VIOFSH)(E) = el

We shall obtain below boundedness and integrated-in-time regularization estimates for V'
as well as for its integral in time against a source [j V (t — 5)S(s) ds.

Proposition 5.1. Letp € [1,00]. Letugy € f;l(Lg) and suppose moreover that ug satisfies
(1.16) 4n the torus case Q, = T3. Then

HV(‘)%HLg’Lgo + H|5|V(‘)a0||L§Lf S HaOHLg,
and moreover V (t)ug also satisfies (1.16) for all t > 0 in the torus case.

Remark 5.2. Observe that, in the torus case €, = T3, one can replace |£|V (-)dy in above

~

estimate by (§)V(-)ug since V (t)ug is mean-free.
Proof. Let u(t) = V(t)up, which satisfies
ou = —1Agu, U= = Up-

We already observe that, in the torus case, the solution u(t) is also mean-free, that is
satisfies (1.16). For all £ € Q} we thus have

pa(t, €) = —mlgfa(t.€),  u(&)j=o = To(§),
thus for any ¢ > 0 we have
¢
At O + [ 1P als O dt S faole).
Taking the supremum in time and then taking the square-root of previous estimate yields

[a(E)llzse + [[1E]E(E)] L2 < [@o(€)],
and we conclude the proof by taking the Lé’ norm. O

Proposition 5.3. Suppose p € [1,00]. Let S = S(t,&) satisfies H<§>*1§HL§L% in the torus

case Q; = T3 as well as (1.16), and |£|_1§ € LZ’L? in the whole space case Q, = R3.
Denote

us(t) = /Ot V(t - 5)S(s) ds.
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Then in the torus case we have
”aSHLg’Lgo + H<§>ﬁS”L§L§ S H<§>715HL§L5'
and in the whole space case
HﬁSHLngo + H‘ﬂaS”L’gLf S H‘ﬂ_lS”LgLf-
Proof. We first observe that ug satisfies
Orus + 1Azus =S,  ugj—o = 0.

We only prove the whole space case, the case of the torus being similar by observing that
ug is mean-free, that is verifies (1.16).
For all £ € R? and all t > 0 we have

L —

Oytis (1, €) + 11 |€* s (t,6) = S(t,€),  us(€) g = 0.

We can compute

Ou3las(t ) + mlelPlas(€)P < (B(6). as(€)),
which implies, for all £ > 0,
t t
st P + [ 16Plas(s,&)Pds S [ 1617 S(s O ds.
0 0

Taking the supremum in time, then taking the square-root of the estimate, and taking the
Lg norm, the proof is thus finished. O

We now obtain bilinear estimates for the operator Qns.

Lemma 5.4. Let p € [1,00]. Let u,v € F'(LEL® N L{L®), then

(5.1) H\ﬂ_lQNS(%U)”Lng S HUHLé’Lf”uHL%Lf%
and also
(5.2) el Qns (v, wllzrz < lvllzzppellullzy pz-

Proof. From the definition of Qng, we first observe that for all £ € Q’5 we have

Qus(e. (@] <18l [ Bt —mldn

thus by Minkowski’s inequality and then Hoélder’s inequality

Il Qns (e (Ol < [

Q

() 5 ) 1/2
([T PP )
n
S [ 18z (€ — n)loe dn
2,
We then conclude the proof of (5.1) by taking the L’g norm above and applying Young’s

convolution inequality. The proof of (5.2) can be obtained in a similar way, by exchanging
the role of u and v when applying Holder’s inequality with respect to the time variable. [

5.1. Global existence in the torus 2, = T3. We shall construct mild solutions to the
first equation in (1.14), namely

t
(5.3) u(t) = V(t)uo + /O V(t - 5)Qns(uls), u(s)) ds.
We define the space
2 = {u e F (LI 0 LL(©)LY) | u satisfies (1.16), [[u]l 5 < oo},
with

[ull 2 = ”a”LéLgo + H<5>a”LéLf
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Let ug € f;l(L%) satisfy (1.16) and
”aOHLg < M-
Consider the map ® : 2" — 27, u — ®[u] defined by, for all t > 0 ,
t
(5.4) Dul(t) = V(huo + [ V(t = )Qus(u(s). u(s)) ds,
thus, for all £ € Z3,
~ ~ t ~
(5.5) Dlu](t,§) = V (¢, §)uo(E) +/0 V(t —s5,8)@ns(uls), uls))(€) ds.
For the first term we have from Proposition 5.1 that

IV (t,&)io (&) 2 < COH%HL;a

and by Proposition 5.3 we have

[ 70— 5. )Gxs(u(s).uls))€) ds
0 VA

< e~ @xs (w1
< Nallgaaz Il 2 e
S H<§>a”L§Lf||aHL§LgO
S lull%
where we have used Lemma 5.4. Thus we obtain

1@[ulll2 S Colldollzy + Chllul%--

Moreover for u,v € 2 we can also compute, using again Proposition 5.3 and Lemma 5.4,
that

H/t V(t —s,6)Qns((u—v)(s),v(s))(€) ds /t V(t—5,6)Qns(u(s), (u—v)(s))(€) ds
; 7 o

S M€l Ons(u = v,v)ll 2z + 11817 Qs (u w = )l

S lu— 17”L§L;>° Hﬁ”LéLf + ”aHL%Lf 2 — 17”L§L;>°-

-

v

Therefore there is C7 > 0 such that
[@[u] — @[v]l|l2 < Cr([lull2 + [[v]|2)lu — v]|2-

Gathering the two inequalities and arguing as in Sections 4.2.1 and 4.2.2, we can con-
struct a global unique solution u € 2 to the equation (5.3) if n; > 0 is small enough,
which moreover satisfies

[ull2- < [0l -

Once u have been constructed, we can then argue in a similar and even simpler way in
order to construct a global unique mild solution # for the second equations in (1.14) if
71 > 0 is small enough, namely

0(t) = V()0 + /Ot V(t — s)[— div,(u(s)0(s))] ds,

where V' denotes the semigroup associated to the operator v5A,, and which satisfies more-
over

16112 < ol + 1ol

We finally obtain the solution p by using the last equation in (1.14) and observing that

-~

we consider mean-free solutions, so that p(t,0) = 6(¢,0) = 0. This completes the proof of
Theorem 2.2—(1).
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5.2. Global existence in the whole space €, = R3. Similarly as before we define the
space, recalling that p € (3/2,+o0],

¥ = {we FoULELE 0 LHENLY) N F N EELE N E(ENE)) | lulla < oo},
with
ullg = ”a”LéLf‘J + ”Km”LéLg + ”aHL’gL;’O + HKWHLZL%
Let ug € ]:x_l(L% N Lé’) satisfy
[@ollzy + lldoll Lz < m,

and consider the map ® : # — %, u — ®[u] defined by (5.4), in particular (5.5) is verified
for all ¢ € R3.
For the first term in (5.5) we have from Proposition 5.1 that

IV (¢, )0 ()l < Co(l[o]l Ly + llaollr)-

Furthermore, by Proposition 5.3 we have

where we have used Lemma 5.4. We now observe that

/Ot ‘7(7t -5 f)@Ns(u(s), u(s))(€) ds

S € Qns (s ) g2 + 1161 Ons (w,u) | o 2
Ay 13 et

S lallprrz (1allprpee + @llrpee ) -
ehi el bt

||aHL§L§ S H1|§|2117||L§L§ + ||1\§\<1a”LéLfa
and for the first term we easily have
Hl\f\zlaHLéLf S HKWHL%L%
For the second term we use Hoélder’s inequality to obtain
Le<rtillriez < H1|§|<1‘§’_1”L§’”1\§\<1’§m”L§L§ S llelallzers

where we have used that [|1}¢<1/§]™ » < oo since p > 3/2. Therefore we get

¢
(5.6) 101222 S 1€l a2 + Ntz
Gathering previous estimates, we have hence obtained
|@[ulllo < Co (laoll; + ol ) + Callully-

Moreover for u,v € % we can also compute, using again Proposition 5.3 and Lemma 5.4,
that

|70 -5.0Gxs(w =06 o) ©as|+] [ 70— 5. 0Qns(uls). (u = 0)(s))1€) ds
0 z 0
< el Qs = 0)lsgaz + 1T~ Qs = )z

+ 1€ @us(u = v, o)z + 11 Qs (u, w = o) | 2

S llu - 5||L§L;;° WHLéLf + ||aHL§L§ lu - @HLéLgo + [lu - aHL’gL?o WHLéLf + HaHLéLf lu - 5||L§L§°

|

v

S (Walzyzz +18lzyz) (18 = 0l e + 113 = Bllpzsge ) -
Using inequality (5.6) we therefore get, for some constant C; > 0,
1®[u] = @[v]lar < C1 ([ully + [[vllo) lu = vz

Gathering these two inequalities together, the proof of Theorem 2.2—(2) is completed by
arguing as in Section 5.1 above.
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6. HYDRODYNAMIC LIMIT

Recalling that the semigroup U¢ is defined in (3.8), and also U* in (3.7), we also define,
for all £ > 0,

(6.1 W60 = 1 [ UF = () ) s,

as well as its Fourier transform in space, for all £ € Q,
~ 1 [t~ ~
(62) FULl(66) = = [ T = . O (/) 9(5)(O) ds.

6.1. Estimates on U¢. We denote that 0 < x < 1is a fixed compactly supported function

of By equal to one on B, where Bp is the ball with radius R centered at zero.
2

Arguing as in [13, 39] but using the spectral estimates of [74, 75] for the non-cutoff
Boltzmann equation, we then have:

Lemma 6.1. There exist & > 0 such that one can write
4
US(t) =Y _US(t) + U(1),
j=1
with
_ ot . Lt
U5 () :=Uj(5.¢6), U (t.6) = U%(5,€6),

where we have the following properties:
(1) For1<j<d4,

03(1,6) = x(Ehev @ py o),
with \; satisfying
Aj (&) = iy (&) = BlEl? + ;i (I€)),

with
a1 >0, a2<0, ag=as=0, [;>0,
and
(€D =O0(EP), as € =0, ~(6) < BlEf/2, V¢l < w,
as well as

Pi(€) = P (%) + [EIP} () + [€P P} (),
with P}* bounded linear operators on L2 with operator norms uniformly bounded for €] < k.

(2) We also have that the orthogonal projector P onto Ker L satisfies
4
_ 0
P = Zl P ()
]:

Moreover P]Q(%), P}(%) and P?(§) are bounded from L7 to L2(()Y) uniformly in |€| < &

for alll > 0.
(3) In the hard potentials case v+ 2s > 0, for all t > 0 and all ¢ € R3 there holds, for
any £ >0,

(6.3) 1T (£, ) F ()l 2wy < CeZ )2y

for any f satisfying moreover (1.11) in the torus case, where A\o,C' > 0 are independent

of t,&, .
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(4) In the soft potential case v+ 2s < 0, for allt >0 and all £ € R? there holds, for any
k, ¢ >0,

h+ s

©4)  ITFEOP T <€ (1+5) T 17O,

for any f satisfying moreover (1.11) in the torus case, where C' > 0 is independent of

t,& €.

Proof. The proof is the same as in [24, Lemma 5.10]. For the soft potentials case, we need
to replace the use of [74, Theorem 3.2 and Remark 5.2] in the proof by [75, Theorem 1.1 and
Section 4], in particular the decay estimate (6.4) comes from [75, Equation (2.46)] and the
fact that Bo(¢)P+ = B(&)P*, where By(£) and B(€) are defined in [75, Equation (1.18)]

and satisfy By(§) = B(§) — P. O
Denoting
B (65)=rH (&) +erko,
i €]
for 1 < j <4, we can further split U 7 into four parts (one main part and three remainder
terms):
(6.5) US = Uy + Usy + U5y + Uy,
where

AfO(ta 5) = eio‘j‘f\ Bﬂf\&\on (é’)

U (t.6) = (x (%) — 1) gialélt Bjt|g|2po (é’)
Afl(t,f) =X (%) io €l £ —B5tl€]? (etwj(fzg) ) PO (é)
K

=5 5 i (elED -
;Q(taé.) =X (%) Za]‘g‘_iﬂjtm L €’§‘P] (85, @) .

In particular we observe that (7§0 and (7;130 are independent of ¢, so that we define

(6.6) U(t,€) := Uso(t,€) + Ug (£, ©),
which is then independent of . We finally define
(6.7) U(t) = F U (t) Fe.

Lemma 6.2. ([39], Proposition A.3) We have that U(0) is the projection on the subset of
Ker L consisting of functions f satisfying divuy = 0 and also py + 65 = 0. We also have

U)f=U@u(0)f, vt=0,
and
divup =0 and ps+0;=0 = P)(F)f=0 j=12

The following lemma studies the limit of U¢(t) as e goes to 0.
Lemma 6.3. Let f = f(x,v) € Ker L then we have
1) = U fllcirgers S 1 lciez
and

1(U=(-) - U('))f”LéLfoL% S €|H§\f”L§Lg-

Proof. The proof follows the idea of [39, Lemma 3.5], that we shall adapt since we work
in different functional spaces.
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First of all we observe that from the decomposition of U¢ in (6.5) we can write, for all
t>0and £ € Q,

o~ ~ ~

4
US(t,) (&) — US(t,€) f(&) = S_ U (£, ) F(€) + U, (1,6 F(€) + U5, (¢, €) F(€)
7j=1
2
+ 3 U5t 6 f(€)
Jj=1

~ o~

+ U (1,6)1(6),

and we shall estimate each term separately below.
We first compute the term Ufm(t)f for j = 1,2,3,4 and m = 1,2. For the Uj; term,

using Lemma 6.1 together with the inequality |e* — 1| < |alel®l for any a € R*, we have

(6.8)
v, (el€D J
L 1 s () e e < o (FE) el < minaele.

\ (ﬂ) B2 | ot
K

Then we can compute, for all t > 0 and ¢ € R3,

105, 7@ 1z <x (L))

Smin{1, elé]}£(€)l|3-
For the U 5 (t,€) term we have

105,71z <x (L)

Smin{1, el [} £ ()l z-
For the term (A];f (t,€), using the fact that

(6.9) (EED) — 1) < ming gy

we have
1T (2,)F(©)llz < (x (%) - 1)

Smin{1, ¢} £ (©)] 2
Taking the L%Lt‘x’ norm in both sides yields, for all j = 1,2, 3,4,
||ﬁ;1(')f||LéL§°L% + | Afz(')fHLéL;’OL% + ||(7J€(?é()ﬂ|L§Lt°°Lg S min{”f”LéLg,5H|5|J?||L§Lg}-
By Lemma 6.2 we have, if f € Ker L is a well-prepared data, then
Ulof + Uy f = 0.
Finally we compute the term US#(¢,£), noticing that

cle)
cias 1§l £=BitlEl? t=— =

elellBy(ee. §)FE) 2

i €12 —B;tl¢|® HPO( ) f 16 3

~

4
OH# ()7 0) = U (1. OUH (0.9 f(&v) = 0(1.6) (1 —~(E % Pj<eg>) 308

Since f belongs to Ker L, we have
O#(t,€)f(,v) = U°(1,€) (1 () e (D s R <es>) Fé.v.
By Proposition 3.2 we have
150 g <10~ x (B) ~ tenc () 3= P P

Smind]| fllpzpz, €€l L1z2}
3 13
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thus the proof is finished by gathering together the two previous estimates. O

6.2. Estimates on V<. The decomposition of the semigroup U¢(t) in (6.5) also gives us
a decomposition of the operator W¢(t) defined in (6.1).

Lemma 6.4. The following decomposition holds

4
- 3w,
j=1
with
T fy, o) (8,€) - / O (t — 5,60 (f1(5), fa(s))(€) ds

and, for all 1 < j <4,
U5 = W5, + \If 0 T U5+ 5y,

where

WEolf1, fa) (8, €) = /0 cios 25— =oeP” €1} ()T (f1(5), fa(s)) () ds
Bt 200 = (x () ~1) [ @9 IR (), 16 0

0

~ b etes 2 _g)2iElED
G5,151, (0, = x (L) [ etelelz o0 (L02ER ) (PP, £ ©) s

- E o eies 2 (1g)2lclED
G5alf1, (0,8) = x (D) [ el s o0 -0 R 2 PR )P f1(5), o)) € s

Similarly as above, we observe again that that \T{%O and \T’io are independent of €, so
that we define

(6.10) BI£,9)(1,€) 1= Tl 9)(1,€) + Tl 9](4,€)
which is then independent of . We finally define
(6.11) U[f, g)(t) = F, " UIf, gl () F

We are now able to prove the following result on the convergence of W¢ towards V.

Lemma 6.5. Let (pg, uo, 6p) satisfy the hypotheses of Theorem 2.2 and consider the asso-
ciated global unique solution (p,u,0) to (1.14). Let also gy = go(x,v) € Ker L be defined
by (2.15) and g = g(t,z,v) € Ker L by (2.16). Then we have:

(1) Torus case 2, = T3: There holds
10l9.5) = ¥lg, gl nzers S = (10l3ycs + 1013102 )
(2) Whole space case Q. = R3: For any p € (3/2, 0] there holds

10l9.9) = Ulg, glzgzzors S = (10l + 10005 + 1012 + 1GolSys)

Proof. We adapt the proof of [39, Lemma 4.1] for the cutoff Boltzmann equation with
hard potentials. Thanks to the decomposition of ¥¢ in Lemma 6.4 we write, for all ¢ > 0
and & € Q,
4 o~
U [g, g](t,€) — Vg, gl(t,€) = Z 19, 9)(t,€) + U5 [g,9](1, €) + TS [g, g (L, €)

WSolg, 9)(t,€) + T°¥[g, g)(2,€).

'Mw

I
A

+
J

We remark that for the zero frequency & = 0 we have
¥e[g, )(t,0) = ¥*#[g, g](¢,0).

We split the proof into several steps and estimate each term separately below.
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Step 1. By Lemma 6.4, (6.8) and Minkowski inequality, for the term @j# lg,9] with j =
;2,3,4, for all t > 0 and all § € Q \ {0} we have

’X (%) — 1‘ /Ot e—Bj(t—8)|f|2’§‘ Hle(%)f(g(S),g(s))(f)‘
< E/Ot e_Bj(t—s)|§|2‘5’2Hf(g(s),g(s))(g)”L% ds

S elt(9, 9)(E)lze r2-

H \Ile# ds

L3

2

Similarly for the term \Iljl[g g], by Lemma 6.4, (6.9) and Minkowski inequality we have,

for all j =1,2,3,4,
( > o~ Bi(t=s)IE?

/ TP €2 B (g(s), 9(5))(©)l] 3 di

ellT (9, 9)(E) | = r2.

H\IIJI 9.9t ’5)’ 12 NGRS

2/\

_1‘ l|PH T ), 2090, d

2/\

AN

Similarly for the term @52 [g,g], by Lemma 6.4 and Minkowski inequality we have, for all

J=1,2,3,4,
t
%) / o Bit-9)lel |,
K 0

t ; 2 —~
<e /0 e~ =9 g2 (g s), g(5))(©)l] 2 s

74 (el€D
(t=s) 45—

| 95209.91,)|| s

lel? |[PA(=€)T(g(s), 9(s)|

L3

Taking L%Lfo norm both side and using Young’s inequality for convolution we have, for
all j =1,2,3,4,

H‘I’Jo [9, g]HL%L;’OL% + H‘f’;ﬂgag]HLgL?Lg + H‘f’;z[g,g]HLéL?Lg S 5Hf(9a9)(5)”LgL§OLg-
Thanks to [68] and the fact that ||(v)P¢||gm < [Pz for all m,£ >0, we have
(6.12) IT(Pg1, Pg2)lr2 < [Pg1llrz[Pgzllrz,
therefore arguing as in Lemma 4.1 it follows, for any p € [1,00] and ¢ > 0,
(6.13) ”F(g Q)HLPLOOH(( S Hg”LlLOOL2Hg”LpL°°L2
We therefore obtain, for all j =1,2,3,4,
(6.14) ”‘I’e#[g g]HLlLooL2 + H‘I’Jl[g g]HLlLooL2 + H‘I’]Q[g g]HLlLooL2 5H9”L1L°°L2
Step 2. We now focus on the term @§O[g,g] with j = 1,2, and recall that a; > 0 for

7 =1,2. We denote

Hj(t,5,6) = e H U= g L& )T (g(5), 9())(€),
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and thus, using integration by parts, for all t > 0 and all £ € Qf \ {0} we have
(6.15)

Bolg. (1, €) = [ I8 B PP a().9(5)(O

_ ([ sl s Ods — B giolel
g (] T T 5.6 ds = Bfe.1.6) + 2 By (r.0,9))
= S ([ s e P (o), 5 ) s
’LOé] 0 ‘5’
o ([ = e e P 0 (). ) €) )
— PR, 9(1)(©)
e |£|
+ Sgiolelt el pLE)P(g(0), 6(0))(€)
iy 7]

= Il(t, 5) + I2(t, 5) + I3(ta 5) + I4(ta 5)
For the first term in (6.15) we have for all ¢ > 0 and & € Q, using Lemma 6.4,

t ~
10602z S e [ Bilee IR (g(s). o(5))()lz ds
< elT(9,9) )l ez
Similarly, for the third term in (6.15) there holds
1T, €)llz2 S el (g(t), g(£) ()]l
S 5|’F(9,9)(§)HL§0L3-

and for the fourth one

—B. 2N
174(t, )z S ee”PE7IT(9(0), 9(0)) (€)1
S elll(9, 9) ()l pgo r2-
This yields
(6.16) HIIHLéLgoLg + HI3||L§L;;°L5 + HI4||L§L;;°L5 S 5||F(9,9)||L§L;>OL§ S 5||§H?;%L50L3,

where we have used (6.13) in last line
For the second term in (6.15) we first write, for all ¢ > 0 and & € 0,

t _
1268z < < [ €I 0T (g(s),0(5)(O)ls3 s
Since 8;T'(g, 9) = L'(819,9) + (g, drg), from (6.12) we get
10 (319N lsz S [ 1505, ~ )l lrs(s, sz an

As g is defined through (u,, p) which satisfies the Navier-Stokes-Fourier system (1.14),
we have for all s > 0 and all € Q;,

10:g(s,m)llz2 < [n*11g(s,m)ll .z + ] /Q 19(s,m = Ol 2 l9(s, Oll 2 dC.
¢

This implies

b g s el N N
112(t, )2 S 6/0 e Pili=o)le] /Q 1(s,& = )l 2 nlllg(s, )|l 2 dn ds
n

t
e [ eI [ gt = luglal [, 1an = Ollzg 9t g aé nds

=: Ry(t,€) + Ra(t,€).
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For the term R; we split the integral on 7 into two parts: the region 2|¢| > |n| in which
we have |n|? < 4/¢|%; and the region 2|¢| < || where we have |n — &| ~ |n|, which yields

t (t— 2 ~ ~
Ri(t§) S e [ eI [ 1 g (s,€ =)l 3, m) 2z dnds
n
¢ (f— 2 ~ ~
te [ B |1 35,6 = )2 ol 35, m) 12 dn s
n

t (t—s 2 R N
55/0 € [2ePilt=s)le] /Q 15(s,& = )llz2 |G (s,m)| 2 dnds

n

t (t—s)|€]2 —~ ~
e eI [ e llgls. € = )zl G(s,m) 2 dn s

n

Thanks to Holder’s inequality in the time variable, it follows

1ROl S E/Q, 196 = Mg £2[lg(M) | Lo 12 dn

n

e [ 1€ = nllate = mllzzezlnllamllzze; d

n

therefore taking the L% norm and using Young’s convolution inequality we obtain
12 12
(6.17) ”Rl”Lngo S E”gHL%L;’OL% + EHK‘QHL%LfL%'

For the term Ry we write

e A i 1965.€ = gl 136 = Ollzg (s, )1z ac nd

<6sup</ I€[2e —B;(t—s)|? ds)l e 1</ o >1/2’

where we denote

Glo:8) = [, 1006 =l Hlsem) o o) = [ 1905:m = Oz (5. Ol 4

n

By Minkowski and Hoélder inequalities

00 1/2
6@z 5 [, ([ 16,6 =Bzl (s, mPds)

S | 18 = mlzze ezl H ) .
n
Moreover

H(s.1) % [, 1= €llate.n = il Ollzg e+ [ Naton = Olliz ellats g a6

s
Thus again by Minkowski and Hoélder inequalities,

00 1/2
1z < [, ([ = claton - Ol ats, Ol ds) e

<

+ / ([ 186 - Ol itate, Ol as) e

S [, 180 = Ollzra lclate: Ol 4
Hence we get

IRa(@llu <™ [, [ 1906 = sz 000 = Ol 1Oz 4 o
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Taking the Lé norm and distinguishing between high and low frequencies yields
~112 —~
(6.18) ||1\5\21R2||L§L<g° S 5||9||LEL?°L12)H|£|9HL%L3L3,

and, in the whole space case €, = R3 and Q’g =R?,
(6.19)

H1|§|<1R2”L§Lg° N 5”1\§\<1\§’_1”ng’

[ [ 18 = mllzz 236 = Ol 1615 22 A€ d
@, Joy

Lg
S 5”§HL§L§0L3H§HL§L§°L3H‘ﬂﬁ”LéLng’
where we have used that 1¢[¢|™" € L? since p > 3/2.

Step 3. It only remains to compute the term \T’E#, for which we first write, for all t > 0
and & € Q,

~ 1/t~ ~
1U# (g, 91(t, ) Iz S g/o 1T (t = 5,6)T(g(s), 9())(€)]|2 ds.
In the hard potentials case v 4 2s > 0, thanks to (6.3) we have, for all t > 0 and £ € Q,

~ 1 [/t =9
19,80 )z < = [ €T I (o(s),9()(€) 3 ds

1, t (s
S SI0 9@z [ e ds

S ellT(9, 9l e 13-

For the soft potentials case v+ 2s < 0, observing that Pf‘(g, g) = 0 we fix £ > 0 such that
ﬁ > 1 then we use (6.3) to obtain, for all ¢ > 0 and & € ),

191050, % (1 5%) T IR0 €l

£
y4

1 ~ t t—s)\ Tzl
5EHF(Q,Q)(@H@%%((UV)/0 <1+( 2 )> ds

3

S ellT(9: 9l e 210y

Taking the L%Lfo norm in above estimates and using (6.13) yields, for both hard po-
tentials and soft potentials cases,

(6.20) H\I]a#[gag]HLéL;X’L% S 5”@”%%@%%'

Step 4: Conclusion. We conclude the proof by gathering estimates (6.14), (6.16), (6.17),
(6.18), (6.19), and (6.20) together with the bounds for g from Theorem 2.2. O

6.3. Proof of Theorem 2.3. Let f¢, for any € € (0, 1], be the unique global mild solution
to (1.8) associated to the initial data f§ constructed in Theorem 2.1.

Let g = Pg be the kinetic distribution defined by (2.16) through the unique global
mild solution (p,u,0) to (1.14) associated to the initial data (pg,ug,8y) constructed in
Theorem 2.2, and denote also gy = Pgo the initial kinetic distribution defined by (2.15)
through the initial data (pg,ug, 6p).

We now from [13, 39] for instance, that g verifies the equation

(6.21) g(t) =U(t)go + ¥[g, g](t),

where we recall that U(t) is defined in (6.7), and ¥(¢) in (6.11). Taking the Fourier
transform in z € Q,, we then have

(6.22) §(t,€) = U(t,©)do (&) + T[g, g](t, €)-
for all £ € €., and where we recall that U is defined in (6.6), and ¥ in (6.10).
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We first observe that the difference f¢ — ¢ satisfies
FE&) = 9(8) = U(t,) f5.(&) — U(t,)go(€) + VEI£7, £(t,€) — ¥[g, g](t,€)
= U°(t,€) { f5(&) = 50(&) } + {T°(t.©) = T(,©) } Go(¢)
+ {9719, 9)(t,€) — Vlg, g1 (¢, &) } + { W%, (1, ) — ¥¥[g, g](1,€) }
=T + 15 + T3 + Ty,

and we estimate each one of these terms separately.
For the first term, from Lemma 6.1 we have

IUFOSS = GotlLigers S 15 — ol ez

Thanks to Lemma 6.3 and an interpolation argument, we obtain for the second term, for
any ¢ € [0, 1],

(6.23)

I{U=() - ()}90||L1L°°L2 S 146 Goll 2
For the third term we use Lemma 6.5, Wthh yields
19=[g,9] — \I}[gag]HL%L;’OL% Se (”§OH%§L3 + ”§0H?i§Lg) )
in the case Q, = T3, and
199,90 - Tlg gy zzors S = (1l + 10005 + 1012 + 1ol iz )

in the case Q, = R3.
For the fourth term Ty, we first decompose f¢ = PLf¢ + P f¢ and use that ¢ = Pg to
write

oIt €) = (g, g1 (1, €)
TIPSO €) + TP FE P, €) + WP PO €)
+ WP S, P () — U9, 9)(1,€)
= WP f7, PO (,€) + UE[P S5 PS8, €) + TP, P 7Y (2, €)
+ U[P(f° - 9), Pfe](t,€) + U°[Pg, P(f* — 9))(¢,€).
Thanks to Proposition 3.4 and Lemma 4.1 we have
H‘T’E[Plf€7 Plfe] ”L§L§°Lg S ”f[Plfea PLfE] ”LéLf(Hﬁ’*)’

1 7 1 e
S|P fauLngoLgHP fEHLéLng,’*,

s
ve[P

moreover N N N N
18P 1=, P ol e 1 S IEPSE P £l sy

_ |-
S HPfEHLéL;X’L%HP fEHL%L%HS’*a
and also P S
|we[P feane]HLéL;’OL% < |IT[P feane]HL%Lf(Hﬁ’*)/

15 -
S P fsuLéLij* HPfEHL%LgoL%,

where we have used that |P¢[gs+ < [[P¢[lr2 and H<v>(7/2+s)—q§HL% S 9llgs=. This
implies

[0 [P fe, P £ HL%L;’OL% + || [P £2, P £ HL%L;’OL% + (| [P f5, P £ HL%L;’OL%
=S Hf€||LéL§°L% HPlfaHL%LfHﬁ’*'

Therefore, using the bounds of Theorem 2.1, we deduce from (6.24) that
[T [P fe, P £ HL%L;’OL% + || [P f2, P £ HL%L;’OL% + (| [P e, P ”L§L§°Lg

(6.24)

S ellfollzspz:
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in the case Q, = T3, and

H(I\IE[PJ_fEaPJ_fE]HLéL;’OL% + H@E[PfeaPJ_fe]HL%L;X’L% + H(I\IE[PJ_fEanE]HLéL;’OL%

S e (1500 + 11205

in the case Q, = R3.
Furthermore, from Proposition 3.4 and Lemma 4.1, and also using that [|[Pgl|ys~ <
PG|, we have

=P = 9), PFllpipgers S IR = 9), PO irz ey
SIPUE =Pz P lrizzrs,

also
[¥E[Pg, P(f° — 9)]||L§L;;°Lg SIT(Pg, P(f° - 9))||LéLf(Hﬁ’*)’

SIPE = :q\)HL%L;’OL% HPQ\HL%LfL%'

In the case of the torus €2, = T3, we can use the bounds of Theorem 2.1-(1) and Theo-
rem 2.2—(1) to obtain

[V [P(f* = 9), PfE]HLéLgOLg + v [Pg, P(f° - 9)]||L§L§°Lg
S (175 ez + 1Goll 3z ) 177 = Glly e
Smellff - §HL§L§°L3-
In the case of the whole space Q, = R3, we first use (4.14) to write

P egizss S | S PS

)

LYL2L3

[iger

LH2L3
then we use the bounds of Theorem 2.1-(2) and Theorem 2.2—(2) to get
[ [P(f* = g), PfE]HL%L;X’L% + [[v5[Pg, P(f° - 9)”|L§L§0L5
S (175 yze + 1550z s + 1ol zya + 1ollzerz ) 117 = Gl oo
Smellf - §||L§L§°Lg-

Gathering previous estimates and using that 7o > 0 is small enough, so that when
taking the L%LE’OL% of (6.23) the fourth and fifth terms in the right-hand side of (6.23)
can be absorbed by the left-hand side, we deduce

e -~ 8|1 (V05

17 = 9llcireerz S 6 = Golloiez + €166 Goll iz
(6.25) . o .
e (1800 05 + 1900y 5 ) + <1551
in the case Q, = T3, and

o~ P S/ e\6~
1f5 - 9||L§L;;°Lg S o —90||L§Lg +e°[I€) 90||L§Lg
(6.26) +e <\|§0||%§Lg + ||§0||3i§Lg + HﬁoH%ng + HﬁoH?ing)

712 Teq2
+o (W75 g + 15513 )
in the case Q, = R3. From this estimate, we first conclude that
. A& o~ _
Lim [| f° — QHL%L;’OL% =0,

assuming moreover that (£)%gy € L%L% for some ¢ € (0,1]. We can finally prove Theo-
rem 2.3, where we only assume gy € L%Lg, by using the previous convergence and arguing
by density as in [24]. This completes the proof of Theorem 2.3.
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