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Abstract. Observation-based data reconstructions of global surface ocean carbonate system variables play an essential role in

monitoring the recent status of ocean carbon uptake and ocean acidification as well as their impacts on marine organisms and

ecosystems. So far ongoing efforts are directed towards exploring new approaches to describe the complete marine carbon-

ate system and to better recover its fine-scale features. In this respect, our research activities within the Copernicus Marine

Environment Monitoring Service (CMEMS) aim at developing a sustainable production chain of observation-derived global5

ocean carbonate system datasets at high space-time resolution. As the start of the long-term objective, this study introduces

a new global 0.25◦ monthly reconstruction, namely CMEMS-LSCE, for the period 1985-2021. The CMEMS-LSCE recon-

struction derives datasets of six carbonate system variables including surface ocean partial pressure of CO2 (pCO2), total

alkalinity (AT), total dissolved inorganic carbon (DIC), surface ocean pH, and saturation states with respect to aragonite (Ωar)

and calcite (Ωca). Reconstructing pCO2 relies on an ensemble of neural network models mapping gridded observation-based10

data provided by the Surface Ocean CO2 ATlas (SOCAT). Surface ocean AT is estimated with a multiple linear regression

approach, and the remaining carbonate variables are resolved by CO2 system speciation given the reconstructed pCO2 and

AT. 1σ-uncertainty associated with these estimates is also provided. Here, σ stands for either ensemble standard deviation of

pCO2 estimates or total uncertainty for each of the five other variables propagated through the processing chain with input data

uncertainty. We demonstrate that the 0.25◦-resolution pCO2 product outperforms a coarser spatial resolution (1◦) thanks to a15

higher data coverage nearshore and a better description of horizontal and temporal variations in pCO2 across diverse ocean

basins, particularly in the coastal-open-ocean continuum. Product qualification with observation-based data confirms reliable

reconstructions with root-of-mean–square–deviation from observations less than 8%, 4%, and 1% relative to the global mean

of pCO2, AT (DIC), and pH. The global average 1σ-uncertainty is below 5% and 8% for pCO2 and Ωar (Ωca), 2% for AT

and DIC, and 0.4% for pH relative to their global mean values. Both model-observation misfit and model uncertainty indicate20

that coastal data reproduction still needs further improvement, wherein high temporal and horizontal gradients of carbonate

variables and representative uncertainty from data sampling would be taken into account in priority. This study also presents a

potential use case of the CMEMS-LSCE carbonate data product in tracking the recent state of ocean acidification.
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1 Introduction

Between 1750 and 2019, the ocean took up an estimated 25% (or 170±20 PgC) of total cumulated anthropogenic CO2 (685±7525

PgC) emitted to the atmosphere (IPCC AR6 - the Sixth Assessment Report of the United Nations Intergovernmental Panel on

Climate Change, Canadell et al., 2021). While the uptake of anthropogenic CO2 mitigates global warming it also profoundly

modifies seawater chemistry in a suite of well-understood reactions (Orr et al., 2005) leading to an increase in hydrogen ion

concentration ([H+]), as well as a decrease in carbonate ion concentration ([CO2−
3 ]) and in the saturation state of seawater (Ω)

with respect to calcium carbonate minerals (CaCO3). The increase in hydrogen ion concentration ([H+]) is commonly reported30

as a decrease in pH (pH = - log[H+]) and referred to as ocean acidification.

Changes in carbonate chemistry impact calcifying plankton and benthos as a direct result of decreasing seawater saturation

state with respect to CaCO3 (Fabry et al., 2008; Thomsen et al., 2015). Ocean acidification also modifies the production

of marine trace gases exchanged at the air-sea interface (Hopkins et al., 2020), the availability of nutrients fueling primary

production (Doney et al., 2009), as well as the speciation of pollutants (Millero et al., 2009; Hoffmann et al., 2012). These35

chemical changes interact with warming and ocean deoxygenation to drive major changes in marine ecosystems (Doney et al.,

2020) and to alter global biogeochemical cycles with the potential for feeding back on radiative forcing (Gehlen et al., 2011;

Hopkins et al., 2020). The likelihood for major disruptive impacts of ocean acidification on marine ecosystems, if future

CO2 emissions were to go unabated, is reflected by the Sustainable Development Goal 14.3 (SDG 14.3) - "Reduce Ocean

Acidification: minimize and address impacts of ocean acidification" (https://www.globalgoals.org/14-life-below-water, last40

access: 20/03/2023). Albeit not specifically mentioned, moving towards SDG 14.3 implies the understanding of historical and

contemporary carbonate chemistry, its mean state, trends and variability.

Earth system models have been widely used to track changes in ocean pH over the historical period and to project its future

evolution under different CO2 emission pathways (Bopp et al., 2013; Gattuso et al., 2015; Kwiatkowski et al., 2020; Cooley

et al., 2022; Jiang et al., 2023). The present-day global surface ocean pH is roughly 0.1 pH units less than at the beginning of45

the industrial era (Gattuso et al., 2015; Jiang et al., 2019) corresponding to an increase in hydrogen ion concentration of 26%

(Doney, 2010). By the end of the 21st century, the pH is projected to decrease by 0.16±0.002 pH units in response to the IPCC

AR6 low emission scenario (SSP1-2.6), respectively by 0.44± 0.005 pH units in response to the IPCC AR6 high emission

pathway (SSP5-8.5) relative to 1870–1899 (Kwiatkowski et al., 2020). Understanding impacts on marine biota requires to

move towards finer spatial and temporal scales than resolved by the current generation of Earth system models (Torres et al.,50

2021), as well as to expand the analysis from pH to other carbonate system variables such as the saturation state with respect

to calcium carbonate minerals and the buffer capacity. The development and implementation of environmental management

strategies equally rely on understanding and attributing the variability of the carbonate system from diurnal to decadal time

scales to underlying physical-chemical-biological processes.

In situ time series have played an important role in monitoring ocean acidification over the last decades (Bates et al., 2014;55

Lauvset et al., 2015; Sutton et al., 2019; Pérez et al., 2021; Leseurre et al., 2022; Skjelvan et al., 2022). At these sites, seawater

pH has been either directly measured or calculated from measurements of other carbonate system variables. These variables
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include surface ocean partial pressure of CO2 (pCO2), total alkalinity (AT), and dissolved inorganic carbon (DIC). While

changes in time series of carbonate system variables well reflect impacts of enhanced anthropogenic CO2 uptake on ocean

chemistry at a local scale (Steinberg et al., 2001; González-Dávila and Santana-Casiano, 2009; Dore et al., 2009; Bates et al.,60

2014; Pérez et al., 2021), the reliable upscaling to large ocean regions or entire basins requires a significant extension of the

existing observing network (Lauvset et al., 2015; Bakker et al., 2016; Sutton et al., 2019; Lauvset et al., 2022).

Time series data are completed by bottle data from international cruises. These data are synthesized by the Global Ocean Data

Analysis Project v2.2022 (GLODAPv2.2022) and include about 1.4 million measurements of surface-to-interior ocean pH,

AT, DIC, and other parameters (Lauvset et al., 2022, https://www.glodap.info/, last access: 30/9/2022). Likewise, underway65

measurements of near-surface CO2 fugacity, i.e., pCO2 corrected for non-ideal gas behavior, are compiled in the Surface Ocean

CO2 Atlas (SOCAT) since its first release in 2011 (Pfeil et al., 2013). That latest version SOCATv2022 yields approximately

33.7 million high-quality controlled data (Bakker et al., 2022, http://www.socat.info/, last access: 17/6/2022). Despite millions

of observations available, data coverage is still modest, e.g., CO2 fugacity samples over the global ocean cover less than 2% of

its surface for each month in the last three decades (Bakker et al., 2016; Hauck et al., 2020). Mapping methods have become an70

essential tool in ocean carbon cycle research allowing to extrapolate these sparse measurements into space-time varying fields

of carbonate system variables (e.g., Rödenbeck et al., 2015) and used for global carbon budget estimates (Friedlingstein et al.,

2022).

Recent years have seen the rapid development of machine learning approaches to map global surface ocean pCO2 (see

Rödenbeck et al., 2013; Landschützer et al., 2016; Denvil-Sommer et al., 2019; Gregor et al., 2019; Chau et al., 2022b,75

for instance). Thanks to these efforts, the carbon cycle community can now draw on an ensemble of reconstructions for the

observation-based assessment of the ocean carbon sink (Friedlingstein et al., 2022). However, only a few global observation-

based reconstructions are available for pH, AT, DIC, and Ω with respect to calcite and aragonite (see Gregor and Gruber,

2021, for a review). The reconstruction of global distributions of these variables is hampered by an insufficient amount of

direct measurements (Bakker et al., 2016; Lauvset et al., 2022). Alternatively, the complete carbonate system can be obtained80

by speciation given the information of any couple of pCO2, pH, AT or DIC together with chemical (e.g., phosphate, silicate,

nitrate) and physical variables (e.g., temperature, salinity), as well as corresponding dissociation constants (Park, 1969; Lewis

and Wallace, 1998; Dickson et al., 2007).

Regardless of the developments in different observation-based estimation methods, Takahashi et al. (2014), Iida et al. (2021),

and Gregor and Gruber (2021) propose global climatologies or monthly varying fields of all variables of the carbonate system,85

i.e., pCO2, pH, AT, DIC, and Ω. These data products have a spatial resolution of 1◦ (∼ 100km× 100km) or even coarser.

Nevertheless, the variations of carbonate system variables over the coastal regions where their instantaneous gradients are

driven by smaller-scale features like ocean upwelling, wind turbulence, eddies, water runoff, and sharp biological productivity

(Jones et al., 2012; Bakker et al., 2016; Laruelle et al., 2017) are poorly described at such spatial resolutions. Here we improve

on existing studies by providing a global 0.25◦, monthly observation-based surface ocean carbonate system product consisting90

of datasets of six core variables of the marine carbonate system (see Table 1 and Appendix A for definitions) and their associated

1σ-uncertainty. This high-resolution data product covers the years from 1985 to 2021. Laboratoire des Sciences du Climat et de
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l’Environnement (LSCE) is in charge of the product within the European Copernicus Marine Environment Monitoring Service

(CMEMS). Our product is referred to as CMEMS-LSCE hereafter.

The reconstruction of surface ocean carbonate system variables starts with the reconstruction of surface ocean pCO2 and95

AT in each regular grid of 1month× 0.25◦× 0.25◦. Next, variables pH, DIC, and Ω are derived by speciation. Advantages of

the combination of pCO2 and AT over others for the speciation of the carbonate system are: (1) pCO2 is the most extensively

measured parameter, (2) AT can be accurately predicted from salinity, temperature, and nutrient concentrations, and (3) the

combination of these two prior variables results in the slightest uncertainty of pH estimates (Zeebe and Wolf-Gladrow, 2001;

Lauvset and Gruber, 2014; Takahashi et al., 2014; Orr et al., 2018). The three main successive modules used in the CMEMS-100

LSCE production chain are summarized as follows.

Table 1. CMEMS-LSCE carbonate system variables.

Standard names Notations Units

1. Partial pressure of CO2 in surface

seawater
pCO2 µatm

2. Total alkalinity in surface seawater AT µmol kg−1

3. Surface ocean dissolved inorganic

carbon
DIC µmol kg−1

4. Surface seawater pH reported on total

scale
pH -

5. Saturation state for surface seawater

with respect to aragonite
Ωar -

6. Saturation state for surface seawater

with respect to calcite
Ωca -

i) Reconstruction of pCO2 (Sect. 3.1): a modified version of the CMEMS-LSCE-FFNN approach (Chau et al., 2022b) is

applied to map gridded datasets of SOCATv2022 CO2 fugacity and predictors in order to reconstruct pCO2 at a spatial

resolution of 0.25◦ for every month in the period 1985-2021 (444 months in total). The CMEMS-LSCE-FFNN works

on an ensemble of 100 feed-forward neural networks (FFNNs). By design, 100-member ensemble model outputs allow105

to yield the best model estimate (i.e., ensemble mean) and model uncertainty (i.e., ensemble standard deviation) for

surface ocean pCO2 in each grid cell and each month. The primary modification of this study’s version and the original

CMEMS-LSCE-FFNN (Chau et al., 2022b) is an increase of 16-fold in model spatial resolution.

ii) Reconstruction of AT (Sect. 3.2): locally interpolated alkalinity regression (LIAR; Carter et al., 2016, 2018) is chosen

to estimate total alkalinity on regular grids of 1month× 0.25◦× 0.25◦ over the global surface ocean for the years110

1985-2021. LIAR works with multiple linear regression models, each representing a combination of predictor variables.

The best linear model, which has the lowest prediction error among the others, is retained for the final estimation of

4

https://doi.org/10.5194/essd-2023-146
Preprint. Discussion started: 4 May 2023
c© Author(s) 2023. CC BY 4.0 License.



AT. Various reconstruction methods for AT exist (see Carter et al., 2016; Broullón et al., 2019; Gregor and Gruber,

2021, for a review), but we choose LIAR due to its global applicability, simplicity in setting, and accuracy compared

to other published approaches (Carter et al., 2018; Gregor and Gruber, 2021). Importantly, LIAR allows determining115

reconstruction uncertainty propagated from multiple sources of input uncertainties at desired model resolutions.

iii) Reconstruction of pH, DIC, and saturation states with respect to aragonite (Ωar) and calcite (Ωca) (Sect. 3.3): CO2SYS

(Lewis and Wallace, 1998; Van Heuven et al., 2011) is a standard software used for the speciation of carbonate parameters

in the marine CO2 system (see Olsen et al., 2016; Bresnahan et al., 2021; Gregor and Gruber, 2021; Woosley, 2021, for

a few). The CO2SYS speciation is built on a set of equilibrium equations (Dickson et al., 2007; Dickson, 2010). Given120

the reconstructed pCO2 and AT, non-CO2 acid-base constituents, physical variables, and equilibrium constants, this

method allows solving pH, DIC, Ωar, and Ωca at the same input resolutions. A complementary of the CO2SYS software

developed by Orr et al. (2018) is used to quantify the uncertainty associated with these carbonate system variables. All

the input data uncertainties are propagated through the CO2SYS processing chain.

The global monthly, 0.25◦-resolution datasets of pCO2, AT, pH, DIC, Ωar, and Ωca are intensively evaluated against different125

observation-based products independent from our model fitting at a global scale to in situ locations (Table 3). In Section 4,

multiple metrics are proposed for product analyzes and assessments. Results are presented in section 5 with emphasis on the

evaluation of the best reconstruction and associated model uncertainty for each variable (Sect. 5). This section also highlights

the advantages obtained with an increase in spatial resolution and presents an application of the CMEMS-LSCE product in

tracking ocean acidification over the last three decades. Section 6 summarizes key results, discusses the potential for future130

model upgrades, and introduces possible product use cases.

2 Data used and reprocessing

2.1 Input data products for surface ocean carbonate system reconstructions

Many observation-based products are used as predictors of our target carbonate system variables (Table 2). Global ocean maps

of sea surface temperature (SST), salinity (SSS), height (SSH), chlorophyll-a (Chl-a) come from the Copernicus Marine Envi-135

ronment Monitoring Service (CMEMS: Good et al., 2020; Nardelli et al., 2016; Droghei et al., 2018; Maritorena et al., 2010).

Mixed layer depth (MLD) fields belong to Estimating the Circulation and Climate of the Ocean project Phase II (ECCO2,

Menemenlis et al., 2008). CO2 mole fractions (xCO2) are derived from the CO2 atmospheric inversion of the Copernicus At-

mosphere Monitoring Service (CAMS, Chevallier et al., 2005, 2010; Chevallier, 2013). Surface ocean concentrations of nitrate

(NO3), silicate (SiO2), and phosphate (PO4) are extracted from the World Ocean Atlas 2018 (WOA18, Garcia et al., 2019). The140

climatological pCO2 (pCOclim
2 ) product is provided by Lamont Doherty Earth Observatory (LDEO, Takahashi et al., 2009).

Details of these products including resource access, data coverage, and resolutions are presented in Table 2.

With the exception of xCO2, nutrient concentrations, and pCOclim
2 , these input data products have original resolutions

equivalent to or even finer than a spatial resolution of 0.25◦ and a temporal resolution of monthly. When mismatches in data

5
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Table 2. Input data used in the reconstructions of CMEMS-LSCE carbonate system variables over the global ocean in 1985-2021.

Variables Notations Units Products Resolutions References

1. CO2 fugacity fCO2 µatm Surface Ocean CO2 Atlas version 2022 (SOCATv2022, 1985-2021)

monthly, 1◦

(open ocean) and

0.25◦ (coastal

ocean)

Bakker et al.

(2022)

2. Sea surface

temperature
SST ◦C

CMEMS SST_GLO_SST_L4_REP_OBSERVATIONS_010_011 and

SST_GLO_SST_L4_NRT_OBSERVATIONS_010_001 (1985-2021)
daily, 0.05◦

Good et al.

(2020)

3.

Sea surface salinity
SSS PSU

CMEMS MULTIOBS_GLO_PHY_S_SURFACE_MYNRT_015_013 (1993-

2021)
monthly, 0.25◦

Nardelli et al.

(2016); Droghei

et al. (2018)

4.

Sea surface height
SSH m

CMEMS SEALEVEL_GLO_PHY_L4_MY_008_047 and

SEALEVEL_GLO_PHY_L4_NRT_OBSERVATIONS_008_046 (1993-2021)
daily, 0.25◦

CLS-

TOULOUSE

5. Mixed layer

depth
MLD m

Estimating the Circulation and Climate of the Ocean project Phase II (ECCO2,

1992-2021)
daily, 0.25◦

Menemenlis et al.

(2008)

6. Chlorophyll-a CHL-a mg m−3

CMEMS OCEANCOLOUR_GLO_CHL_L4_REP_OBSERVATIONS_009_082

and OCEANCOLOUR_GLO_CHL_L4_NRT_OBSERVATIONS_009_033

(1998-2021)

daily, 0.25◦
GLOCOLOUR,

Maritorena et al.

(2010)

7. CO2 mole

fraction
xCO2 ppm

CO2 atmospheric inversion from the Copernicus Atmosphere Monitoring Service

(CAMS, 1985-2021)

3-hourly, 1.9◦×
3.75◦

Chevallier et al.

(2005, 2010);

Chevallier (2013)

8. pCO2 clima-

tology
pCOclim

2 µatm Lamont Doherty Earth Observatory (LDEO, climatology) monthly, 4◦×5◦
Takahashi et al.

(2009)

9. Nitrate NO3

µmol kg−1 World Ocean Atlas 2018 (WOA18, climatologies) monthly, 1◦ Garcia et al. (2019)10. Silicate SiO2

11. Phosphate PO4

* Data products 1-8 are used in the pCO2 reconstruction. Products 2-3 and 9-11 are used to compute AT, DIC, pH, Ωar , and Ωca.

** Last access was on 15/4/2022 for all input databases except for SOCATv2022 data (17/6/2022) and WOA18 data (30/7/2022).

resolutions appear, input data products are interpolated to fit the pre-defined model resolutions. The datasets of SST and xCO2145

- the two key variables driving global pCO2 changes (Bates et al., 2014; Gruber et al., 2019; Landschützer et al., 2019; Chau

et al., 2022b; Friedlingstein et al., 2022) - cover the full learning period and the whole globe as expected. The other predictor

data are not available before the 1990s, when new types of satellite measurements started, and one of them (i.e., Chl-a) does

not cover the high latitudes of the winter hemisphere. We therefore gap-fill the time series in an ad hoc manner, as in previous

studies (Landschützer et al., 2016; Gregor et al., 2019; Chau et al., 2022b). Monthly climatologies of SSS, Chl-a, and MLD150

computed on the available data are used for each missing year. Likewise, climatologies plus linear trends of SSH following

global warming effects serve for the pre-1993 period. Missing Chl-a data in the high latitudes of the winter hemisphere are

replaced by the minimum concentration of Chl-a over the available data for the same grid cell (∼0.01 mg m−3). WOA18

nutrients and LDEO pCOclim
2 are already climatolgies per se and we apply them for all the analysis years 1985-2021.

CO2 fugacity from Surface Ocean CO2 ATlas version 2022 (SOCATv2022, Bakker et al., 2022) is used as the target data155

in our monthly pCO2 reconstructions. The SOCAT project collects and qualifies underway observations via international ves-

sels, moorings, or autonomous platforms. It grids the observations at spatial resolutions of 1◦ or 0.25◦ resulting in the two

6

https://doi.org/10.5194/essd-2023-146
Preprint. Discussion started: 4 May 2023
c© Author(s) 2023. CC BY 4.0 License.



major SOCAT gridded data products. The temporal resolution of these two products is monthly. While the 1◦-data product

(SOCATv2022r100) covers the global ocean, the 0.25◦ covers solely the coastal regions. The SOCAT coastal areas is within

400 km from the shoreline (Sabine et al., 2013; Bakker et al., 2016); see Fig. A1a for an illustration. To merge the two reso-160

lutions, we first duplicate the 1◦-open-ocean SOCATv2022 data (∼ 2× 105 data points) over its sixteen 0.25◦ sub-cells. This

0.25◦-open-ocean data are then combined with the 0.25◦-coastal-ocean SOCATv2022 data (∼ 4×105 data points) to generate

a global monthly 0.25◦ ocean data product fed to our reconstruction model of pCO2 (Sect. 3.1). The merged SOCATv2022

product at monthly, 0.25◦ resolutions is referred to as SOCATv2022r025 hereafter. The assumption of open-ocean data ho-

mogeneity of pCO2 within 1◦-grid boxes (∼ 100 km× 100 km) does not degrade the reconstruction skill over the global165

open ocean (see Sect. 5 for results) where pCO2 observations are spatially auto-correlated within a global median distance of

400± 250 km (Jones et al., 2012). The data distribution of SOCATv2022 CO2 fugacity before and after combining is shown

in Fig. A2 and Table 4.

2.2 Product qualification and comparison

The monthly, 0.25◦-resolution reconstructions of carbonate system variables are qualified with gridded observation-based170

datasets and in-situ time series which are not used in our model fitting (Table 3).

• The SOCAT data in each reconstruction month are excluded from the model fitting, which avoids overfitting and ensures

fairness in the model evaluation (Chau et al., 2022b). The global monthly CMEMS-LSCE-FFNN pCO2 fields at a

spatial resolution of 0.25◦ can therefore be evaluated against the pCO2 data converted from SOCATv2022 CO2 fugacity

(Eq. A2) at the same resolution. Doing this, CMEMS-LSCE-FFNN pCO2 is assessed with more than 32×105 open-ocean175

data and 4×105 coastal-ocean data (Table 4). The SOCATv2022 measurements have low random uncertainty (2-5 µatm)

but the spatio-temporal sampling bias from the month and grid centers is significant (Bakker et al., 2016). The 0.25◦-data

reconstruction is also compared to its previous version with a spatial resolution of 1◦ (Chau et al., 2022a, b).

• The monthly, 0.25◦ reconstructions of AT, DIC, and pH are qualified based on Global Ocean Data Analysis Project bottle

data version 2.2022 (GLODAPv2.2022, Lauvset et al., 2022). GLODAP provides non-gridded datasets of ocean carbon180

variables which have been compiled and bias-corrected from water samples taken at various depths. The measurement

uncertainty is 4 µmol kg−1 in AT and DIC and between 0.01−0.02 in pH. Only direct measurements at depths shallower

than 10 m and with a flag of 2 (best quality control) are selected for this evaluation. Measurements in each box of

1month× 10m× 0.25◦× 0.25◦ are averaged to obtain representative data of surface AT, DIC, and pH at 0.25◦-grid

cells for months in the period 1985-2021. This results in roughly 16× 103 data points for AT and DIC over the global185

ocean (Table 5). Only half of that amount stems from direct pH measurements. Another half, referred to as indirect

measurements (i.e., pH calculated with AT and DIC), is excluded from this data evaluation. Over 30% of these data

are distributed along the coasts. The number of the GLODAPv2.2022 gridded data (Table 5) is much less than the

SOCATv2022 gridded data (Table 4).

7
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• In situ time series of direct measurements of carbonate system variables (pCO2, AT, DIC, and pH) are used to qualify our190

product at local scale (Table 3). Sutton et al. (2019) present data over multiple sites equipped with autonomous moorings

measuring surface ocean pCO2 and pH from the open ocean to the continental shelves since 2004. These time series

were used to qualify the CMEMS-LSCE-FFNN reconstruction in Chau et al. (2022b). This study only revisits eight

coastal sites (Table A2) where both pCO2 and pH have been measured and the 1◦-reconstruction poorly constrains most

of these measurements (see later in Sect. 3.1). The eight stations are located along the US coast, the Gulf of Mexico,195

and in a Caribbean coral reef (Fig. A1b and Table A2). Measurement uncertainty is up to 2 µatm reported for pCO2

and 0.02 for pH. For AT and DIC, we consider four time series: (1) Bermuda Atlantic Time Series (BATS, Michaels and

Knap, 1996; Steinberg et al., 2001), (2) Atmospheric Flux Dynamics Time Series in the Mediterranean (DYFAMED,

Coppola et al., 2021), (3) European Station for Time-Series in the Ocean Canary islands (ESTOC, González-Dávila and

Santana-Casiano, 2009), and (4) Hawaii Ocean Time-series (HOT, Dore et al., 2009). The first three stations are in the200

North Atlantic while the latter is located in the North Pacific (Fig. A1b). These long-term time series provide insights

into changes in the surface ocean carbonate system over the recent decades (Bates et al., 2014; Coppola et al., 2020;

Gregor and Gruber, 2021; Pérez et al., 2021). The HOT and ESTOC stations provide surface ocean observations of AT

and DIC, and BATS and DYFAMED data are extracted at seawater depth shallower than 10 m. A monthly average is

applied for all the mentioned time series in order to be compatible with output from the CMEMS-LSCE chain of models.205

3 Reconstruction methods

3.1 Ensemble pCO2 mapping feed-forward neural networks

The CMEMS-LSCE-FFNN (Chau et al., 2022b) is based on an ensemble of 100 feed-forward neural network (FFNN) models

mapping SOCAT CO2 fugacity (fCO2) and predictor variables (Eq. 1).

fCO2 = FFNN (SST,SSS,SSH,Chl− a,MLD,xCO2,fCOclim
2 , latitude, longitude) (1)210

The predictors of fCO2 include sea surface temperature (SST), salinity (SSS), surface height (SSH), chlorophyll-a (Chl-a),

mixed layer depth (MLD), CO2 mole fraction (xCO2), fCO2 climatologies (fCOclim
2 ), and the geographical coordinates

(latitude and longitude). The datasets of SOCAT fCO2 and predictors are first reprocessed to match model fitting requirements

(Sect. 2.1). After excluding the data in the reconstruction month, the data within the 3-month window are separated into FFNN

training and validation subsets with a ratio of 2 : 1. The excluded SOCATv2022 datasets are used in model evaluation. The215

CMEMS-LSCE-FFNN approach was originally developed for pCO2 reconstructions at monthly, 1◦ resolutions where pCO2

is converted from fCO2 following the formulation (A2) by Körtzinger (1999). The model best estimate and its uncertainty are

defined as the ensemble mean (µ) and ensemble spread (σ) of 100 model outputs of pCO2.

This study slightly modifies the CMEMS-LSCE-FFNN ensemble approach by Chau et al. (2022b) to achieve pCO2 recon-

structions at monthly, 0.25◦ resolutions. Some of the input datasets presented here (Table 2) are different from those presented220
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Table 3. Data sources used in product evaluation and comparison.

Product Data type Evaluation variables Reference

Global ocean
1. Surface Ocean CO2 Atlas version 2022 (SOCATv2022, 1985-2021),

last access: 17/6/2022

observation-based

gridding, resolution:

1◦ (global ocean)

and 0.25◦ (coastal

ocean), monthly

pCO2 Bakker et al. (2022)

2. CMEMS global ocean surface carbon product (MULTI-

OBS_GLO_BIO_CARBON_SURFACE_REP_015_008, 1985-2021),

last access: 05/12/2022

SOCAT-based

reconstruction,

resolution: 1◦,

monthly

pCO2
Chau et al.

(2022a, b)

3. Global Ocean Data Analysis Project bottle data version 2.2022

(GLODAPv2.2022, 1985-2021), last access: 30/9/2022
observation AT, DIC, pH Lauvset et al. (2022)

Time series stations
4. Autonomous time series from surface buoys since 2004 (see details

in Table A2), last access: 15/10/2022
observation pCO2 Sutton et al. (2019)

5. Bermuda Atlantic Time Series (BATS, 31.7◦N-64.2◦W, 1988-

2021), last access: 30/10/2022
observation AT, DIC

Michaels and Knap

(1996); Steinberg

et al. (2001)

6. Atmospheric Flux Dynamics Time Series in the Mediterranean (DY-

FAMED, 43.5◦N-7.9◦E, 1998-2017), last access: 23/03/2023
observation AT, DIC

Coppola et al.

(2020, 2021)

7. European Station for Time-Series in the Ocean Canary islands (ES-

TOC, 29.2◦N-15.5◦W, 1995-2009), last access: 30/10/2022
observation AT, DIC

González-Dávila

and Santana-

Casiano (2009)

8. Hawaii Ocean Time-series (HOT, 22.5◦N-158.1◦W, 1988-2020),

last access: 30/10/2022
observation AT, DIC Dore et al. (2009)

in Chau et al. (2022b) (Table S1). The up-to-date input datasets have higher resolutions and a better coverage over the coastal

ocean as well as in the high latitudes. Furthermore, the new CMEMS data resources offer space-time varying uncertainty fields

which are important in quantifying carbonate system variable uncertainties.

For comparable evaluations in this study, we execute 100-member ensembles of FFNN models at spatial resolutions of both

1◦ (FFNNr100) and 0.25◦ (FFNNr025) using the same lot of input data resources (Table 2). Remind that the training data of225

fCO2 is extracted from the SOCATv2022r100 product for FFNNr100 while it comes from the SOCATv2022r025 product (i.e.,

the merged product of the 1◦-open-ocean dataset and the 0.25◦-coastal-ocean dataset) for FFNNr025. All input datasets are

reprocessed with respect to each model resolution (Sect. 2.1). Sect. 3.1 compares these two CMEMS-LSCE-FFNN versions

and highlights the skill of the finer resolution data product.

3.2 Locally interpolated alkalinity regression230

Locally interpolated alkalinity regression (LIAR; Carter et al., 2016, 2018) is an ensemble-based regression method devel-

oped for the global reconstruction of total alkalinity (AT). Regression coefficients were learned on GLODAPv2 data (Olsen

et al., 2016) binned within regular windows of 5◦× 5◦. For prediction, the LIAR software interpolates between the regression
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coefficients to arbitrary resolutions specified by the users. This study employs eight LIAR models (Carter et al., 2018, Table 2)

for calculating AT at monthly, 0.25◦ resolutions. Each model represents a combination of predictor variables (see the full235

presentation in Eq. 2),

AT = LIAR (SSS,SST,NO3,SiO2). (2)

The eight regression models include salinity (SSS) - the predominant predictor of AT - and some combinations of temperature

(SST), nitrate (NO3), and silicate (SiO2). The model which has the smallest propagation uncertainty is chosen to provide the

best estimate of AT.240

Global monthly total alkalinity and 1σ-uncertainty are estimated with given input data from the monthly CMEMS SSS

and SST fields and from the WOA18 datasets of nutrient concentrations (Table 2). Uncertainty of the AT field is estimated

systematically through input uncertainty propagation along the processing chain (Carter et al., 2018). Here we define the input

uncertainty of predictors in terms of standard deviations (1σ). Input uncertainty fields associated to the monthly CMEMS

SSS and SST are products’ analysis errors (see e.g., Fig. A8) while uncertainties of the WOA18 NO3 and SiO2 climatologies245

are set to 15% of data values per cell. The 15% quantity refers to the median percentage of standard analysis errors against

climatological means of nutrient concentrations (see product standard errors in Table 6, Garcia et al., 2019). The WOA18

standard analysis errors are defined as misfits between their interpolated data and GLODAPv2 bottle data (Olsen et al., 2016).

Spatial distribution of the error percentage of the WOA18 nutrient concentrations at the ocean surface is illustrated in Fig. A7.

3.3 Carbonate system speciation250

The CO2SYS speciation software was first developed by Lewis and Wallace (1998) to determine carbonate system parameters

in the marine CO2 system based on a set of equilibrium equations (Dickson et al., 2007). Here we use the speciation program

written by Van Heuven et al. (2011) and its extension with uncertainty propagation proposed by Orr et al. (2018). To obtain a

complete description of the ocean carbonate system, the CO2SYS initialization requires the following input conditions:

i) values of any couple of the parameters pCO2, AT, DIC, and pH,255

ii) temperature and pressure,

iii) total concentrations of all the non-CO2 acid-base systems,

iv) equilibrium constants used to describe seawater acid-base chemistry.

The (iii)-condition involves total concentrations of both conservative and non-conservative constituents in the non-CO2 acid-

base systems. The amount of conservative constituents such as borate, fluoride, and sulfate in surface seawater is estimated with260

salinity. The total concentration of non-conservative constituents (nutrients) is computed approximately with silicate (SiO2),

and phosphate (PO4). Further information of the carbonate system speciation can be found in Dickson et al. (2007) and Dickson

(2010).
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With the reconstructions of pCO2 and AT (Sects 3.1 and 3.2), the CO2SYS speciation software is used to derive pH, DIC,

Ωar, and Ωca, and determine their uncertainty over the ocean surface at a resolution of 0.25◦. Equation 3 expresses all input-265

output variables of CO2SYS for this study. Note that the estimates for other carbonate system variables such as hydrogen ion

(H+) concentration and Revelle Factor (RF) - a measure of the carbonate buffer capacity- are also available (Figs. A4 and A6)

but beyond the scope of our data evaluation.

pH, DIC, Ωar, Ωca = CO2SYS (pCO2,AT,SST,SSS,P,SiO2,PO4,constants) (3)

The FFNN best estimate (ensemble mean) of pCO2 reconstructions (Sect. 3.1) and the LIAR outputs of AT (Sect. 3.2) are used270

as the prior inputs of the CO2SYS at each grid cell for every month in the period 1985-2021. We take the same data products

of SST, SSS, and nutrient concentrations as for the previous reconstructions (Table 2). Pressure (P) is assumed to be 0 dbar at

the ocean surface. For equilibrium constants, we choose the best empirical values recommended by Dickson et al. (2007) and

Dickson (2010). These settings include (1) the dissociation constants K1 and K2 from Lueker et al. (2000) and KHSO4 from

Dickson (1990) in combination with the total boron-ratio-salinity formulation by Uppstrom (1974).275

The uncertainty of the CO2SYS variables is estimated by error propagation (Orr et al., 2018). Inputs for the CO2SYS

error propagation include the reconstruction uncertainty of pCO2 (FFNN ensemble standard deviation) and of AT (LIAR error

propagation). The uncertainty of SST, SSS, and nutrient concentrations are set to the same values as in the previous section

(Sect. 3.2). Equilibrium constants’ standard errors are default values (see Table 1, Orr et al., 2018). As for FFNN and LIAR,

uncertainty values of each carbonate system variable are computed for each month in 1985-2021 and at each 0.25◦-grid box280

over the global surface ocean.

4 Evaluation metrics

4.1 Model best estimate and uncertainty quantification

The 100 FFNN models result in an ensemble of 100 estimates of global monthly, 0.25◦ surface ocean pCO2 fields (Sect. 3.1).

Specify any t = 1 : 444 (month), i = 1 : 180 (latitude), and j = 1 : 360 (longitude), the best estimate (µtij) and uncertainty285

(σtij) at time t and grid cell ij are deduced from 100 FFNN pCO2 estimates (X(t, i, j,m))m=100
m=1 as follows.

µtij =
∑m=100

m=1 X(t, i, j,m)
100

, (4a)

σtij =

√∑m=100
m=1 [X(t, i, j,m)−µtij ]

2

100
. (4b)

For pH, AT, DIC, Ωar, and Ωca, the best estimates and associated uncertainties (µtij and σtij) are obtained directly from the

LIAR and CO2SYS speciation tools and their error propagation (Sects. 3.2 and 3.3).290

To assign representatives of µ and σ estimates for carbonate system variables at a specific space-time window, we define

statistics with respect to each of the three following cases:

11

https://doi.org/10.5194/essd-2023-146
Preprint. Discussion started: 4 May 2023
c© Author(s) 2023. CC BY 4.0 License.



i) a representative over a period of time (T months)

µij =
∑

t µtij

T
, (5a)

σij =

√∑
t σ

2
tij

T
. (5b)295

ii) a representative over a region (e.g., ocean basins and sub-basins, the global ocean)

µt =

∑
ij µtij ×Aij∑

ij Aij
, (6a)

σt =

√∑
ij σ2

tij ×Aij∑
ij Aij

. (6b)

iii) a representative over a period of time and a region

µ =

∑
t,ij µtij ×Aij

T ×∑
ij Aij

, (7a)300

σ =

√∑
t,ij σ2

tij ×Aij

T ×∑
ij Aij

. (7b)

where t is in a time period with length T and Aij is the area of each grid cell in a desired region. It is noteworthy that the

statistics in Eqs. (5b)-(7b) are not the standard deviation associated to the mean quantities in Eqs. (5a)-(7a), but they stand for

the best representative of uncertainty estimates over an ocean basin and/or time period. These statistics also support for the

comparison with model-observation deviation (e.g., Eq. 10) which is typically used in the calculation of standard uncertainty305

proposed in the previous studies (Jiang et al., 2019; Iida et al., 2021; Gregor and Gruber, 2021). Subscripts in the notations of

the best model estimates (µ) and model uncertainties (σ) in Eqs. (4)-(7) are dropped out for general situations.

The best model estimate (µ) is assessed against model uncertainty (σ) through σ-to-µ ratio (%)

R(µ,σ) = 100%
σ

|µ| . (8)

The σ-to-µ ratio allows evaluating the significance of the model estimate. Model estimates of carbonate variables are reliable310

with R(σ,µ) values less than 20% (Rose, 2013).

4.2 Model performance in comparison with evaluation data

Assume that µtij and Otij are the best model estimate and an observation (or its gridded data) available at time t and grid cell

ij, and µ and O are respectively their means over the total number of evaluation data (N ). Model skills are assessed against

observation data (Table 3) with the following metrics:315

• mean model-observation differences (Bias)

Bias =

∑
t,ij (µtij −Otij)

N
, (9)
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• root-of-mean-square-deviation (RMSD)

RMSD =

√∑
t,ij (µtij −Otij)

2

N
, (10)

• coefficient of determination (r2)320

r2 =

[∑
t,ij (µtij −µ)× (Otij −O)

]2

∑
t,ij (µtij −µ)2×∑

t,ij (Otij −O)2
. (11)

5 Results

5.1 Surface ocean pCO2

This section presents the reconstruction of surface ocean pCO2 at monthly and 0.25◦ resolutions. The reconstruction skill is

evaluated against SOCATv2022 data from global to ocean basin scale and at the level of grid cells (Sect. 2.2). We compare the325

novel reconstruction at a higher spatial resolution to the one at a coarser spatial resolution (Chau et al., 2022b). Emphasis is put

on the skill to reproduce spatial and temporal variations of pCO2 across a variety of coastal regions and time series stations.

Figure 1. CMEMS-LSCE-FFNN pCO2 over the global ocean at a spatial resolution of 0.25◦. Temporal means of the model best estimate

and 1σ-uncertainty per grid cell over 1985-2021 are calculated by using Eq. (5).
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Table 4. Skill scores for monthly CMEMS-LSCE-FFNN reconstructions of pCO2 at 1◦ (r100) and 0.25◦ (r025) spatial resolutions computed

over the period 1985-2021. r100→ 025 and r025→ 100 are referred to the versions upscaled or downscaled from the original CMEMS-

LSCE-FFNN pCO2 at 1◦ and 0.25◦ resolutions. SOCATv2022 gridded data independent from CMEMS-LSCE-FFNN training are used

as benchmarks for model evaluation (see text for details). Statistics including total numbers of data, RMSD (Eq. 10), and r2 (Eq. 11) are

reported for both the open ocean (O) and coastal region (C). ∗ marks results with respect to the primary product proposed in this study.

Basins
Number of data RMSD [µatm] r2

r100 r025* r100 r025→ 100 r025* r100→ 025 r100 r025→ 100 r025* r100→ 025

0. Globe
(O) 207174 3317273 14.32 14.08 14.29 14.38 0.83 0.83 0.83 0.83

(C) 101007 431758 26.61 26.48 27.55 28.50 0.72 0.72 0.74 0.72

1. Arctic
(O) 537 8589 27.93 27.43 28.04 28.06 0.69 0.69 0.67 0.67

(C) 5897 25844 38.74 38.56 41.46 43.17 0.55 0.56 0.55 0.52

2. Atlantic
(O) 54797 876116 13.76 13.57 13.69 13.78 0.81 0.81 0.81 0.81

(C) 49770 227665 24.99 24.78 25.17 26.05 0.76 0.76 0.77 0.77

3. Pacific
(O) 120604 1932981 14.59 14.30 14.54 14.67 0.85 0.85 0.85 0.85

(C) 26847 104269 26.79 26.90 28.46 28.95 0.71 0.71 0.69 0.67

4. Indian Ocean
(O) 4485 71719 10.34 10.17 10.26 10.34 0.88 0.88 0.88 0.88

(C) 1522 6187 23.50 22.82 25.40 26.51 0.69 0.71 0.69 0.69

5. Southern Ocean
(O) 26751 427868 14.42 14.29 14.52 14.43 0.69 0.69 0.69 0.69

(C) 16971 67793 26.01 25.80 27.35 28.80 0.61 0.61 0.64 0.59

Figure 1 presents global maps at 0.25◦-resolution of long-term averages of pCO2 and corresponding uncertainty estimates.

Reconstructed pCO2 distributions reveal well documented large scale structures. Values are high over upwelling regions (e.g.,

Equatorial Pacific, California Boundary Current, Western Arabian Sea). Low pCO2 is associated with increased CO2 solubility330

in cold high latitudes seawater (e.g., Arctic), strong biological production (e.g., China Sea), or the combination of both (e.g.,

subpolar Northern Atlantic, Southern Ocean between 35−50◦S). Spatial structures appear coherent from small to large spatial

scales, both along the coast and moving towards the open ocean (see also in Figs. 2-4). The combination of a down-scaled

version of open-ocean and higher-resolution coastal SOCATv2022 data (Sect. 2.1) yields pCO2 distributions without disconti-

nuities. The uncertainty map (Fig 1b) represents the confidence level in surface ocean pCO2 estimates (Fig 1a). Predominantly335

low uncertainty estimates (σ < 5 µatm) indicate the global stability of the ensemble reconstruction. Exceptions are found in

many coastal regions, open-ocean areas with sparse data coverage (e.g., Southern Pacific, Indian Ocean), or regions with sub-

stantially high or low surface ocean pCO2 (e.g., Arctic, eastern equatorial Pacific). However, pCO2 is reconstructed with a high

degree of confidence over most of the global ocean with a σ-to-µ ratio (Eq. 8) below 10% (Fig. A9a).

Skill scores of the monthly, 0.25◦-resolution reconstruction are presented in Table 4 (columns marked by an asterisk). The340

global RMSD (Eq. 10) between the best reconstruction and SOCATv2022r025 pCO2 over the entire period is 14.29 µatm

for the open ocean and 27.55 µatm for the coastal ocean. These two model errors are lower than 4% and 8% of the global

mean pCO2 (Table 7). Moreover, variability present in observation-based data is reproduced by the CMEMS-LSCE-FFNN

with high values of r2 (open ocean: 0.83, coast: 0.74). The reconstruction quality is similar among major ocean basins. Spatial

distributions of SOCATv2022 data, bias, and RMSD are shown in Figs. A2-bd and A3-bdfh. Estimation skills are low in the345
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ocean basins with sparse data coverage and significant space-time variability of pCO2 (e.g., Arctic, eastern Equatorial Pacific,

land-ocean continuum).

Table 4 also presents statistics for the monthly FFNN products of surface ocean pCO2 at spatial resolutions of 0.25◦ (r025)

and 1◦ (r100) together with their variants (r100→ 025 and r025→ 100). The latter are respectively extrapolation and interpo-

lation versions of the original r100 and r025 datasets, i.e., FFNN model outputs regridded to a finer or coarser spatial resolution.350

For compatibility, we compare statistics between:

i) FFNN(r025) and FFNN(r100→ 025) by using SOCATv2022r025 as evaluation data,

ii) FFNN(r025→ 100) and FFNN(r100) by using SOCATv2022r100 as evaluation data.

The FFNN(r025) central to this study yields a lower RMSD and a higher correlation to the SOCAT data than the FFNN(r100→
025). As expected, the improvement in reconstruction skill with higher model resolution is larger over coastal regions than in355

the open ocean. The FFNN(r025) product after interpolating to a coarser resolution, i.e., FFNN(r025→ 100), agrees with the

original 1◦-resolution data product over all the ocean.

The motivation to increase the spatial resolution of the reconstruction is to improve the representation of horizontal gradients

of pCO2 at fine scales. Figures 2-4 exemplify spatial distributions for the two reconstructions (r025 and r100) over the coastal-

open-ocean continuum. Ten distinct oceanic regions are considered (see Fig. A1a and Table A1 for the ten locations), which360

can be classified into three groups:

• permanent Eastern Boundary current upwelling systems with relatively high pCO2 (California Current System - CCS,

Humboldt Current System - HCS, Canary Current System - CnCS, and Benguela Current System - BCS),

• regions characterized by low pCO2 values driven by cold water temperatures and strong biological production (Labrador

Sea, Western South Atlantic, Northern Europe, and Sea of Japan),365

• other regions either under the influence of strong river runoff (Amazon mount) or monsoon-driven upwelling (Western

Arabian Sea).

The legend of Figs 2-4 includes regional RMSD and r2 computed between the best estimates of two models and coastal-ocean

SOCATv2022r025 data. The coarser spatial resolution product is co-located at the same 0.25◦-grid cells for this analysis. These

figures illustrate important discrepancies in pCO2 data density between coastal regions with poorly monitored regions (e.g.,370

HCS, BCS, Amazon mount) contrasting with areas with higher data coverage (e.g., Northern Europe, Sea of Japan).

Over 7 out of the 10 analysed regions the reconstruction at monthly, 0.25◦ resolutions yields RMSDs below 10% of the global

mean of coastal-ocean pCO2 estimates (Table 7) and r2 values higher than 0.3; e.g., Northern Europe (RMSD = 33.90 µatm,

r2 = 0.80), Sea of Japan (RMSD = 20.84 µatm, r2 = 0.70), and CnCS (RMSD = 30.36 µatm, r2 = 0.35). The CMEMS-

LSCE-FFNN model projections of pCO2 lack skill over the HCS (RMSD = 54.54 µatm, r2 = 0.29), the region under influence375

of the Amazon river (RMSD = 45.93 µatm, r2 = 0.37), and the Western Arabian Sea (RMSD = 45.31 µatm, r2 = 0.47). In

nearshore sectors of these coastal areas, pCO2 estimates are also subject to a substantial amount of uncertainty (σ > 20 µatm).
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Figure 2. Comparison of CMEMS-LSCE-FFNN mapping pCO2 at 1◦ (r100) and 0.25◦ (r025) resolutions over 4 permanent upwelling

regions associated with the Eastern Boundary Currents (California, Peru, Canary, and Benguela; see Figure A1-ABGH for geographical

locations). For each region, spatial distributions of pCO2 (µ) and uncertainty (σ) estimates, and coastal-ocean RMSD of pCO2 averaged

over 1985-2021 (Eqs. 5 and 10) are shown. Metrics presented in the legend for each of the 3rd row include the number of coastal-ocean

SOCATv2022 data (N ), regional RMSD (Eq. 10) and r2 (Eq. 11).
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Figure 3. Comparison of CMEMS-LSCE-FFNN mapping pCO2 at 1◦ (r100) and 0.25◦ (r025) resolutions over 4 regions characterized with

low pCO2 values (Labrador, South America, Northern Europe, and Japan; see Figure A1-CEFJ for geographical locations). For each region,

spatial distributions of pCO2 (µ) and uncertainty (σ) estimates, and coastal-ocean RMSD of pCO2 averaged over 1985-2021 (Eqs. 5 and

10) are showed. Metrics present in the legend for each of the 3rd row include the number of coastal-ocean SOCATv2022 data (N ), regional

RMSD (Eq. 10) and r2 (Eq. 11).

The lack of model skill reflects the combination of low data density and strong pCO2 gradients driven by multiple underlying

physical and biogeochemical processes. The HCS, for instance, is characterized by the highest pCO2 levels (Fig. 2) among the
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Figure 4. Comparison of CMEMS-LSCE-FFNN mapping pCO2 at 1◦ (r100) and 0.25◦ (r025) resolutions over the mouth of the river

Amazon and the Western Arabian Sea (see Fig. A1-DI for geographical locations). For each region, spatial distributions of pCO2 (µ) and

uncertainty (σ) estimates, and coastal-ocean RMSD of pCO2 averaged over 1985-2021 (Eqs. 5 and 10) are showed. Metrics present in the

legend for each of the 3rd row include the number of coastal-ocean SOCATv2022 data (N ), regional RMSD (Eq. 10) and r2 (Eq. 11).

four Eastern Boundary Current Systems, with interannual variability amplified with the El Niño–Southern Oscillation (ENSO)380

events (Feely et al., 1999; Landschützer et al., 2016). Similarly, high pCO2 levels with substantial seasonal variability are

observed over the Western Arabian Sea (Fig. 4b), the key driver being monsoonal upwelling (Sabine et al., 2002; Sarma et al.,

2013). In contrast to the two aforementioned coastal regions, high CO2 undersaturation as well as strong pCO2 gradients

(Fig. 4a) are found in the area under the influence of Amazon river discharge (Olivier et al., 2022). Extreme values and large

variability of pCO2 challenge any approach to estimate pCO2 data over these regions (Ibánhez et al., 2015; Bakker et al., 2016;385

Landschützer et al., 2020).

The two FFNN reconstructions (r025 and r100) share similarities in overall structures of pCO2 over the coastal-open-ocean

continuum (Figs. 2-4). However, the higher spatial resolution outperforms its lower resolution counterpart is reproducing fine-

scale features of pCO2 in the transition from nearshore regions to the adjacent open ocean. The increase in model spatial

resolution translates into a greater spatial coverage of the continental shelves such as Labrador Sea, Northern Europe, and Sea390

of Japan (Fig. 3), and thus an increase in the number of data over the coastal domain. The increase in spatial resolution allows

a gain in prediction probability of pCO2 variations on the order of roughly 2% over the Eastern Boundary Currents to 8% over

the Western South Atlantic (Figs. 2-3b).
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Figure 5. Time series of surface ocean pCO2 at coastal observing stations (Table A2 and Fig. A1b): model best estimate (curve), 1σ-

uncertainty (envelope), and monthly average of in situ observations (point). The reconstructed data at 1◦ (r100) and 0.25◦ (r025) resolutions

are co-located to in situ observations provided by Sutton et al. (2019). Means of the best estimate and 1σ-uncertainty (µ±σ) calculated over

the observing time span are shown in brackets. Statistics include number of months with observations (N ), Bias, RMSD, and r2 computed

for the two reconstructions. σt
pCO2 stands for temporal standard deviation from monthly averages of pCO2 observations.

Reconstruction skill of seasonal to inter-annual variability of pCO2 is further assessed at eight coastal monitoring sites (Sut-

ton et al., 2019) and illustrated in Fig. 5 (see Sect. 2.2 and Table A2 for data description and Fig. A1b for station locations).395

The temporal variability of pCO2 reported for these time series sites reflects a combination of processes (Sutton et al., 2019),

e.g., California Current System (CAPEARAGO and CCE2), western coastal upwelling (CAPEELIZABETH), eutrophica-

19

https://doi.org/10.5194/essd-2023-146
Preprint. Discussion started: 4 May 2023
c© Author(s) 2023. CC BY 4.0 License.



tion enhancing respiration of CO2 (FIRSTLANDING), and multiple stressors on coral reef environments (CHEECAROCKS,

GREYREEF). Results from reconstructions at two spatial resolutions are compared: 1◦ (100, black curve) and 0.25◦ (r025,

color curve). As shown in Fig. 5 (scattered points for observations) time series of coastal pCO2 are still short. The longest400

time series covers 127 months of pCO2 monitoring since 2010 (CCE2) while the shortest one contributes 17 months with

observations (FIRSTLANDING).

Analyzing the eight station time series, we have found that data have been sampled within a few days with an average offset

of about a week from the month center. At these coastal sites, the temporal standard deviation from monthly averages of pCO2

(σt
pCO2

) exceeds measurement errors (2 µatm, Sutton et al., 2019). σt
pCO2

ranges from 20.12 µatm at GREYREFF to values405

as large as 65.6 µatm at CAPEARAGO or 69.98 µatm at FIRSTLANDING. The monthly average of pCO2 might not be

adequately represented by discreet samples at sites with a large temporal standard deviation of pCO2. The misfit between the

monthly reconstruction and discreet observations is exacerbated in dynamical coastal environments and might explain in part

the large RMSD of reconstructions of monthly coastal pCO2 (e.g., GREYREEF: 38.34 µatm, CAPEARAGO: 79.86 µatm,

FIRSTLANDING: 77.32 µatm) for the r025 reconstruction. The RMSD is mostly lower for the FFNN reconstruction at 0.25◦410

resolution compared to the FFNN at 1◦ resolution by 2.11 µatm (CCE2) to 23.32 µatm (COASTALMS). Similarly, r2 increases

between 7%-23% at higher resolution. Overall, seasonal to interannual variations of coastal-ocean pCO2 are better reproduced

in the reconstruction at 0.25◦ resolution (Fig. 5).

5.2 Total alkalinity and dissolved inorganic carbon

This section presents and analyzes global ocean surface reconstructions of total alkalinity (AT) and dissolved inorganic carbon415

(DIC) at monthly, 0.25◦ resolutions over 1985-2021. GLODAPv2.2022 bottle data (Sect. 2.2) serve as reference data for model

evaluation. Model reconstruction skill is further assessed at the four Eulerian time series sites: BATS, DYFAMED, ESTOC,

and HOTS (Table 3).

Figure 6 shows spatial distributions of the climatological mean and uncertainty (Eq. 5) for AT and DIC. Despite being in part

influenced by common biological and physical processes, both properties have contrasting distributions due to the strong cor-420

relation between surface ocean AT and salinity (Lee et al., 2006; Broullón et al., 2019), as well as the contribution of air-sea gas

exchange and biological productivity on surface ocean DIC levels (Feely et al., 2001; Takahashi et al., 2014). Over subtropical

Atlantic gyres and the Mediterranean Sea, oceanic areas with net evaporation, AT exceeds 2400 µmol kg−1. Total alkalinity

falls below 2150 µmol kg−1 in regions where precipitation, river freshwater runoff, or seasonal sea-ice melting dilute surface

water salinity (e.g., subpolar North Pacific, Arctic, and equatorial river outflows). The distribution of DIC is relatively uniform425

between the Atlantic, Pacific, and Indian Ocean basins, but shows pronounced latitudinal gradients. High concentrations of

DIC are found throughout the Southern Ocean (DIC > 2100 µmol kg−1) where strong upwelling brings up subsurface water

enriched in CO2 and nutrients. The inefficient utilization of nutrients in this high nutrient low chlorophyll region limits the

biological drawdown of DIC allowing the massive DIC input to be spread horizontally by westerlies (Key et al., 2004; Men-

viel et al., 2018). Levels of DIC below 1900 µmol kg−1 are reconstructed over the Equatorial Pacific, the Equatorial Eastern430

Atlantic, the Eastern Indian Ocean, and coastal areas on the Arctic Ocean. While low DIC levels associated with Equatorial up-
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Figure 6. CMEMS-LSCE AT and DIC over the global ocean at a spatial resolution of 0.25◦. Temporal means of the model best estimate and

1σ-uncertainty per grid cell over 1985-2021 are calculated by using Eq. (5).

welling reflect gas exchanges across the air-sea interface and enhanced biological production, the interaction between physical

and biogeochemical processes at work in the Indian Ocean are less well understood (Takahashi et al., 2014). Low DIC levels

found close to river mouths reflect outgassing of CO2 across the salinity gradient, as well as enhanced biological uptake fueled

by river nutrient inputs. Representation uncertainty (Fig. 6-cd) associated with monthly alkalinity and DIC reconstructions is435

lower than 20 µmol kg−1 throughout the open ocean. The open-ocean σ-to-µ ratio (Eq. 8) ranges between 0.5− 1.5% which

is relatively small (Fig. A9-cd). The largest model uncertainty (σ > 30 µmol kg−1) is computed nearshore and surrounding

oceanic islands, a feature inherited from input uncertainty associated with the CMEMS salinity product (Fig. A8a).

We qualify monthly, 0.25◦ reconstructions of AT and DIC with measurements from GLODAPv2.2022 (Lauvset et al., 2022)

for the 37-year period (Table 5 and Fig. 8). The global open-ocean reconstruction scores a RMSD of 22.09 µmol kg−1 and a r2440

of 0.9 in AT. Similar numbers are found for DIC (RMSD= 22.67 µmol kg−1 and r2 = 0.9). The model scores the good fit in the

open Indian Ocean with RMSD smaller than 15.5 µmol kg−1 and r2 above 0.92 for both variables. The reconstruction deviates

from GLODAP data in the western North Atlantic, subpolar North Pacific, tropics, and nearby major rivers (Fig. 8-abcd).

AT and DIC are underestimated in the continental shelves of north Alaska and the northeastern Atlantic, the Mediterranean

Sea, South China Sea, and nearby river plumes (Fig. 8-ac). The Arctic yields the poorest estimations among all the ocean basins445

with a global RMSD over 100 µmol kg−1 (Table 5). The prediction probability of variability in AT [DIC] is relatively large for

the open ocean 79% [71%], but rather unsatisfying over the coastal ocean (46% [40%]). Extrapolating these carbonate variables

towards the shore remains challenging with much higher errors and uncertainty estimates obtained over the continental shelf
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Figure 7. Monthly time series of AT and DIC at BATS, DYFAMED, ESTOC and HOT stations (Table 3 and Fig. A1b): model best estimate

(curve), 1σ-uncertainty (envelope), and monthly average of surface (0-10 m) observations (point). Means of the best estimate and 1σ-

uncertainty (µ±σ) calculated over the observing time span are shown in brackets if accessible. Statistics include number of months with

observations (N ), Bias, RMSD, and r2. σt
AT

[σt
DIC] stands for temporal standard deviation from monthly averages of AT [DIC] observations.

compared to the open-ocean reconstruction (Table 5, Figs. 6-cd and . 8-abcd). The coastal-ocean errors are on the order of 10%

of the global mean values of AT and DIC (Table 7).450

The reconstruction of AT distributions relies on LIAR coefficients fit with GLODAPv2 data (Olsen et al., 2016) covering the

years before 2015. These data are also part of the latest version GLODAPv2.2022 (Lauvset et al., 2022). They do therefore not

correspond to an independent dataset for the evaluation data of the CMEMS-LSCE reconstruction. To overcome this limitation,

reconstructions of AT and DIC are compared to observations for Eulerian time series stations: BATS, DYFAMED, ESTOC, and

HOT (see Table 3 and Fig. A1b for data sources and station locations). Figure 7 illustrates the comparison between monthly455

time series of AT and DIC extracted from the CMEMS-LSCE datasets and measurements at these long-term monitoring sites.

The four stations stand out as sustained long-term observation time series for carbonate system variables. More than 270 [80]

22

https://doi.org/10.5194/essd-2023-146
Preprint. Discussion started: 4 May 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure 8. Spatial distribution of reconstruction skills for AT, DIC, and pH over 1985-2021. Mean model-data difference (Bias) and root-of-

mean square-deviation (RMSD) between the reconstruction and GLODAPv2.2022 surface data (0-10 m) at a spatial resolution of 0.25◦. The

size of grid cells is scaled upon a better visualization.

months in the years 1988-2021 [1995-2009 and 1998-2017] include measurements of AT and DIC at BATS and HOT [ESTOC

and DYFAMED]. The reconstructed time series fit monthly averages of in situ measurements well. Mean estimates of AT [DIC]

over the observing period are about 2305 [1983] µmol kg−1 at HOT to 2420 [2129] µmol kg−1 at DYFAMED. At all the460

stations (DYFAMED excepted) and for the two variables, model-observation misfit is small (Bias < 10 µmol kg−1, RMSD <

13 µmol kg−1) relative to the aforementioned mean estimates. The highest offset between the CMEMS-LSCE estimation and

observations for all the stations is found at DYFAMED (AT: −145.1 µmol kg−1, DIC: −124.69 µmol kg−1). DYFAMED

provides long-term time series of AT and DIC measurements in the Northwestern Mediterranean Sea (Fig. A1b). Salinity and

alkalinity have substantial values due to the net evaporation (Coppola et al., 2020). The average of AT in the Mediterranean Sea465

exceeds that for the global ocean by 10% (Palmiéri et al., 2015). These characteristics set the Mediterranean Sea aside from

the ocean basins. LIAR (Carter et al., 2018) was trained on GLODAPv2 (Olsen et al., 2016) including a few observations in
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Table 5. Skill scores computed between CMEMS-LSCE and GLODAPv2.v2022 in AT, DIC, and pH over the period 1985-2021. Total

numbers of data, RMSD (Eq. 10), and r2 (Eq. 11) are reported for both the open ocean (O) and coastal region (C).

Basins Number of data
AT [µmol kg−1] DIC [µmol kg−1] pH [-]

AT-DIC (pH) RMSD r2 RMSD r2 RMSD r2

0. Globe
(O) 10269 (5411) 22.09 0.90 22.67 0.90 0.022 0.70

(C) 6309 (2080) 82.01 0.72 72.39 0.62 0.060 0.45

1. Arctic
(O) 103 (26) 107.09 0.79 113.28 0.71 0.106 0.32

(C) 1635 (300) 148.71 0.46 126.77 0.4 0.107 0.48

2. Atlantic
(O) 2785 (932) 30.10 0.74 28.66 0.72 0.028 0.58

(C) 2422 (941) 44.50 0.71 39.09 0.69 0.046 0.45

3. Pacific
(O) 4539 (3222) 13.61 0.92 15.95 0.92 0.019 0.74

(C) 1380 (639) 28.43 0.76 44.36 0.45 0.057 0.34

4. Indian Ocean
(O) 1177 (551) 15.05 0.92 13.79 0.96 0.012 0.90

(C) 328 (62) 16.56 0.92 21.97 0.90 0.013 0.82

5. Southern Ocean
(O) 1665 (680) 10.96 0.64 13.21 0.92 0.019 0.68

(C) 544 (138) 22.53 0.50 24.48 0.77 0.023 0.65

this area. The distinct relationship between alkalinity and salinity prevailing in the Mediterranean Sea is likely not reproduced

by LIAR leading to an underestimation of AT and a systematic bias to DIC at DYFAMED (Fig. 7). ESTOC is located close

to the North Atlantic east coast and under the influence of the Canary Current System (CCS, Fig. A1). Spatial gradients and470

temporal variability are higher in the CCS (Fig. 2c) compared to BATS and HOT which are both located in the center of

subtropical gyres. The lowest prediction skill of temporal variability is obtained for ESTOC. Particularly, seasonality to multi-

year variations in DIC are predicted at r2 = 0.47 for ESTOC compared to r2 > 0.7 for BATS and HOT. Over all the stations,

the model underestimates temporal changes of AT (Fig. 7a; BATS: r2 = 0.33, DYFAMED: r2 = 0.12, ESTOC: r2 = 0.03,

HOT: r2 = 0.32) which can be attributed to the large discrepancy in variability between in situ measurements and the CMEMS475

time series of salinity (Fig. A10a; BATS: r2 = 0.33, DYFAMED: r2 = 0.19, ESTOC: r2 = 0.03, HOT: r2 = 0.35). Model

uncertainty (1σ-envelop) of monthly AT and DIC estimates (Fig. 7a) is also inflated somewhat proportional to the CMEMS

salinity product uncertainty (Fig. A10a).

5.3 Surface ocean pH and saturation state with respect to carbonate minerals

Surface ocean pH and saturation states with respect to aragonite (Ωar) and calcite (Ωca) are critical indicators used to measure480

ocean acidification. This section first presents an overall evaluation of these variables. We then introduce estimates involved

in the monitoring of ocean acidification in 1985-2021 as an essential application of the CMEMS-LSCE surface ocean carbon

product.
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5.3.1 General analysis and evaluation

Figure 9. CMEMS-LSCE pH and Ωar over the global ocean at a spatial resolution of 0.25◦. Temporal means of the model best estimate and

1σ-uncertainty per grid cell over 1985-2021 are calculated by using Eq. (5).

The spatial distribution of surface ocean pH reported on total hydrogen ion (H+) scale is shown in Fig. 9 (the corresponding485

figure for H+, Fig. A4, is included in the supplementary). Both temporal means of the best model estimate and 1σ-uncertainty

of pH share spatial patterns with pCO2 (Fig. 1). Variables pH and pCO2 correlate closely through equilibrium relationships of

dissolved CO2 in seawater: an increase in pCO2 generally corresponds to a decrease in pH. The distribution of the climatolog-

ical mean of pH displays a gradient with latitude between 8.03 and 8.11 pH units across most of the basins (Fig. 9a). Values

of pH below 8 are associated with the upwelling of CO2-rich waters (e.g., Eastern Equatorial Pacific, Western Arabian Sea).490

pH exceeds 8.15 in sub- and polar cold surface water and in the regions with high biological productivity (e.g. Labrador Sea,

Nordic Seas, Southern Ocean between 35◦S-50◦S).

The saturation state of surface ocean waters with respect to calcium carbonate minerals aragonite and calcite is defined as the

ratio of the product of the concentrations of calcium ions (Ca2+) and carbonate ions (CO2−
3 ) to the solubility of the respective

calcium carbonate mineral (CaCO3) in surface seawater (Eq. A5). Aragonite being the more soluble polymorph, its degree of495

saturation (Ωar) is smaller than that of calcite (Ωca) (Mucci, 1983). With the exception of this offset, the spatial distributions

of their climatological means share common spatial patterns over the global ocean (Figs. 9b and A5a). Surface seawater is

generally supersaturated, i.e., Ωar and Ωca greater than 1. The magnitude of surface ocean calcium carbonate saturation state

varies with latitude. Values as large as 3.7-4.5 [5-7] for aragonite [calcite] are reconstructed in subtropical and tropical regions.
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Ωar and Ωca decrease toward the poles. In the Southern Ocean, surface seawater enriched in CO2 from vertical mixing has500

Ωar [Ωca] values in the range of 1.5-2.1 [2-3.4]. Low saturation states are also computed in the Arctic and for waters of

upwelling regimes (Fig. 9b). Locally Ωar drops below 1.3, and even fall under the CaCO3 dissolution threshold of 1 (Gattuso

and Hansson, 2011) in the Arctic water runoff and Baltic sea.

The uncertainty (1σ) of pH, Ωar, and Ωca propagated the speciation of the CO2 system takes into account the ensemble

spread of pCO2 estimates and analysis errors of other variables (Sect. 3.3). Monthly pH uncertainty estimates fall in the 95%505

confidence interval of [0.008,0.036] with a global mean value of 0.011. These estimates are in close agreement with the global

uncertainty between 0.01-0.022 pH units calculated by Jiang et al. (2019), Iida et al. (2021), and Gregor and Gruber (2021). pH

uncertainty is typically larger than 0.03 in the Arctic and in coastal regions (Figs. 9c). In contrast, the reconstructions of Ωar

and Ωca are subject to high uncertainty (σ > 0.175) between 30◦S-30◦N (Fig. 9d and A5b). Regarding the σ-to-µ ratio, mean

uncertainty estimates per cell for the saturation states in the (sub-) tropical band are relatively small compared to the mean510

of the best monthly estimates (Figs. A9-ef). The Arctic and the coastal oceans remain the regions with largest reconstruction

uncertainties for Ωar and Ωca, as well as for pCO2 and pH (Figs. A9-ab). Excluding these regions, R(σ,µ) (Eq. 8) is less than

0.3% for pH and 8% for Ωar and Ωca.

The monthly CMEMS-LSCE reconstruction at 0.25◦ resolution is assessed against pH measurements from GLODAPv2.2022

bottle data (Table 3). For the period 1985-2021, the global RMSD amounts to 0.022 [0.060] pH units and r2 scores at 0.70515

[0.45] over the open [coastal] ocean (Table 5). Model bias lies within [−0.01,0.01] pH units and RMSD is below 0.02 pH units

over the open ocean, except for high latitudes over 60◦ (Figs. 8-ef). At local scale, the eight coastal time series from Sutton

et al. (2019) are used for further evaluation. There exists much less evaluation data for pH than for pCO2, e.g., only 2 months

of monitoring pH at COASTALLA and FIRSTLANDING (Table A3). Monthly time series of CMEMS-LSCE pH are coherent

with these pH measurements (Tables A2 and A3). Measurement uncertainty of pH at these coastal sites is reported to be around520

0.02 pH units. RMSD can be as small as 0.035 and 0.04 pH units at CCE2 and GRAYSREEF while it is over 0.05 pH units

at the other stations (e.g., COASTALLA: 0.068, CAPEARAGO: 0.069). Similar to the pCO2 time series (Fig. 5, Sect. 5.1),

pH has been monitored with low sampling frequency (roughly a few days in the tracking month) and the temporal sampling

deviation of instantaneous observations from monthly averages (σt
pH) is significant. This temporal sampling uncertainty of pH

contributes to the mismatch between model estimates and observations. For example, σt
pH amounts to 0.048 pH units at CCE2525

and 0.020 pH units at GRAYSREEF, and reaches highest values of 0.078 pH units at COASTALLA and 0.086 pH units at CA-

PEARAGO. Although model-observation misfit and model uncertainty remain high over the coastal sector (see also Figs. 8-ef

and 9c), their estimates do not surpass 1% of the global mean pH (8.082). The reconstructed pH time series reproduce mea-

surement variability with relatively high correlation, r2 in [0.21,0.69], that reinforces the reliability of CMEMS-LSCE pH

data.530

5.3.2 Ocean acidification: key features from global to local scales

The monthly, 0.25◦ CMEMS-LSCE datasets of pH, Ωar, and Ωca are at the basis of of two CMEMS ocean indicators moni-

toring surface ocean acidification from 1985 to 2021: (1) annual global means and (2) global trend maps.
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In Fig. 10, we present annual global means of surface ocean pH and saturation states for aragonite (Ωar). An illustration of

calcite (Ωca) is provided in the Appendix (Fig. A13a). For each variable, the calculation of annual global area-weighted means535

of best estimates (line) and 1σ-uncertainties (envelope) follows Eq. (7). The trends reported in the legend result from linear

least-squares regression on annual global means of 100-ensembles of the carbonate system variables. These ensembles are

generated with Gaussian distribution having the mean and variance as best model estimate µ and squared uncertainty (σ2) at

monthly time steps and 0.25◦-grid cells, respectively. pH decreases from 8.110± 0.017 in 1985 to 8.049± 0.014 in 2021 with

a descend rate of −0.017± 0.004 decade−1. Similar trends are found for the surface ocean saturation states with respect to540

calcium carbonate minerals. The global mean estimates of Ωar [Ωca] amount to 3.141±0.198 [4.807±0.302] and 2.862±0.174

[4.372±0.266] for the open and coastal oceans. The saturation state declines at a rate of−0.080±0.029 decade−1 with respect

to aragonite while the reduction is steeper for calcite (−0.114± 0.045 decade−1).

Figure 10. Yearly global area-weighted mean of surface seawater pH reported on total scale (a) and surface ocean saturation states with

respect to aragonite (b). Global means of the best estimate (µ, plain line) and of uncertainty (σ, envelop) are computed with Eq. (7a). Trend

and uncertainty in the legend are computed with linear regressions on the 100-member ensemble of yearly global means for each variable.

Global trend maps of surface ocean pH, Ωar, and Ωca over the entire period are illustrated in Figs. 11 and A13b. Linear least-

squares regression is used to estimate secular trends at every 0.25◦-grid cell. The linear fits of each variable against time rely on545

the 100-member ensemble generated with the best estimates and propagated uncertainties of pH, Ωar, and Ωca (see Figs. A14

for examples). Regression slope and residual standard deviation estimates are defined as linear trend and uncertainty of pH, Ωar,

and Ωca. Hatched area represents pH [Ωar and Ωca] trend estimates (µ) with highest uncertainties (σ), i.e., σ-to-µ ratio (Eq. 8)

above 10% [20%]. These regions include a portion of the Arctic, Antarctic, equatorial Pacific, and coastal ocean (Figs. 11,

A11, and A12). 95% of pH trend estimates over the global ocean is in the range of [−0.022,−0.012] decade−1 (Fig. 11a).550

In the broad open ocean of the tropics and subtropics, pH has been declining around −0.018 decade−1 to −0.012 decade−1.

Faster decrease rates are found in the Indian Ocean and Southern Ocean with values between −0.022 and −0.018 decade−1.

Fastest reductions are computed for the eastern equatorial Pacific and the Arctic with rates exceeding −0.025 decade−1. A
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Figure 11. Global trend maps of surface seawater pH reported on total scale (a) and surface ocean saturation states with respect to aragonite

(b). Linear trend of CMEMS-LSCE pH and Ωar is estimated per 0.25◦-grid cell over 1985-2021. Cross-hatching covers the regions where

uncertainty over 10% [20%] of pH [Ωar] trend estimates.

similar magnitude of pH trends over these regions is also found in (Lauvset et al., 2015; Leseurre et al., 2022; Ma et al.,

2023). The spatial distribution of saturation states with respect to calcium carbonate minerals generally shows the opposite555

latitudinal pattern (Figs. 11b and A13b). The magnitude of Ωar [Ωca] trends over the 30◦S-30◦N band can be as large as

−0.086 decade−1 [−0.134 decade−1] to the greatest extent of −0.186 decade−1 [−0.275 decade−1] (e.g., eastern equatorial

Pacific). Trends of Ωar and Ωca computed in polar and subpolar northern hemisphere regions are not significant.

Trend estimates derived from reconstructions of pH and Ωar are evaluated at seven time series stations (Bates et al., 2014)

in Table 6. Time series locations are shown in Fig. A1b. With the exception of CARIACO and HOT excepted for which pH560

measurements are available, long-term trend estimates by Bates et al. (2014) rely on time series of pH and Ωar calculated via

speciation from measurements of AT and DIC. A 100-member ensemble of monthly time series of pH and Ωar are extracted

from the 0.25◦-grid box nearest to each monitoring station. Linear least-squares regression is then used to infer estimates of

their secular trends and associated uncertainties (see Fig. A14 for illustration). Trend estimates derived from CMEMS-LSCE

reconstructions at HOT, BATS, ESTOC, and Munida are in line with previous studies for both pH and Ωar (Dore et al., 2009;565

González-Dávila and Santana-Casiano, 2009; Bates et al., 2014). The magnitude of the trend estimate at Irminger Sea for 1985-

2012 (pH: −0.014± 0.001 decade−1, Ωar: −0.006± 0.011 decade−1) is smaller than that determined by Bates et al. (2014).

However, the CMEMS-LSCE pH trend is consistent with the estimate by Pérez et al. (2021) (−0.017± 0.002 decade−1).

Moreover, 1σ-uncertainty reported for both pH and Ωar trend estimates by Bates et al. (2014) is large at this station (pH:

−0.025± 0.006 decade−1, Ωar: −0.080± 0.040 decade−1) highlighting the associated uncertainty. Long-term trends of pH570

and Ωar are also under-estimated at the Iceland Sea monitoring site, but the bias is not as large as at Irminger Sea (Table 6).

Low data sampling frequency at these two stations (Table 1, Bates et al., 2014) could be on account of trend estimate deviation.

At CARIACO, the CMEMS-LSCE time series yields a decrease in Ωar of −0.059±0.053 decade−1, relatively close to Bates

et al. (2014) (−0.066± 0.028 decade−1). The decrease in pH derived from CMEMS-LSCE is, however, larger than in Bates

et al. (2014).575
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Table 6. Secular trend estimates of pH and Ωar at seven time-series stations (Bates et al., 2014). Trend and uncertainty estimates are reported

as µ±σ. Monthly time series in the CMEMS-LSCE datasets are extracted at the grid box nearest to each station location (Fig. A1b). For the

first three stations, this study calculates linear trends starting in the year 1985. Brackets show values computed over the full period 1985-2021.

Stations Coordinates Time span
pH trend [decade−1] Ωar trend [decade−1]

Bates et al. (2014) This sudy Bates et al. (2014) This sudy

1. Iceland Sea
68.00◦N

1983-2012
−0.014± 0.005 −0.010± 0.001 −0.018± 0.027 −0.013± 0.011

12.66◦W (−0.014± 0.001) (−0.025± 0.008)

2. Irminger Sea
64.30◦N

1983-2012
−0.026± 0.006 −0.014± 0.001 −0.080± 0.040 −0.006± 0.011

28.00◦W (−0.016± 0.001) (−0.039± 0.009)

3. BATS
32.00◦N

1983-2012
−0.017± 0.001 −0.014± 0.001 −0.095± 0.007 −0.079± 0.016

64.00◦W (−0.016± 0.001) (−0.074± 0.010)

4. ESTOC
29.04◦N

1995-2012
−0.018± 0.002 −0.018± 0.002 −0.115± 0.023 −0.103± 0.031

15.50◦W (−0.019± 0.001) (−0.089± 0.011)

5. HOT*
22.75◦N

1988-2012
−0.016± 0.001 −0.016± 0.001 −0.084± 0.011 −0.100± 0.020

158.00◦W (−0.019± 0.001) (−0.102± 0.011)

6. CARIACO*
10.50◦N

1995-2012
−0.025± 0.004 −0.017± 0.003 −0.066± 0.028 −0.059± 0.053

64.66◦W (−0.018± 0.001) (−0.099± 0.018)

7. Munida
45.70◦S

1998-2012
−0.013± 0.003 −0.017± 0.002 −0.085± 0.026 −0.088± 0.032

171.50◦E (−0.017± 0.001) (−0.070± 0.009)

*Stations with direct observations of pH.

6 Conclusions and Discussion

This study presents the CMEMS-LSCE product, a dataset of six carbonate system variables (Table 1) covering the global

surface ocean at a spatial resolution of 0.25◦ for every month in the period 1985-2021 (444 months). Datasets of individual

carbonate system variables are built on the combination of the three methods. First, we adapt an ensemble of 100 feed-forward

neural network models (CMEMS-LSCE-FFNN, Chau et al., 2022b) to estimate surface ocean partial pressure of CO2 (pCO2)580

at the pre-defined data resolution. Second, the high-resolution total alkalinity (AT) reconstruction is obtained by using locally

interpolated alkalinity regression (LIAR, Carter et al., 2016, 2018). Finally, surface ocean pH, total dissolved inorganic car-

bon (DIC), and saturation states with respect to aragonite (Ωar) and calcite (Ωca) are calculated with the carbonate system

speciation software (CO2SYS, Lewis and Wallace, 1998; Van Heuven et al., 2011; Orr et al., 2018), given the global monthly

reconstructions of pCO2 and AT and other environmental input data (Sect. 3). Results are 2D-fields of the best estimate and585

associated uncertainty (1σ) of carbonate system variables available at each grid box of 1month×0.25◦×0.25◦. 1σ-uncertainty

is referred to as the ensemble standard deviation of 100 FFNN outputs for pCO2 while it is propagated through the processing

chain of LIAR and CO2SYS taking into account different uncertainty sources of input parameters for other variables.
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Multiple observation-based datasets, which are not used for the CMEMS-LSCE reconstructions at monthly and 0.25◦ resolu-

tions, serve as benchmarks in the assessments of product quality from global to local scales (e.g., Tables 4, 5, and A3; Figs. 2-5590

and 7-8). A summary of the primary statistics for all the six carbonate variables is presented Table 7. Over the full period

1985-2021, CMEMS-LSCE yields global RMSDs of 14.29 µatm and 27.55 µatm in comparison with SOCATv2022 pCO2 for

the open and coastal oceans, respectively. Temporal variability of observation-based data is well reproduced with r2 of 0.83

for the open ocean and 0.74 for the coastal domain. In comparison to CMEMS-LSCE at monthly and 1◦ resolutions (Chau

et al., 2022b), the reconstructions over coastal areas are improved at higher resolution (Figs. 2-4). Furthermore, the monthly,595

0.25◦ reconstruction outperforms its 1◦ counterpart in reproducing horizontal and temporal gradients of pCO2 over a variety of

oceanic regions as well as at nearshore time series stations (Figs. 2-5). Evaluations with GLODAPv2022 bottle data and time

series stations results in good reconstruction skills for AT, DIC, and pH at monthly and 0.25◦ resolutions (Tables 5 and A3,

Figs. 7 and 8). At the global scale, the open-ocean reconstruction scores a RMSD smaller than 23 µmol kg−1 and a r2 of 0.9 in

AT and DIC. The model-observation deviation is higher in the coastal zone. However, it does not exceed 5% of the global mean600

values and r2 is above 0.6 for both coastal AT and DIC. Regarding pH, the CMEMS-LSCE reconstruction provides estimates

with RMSD= 0.022 [0.060] and r2 = 0.7 [0.45] over the open [coastal] ocean. From the statistics in Tables 4 and 5, the Indian

Ocean and the Southern Ocean have poor data density (Fig. A2) but generally show the best global reconstruction among the

ocean basins. Thus, model evaluation with different numbers of observation data might not reflect a fair comparison of skill

scores (e.g., RMSD and r2) between regions. Data density is much higher in the Arctic, Atlantic, and Pacific than in the Indian605

and Southern Oceans. The increased data density reveals stronger spatio-temporal variability, for instance, related to coastal

dynamics or upwelling than resolved in the two latter basins. RMSD and r2 computed on the lower data variability result in

better model scores.

The spatial distribution of long-term mean 1σ-uncertainty estimates (Figs. 1b, 6cd, and 9cd) indicates higher confidence

levels for open-ocean estimates than over the coastal sector. The evaluation of temporal mean 1σ-uncertainty estimates relative610

to climatological mean values µ (Figs. 1a, 6ab, and 9ab) results in σ-to-µ ratio (Eq. 8) below 5% and 8% for pCO2 and Ωar,

2% for AT and DIC, and 0.4% for pH over the open ocean (Fig. A9). The σ-to-µ ratio reaches values as high as 10% to 20%

for pCO2 and Ωar in the coastal domain. The global mean of open-ocean 1σ-uncertainty estimates (Eq. 7a) for CMEMS-LSCE

pCO2 (8.48 µatm), AT (16.66 µmol kg−1), DIC (15.75 µmol kg−1), pH (0.011), and Ωar (0.180) are in line with those reported

by previous studies despite being derived from different statistics. For instance, Iida et al. (2021) calculated 1σ-uncertainty615

based on the median absolute deviation of regression model fits from open-ocean observations. Their approach yielded global

σ-averages of 17.8 µatm, 11.5 µmol kg−1, 0.018, and 0.110 for pCO2, normalized DIC, pH, and Ωar, respectively. In Gregor

and Gruber (2021), the authors propagated the sum squared errors (global RMSD and measurement uncertainties) of pCO2

(15 µatm) and AT (22 µmol kg−1) obtaining global uncertainty estimates of 19 µmol kg−1 in DIC and 0.022 in pH. Mean

uncertainty estimates over the coastal region are on the order of twofold that computed for the open ocean for these four620

variables (Table 7), corroborating results by Gregor and Gruber (2021) (Fig. 7).

Our high-resolution carbon data product opens the door to various analyses of the marine carbonate system from global to lo-

cal scale. This study exemplifies an application of the data for monitoring ocean acidification over recent years. The monitoring
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Table 7. Summary in global evaluation statistics for CMEMS-LSCE surface ocean carbonate system datasets at monthly, 0.25◦ resolutions

over the period 1985-2021. µ and σ stand for the global area-weighted means of monthly best estimates and 1σ-uncertainties for each

variable (Eq. 7). RMSD (Eq. 10) and r2 (Eq. 11) are computed with SOCATv2022 for pCO2 and GLODAPv2.2022 for pH, AT, and DIC.

The division between the coastal (C) and open (O) oceans is at 400 km on a distance from the shore line (Fig. A1a).

Variables Units Sector µ σ RMSD r2

1. pCO2 µatm
(O) 364.48 8.48 14.29 0.83

(C) 359.35 17.10 27.55 0.74

2. AT µmol kg−1 (O) 2305.78 16.66 22.09 0.90

(C) 2263.02 38.36 82.01 0.72

3. DIC µmol kg−1 (O) 2031.12 15.75 22.67 0.90

(C) 2008.65 33.40 72.39 0.62

4. pH -
(O) 8.082 0.011 0.022 0.70

(C) 8.082 0.021 0.060 0.45

5. Ωar -
(O) 3.059 0.180

- -
(C) 2.864 0.206

6. Ωca -
(O) 4.674 0.275

- -
(C) 4.384 0.314

indicators derived from the monthly, 0.25◦ surface ocean CMEMS-LSCE product consist of (1) yearly global means of surface

ocean pH and saturation states with respect aragonite Ωar and calcite Ωca and (2) global maps of multi-annual trends of surface625

ocean pH, Ωar, and Ωca (Figs. 10, 11, and A13). In 1985, the global mean surface ocean pH was 8.110±0.017. It was 8.049±
0.014 in 2021 (Fig. 10a). Over the same 37-year time period, Ωar decreased from 3.141± 0.198 to 2.862± 0.174 (Fig. 10b).

The rate of decline of surface ocean pH and Ωar was respectively −0.017± 0.004 decade−1 and −0.080± 0.029 decade−1

since 1985 (see also results for Ωca in Sect. 5.3.2). Estimates of pH trend lie between [−0.022,−0.012] decade−1 across most

of the open ocean (Fig. 11a). In general, surface ocean pH decreased more rapidly in the Indian Ocean and Southern Ocean630

than the tropics and subtropics. These findings are in close agreement with the suggestions by Lauvset et al. (2015) and Ma

et al. (2023) but future studies would need to include analyses of underlying drivers to provide insight into regional differences

in pH changes. By contrast, the greatest reduction in surface ocean saturation states (Fig. 11b) was computed for the two latter

regions. The global trend maps of pH and Ωar highlight the Eastern Equatorial Pacific as one of the vulnerable regions with

respect to ocean acidification. In this area, the decline rate of pH exceeds −0.025 decade−1 and −0.186 decade−1 for Ωar.635

The comparison of multi-annual trends of pH and Ωar at time series stations (Table 6 and Fig. A14) highlighted the consistency

between CMEMS-LSCE estimates and previous studies (Dore et al., 2009; González-Dávila and Santana-Casiano, 2009; Bates

et al., 2014; Pérez et al., 2021). For most of these sites, the trends evaluated for 1985-2021 are greater than those relative to the

sub-period before the year 2012. The faster rate of ocean acidification over the full period compared to the pre-2012 probably

reflects a steeper acceleration in ocean uptake of anthropogenic CO2 in the last decade.640

The production chain of CMEMS-LSCE carbonate system variables will be maintained and further improvements with

the aim to reduce model-observation misfit and improve the quantification of model uncertainty are on the way forward.

Being at the core of the chain, model upgrades of CMEMS-LSCE-FFNN will be tackled first. At the time, SOCAT does not

provide open-ocean data of CO2 fugacity gridded at monthly, 0.25◦ resolutions. Our ensemble-based approach draws thus
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on two SOCATv2022 data sources: a "downscaled" version of the 1◦-open-ocean data and the 0.25◦-coastal-ocean data (see645

Sect. 2.1). Open-ocean SOCAT datasets gridded at finer regular resolutions (if accessible) will be updated to gain more accuracy

in our model fitting. Selections of data products for predictors needed for model input are equally important. For instance, the

CMEMS SSS product used here results in a globally good reconstruction of total alkalinity (Table 5). However, the temporal

variability in CMEMS SSS data does not match that in observations (Fig. A10) and this feature is retained in time series of total

alkalinity (Fig. 7). Despite best efforts in determining overall product uncertainty in estimates of carbonate system variables,650

part of input uncertainty is still not taken into account or only partially quantified due to lack of time-space varying uncertainty

fields associated with predictor variables (e.g. SSH, Chl-a, MLD, nutrient concentrations). Moreover, temporal sampling bias

in pCO2 and pH is likely to contribute to deviations between observations and model output (Fig. 5 and Table A3). The total

measurement error uncertainty should be considered with great care during reconstruction and model output evaluation.

The CMEMS-LSCE approach leads as the first series of long-term reconstructions of pCO2, pH, AT, DIC, Ωca and Ωar ex-655

tending seamlessly from the global open ocean to coastal regions at monthly, 0.25◦ resolutions. Future use cases recommended

for this high-resolution product include (1) estimation of monthly to interannual variations, long-term trends of carbonate sys-

tem variables, as well as of air-sea CO2 exchanges at the surface layer from local scale to large ocean basins, (2) analyses

in interactions between these variables and effects of other physical and biogeochemical factors on ocean acidification and

changes in the marine carbonate system, (3) assessments of horizontal and temporal gradients of carbonate system variables660

in the coastal-open ocean continuum, (4) evaluation or combination with other model- or observation-based products (e.g.,

Biogeochemistry Argo, Southern Ocean Carbon and Climate Observations and Modeling), and (5) improvements in coastal

reconstructions based on observation system simulation experiments (e.g., with finer spatio-temporal model resolutions). The

CMEMS-FFNN surface ocean carbon product at monthly, 0.25◦ resolutions will be accessible through the CMEMS data portal

(see Sect. 7).665

7 Data availability

The CMEMS-LSCE datasets of six carbonate system variables have been delivered to the European Copernicus Marine En-

vironment Monitoring Service (CMEMS, Product ID: MULTIOBS_GLO_BIO_CARBON_SURFACE_REP_015_008, DOI:

10.48670/moi-00047). Since November 2022, the product with monthly and 1◦ resolutions is available at the CMEMS portal

(Chau et al., 2022a, b). The CMEMS-LSCE data product at monthly and 0.25◦ resolutions proposed in this study will replace670

its coarser resolution version in due course. For the time being, the high-resolution data product described in this manuscript

can be accessed via repository under data DOI: 10.14768/a2f0891b-763a-49e9-af1b-78ed78b16982 (Chau et al., 2023).
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Appendix A: Definitions of ocean carbonate system variables

Chemical reactions of dissolved CO2 in seawater follow a series of the following equilibria,

CO2(g) ⇌ CO2(aq), (A1a)675

CO2(aq) +H2O ⇌ H+(aq) +HCO−3 (aq), (A1b)

HCO−3 (aq) ⇌ H+(aq) +CO2−
3 (aq), (A1c)

where (g) and (aq) stand for a gas or the species in an aqueous solution. CO2(aq) refers to the combination of aqueous CO2

and its weak acid H2CO3. HCO−3 and CO2−
3 are bicarbonate and carbonate ions.

Definitions of the essential variables involved in the carbonate system equilibria (A1) are on the list below (see in Dickson680

et al., 2007; Dickson, 2010; Gattuso and Hansson, 2011, for further details).

i) Surface ocean pCO2 is partial pressure of CO2 in air which is in equilibrium with that in water sample. It is not the same

as surface ocean fugacity of CO2 (fCO2). pCO2 can be converted from fCO2 via

pCO2 = fCO2 exp
(
−P

B + 2δ

RT ∗

)
. (A2)

where P is total atmospheric pressure at surface water, T ∗ is absolute temperature, R is the gas constant, and B and δ685

are cross-virial coefficients (Körtzinger, 1999).

ii) Seawater pH is a negative logarithmic scale of total concentration of hydrogen ions (H+) in aqueous solution. Total H+

is the sum of concentrations of free H+ and HSO4 ions. The pH scale typically ranges from 0 to 14. pH = 7 is the

threshold specifying whether a water sample is in acidic (i.e., pH < 7) or basic (i.e., pH > 7) conditions.

iii) Total alkalinity (AT) measures the capacity of seawater against acidification. By definition, AT is total concentration690

of dissolved alkaline substances corresponding to the ability in H+ attracting over H+ releasing. The major contribu-

tions to alkalinity includes bicarbonate (HCO−3 ), carbonate (CO2−
3 ), and hydroxide (OH−) ions. Total alkalinity can be

approximated with

AT = [HCO−3 ] + 2[CO2−
3 ] + [OH−]− [H+]. (A3)

iv) Total dissolved inorganic carbon (DIC) is the sum in concentrations of the three primary aqueous species in seawater,695

DIC = [HCO−3 ] + [CO2−
3 ] + [CO2(aq)]. (A4)

v) Calcium carbonate saturation state (Ω) is defined as follows,

Ω =
[Ca2+][CO2−

3 ]
Ksp

, (A5)
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where [Ca2+] is the concentration of dissolved calcium ions and Ksp is the solubility of calcium carbonate in seawater.

CaCO3 has two principal minerals: aragonite and calcite. Aragonite, which is more soluble than calcite (Ωar < Ωca),700

is produced by many marine shells and skeletons including corals, pteropods, clams, and mussels. A Ωar value greater

than 1, i.e., preferable conditions in shell formation, indicates supersaturated seawater with respect to aragonite, and vice

versa.

vi) Revelle factor (RF) measures the buffer capacity for the carbonate system in seawater that decreases as pH increases.

Revelle factor is expressed by the ratio between instantaneous changes of dissolved CO2

(
[∆CO2(aq)]
[CO2(aq)]

)
and of DIC705

(
[∆DIC]
[DIC]

)
in seawater,

RF =
[∆CO2(aq)]
[CO2(aq)]

(
[∆DIC]
[DIC]

)−1

. (A6)
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Figure A1. a) Ocean basins (https://github.com/RECCAP2-ocean/RECCAP2-shared-resources/tree/master/data/regions, last access:

11/7/2022): coastal mask (grey, approximately 400 km from the shore line), feature regions analyzed in this study (cyan box, Table A1);

b) Location of time series stations recording in situ observations used in data evaluation (Table 3): blue stars (Bates et al., 2014), black star

(Coppola et al., 2021), and other coloured scattered objects (Sutton et al., 2019).

Figure A2. Spatial distribution of total months in 1985-2021 containing SOCATv2022 gridded data. Left: 1◦-data product (r100), right:

0.25◦-data product (r025). Open-ocean data (O) in each 0.25◦-grid box is created by setting conservatively the open-ocean SOCATv2022

data at the 1◦-grid box containing it. The coastal-ocean SOCATv2022 data (C) are assigned within 400 km from the shoreline (Fig. A1a).
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Table A1. Information of feature regions analyzed in this study (Fig. A1a - cyan boxes).

Notations Regions
Coordinates

Latitude Longitude

A California Current System 25◦N-45◦N 130◦W-110◦W

B Humboldt Current System 30◦S-0◦ 90◦W-70◦W

C Labrador Sea 45◦N-65◦N 70◦W-45◦W

D Amazon river mount 5◦S-15◦N 60◦W-40◦W

E Western South Atlantic 60◦S-40◦S 70◦W-50◦W

F Northern Europe 50◦N-70◦N 10◦W-25◦E

G Canary Current System 5◦N-30◦N 30◦W-10◦W

H Benguela Current System 35◦S-15◦S 5◦E-20◦E

I Western Arabian Sea 5◦N-24◦N 45◦E-65◦E

J Sea of Japan 30◦N-50◦N 120◦E-150◦E

Table A2. Information of moored time series of coastal-surface-ocean pCO2 and pH observations (Sutton et al., 2019).

Stations Abbreviations Coordinates Date range

1. Cape Arago CAPEARAGO 43.3◦N, 124.5◦W 06/2017-12/2020

2. Cape Elizabeth CAPEELIZABETH 47.4◦N, 124.7◦W 06/2006-05/2020

3. California Current Ecosystem 2 CCE2 34.3◦N, 120.8◦W 01/2010-06/2021

4. Cheeca Rocks Ocean Acidification Mooring in Florida Keys National Marine Sanctuary CHEECAROCKS 24.9◦N, 80.6◦W 12/2011-12/2021

5. Coastal Louisiana buoy COASTALLA 28.5◦N, 90.3◦W 07/2017-08/2020

6. Central Gulf of Mexico Ocean Observing System Station 01 COASTALMS 30.0◦N, 88.6◦W 05/2009-05/2017

7. Chesapeake Bay Interpretive Buoy System Ocean Acidification Buoy at First Landing FIRSTLANDING 37.0◦N, 76.1◦W 04/2018-09/2020

8. NDBC Buoy 41008 in Gray’s Reef National Marine Sanctuary GRAYSREEF 31.4◦N, 80.9◦W 07/2006-08/2018

Table A3. Statistics computed between CMEMS-LSCE datasets (0.25◦) and time series of pCO2 and pH measurements (Sutton et al.,

2019): total numbers of monthly mean observations (N), temporal standard deviation of observations from their monthly averages (σt),

RMSD (Eq. 10), and r2 (Eq. 11). See Table A2 and Fig. A1b for stations’ information and locations.

Stations
pCO2 [µatm] pH [-]

N σt RMSD r2 N σt RMSD r2

1. CAPEARAGO 33 65.60 79.86 0.19 31 0.086 0.069 0.22

2. CAPEELIZABETH 92 42.54 41.44 0.52 11 0.061 0.057 0.69

3. CCE2 127 45.31 32.44 0.16 58 0.048 0.035 0.24

4. CHEECAROCKS 73 44.05 62.42 0.25 40 0.038 0.066 0.21

5. COASTALLA 22 59.15 57.41 0.52 2 0.078 0.068 -

6. COASTALMS 41 43.04 42.50 0.51 15 0.062 0.065 0.25

7. FIRSTLANDING 17 69.98 77.32 0.49 2 0.061 0.042 -

8. GRAYSREEF 96 20.12 38.34 0.65 49 0.020 0.040 0.66
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Figure A3. Global maps of mean model-data difference (Bias, abcd) and root-of-mean-square-deviation (RMSD, efgh) between the recon-

struction and SOCATv2022 pCO2 [µ atm] over 1985-2021. Left: CMEM-LSCE-FFNN with a resolution of 1◦ (r100), right: CMEM-LSCE-

FFNN with a resolution of 0.25◦ (r025). Open-ocean data (O) in each 0.25◦-grid box used for evaluation is created by setting conservatively

the open-ocean SOCATv2022 data value at the 1◦-grid box containing it. Coastal-ocean data (C) are extracted from each of the two SO-

CATv2022 gridded data products.
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Figure A4. CMEMS-LSCE H+ over the global ocean at a spatial resolution of 0.25◦. Temporal means of the model best estimate and

1σ-uncertainty per grid cell over 1985-2021 are calculated by using Eq. (5).
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Figure A5. CMEMS-LSCE Ωca over the global ocean at a spatial resolution of 0.25◦. Temporal means of the model best estimate and

1σ-uncertainty per grid cell over 1985-2021 are calculated by using Eq. (5).

Figure A6. CMEMS-LSCE Revelle Factor (RF) over the global ocean at a spatial resolution of 0.25◦. Temporal means of the model best

estimate per grid cell over 1985-2021 are calculated by using Eq. (5).
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Figure A7. Median percentage of analysis error uncertainty against of climatological mean of surface WOA18 nutrient data: phosphate

(PO4), nitrate (NO3), and silicate (SiO2).

Figure A8. Spatial distribution of CMEMS SSS and SST product uncertainty over the global ocean at a spatial resolution of 0.25◦. 1σ-

uncertainty is computed per grid cell by using Eq. (5) over 1985-2021.
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Figure A9. Spatial distribution of R(σ,µ) [%] (Eq 8), i.e., the ratio of model uncertainty (σ) against model best estimate (µ).
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Figure A10. Monthly time series of SSS and SST at BATS, DYFAMED, ESTOC, and HOT stations (Table 3 and Fig. A1b): model best

estimate (curve), 1σ-uncertainty (envelope), and monthly average of observations (point). Means of the best estimate and 1σ-uncertainty

(µ±σ) calculated over the observing time span are shown in brackets if accessible. Statistics include number of months with observations (N ),

Bias, RMSD, and r2. σt
SSS [σt

SST] stands for temporal standard deviation from monthly averages of SSS and SST observations. Temporal

variations in SSS observations are poorly described in the CMEMS SSS time series (Table 2) used in CMEMS-LSCE reconstructions.
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Figure A11. a) Global surface seawater pH trend over the period 1985-2021, b) 1σ-uncertainties associated to trend estimates, c) σ-to-

µ ratio R(σ,µ)[%] (Eq. 8) between uncertainty estimates (b) and the best trend estimates (a), d) mask applied over the regions where

R(µ,σ) > 10%.

Figure A12. a) Global surface seawater Ωar trend over the period 1985-2021, b) 1σ-uncertainties associated to trend estimates, c) σ-to-

µ ratio R(σ,µ)[%] (Eq. 8) between uncertainty estimates (b) and the best trend estimates (a), d) mask applied over the regions where

R(µ,σ) > 20%.
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Figure A13. a) Yearly global area-weighted mean of surface ocean saturation states with respect to calcite (Ωca): Global means of the best

estimate (µ, plain line) and uncertainty (σ, envelop) are computed with Eq. (7a). b) Global trend maps of Ωca over 1985-2021: Cross-hatching

covers the regions where uncertainty of a trend estimate over 20% of the trend value.
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Figure A14. Linear trend estimates learned on 100-member ensemble (grey points) of yearly mean time series of pH and Ωar at different

stations (Bates et al., 2014). µ±σ present linear slope and residual standard deviation. Black or blue lines stand for linear fits over the full

or sub-period in 1985-2021 (see Table 6 for comparison).
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