
HAL Id: hal-04240673
https://hal.science/hal-04240673

Submitted on 13 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Monitoring Association Constraints in Model-Oriented
Programming

Sylvain Guérin, Joël Champeau, Antoine Beugnard, Salvador Martínez

To cite this version:
Sylvain Guérin, Joël Champeau, Antoine Beugnard, Salvador Martínez. Monitoring Association
Constraints in Model-Oriented Programming. MODELS-C 2023: ACM/IEEE International Confer-
ence on Model Driven Engineering Languages and Systems Companion, Oct 2023, Vasteras, Sweden.
�10.1109/MODELS-C59198.2023.00068�. �hal-04240673�

https://hal.science/hal-04240673
https://hal.archives-ouvertes.fr

Monitoring Association Constraints in
Model-Oriented Programming

Sylvain Guérin, Joel Champeau
ENSTA Bretagne

Lab-STICC, UMR 6285
Brest, France

{sylvain.guerin,joel.champeau}@ensta-bretagne.fr

Antoine Beugnard, Salvador Martínez
IMT Atlantique

Lab-STICC, UMR 6285
Brest, France

{antoine.beugnard,salvador.martinez}@imt-atlantique.fr

Abstract—Associations are a key concept in modeling lan-
guages as a way to formalize the relationships between domain
concepts. Unfortunately, the support of semantically rich associ-
ations able to represent complex relationships is often missing,
and this is both at the model and code level. At the model
level, complex constraints on associations are often represented
by using external, textual constraint languages which are difficult
to understand and to maintain. At the code level, the situation is
even worse, as mainstream object-oriented languages lack direct
support for associations.

In order to alleviate this problem, in this paper we propose
a reification of complex association constraints so that they can
be easily specified at development time and monitored at run-
time. We do this by leveraging PAMELA, an annotation-based
Java modeling framework, which promotes blending classical
programming with modeling through the use of annotations and
runtime code instrumentalization and monitoring. PAMELA is
in the scope of Model-Oriented Programming approaches. We
provide a classification of association constraints and discuss
different implementation strategies. Finally, we demonstrate the
feasibility of our approach with a prototype implementation and
an initial catalog of association patterns.

I. INTRODUCTION

Support for associations is a given in modeling languages.
However, the semantics of the relations between entities are
diverse and only a handful of association constraints help-
ing to specify these semantics are normally supported with
predefined constructs. As an example, the means to express
cardinalities or navigability on associations are usually pro-
vided by mainstream modeling languages, but more complex
constraints such as irreflexibility or injectivity need to resort
to expressions written in external constraint languages such as
OCL which are difficult to create, understand, and maintain
(e.g., the co-evolution of model and constraints remains a
complex problem [1], [2], [3]).

This situation gets worse when code generation follows
modeling. Analysis shows that existing code generation tools
lack good support for association constraints [4], [5], which
means that many constraints are simply ignored and no
mechanism for their verification or enforcement is generated.
Furthermore, target languages rarely provide direct support for
associations or association constraints. As an example, as early
as 1987, Rumbaugh [6] stated the lack of direct syntax or
semantic support for the direct representation of relationships

in Object Oriented languages. They can be implemented (e.g.,
different patterns are proposed in [7]), but the implementation
will scatter different parts and properties of the association
instead of representing it as a unit.

In order to tackle this problem we propose the reifica-
tion of recurrent association constraints so that they can be
easily specified at development time and verified at run-
time. We do this by leveraging the model-oriented program-
ming paradigm [8], which consist on integrating high-level
modeling constructs within programming languages in order,
among other benefits, to avoid round-tripping issues related
to code generation. Concretely, we leverage PAMELA [9],
an annotation-based Java modeling framework which supports
blending classical Java programming with modeling through
the use of annotations and runtime code instrumentation and
monitoring.

Concretely, we extend the PAMELA framework with a
set of ready to use annotations representing association con-
straints. These annotations permit the integration of association
constraints in JAVA programs in a concise way, resulting in
a code that is semantically nearer to the domain. PAMELA
provides us with the ability to define an open and extensible
library of association constraints, in contrast with the other
Model-Oriented Programming approaches. The flexibility of
the PAMELA framework also allows us to define and apply
custom constraint monitoring so that it can be adapted to
the development process. As an example, initial development
phases may require monitoring to be performed very often
(e.g., to help debugging errors), so that a strong confidence in
the correctness of the implementation is gained whereas later
phases may only require on-demand monitoring. Different
domains may also impose different monitoring requirements,
e.g., association constraints that participate in the implemen-
tation of security concerns.

The remainder of the paper is organized as follows. The
next section presents the PAMELA framework, the Section III
describes our approach related to association constraints in
PAMELA with an example of an advanced association. The
Section IV positions our approach in relation to the current
domain literature. Finally, we conclude our presentation with
promising perspectives on this work.

II. PREVIOUS CONCEPTS

We devote this section to the description of the basic ele-
ments of our approach. Concretely, we present here the Model-
oriented programming paradigm, the PAMELA framework,
an instance of such paradigm and the concept of association
constraint and its relevance.

A. Model-oriented programming with PAMELA

We borrow here the concept of Model-oriented program-
ming [10] to refer to a paradigm in which modeling and
programming are blended so that high-level modeling concepts
can be used in code. PAMELA [9] is an annotation-based Java
modeling framework that corresponds to this paradigm.

PAMELA provides a smooth integration between the model
and code, without code generation nor externalized model
serialization. Instead of generating the code, the modeling
API (mostly Java interfaces with abstract method declarations)
is locally executed (interpreted), avoiding round-trip issues.
Figure 1 summarizes the PAMELA architecture. The left side
shows how at design time code and model are built together
by annotating the code with PAMELA modeling concepts
such as class, attribute, method, etc. The right side shows
how the PAMELA interpreter blends compiled java code with
an internal model representation in order to orchestrate user’s
code and modeling API code at runtime.

Figure 2 shows an excerpt of the PAMELA metamodel.
Basically, a PAMELA model contains a number of Entities
which may point to a given implementation interface or class
overriding the default model implementation (details about the
functioning of PAMELA can be found in [9]). Model entities
may have a number of Properties with classical features
such as type, cardinality, etc. Instances of this metamodel are
created directly within Java code by the means of annotations
as we show in the following example.

Listing 1 shows a very basic model with two entities:
Book and Library. Entity Book defines two read-write single
properties (title and ISBN) with single cardinality and with
String type. Note that properties are defined implicitly, i.e.,
they are defined together with the methods that use them
and thus their type is inferred from them. String identifiers
in annotations are used to identify all methods related to a
given property. Entity Book also defines a constructor with
initial title value. Entity Library defines a read-write multiple
properties books referencing Book instances. Note that this
code is sufficient to execute the model, while no additional
line of code is required (only Java interfaces and API methods
are declared here).

The execution and the management of this model may
be performed using the code in Listing 2. The lines 3–4
instantiate a ModelContext by introspecting and comput-
ing the closure of concepts graph obtained while starting
from Library entity and following parentEntities and
properties relationships. This call builds at runtime a
PAMELAModel, while dynamically following links reflected

Model@runtime

Source code

File1.java

File2.java

File3.java

File4.java

Compiled code

Java compiler

Java Run Time

Model

PA

M
EL

A
 In

te
rp

re
te

r

PAMELA

Design Time

Fig. 1. PAMELA approach for modeling

Model

Entity

-name:String
-implI:float
-implC:float

Property

-name
-cardinality
...

*

-entities

-parents *

* -entities

1 -type

Fig. 2. PAMELA metamodel

by compiled bytecode. A factory ModelFactory is then
instantiated using that ModelContext, allowing to create
Library and Book instances.

1 // Instantiate the meta-model
2 // by computing the closure of concepts graph
3 ModelContext modelContext
4 = ModelContextLibrary.getModelContext(Library.

class);
5 // Instantiate the factory
6 ModelFactory factory = new ModelFactory(

modelContext);
7 // Instantiate a Library
8 Library myLibrary = factory.newInstance(Library.

class);
9 // Instantiate some Books

10 Book myFirstBook
11 = factory.newInstance(Book.class, "Lord of the

rings");
12 Book anOtherBook = factory.newInstance(Book.class, "

Holy bible");
13 myLibrary.addToBooks(myFirstBook);
14 myLibrary.addToBooks(anOtherBook);

Listing 2. Model execution/manipulation

1 @ModelEntity
2 public interface Book extends AccessibleProxyObject

{
3 @Initializer
4 public Book init(@Parameter("title")String aTitle)

;
5

6 @Getter("title")
7 public String getTitle();
8

9 @Setter("title")
10 public void setTitle(String aTitle);
11

12 @Getter("ISBN")
13 public String getISBN();
14

15 @Setter("ISBN")
16 public void setISBN(String value);
17 }
18

19 @ModelEntity
20 public interface Library extends

AccessibleProxyObject {
21

22 @Getter(value = "books", cardinality = Cardinality
.LIST)

23 public List<Book> getBooks();
24

25 @Adder("books")
26 public void addToBooks(Book aBook);
27

28 @Remover("books")
29 public void removeFromBooks(Book aBook);
30

31 @Reindexer("books")
32 public void moveBookToIndex(Book aBook, int index)

;
33 @Finder(collection = "books", attribute = "title")
34 public Book getBook(String title);
35 }

Listing 1. Model creation

B. Association constraints

Associations are a key concept in modeling languages as
a way to formalize the relationships [11] between domain
concepts. As a example, below is the UML’s definition of
association:

An Association specifies a semantic relationship that can
occur between typed instances. It has at least two memberEnds
represented by Properties, each of which has the type of the
end. More than one end of the Association may have the same
type. An Association declares that there can be links between
instances whose types conform to or implement the associated
types. A link is a tuple with one value for each memberEnd of
the Association, where each value is an instance whose type
conforms to or implements the type at the end. [12]

To these associations, constraints can be added so that they
represent better the semantics of the domain being modeling
by restricting the set of valid links. Some constraints can be
directly represented by using modeling languages constructs.
As an example, both UML and EMF support the definition
of navigability and cardinality constraints directly. Other con-
straints require the modeler to resort to external (and normally
textual) constraint languages. At the code level, associations

are rarely supported. Instead, a number of patterns are used to
implement them [7]. Constraints are not supported either.

Without any claim to completeness we present in Table I
four different association constraints1. They all help capture
important domain semantics which will be lost without the
constraint (e.g., verification of a surjective association may
be used in the inplementation of garbage collections). The
first two constraints (irreflexive and surjective) apply to the
association itself (S) while the last two (xor and partition)
apply to at least a pair of associations. Constraints one and
three can be verified locally (L) while constraints two and four
can not. None of them2 are directly supported in mainstream
modeling nor programming languages.

TABLE I
ASSOCIATION CONSTRAINT EXAMPLES

Constraint Visualization Semantics S L

(1) irreflexive X

f
[irr]

∀x ∈ X,x /∈ f(x) Y Y

(2) surjective
X

f

[surj]
Y

f(X) = Y Y N

(3) xor

X
f

Y

g

Z

[xor]

∀x ∈ X, (f(x) =
∅ ∨ g(x) = ∅) ∧
(f(x) ̸= ∅ ∨
g(x) ̸= ∅)

N Y

(4) partition

X
f

Y

g

Z

[part]

f(X)∩g(Z) = ∅∧
f(X) ∪ g(Z) = Y

N N

III. APPROACH

The interest of Model-oriented programming and the need
for advanced association constraints have been discussed in
the previous sections. In the following, we present an approach
integrating both concepts. Our approach is based on PAMELA
which, as we have seen in Section II uses annotations to in-
clude high-level modeling concepts in Java programs (through
the use of annotations) that are interpreted at run-time. In this
sense, our approach enhances PAMELA by including:

1) An (extensible) infrastructure within the PAMELA
framework supporting the definition and reification of
advanced association constraints. These constraints are

1The constraints along with its mathematical and graphical representation
and extracted from the DPF Workbench [13]

2Note that the xor constraint can be represented in an UML diagram as a
constraint, but not as a concept.

Model@runtime

Source code

File1.java

File2.java

File3.java

File4.java

Compiled code

Java compiler

PA
M

EL
A

 In
te

rp
re

te
r

PAMELA

Design Time

PAMELA Concepts

Asso. constraints

A
ss

o
ci

a�
o

n
 C

o
n

st
ra

in
t

M
o

n
it

o
r

link with
annota�ons

Instan�a�on
+

Run Time

Fig. 3. PAMELA with association constraints

then exposed as a set of annotations ready to be used
by programmers/modelers.

2) A configurable monitoring scheme that provides run-
time verification of association constraints.

Figure 3 shows the aforementioned additions. The PAMELA
framework including an initial set of implemented association
constraints is available online3.

A. Infrastructure

There are two types of support for the association con-
straints. Single and local association constraints are supported
as PropertyPredicates classes which are attached to any
given PAMELA property. PropertyPredicates include a check
method that performs the actual evaluation of the property
and a number of methods to observe changes that are related
to it. As an example, in Listing 3, we show the use of the
constraint annotation @Irreflexive at design time. At run-
time the use of this annotation causes the instantiation of the
Irreflexive PropertyPredicate which is in turn monitorized by
the PAMELA interpreter all along the life of the program.

1 @ModelEntity
2 public interface X extends AbstractConcept,

MonitorableProxyObject {
3

4 static final String SINGLE_X = "singleX";
5

6 @Getter(SINGLE_X)
7 @Irreflexive
8 X getSingleX();
9

10 @Setter(SINGLE_X)
11 public void setSingleX(X value);
12 }

Listing 3. Irreflexive constraint

Note that a similar functionality may be achieved by using
a contract-based specification language such as JML [14] as
we illustrate in Listing 4. However, we argue that directly
specifying abstract contract-based invariants is harder and
more difficult to maintain and understand than using reified

3https://github.com/openflexo-team/pamela/tree/2.0

association constraints. Indeed the latter are more concise,
explicit and declared nearer to the relevant part of the code,
this is, the association declaration. Besides, contract-based
approaches have limitations as they are designed to be local to
a given class and thus, are not suited for non-local association
constraints such as the surjective and partition constraints
presented in Section II.

1 @ModelEntity
2 @Invariant("singleX != object")
3 public interface X extends AbstractConcept,

MonitorableProxyObject {
4 ...
5 }

Listing 4. Irreflexive constraint with JML

For the more complex association constraints, e.g. those that
are not local and/or represent a constraint between two or
more associations, we rely on the concept of pattern, which
is already implemented in the PAMELA framework (e.g.,
see [15]) through the PatternDefintion class. Complex associ-
ation constraints are defined by extending this class. We show
in Listing 5 the use of a XOR constraint by the specification
at design time of the constraint annotation @XOrAssociation
(lines 10 and 17) in the two properties that need to maintain
a xor relation. Notice that the annotation is parametrized with
the identifier defined in line 4. The behaviour at run-time is
similar as the one described above for PropertyPredicates as
patterns act as a container for properties.

B. Monitoring

Our association constraints are prescriptive and represent
side-effect free constraints. In that sense they can be seen as
(multi)object invariants. The PAMELA interpreter keeps track
of all elements that are part of a PAMELA model, including
creation, modification, etc, which facilitates monitoring of
such invariants.

An in-depth discussion about the different verification tech-
niques for object or multi-object constraints or invariants [16]
lies out of the scope of the present paper, which focus is on
facilitating the use of association constraints. Nevertheless,
we provide here some details. For single object constraints
PAMELA follows a visible states semantics [17], e.g., con-
straints are verified before and after method calls. For multi-
object constraints, and to deal with collection aliasing prob-
lems, an ownership model technique [18] is also implemented.

One notable feature of our framework though is its flexi-
bility. Indeed, the monitoring can be customized in order to
adapt to the needs of different scenarios such as the stage
of the development life-cycle (early phases arguably require
more monitoring) or the application domain. As en example,
within our framework the monitoring of constraints may
be completely switched-off, performed only after specially
labelled method calls or after all entity method calls or only
after interpreted method calls.

C. Discussion

Reifying the association constraints taking advantage of
PAMELA model@runtime features helps solve the problem

1 @ModelEntity
2 public interface X extends AbstractConcept,

MonitorableProxyObject {
3

4 static final String XOR_ASSOCIATION = "
YandZareExclusive";

5

6 static final String Y_KEY = "y";
7 static final String Z_KEY = "z";
8

9 @Getter(Y_KEY)
10 @XOrAssociation(patternID = XOR_ASSOCIATION)
11 public List<Y> getY();
12

13 @Adder(Y_KEY)
14 public void addToY(Y y);
15

16 @Getter(Z_KEY)
17 @XOrAssociation(patternID = XOR_ASSOCIATION)
18 public List<Z> getZ();
19

20 @Adder(Z_KEY)
21 public void addToZ(Z z);
22 }

Listing 5. XOR constraint

of lack of support to such constraints in both, modeling and
code. Here are a few advantages we consider:

• Association constraints are implemented in a location
enabling a very simple reuse. The abstraction provided
brings ease of use, as the programmer does not need to
write, test and maintain complex constraints, she just has
to annotate roles. Code is higher-level and more concise.

• As a proof of concept, we have implemented various
kinds of constraint (see table I): on a single association
(S) or can be evaluated locally (L). Literature identifies
dozens of such constrains that could harden structural
properties of code from high-level expressions. Associa-
tions become higher level and PAMELA implementation
reinforce their semantics.

• Being reified constraints can be designed, implemented,
tested and reused as other pieces of code.

On the other side, here are some limitations:
• We do not intend to prove the constraints; we think we

improve the trust in the code, since we reuse tested code.
• We did not explore association interactions. For instance,

when working with many constraint associations may
lead to impossibilities.

• We assume PAMELA is correctly used. Usually, the
compiler detects the omission of a role. However, a
misplaced annotation may trigger unexpected behaviors.
We left the exploration of the integration of annotation
validation mechanisms [19] as a future work.

More generally, most design patterns can be regarded as
collaboration among entities. As such, some patterns can be
implemented with the proposed approach.

IV. RELATED WORK

Association constraints are discussed in the literature from
different perspectives. In [4] the author discusses the limita-

tions of code generation tools w.r.t. their management, which
in the vast majority of cases is left to the developers. The
authors propose instead to reify associations as classes to deal
with constraints. A similar report is done in [5] where the
authors analyse the (limited) support associations have in code
generation tools and discuss how rich UML associations are
integrated in UMPLE [8]. As with PAMELA, UMPLE, is an
approach that tries to blend programming and modeling by
integrating UML abstractions in an object oriented language.
UMPLE provides some support for associations including the
representation and enforcement of multiplicities and referential
integrity.The main difference w.r.t. PAMELA is that UMPLE
uses code generation in order to compile UMPLE code to
target languages such as Java. Conversely with PAMELA,
modeling constructs are integrated directly in Java by using
annotations which are then interpreted at runtime.

The need to reify complex association constraints is dis-
cussed in [20] and [21]. Both provide the means to represent
complex association semantics and both approaches rely on
annotations in order to constraint associations (the use of
annotations as a means to reify constraints and other se-
mantic information is widespread [22], [23], [24]). In [20]
the authors provide the annotations as a profile for UML
whereas in [21] the authors provide a new modeling language
in which constraints can also be represented diagrammatically.
Both approaches discuss code generation. Explicit support for
symmetric unary association constraints is provided in [25]
where the authors describe ConML. The need for complex
association constraints is discussed also in the ontology realm.
E.g., in [26] the authors discuss a numbers of inter asso-
ciation constraints on ontology relations and how they can
be implemented with RDF. More similar to us, in [27],
the authors present a framework that uses Concern-Oriented
Reuse (CORE) to deal with associations and their constraints
(uniqueness, multiplicity and referential integrity). CORE [28]
uses aspect orientation to weave different concerns at the
modeling level.

V. CONCLUSIONS & FUTURE WORK

We have presented an approach to reify complex association
constraints in a model-oriented programming scenario. Con-
cretely, we have described a framework in which association
constraints can be specified directly on Java code by the means
of annotations and verified at run-time.

As a future work we envision exploring the following
research lines:

• Investigate the possibility, advantages and drawbacks of
composing individual constraints in order to build more
complex ones as an alternative to a direct definition.

• Apply the composition of constraints to the specification
of patterns. We are specially interested in the definition
of security patterns [15] as a composition of association
constraints.

• Evaluate the usability and effectiveness of our approach
(e.g., does it help developers to introduce fewer bugs
and/or detect them earlier?)

REFERENCES

[1] E. Cherfa, S. Mesli-Kesraoui, C. Tibermacine, S. Sadou, and
R. Fleurquin, “Identifying metamodel inaccurate structures during meta-
model/constraint co-evolution,” in 2021 ACM/IEEE 24th International
Conference on Model Driven Engineering Languages and Systems
(MODELS), pp. 24–34, IEEE, 2021.

[2] D. E. Khelladi, R. Bendraou, R. Hebig, and M.-P. Gervais, “A semi-
automatic maintenance and co-evolution of ocl constraints with (meta)
model evolution,” Journal of Systems and Software, vol. 134, pp. 242–
260, 2017.

[3] E. Batot, W. Kessentini, H. Sahraoui, and M. Famelis, “Heuristic-
based recommendation for metamodel—OCL coevolution,” in 2017
ACM/IEEE 20th International Conference on Model Driven Engineering
Languages and Systems (MODELS), pp. 210–220, IEEE, 2017.

[4] D. Gessenharter, “Mapping the UML2 semantics of associations to a
java code generation model,” in Model Driven Engineering Languages
and Systems: 11th International Conference, MoDELS 2008, Toulouse,
France, September 28-October 3, 2008. Proceedings 11, pp. 813–827,
Springer, 2008.

[5] O. Badreddin, A. Forward, and T. C. Lethbridge, “Improving code gen-
eration for associations: enforcing multiplicity constraints and ensuring
referential integrity,” in Software Engineering Research, Management
and Applications, pp. 129–149, Springer, 2014.

[6] J. Rumbaugh, “Relations as semantic constructs in an object-oriented
language,” in Conference proceedings on Object-oriented programming
systems, languages and applications, pp. 466–481, 1987.

[7] J. Noble, “Basic relationship patterns,” Pattern Languages of Program
Design, vol. 4, pp. 73–94, 1997.

[8] T. C. Lethbridge, V. Abdelzad, M. H. Orabi, A. H. Orabi, and
O. Adesina, “Merging modeling and programming using Umple,” in
International Symposium on Leveraging Applications of Formal Methods
(T. Margaria and B. Steffen, eds.), (Cham), pp. 187–197, Springer,
Springer International Publishing, 2016.

[9] S. Guérin, G. Polet, C. Silva, J. Champeau, J.-C. Bach, S. Martínez,
F. Dagnat, and A. Beugnard, “PAMELA: an annotation-based java
modeling framework,” Science of Computer Programming, vol. 210,
p. 102668, 2021.

[10] O. B. Badreddin, A. Forward, and T. C. Lethbridge, “Model oriented
programming: an empirical study of comprehension.,” in CASCON,
vol. 12, pp. 73–86, 2012.

[11] A. Olivé, Conceptual modeling of information systems. Springer Science
& Business Media, 2007.

[12] OMG, “Unified modeling language (OMG UML) version 2.5. 1,” Object
Management Group, 2017.

[13] Y. Lamo, X. Wang, F. Mantz, Ø. Bech, A. Sandven, and A. Rutle, “DPF
workbench: a multi-level language workbench for MDE,” Proceedings
of the Estonian Academy of Sciences, vol. 62, no. 1, p. 3, 2013.

[14] G. T. Leavens, A. L. Baker, and C. Ruby, “JML: a Java modeling
language,” in Formal Underpinnings of Java Workshop (at OOPSLA’98),
pp. 404–420, Citeseer, 1998.

[15] C. Silva, S. Guérin, R. Mazo, and J. Champeau, “Contract-based design
patterns: a design by contract approach to specify security patterns,” in

Proceedings of the The 6th International Workshop on Secure Software
Engineering SSE@ARES, pp. 1–9, 2020.

[16] S. Drossopoulou, A. Francalanza, P. Müller, and A. J. Summers, “A
unified framework for verification techniques for object invariants,” in
ECOOP 2008–Object-Oriented Programming: 22nd European Confer-
ence Paphos, Cyprus, July 7-11, 2008 Proceedings 22, pp. 412–437,
Springer, 2008.

[17] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens, “Modular invari-
ants for layered object structures,” Science of Computer Programming,
vol. 62, no. 3, pp. 253–286, 2006.

[18] J. Hogg, “Islands: Aliasing protection in object-oriented languages,”
in Conference proceedings on Object-oriented programming systems,
languages, and applications, pp. 271–285, 1991.

[19] C. Noguera and L. Duchien, “Annotation framework validation using
domain models,” in European Conference on Model Driven Architecture-
Foundations and Applications, pp. 48–62, Springer, 2008.

[20] D. Costal, C. Gómez, A. Queralt, R. Raventós, and E. Teniente,
“Improving the definition of general constraints in UML,” Software &
Systems Modeling, vol. 7, pp. 469–486, 2008.

[21] Y. Lamo, X. Wang, F. Mantz, W. MacCaull, and A. Rutle, “DPF work-
bench: A diagrammatic multi-layer domain specific (meta-) modelling
environment,” Computer and Information Science 2012, pp. 37–52,
2012.

[22] M. Sulír, M. Nosál’, and J. Porubän, “Recording concerns in source
code using annotations,” Computer Languages, Systems & Structures,
vol. 46, pp. 44–65, 2016.

[23] P. Kajsa and P. Návrat, “Design pattern support based on the source code
annotations and feature models,” in SOFSEM 2012: Theory and Practice
of Computer Science: 38th Conference on Current Trends in Theory
and Practice of Computer Science, Špindlerův Mlỳn, Czech Republic,
January 21-27, 2012. Proceedings 38, pp. 467–478, Springer, 2012.

[24] D.-E. Khelladi, R. Bendraou, S. Baarir, Y. Laurent, and M.-P. Gervais,
“A framework to formally verify conformance of a software process to a
software method,” in Proceedings of the 30th Annual ACM Symposium
on Applied Computing, pp. 1518–1525, 2015.

[25] C. Gonzalez-Perez and P. Martín-Rodilla, “A metamodel and code
generation approach for symmetric unary associations,” in 2017 11th
International Conference on Research Challenges in Information Sci-
ence (RCIS), pp. 84–94, IEEE, 2017.

[26] D. J. Russomanno and C. R. Kothari, “Expressing inter-link constraints
in OWL knowledge bases,” Expert Systems, vol. 21, no. 4, pp. 217–228,
2004.

[27] C. Bensoussan, M. Schöttle, and J. Kienzle, “Associations in mde:
a concern-oriented, reusable solution,” in Modelling Foundations and
Applications: 12th European Conference, ECMFA 2016, Held as Part
of STAF 2016, Vienna, Austria, July 6-7, 2016, Proceedings 12, pp. 121–
137, Springer, 2016.

[28] O. Alam, J. Kienzle, and G. Mussbacher, “Concern-oriented software
design,” in Model-Driven Engineering Languages and Systems: 16th
International Conference, MODELS 2013, Miami, FL, USA, September
29–October 4, 2013. Proceedings 16, pp. 604–621, Springer, 2013.

