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ABSTRACT

This paper addresses the problem of joint image reconstruction and point spread function (PSF) estimation when
the PSF of the imaging device is only partially known. To solve this semi-blind deconvolution problem, prior
distributions are specified for the PSF and the 3D image. Joint image reconstruction and PSF estimation is then
performed within a Bayesian framework, using a variational algorithm to estimate the posterior distribution.
The image prior distribution imposes an explicit atomic measure that corresponds to image sparsity. Simulation
results demonstrate that the semi-blind deconvolution algorithm compares favorably with previous Markov chain
Monte Carlo (MCMC) version of myopic sparse reconstruction. It also outperforms non-myopic algorithms that
rely on perfect knowledge of the PSF. The algorithm is illustrated on real data from magnetic resonance force
microscopy (MRFM).

Keywords: Variational Bayesian inference, posterior image distribution, image reconstruction, hyperparameter
estimation, MRFM experiment.

1. INTRODUCTION

Standard image reconstruction techniques generally assume that the point spread function (PSF) is perfectly
known. However, in many situations, the true PSF is either unknown or partially known. In such circumstances,
the PSF required in the reconstruction process is mismatched with the true PSF. The quality of standard image
reconstruction techniques may suffer from this disparity. To deal with this mismatch, deconvolution methods
have been proposed to estimate the unknown image and the PSF jointly. When prior knowledge of the PSF is
available, these methods are usually referred to as semi-blind deconvolution1,2 or myopic deconvolution.3–5

We propose to formulate the semi-blind deconvolution task as an estimation problem in a Bayesian setting.
Bayesian approaches provide a flexible framework to solve complex model-based problems. Prior information
available on the parameters to be estimated can be efficiently included within the model, leading to an implicit
regularization of our ill-posed problem. In addition, the Bayes framework produces posterior estimates of uncer-
tainty. Extending our work in Park et al.,5 in this paper we propose a variational estimator for the parameters
as contrasted to the Monte Carlo approach in Dobigeon et al.6 and Park et al.5 The extension of the solution of
the semi-blind problem5 to a variational setting is non-trivial. We introduce a novel variational Bayes algorithm
that iterates on a hidden variable domain associated with the mixture coefficients. This results in a faster and
more scalable algorithm than in Park et al.5

This paper accounts for uncertainty in the PSF using a Bayesian model, as in Park et al.5 This uncertainty
is modeled as the deviation of the a priori known PSF from the true PSF. Applying an eigendecomposition of
the PSF covariance, the deviation is represented as a linear combination of orthogonal PSF bases with unknown
coefficients that need to be estimated. Furthermore, we assume the desired image is sparse, corresponding to the
natural sparsity of molecular or astronomical images. The image prior is a weighted sum of a sparsity inducing
part and a continuous distribution, introduced as a positive truncated Laplacian and atom at zero (LAZE) prior.7
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Similar priors have been applied to Gaussian mixtures8,9 and to model search for mixture distributions.10 The
novelty of our image prior modeling lies in the introduction of a hidden variable that factors the approximate
distributions, which consist of discrete mass and a continuous density function.

Bayesian inference of parameters from the posterior distribution typically requires challenging computations,
such as maximization and numerical integration. One widely advocated strategy relies on approximations to the
minimum mean square error (MMSE) or maximum a posteriori (MAP) estimators using samples drawn from
the posterior distribution. Generation of these samples is typically accomplished using Markov chain Monte
Carlo methods (MCMC).11 MCMC has been successfully adopted in numerous imaging problems such as image
segmentation, denoising, and deblurring.11,12 Recently, to solve blind deconvolution, two promising semi-blind
MCMC methods have been suggested by Orieux et al.13 and Park et al.5 However, these sampling methods
have the disadvantage that estimation is done by storing sufficiently many samples.

An alternative to Monte Carlo integration are variational approximations to the posterior distribution, and
this approach is adopted in this paper. These approximations have been extensively exploited to conduct inference
with graphical models.14 They can produce an analytical posterior distribution from which Bayesian estimators
can be efficiently computed. Compared to MCMC, variational methods have the advantage of stability and
lower computational complexity, since they avoid stochastic simulation. Additionally, variational approaches do
not require as much storage space as MCMC needs. However, variational Bayes (VB) approaches are difficult
to apply when latent variables have mixture distributions, as they do in our proposed sparse image model. A
principal contribution of this paper is the implementation of a VB algorithm for this case. In order to perform
variational Bayesian inference, prior distributions are first assigned to the image variables, noise level, and PSF
coefficients. Then, the posterior distributions are estimated by minimizing the Kullback-Leibler (KL) distance
between the model and the empirical distances. Simulations conducted on synthetic images show that the
resulting myopic deconvolution algorithm outperforms previous non-myopic algorithms and competes with the
previous MCMC-based semi-blind method.5

We illustrate the proposed method on real data from magnetic resonance force microscopy (MRFM) experi-
ments. MRFM is an emerging molecular imaging modality that has the potential for achieving 3D atomic scale
resolution.15–17 Recently, MRFM has successfully demonstrated imaging18,19 of a tobacco mosaic virus.20 The
3D image reconstruction problem for MRFM experiments was investigated with Wiener filters,19,21,22 iterative
least square reconstruction approaches,20,23,24 and, recently, the Bayesian estimation framework.5–7 The draw-
back of these approaches is that they require prior knowledge of the PSF. However, in many practical situations
of MRFM imaging, the exact PSF, i.e., the response of the MRFM tip, is only partially known. The proposed
semi-blind reconstruction method accounts for this partial knowledge.

2. FORMULATION

2.1 Image Model

As in Park et al.,5 the image model is defined as:

y = Hx + n = T (κ,x) + n, (1)

where y is a P × 1 vectorized measurement, x = [x1, . . . , xN ]T � 0 is an N × 1 vectorized sparse image to
be recovered, T (κ, ·) is a convolution operator with the PSF κ, H = [h1, . . . ,hN ] is an equivalent system
matrix, and n is the measurement noise vector. In this work, the noise vector n is assumed to be Gaussian∗,
n ∼ N

(
0, σ2IP

)
. The PSF κ is assumed to be unknown but a nominal PSF estimate κ0 is available. The

semi-blind deconvolution problem addressed in this paper consists of the joint estimation of x and κ from the
noisy measurements y and nominal PSF κ0.

∗N (µ,Σ) denotes a Gaussian random variable with mean µ and covariance matrix Σ.



2.2 PSF Basis Expansion
The PSF κ (resp. {H}) is modeled as a perturbation about a nominal PSF κ0 (resp. {H0}). We use a basis
expansion as in Park et al.5 constructed by applying principal component analysis to the space of perturbed
κ about κ0. This produces a set of basis {κi}, i = 1, . . . ,K (resp. {Hi}) that yield the following linear
approximation to κ,

κ(c) = κ0 +
K∑

i=1

ciκi, (2)

where the {ci} determine the PSF relative to this bases. With this parameterization, the objective of semi-blind
deconvolution is to estimate the unknown image, x, and the linear expansion coefficients c = [c1, . . . , cK ]T .

2.3 Determination of Priors
The priors on the PSF, the image, and the noise are constructed as latent variables in a hierarchical Bayesian
model.

2.3.1 Likelihood function

Under the hypothesis that the noise in (1) is white Gaussian, the likelihood function takes the form

p
(
y|x, c, σ2

)
=
(

1
2πσ2

)P
2

exp

(
−‖y − T (κ (c) ,x)‖2

2σ2

)
, (3)

where ‖·‖ denotes the `2 norm ‖x‖2 = xT x.

2.3.2 Image and label priors

To induce sparsity and positivity of the image, we use an image prior consisting of “a mixture of a point mass
at zero and a single-sided exponential distribution”.5–7 This prior is a convex combination of an atom at zero
and an exponential distribution:

p(xi|a,w) = (1− w)δ(xi) + wg(xi|a). (4)

In (4), δ(·) is the Dirac delta function, w = P(xi 6= 0) is the prior probability of a non-zero pixel and
g(xi|a) = 1

a exp
(
−xi

a

)
1R∗+(xi) is a single-sided exponential distribution where R∗

+ is a set of positive real numbers
and 1E(·) denotes the indicator function on the set E. A distinctive property of the image prior (4) is that it can
be expressed as a latent variable model

p(xi|a, zi) = (1− zi)δ(xi) + zig(xi|a),

where the binary variables {zi}N
1 are independent and identically distributed and indicate if the pixel xi is active

zi =
{

1, if xi 6= 0;
0, otherwise. (5)

and have the Bernoulli probabilities: zi ∼ Ber(w).

The prior distribution of pixel value xi in (4) can be rewritten conditionally upon latent variable zi such that

p(xi|a, zi) = δ(xi)1−zig(xi|a)zi . (6)

By assuming each component xi to be conditionally independent given zi and a, the following conditional prior
distribution is obtained for x:

p(x|a, z) =
N∏

i=1

[
δ(xi)1−zig(xi|a)zi

]
(7)

where z = [z1, . . . , zN ].

This factorized form will turn out to be crucial for simplifying the variational Bayes reconstruction algorithm
in Section 3.



2.3.3 PSF parameter prior

We assume that the PSF parameters c1, . . . , cK are independent and ck is uniformly distributed over intervals

Sk = [−∆ck,∆ck] . (8)

These intervals are specified a priori and are associated with error tolerances of the imaging instrument. The
joint prior distribution of c = [c1, . . . , cK ]T is therefore:

p (c) =
K∏

k=1

1
2∆ck

1Sk
(ck) . (9)

2.3.4 Noise variance prior

A conjugate inverse-Gamma distribution with parameters ς0 and ς1 is assumed as the prior distribution for the
noise variance:

σ2|ς0, ς1 ∼ IG (ς0, ς1) . (10)

The parameters ς0 and ς1 will be fixed to a number small enough to obtain a vague hyperprior, unless we have
good prior knowledge.

2.4 Hyperparameter Priors

As reported in Ting et al.7 and Dogigeon et al.,6 the values of the hyperparameters {a,w} greatly impact the
quality of the deconvolution. Following the approach in Dobigeon et al.,6 we propose to include them within
the Bayesian model, leading to a second level of hierarchy in the Bayesian paradigm. This hierarchical Bayesian
model requires the definition of prior distributions for these hyperparameters, also referred to as hyperpriors
which are defined below.

2.4.1 Hyperparameter a

A conjugate inverse-Gamma distribution is assumed for the Laplacian scale parameter a:

a|α ∼ IG (α0, α1) , (11)

with α = [α0, α1]
T . The parameters α0 and α1 will be fixed to a number small enough to obtain a vague

hyperprior, unless we have good prior knowledge.

2.4.2 Hyperparameter w

We assume a Beta random variable with parameters (β0, β1). We set β0 = β1 = 1 to obtain a non-informative
prior:

w ∼ B(β0, β1). (12)

2.5 Posterior Distribution

The conditional relationships between variables is illustrated in Fig. 1. The resulting posterior of hidden variables
given the observation is

p(x, σ2, a, z, w, c|y) ∝ p(y|x, σ2, c)× p(x|a, z)p(z|w)p(w)p(a)p(σ2)p(c). (13)

Since it is too complex to derive exact Bayesian estimators from this posterior, a variational approximation of
this distribution is proposed in the next section.



Figure 1. Conditional relationships between variables. A node at an arrow tail conditions the node at the arrow head.

3. VARIATIONAL APPROXIMATION

3.1 Basics of Variational Inference

In this section, we show how to approximate the posterior densities within a variational Bayes framework. Denote
by U the set of all hidden parameter variables including the image variable x in the model, denoted by M. The
hierarchical model implies the Markov representation p(y,U|M) = p(y|U,M)p(U|M). Our objective is to
compute the posterior p(x|y,M) =

∫
p(y|U,M)p(U|M)dU\x/p(y|M), where U\x is a set of variables in U

except x. Let q be any arbitrary distribution of U. Then

ln p(y|M) = L(q) + KL(q‖p) (14)

with

L(q) =
∫
q(U|M) ln

(
p(y,U|M)
q(U|M)

)
dU

KL(q‖p) = −
∫
q(U|M) ln

(
p(U|y,M)
q(U|M)

)
dU.

We observe that maximizing the lower bound L(q) is equivalent to minimizing the Kullback-Leibler (KL)
divergence KL(q‖p). Consequently, instead of directly evaluating p(y|M) given M, we will specify a distribution
q(U|M) that approximates the posterior p(U|y,M). The best approximation maximizes L(q). We present
Algorithm 1 that iteratively increases the value of L(q) by updating posterior surrogate densities. To obtain
a tractable approximating distribution q, we will assume a factorized form as q(U) =

∏
j q(Uj) where U has

been partitioned into disjoint groups Uj . Subject to this factorization constraint, the optimal distribution
q∗ (U) =

∏
j q

∗(Uj) is given by

ln q∗j (Uj) = E\Uj
[ln p(U,y)] + (const), ∀j (15)

where E\Uj
denotes the expectation† with respect to all factors Ui except i = j. We will call q∗(U) the posterior

surrogate for p.

3.2 Suggested Factorization

Based on our assumptions on the image and hidden parameters, the random vector is U , {θ,φ} = {x, z, c, w, a, σ2}
with θ = {x, z, c} and φ =

{
w, a, σ2

}
. We propose the following factorized approximating distribution

q(U) = q(x, σ2, a, z, w, c) = q(σ2, a, w)q(x, z, c).

†In the sequel, we use both E(·) and 〈·〉 to denote the expectation. To make our expressions more compact, we
use subscripts to denote expectation with respect to the random variables in the subscripts. These notations with the
subscripts of ‘\v’ denote expectation with respect to all random variables except for the variable v. e.g. E\Uj



Ignoring constants‡, (15) leads to

ln q(σ2, a, w) = E\σ2 ln p(y|x, σ2)p(σ2)︸ ︷︷ ︸
ln q(σ2)

+ E\a ln p(x|a, z)p(a)︸ ︷︷ ︸
ln q(a)

+ E\w ln p(z|w)p(w)︸ ︷︷ ︸
ln q(w)

(16)

which induces the factorization
q(φ) = q(σ2)q(a)q(w). (17)

Similarly, the factorized distribution for x, z and c is

q (θ) =

[∏
i

q(xi|zi)

]
q(a)q(z) (18)

leading to the fully factorized distribution

q (θ,φ) =

[∏
i

q(xi|zi)

]
q(a)q(z)q(w)q(σ2)q(c) (19)

3.3 Approximating Distribution q

In this section, we specify the marginal distributions in the approximated posterior distribution required in (19).
The parameters for the posterior distributions are evaluated iteratively due to the mutual dependence of the
parameters in the distributions for the hidden variables, as illustrated in Algorithm 1.

3.3.1 Posterior surrogate for a

q(a) = IG(α̃0, α̃1), (20)

with α̃0 = α0 +
∑
〈zi〉, α̃1 = α1 +

∑
〈zixi〉.

3.3.2 Posterior surrogate for w

q(w) = B(β̃0, β̃1), (21)

with β̃0 = β0 +N −
∑
〈zi〉, β̃1 = β1 +

∑
〈zi〉.

3.3.3 Posterior surrogate for σ2

q(σ2) = IG(ς̃0, ς̃1), (22)

with ς̃0 = P/2+ς0, ς̃1 = 〈‖y−Hx‖2〉/2+ς1, and 〈‖y−Hx‖2〉 = ‖y−〈H〉〈x〉‖2+
∑

var[xi]
[
‖〈κ〉‖2 +

∑
l σcl

‖κl‖2
]
+∑

l σcl
‖Hl〈x〉‖2, where σcl

is the variance of the Gaussian distribution q(cl) given in (28) and var[xi] is computed
under the distribution q(xi) defined in the next section.

3.3.4 Posterior surrogate for x

We first note that
ln q(x, z) = ln q(x|z)q(z) = E[ln p(y|x, σ2)p(x|a, z)p(z|w)]. (23)

The conditional density of x given z is p(x|a, z) =
∏N

i gzi(xi), where g0(xi) , δ(xi), g1(xi) , g(xi|a). Therefore,
the conditional posterior surrogate for xi is

q(xi|zi = 0) = δ(xi), (24)
q(xi|zi = 1) = φ+(µi, ηi), (25)

where φ+(µ, σ2) is a positively truncated-Gaussian density function with the hidden mean µ and variance σ2,
ηi = 1/[〈‖hi‖2〉〈1/σ2〉], µi = ηi[〈hT

i ei〉〈1/σ2〉 − 〈1/a〉], ei = y−Hx−i, x−i is x except for the ith entry replaced
with 0, and hi is the ith column of H. Therefore,

q(xi) = q(zi = 0)δ(xi) + q(zi = 1)φ+(µi, ηi), (26)

which is a Bernoulli truncated-Gaussian density.
‡In the sequel, constant terms with respect to the variables of interest can be omitted in equations.



3.3.5 Posterior surrogate for z

For i = 1, . . . , N ,

q(zi = 1) = 1/[1 + C ′
i] and q(zi = 0) = 1− q(zi = 1), (27)

with C ′
i = exp(Ci/2 × ς̃0/ς̃1 + µiα̃0/α̃1 + ln α̃1 − ψ(α̃0) + ψ(β̃0) − ψ(β̃1)). ψ is the digamma function and

Ci = 〈‖hi‖2〉(µ2
i + ηi)− 2〈eT

i hi〉µi.

3.3.6 Posterior surrogate for c

For j = 1, . . . ,K,
q(cj) = φ(µcj

, σcj
), (28)

where φ(µ, σ) is the probability density function for the normal distribution with the mean µ and variance σ,
µcj = 〈xT HjT y − xHjT H0x−

∑
l 6=j xT HjT Hlclx〉/〈xT HjT Hjx〉, and 1/σcj = 〈1/σ2〉〈xT HjT Hjx〉.

Algorithm 1 VB semi-blind image reconstruction algorithm
1: % Initialization:

2: Initialize estimates 〈x(0)〉, 〈z(0)〉, and w(0), and set c = 0 to have κ̂(0) = κ0,
3: % Iterations:

4: for t = 1, 2, . . . , do
5: Evaluate α̃(t)

0 , α̃
(t)
1 in (20) by using 〈x(t−1)〉, 〈z(t−1)〉,

6: Evaluate β̃(t)
0 , β̃

(t)
1 in (21) by using 〈z(t−1)〉,

7: Evaluate ς̃(t)0 , ς̃
(t)
1 in (22) from 〈‖y −Hx‖2〉,

8: for i = 1, 2, . . . , N do
9: Evaluate necessary statistics (µi, ηi) for q(xi|zi = 1) in (24),

10: Evaluate q(zi = 1) in (27),
11: Evaluate 〈xi〉, var[xi],
12: For l = 1, . . . ,K, evaluate µcl

, 1/σcl
for q(cl) in (28),

13: end for
14: end for

The final iterative algorithm is presented in Algorithm 1, where required shaping parameters under distribu-
tional assumptions and related statistics are iteratively updated.

4. SIMULATION RESULTS

We first present numerical results obtained for Gaussian and typical MRFM PSFs, shown in Fig. 2(a) and
Fig. 3(a), respectively. Then the proposed variational algorithm is applied to a tobacco virus MRFM data
set. There are many possible approaches to selecting hyperparamters, including the non-informative approach6

and the expectation-maximization approach.9 In our experiments, hyper-parameters ς0, ς1, α0, and α1 for
the densities are chosen based on the framework advocated in Dobigeon et al.6 This leads to vague priors
corresponding to selecting ς0 = ς1 = α0 = α1 = 1. The initial image used to initialize the algorithm is obtained
from one Landweber iteration.25

4.1 Simulation with Gaussian PSF

The true image x used to generate the data, observation y, the true PSF, and the initial, mismatched PSF are
shown in Fig. 2(a). The final estimated PSF and reconstructed image are depicted in Fig. 2(b), along with the
reconstructed variances and posterior probability of zi 6= 0. We dissected the support region of the true PSF, to
produce 4 PSF bases {κi}i shown in Fig. 2(c). The reconstructed PSF clearly matches the true one, as seen in
Fig. 2(b) and Fig. 2(a). Note that the restored image is attenuated while the restored PSF is amplified because
of intrinsic scale ambiguity.



(a) True image, observation, true PSF, and mismatched
PSF (κ0).

(b) Restored PSF and image with variance and weight
map. κ̂ = Eκ is close to the true one.

(c) PSF bases, κ1, . . . , κ4, for Gaussian PSF.

Figure 2. Experiment with Gaussian PSF



(a) true image, observation, true PSF, and mismatched
PSF (κ0).

(b) Restored PSF and image with variance and weight
map. κ̂ = Eκ is close to the true one.

(c) PSF bases, κ1, . . . , κ4, for MRFM PSF.

Figure 3. Experiment with simplified MRFM PSF

4.2 Simulation with MRFM type PSFs

The true image x used to generate the data, observation y, the true PSF, and the initial, mismatched PSF
are shown in Fig. 3(a). The PSF models the PSF of the MRFM instrument, derived by Mamin et al.26 The
convergence is achieved after the 10th iteration. The reconstructed image can be compared to the true image in
Fig. 3(b), where the pixel-wise variances and posterior probability of zi 6= 0 are rendered. The PSF bases are
obtained by the procedure proposed by Park et al.5 The resulting K = 4 principal basis vectors are depicted in
Fig.3(c). The reconstructed PSF with the bases clearly matches the true one, as seen in Fig. 3(b) and Fig. 3(a).

4.3 Comparison with PSF-mismatched reconstruction

The results from the variational deconvolution algorithm with a mismatched Gaussian PSF and a MRFM type
PSF are presented in Fig. 4(a) and Fig. 4(b), respectively; the relevant PSFs and observations are presented
in Fig. 2(a) in Section 4.1 and in Fig. 3(a) in Section 4.2, respectively. Compared with the results of our VB
semi-blind algorithm (Algorithm 1), shown in Fig. 2(b) and Fig. 3(b), the reconstructed images in Fig. 4(a) and
Fig. 4(b), respectively, inaccurately estimate signal locations and blur most of the non-zero values.

4.4 Comparison with the MCMC semi-blind algorithm

To compare the proposed method with the previous MCMC semi-blind deconvolution method proposed by
Park et al.,5 we present the approximated posterior density q(xi) for a non-zero pixel xi estimated from both



(a) Non-myopic result with a mismatched Gaussian
PSF.

(b) Non-myopic result with a mismatched MRFM type
PSF.

Figure 4. Two approximate posterior densities at (22,17). The variance of the variational density is much smaller than
that of the previous method. (Because of non-uniqueness in scale in blind deconvolution, distributions from variational
and MCMC methods are scaled to have the peak at the true value for a fair comparison of their envelopes.)

methods. We picked the nonzero pixel at the coordinate (22, 17) of the true sparse image (top-left in Fig. 3(a))
and used a MRFM type PSF (bottom in Fig. 3(a)) for the comparison. The posterior distribution estimated
by the MCMC method is approximated by averaging the posteriors of 180 samples generated after the burn-in
period. Conversely, the posterior distribution approximated by the proposed variational approach is the Bernoulli
truncated-Gaussian distribution in (26), whose parameters are computed from the final outputs of the iterative
algorithm. The approximated densities are superimposed in Fig. 4§. In this figure, the precision obtained in our
method is evident, whereas the previous sampling based method seems to suffer from additional Monte Carlo
errors.

To quantify the comparison, we performed experiments with the same set of four sparse images as used in Park
et al.5 By generating 100 different noise realizations for 100 independent trials with each true image, we measured
errors according to various criteria. We tested four sparse images with sparsity levels ‖x‖0 = 6, 11, 18, 30. Fig. 5
visualizes reconstruction error performance for several measures of error¶ . From these figures we conclude that
the VB semi-blind algorithm performs at least as well as the previous MCMC semi-blind algorithm. In addition,
the VB method outperforms AM27 and non-blind MCMC6 methods. In terms of PSF estimation, the VB semi-

§The delta function in the variational density is not visible since the estimated weight for the function is negligible to
be rendered.

¶Note that the `0 norm has been normalized. The true image has value 1; ‖x̂‖0/‖x‖0 is used for MCMC method;
E(w) × N/‖x‖0 for variational method since this method does not produce zero pixels but E(w).
Note also that, for our simulated data, the (normalized) true noise levels are ‖n‖2/‖x‖0 = 0.1475, 0.2975, 0.2831, 0.3062
for ‖x‖0 = 6, 11, 18, 30, respectively.



Figure 5. Error bar graphs of results from two semi-blind deconvolution algorithm. For several images of different
sparsity levels, errors are illustrated with standard deviations. Quantities for ‘image error’ (top-left), ‘projection error’
(bottom-left), and ‘PSF error’ (bottom-right) are E[‖x/‖x‖− x̂/‖x̂‖‖2]/‖x‖0, E[‖y− ŷ‖2]/‖x‖0, and E‖κ/‖κ‖− κ̂/‖κ̂‖‖2,
respectively. ‘VB’, ‘MC’, ‘AM’, and ‘nonblind’ are the semi-blind variational method (proposed here), semi-blind MCMC
method,5 alternating minimization method,27 and non-blind method,6 respectively.

blind method seems to outperform the MCMC method, especially for very sparse images. Also, the proposed
VB semi-blind method converges more quickly and requires fewer iterations. For example, the VB semi-blind
algorithm converges in approximately 9.5 seconds after 12 iterations, but the previous MCMC algorithm takes
more than 19.2 seconds after 40 iterations to achieve convergence‖.

4.5 Application to tobacco mosaic virus (TMV) data

We applied the proposed variational semi-blind sparse deconvolution algorithm to the tobacco mosaic virus data,
made available by our IBM collaborators,20 shown in Fig. 6(a). Our algorithm is easily modifiable to these 3D
raw image data and 3D PSF with an additional dimension in dealing with basis functions to evaluate each voxel
value xi. The reconstruction of the 6th layer is shown in Fig. 6(b), and is consistent with the results obtained
by other methods.5,6 The estimated deviation in PSF is small, as predicted in Park et al.5

‖Matlab is used under Fedora Release 12 and Intel Xeon E5506 CPU in Dell Precision T5500 platform.



(a) TMV raw data. (b) VB: Estimated
virus image.

(c) MCMC: Esti-
mated virus image
from Park et al.5

Figure 6. TMV data from MRFM experiment and estimates.

5. CONCLUSION

We suggested a novel variational solution to a semi-blind sparse image reconstruction problem. Our method uses
Bayesian inference for image and PSF restoration with a sparsity-inducing image prior via the variational Bayes
approximation. From the simulation results, we conclude that the performance of the VB method competes with
MCMC methods in sparse image estimation, while requiring fewer computations. Compared to a non-myopic
algorithm whose mismatched PSF leads to imprecise and blurred signal locations in the restored image, the VB
semi-blind algorithm correctly produces sparse image estimates. The benefits of this solution compared to the
previous MCMC solution are: 1) faster convergence, 2) stability of the method, and 3) memory efficiency.
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