
HAL Id: hal-04240634
https://hal.science/hal-04240634

Submitted on 13 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the bifurcations of a fluttering plate in confined axial
flow

Filipe Soares, Christophe Vergez, Jose Antunes, Vincent Debut, Bruno
Cochelin, Fabrice Silva

To cite this version:
Filipe Soares, Christophe Vergez, Jose Antunes, Vincent Debut, Bruno Cochelin, et al.. On the
bifurcations of a fluttering plate in confined axial flow. Forum Acusticum, Sep 2023, Turin, Italy.
�hal-04240634�

https://hal.science/hal-04240634
https://hal.archives-ouvertes.fr


10th Convention of the European Acoustics Association 
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino 

 

 

On the bifurcations of a fluttering plate in confined axial flow 

Filipe Soares1* Christophe Vergez2  Jose Antunes1 

Vincent Debut3 Bruno Cochelin2  Fabrice Silva2 
1 Instituto Superior Técnico – C2TN, Lisbon, Portugal 

2 Aix-Marseille Université, CNRS, Centrale Marseille, LMA UMR7031, Marseille, France  
3 Instituto Politécnico de Castelo Branco – ESAA, Castelo Branco, Portugal 

 

 
ABSTRACT* 

The flutter of cantilevered beams in channel flow is a 

benchmark example of flow-induced vibrations and its 

fundamental behavior is found in numerous practical 

applications. Experiments have shown that such systems 

present a wide variety of complex nonlinear behavior. 

However, the plethora of previous studies is mostly 

concerned with linear stability analysis. In this work, we 

provide an initial impulse for a comprehensive nonlinear 

study of these systems through bifurcation analysis. We 

consider a one-dimensional problem, where a cantilevered 

beam is treated in a modal framework and the surrounding 

flow is modelled by bulk-flow equations. The system is 

discretized in space and time via Galerkin procedures 

(modal, Tau and harmonic balance methods) and the 

continuation of periodic solutions is pursued using the 

asymptotic numerical method. The nonlinear dynamics are 

explored with respect to various dimensionless parameters, 

clarifying a number of behavioral trends: sub-critical 

bifurcations and hysteresis loops, grazing boundaries 

(separation between limit cycles with and without 

intermittent beam-wall impacts), internal resonances, torus 

bifurcations and quasi-periodic oscillations, amongst others. 

Aside from providing novel insights into the physics of 

fluttering beams, is it hoped that the methods used in here 

can stimulate similar studies in the field of flow-induced 

vibrations. 
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1. MODEL DESCRIPTION 

The considered model describes the FSI of a cantilevered 

beam in channel flow as shown in Figure 1.  

 

 

Figure 1. Diagram of the 1D model. 

The dynamics of the linear cantilevered beam are 

defined in a modal framework. The vertical displacement 

of the beam ( , )y x t  is developed as  

 
1

( , ) ( ) ( )
M

m m
m

y x t x q t    (1) 

where ( )
m
q t  and )

m
x  are the modal displacements 

and shapes, respectively. The dynamics of the beam are 

given, as usual, by a set of M  modal equations  
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where 
m
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m
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m
 and ( )

m
F t  are the masses, 

frequencies, damping ratios and external forces. The 

external modal forces ( )
m
F t  are then given by the 

projection of the flow pressure fields on the upper and 

lower sides of the beam, 
1
( , )p x t  and 

2
( , )p x t , unto the 

modal basis 
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where the fluid-beam mass ratio is written explicitly as 
*

s
M L e ;  is the density of the fluid and e  

denotes the thickness of the beam.  

Assuming incompressible and inviscid flow, the 

momentum and continuity equations for the flow in each 

channel c  are given in dimensionless form by 

 0c c c
c

u u p
u

t x x
   (4) 
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Following previous work [4], localized dissipative 

effects are enforced at the boundary conditions at 0x  

and 1x :  
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where 
0
K  and 

L
K  are the entry and exit head-loss 

coefficients, while 
0
( )P t  and ( )

L
P t  are pressure 

imposed at the entry and exit of the domain. 

2. SPATIAL & TEMPORAL DISCRETIZATION 

For compactness, here we restrain from showing the details 

of the spatial discretization procedure used here to convert 

the PDE system (4)-(6) into a set of time-dependent 

equations (ODE/DAE system). The interested reader is 

referred to the authors previous work [6]. Essentially, the 

pressure and velocity fields in each channel are developed 

in terms of a set of orthogonal basis functions  

0 0

( , ) ( ) ( ); ( , ) ( ) ( )
N N

c n n c r r
n r

u x t T x u t p x t T x p t   (7) 

where ( )
n
T x  are Chebyshev polynomials of the first kind. 

After a modified Galerkin projection (Tau-method) on the 

fluid equations of each channel 1,2c , and assembly 

with the structural equations (2), the resulting coupled 

system is a system of first-order nonlinear differential-

algebraic equations (DAE) of size 2 4( 1)M N  and 

differential index-2.  

Contrary to previously derived formulations [5] the 

Galerkin approach presented here allows us to discretize the 

continuous 1-D problem into a set of nonlinear time-

dependent equations, compatible for use in algorithms for 

the continuation of periodic solutions. In this work we have 

used the open-source software Manlab 4.0 [7] which 

combines the Harmonic Balance Method (HBM) for the 

time-discretization with the Asymptotic Numerical Method 

(ANM) for the numerical continuation of the solution path.  

3. ILLUSTRATIVE RESULTS 

The linear stability analysis of the system is often the 

primary information to extract [1-3]. A typical result is 

shown in Figure 2-(a), where the stability boundaries of the 

equilibrium solution in the * *M U  plane are shown for a 

symmetric configuration with constant channel heights and 

fixed confinement ratio 
* 0.1H  and structural damping 

5%
n

. 

 
Figure 2. Linear stability map for a system with constant 

symmetric channels: (a) Hopf bifurcation branches and 

global linear stability boundary in the 
* *M U  plane; (b) 

corresponding critical frequencies 
* *

0
. 

We notice there are two Hopf bifurcation branches whose 

combination forms a global linear stability boundary, i.e. 
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the typical “cascading” frontier commonly found in 

literature [5,11]. In this boundary, each step in the 

“cascade” corresponds to a change of shape of the primary 

unstable mode, as illustrated in the bottom of Figure 2-(b). 

3.1 Constrained continuation and an “augmented” 

linear stability analysis 

Although undeniably useful, linear stability analysis is, by 

default, unable to characterize the sub- or super-critical 

nature of the Hopf bifurcations (HB), a widely discussed 

and ill-explained phenomena that could explain the 

hysteresis loops commonly reported in experiments. 

Nevertheless, here we propose a method to calculate an 

“augmented” linear stability analysis. The general idea is to 

add a constraint equation that fixes the amplitude of 

oscillation of a particular limit-cycle to a small value  

1

( 0)
H

L h
h

y t a   (8) 

where 
L
y  is the beam-tip displacement, 

h
a  are the 

coefficients of the harmonic balance expansion and H  is 

the harmonic truncation. Effectively, this additional 

constraint allows us to follow branches of periodic solutions 

that are arbitrarily close to the Hopf bifurcation branch. 

More importantly however, we are then able to access their 

stability and hence distinguish between super-critical and 

sub-critical bifurcations. To illustrate, linear stability 

boundaries are shown in Figure 3 for a symmetric system 

with two modes 2M , 
* 0.1H  and different values 

of structural damping 
n

. 

 

Figure 3. Effect of structural damping 
n

 on the Hopf 

bifurcations branches for a symmetric system in inviscid 

flow. Solid and dotted lines represent super- and sub-critical 

bifurcations, respectively, while the circles denote Bautin 

bifurcations.  

3.2 Nonlinear analysis of hysteresis  

It is worth noting that hysteretic behavior is not unique to 

sub-critical Hopf bifurcations, and it can also appear in 

super-critical ones, via a double-fold bifurcation loop. To 

clarify the nature of this behaviour, several branches of 

periodic solutions were calculated for the same parameter 

configuration as above. Figure 4 illustrates a three-

dimensional bifurcation diagram where multiple solution 

branches (at constant *M ) are shown around the region 

where hysteresis is predicted.  

 
Figure 4. Three-dimensional view of the branches of 

periodic solutions (at constant 
*)M  stemming from the HB 

boundary. 

 

From Figure 4 it becomes clear that such systems can 

encounter both super-critical and sub-critical bifurcations, 

depending on the specific parametric configuration. 

Notably, we observe that the two Bautin points 

(codimension-2 bifurcations) along the Hopf branches are 

actually the birthing points of a fold-bifurcation (FB) 

branch. This FB branch travels the surface defined by the 

periodic solution and outlines a frontier separating stable 

from unstable periodic solutions. The analysis of this type 

of FB branch, and how it varies depending on different 

parameters of the system, is of paramount importance to 

understand and quantify the hysteresis phenomena. Even 

though in this work we do not conduct a detailed parametric 

analysis, the presented results serve as an example of 

potential avenues of research in the analysis of fluttering 

beams but also, more generally, in the field of flow-induced 

vibrations, where hysteresis occurs frequently in various 

contexts.  

3.3 Rich nonlinear behavior in systems with several 

beam modes 

When considering a system with several beam modes, more 

complex nonlinear behavior is observed. These include: 

internal resonances, zones with multiple periodic solutions 

as well as torus bifurcations and associated quasi-periodic 
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motions. To illustrate some of the encountered dynamics, 

Figure 5 shows the bifurcation diagram in terms of the 

reduced velocity *U  for a symmetric system with 10 beam 

modes, * 0.1H , 0.5%
n

 and * 0.5M . 

 

 
Figure 5. Bifurcation diagram at constant mass-ratio 

* 0.5M , illustrating the two branches of periodic 

solutions with respect to the reduced velocity 
*U .  The 

notation HB and T denote Hopf and torus bifurcations 

respectively. The orange area indicates that no stable 

periodic solution exists while the grey area indicates regions 

where multiple oscillatory solutions co-exist.  

 

Figure 5 shows the bifurcation diagram at mass-ratios close 

to a “step-transition” in the cascading linear boundary (see 

Figure 2), and illustrates the array of different nonlinear 

phenomena describe above. Once the equilibrium becomes 

unstable (HB1) a branch of periodic solutions associated 

with “single-neck” beam motions emerges. This branch 

then encounters a fold-loop associated with an internal 

resonance (when the frequency of oscillation becomes is 

close to an integer multiple of another beam mode – in this 

case 0 33 ). At * 6.5U , this branch loses its 

stability through a torus bifurcation (T1). In the succeeding 

orange area, quasi-periodic motions arise since no stable 

periodic nor equilibrium solutions exist. Further on, a 

second Hopf bifurcation (HB2) gives rise to another branch 

of periodic solutions associated with “double-neck” beam 

motions. Contrary to the first branch, this one is initially 

unstable and then stabilizes through a torus bifurcation (T2), 

before it encounters a grazing boundary (where impacts 

between the beam and the side-walls become inevitable. 

Aside from showcasing various nonlinear phenomena 

associated with this type of systems, this example also 

illustrates potential ways in which a “mode-transition” 

(between single- and double-neck solutions) can occur.  

4. CONCLUSION 

The nonlinear dynamics of a cantilever beam in confined 

axial flow were studied using continuation methods. 

Contrary to previous nonlinear studies, reliant on time-

domain integrations, the bifurcation analysis presented here 

provides a more complete overview of the dynamics found 

in this type of systems. Notably, the ill-explained 

phenomena of hysteresis, commonly observed in 

experiments, was discussed. Results suggest that flutter 

instabilities can be a product of both super- or sub-critical 

Hopf bifurcations, depending on different system 

parameters.  Additionally, a method for the continuation of 

Hopf bifurcation branches, which distinguishes their 

sub/super-critical nature was proposed. Numerical results 

also display a wide variety of nonlinear dynamical behavior 

including internal resonances, zones of multi-stability, torus 

bifurcations and quasi-periodic solutions. Aside from 

providing novel insights into the physics of fluttering beams 

and suggesting news avenues of research, is it hoped that 

the methods and results presented here can stimulate similar 

studies in the field of flow-induced vibrations. 
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