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a b s t r a c t

In this paper we propose a Galerkin formulation for the 1-D model describing the
nonlinear flow-structure interaction of a flexible beam in confined flow. In broad terms,
the system of PDEs is converted into a set of time-dependent equations (ODEs and
algebraic) by developing all variables in terms of series of space-dependent orthogonal
functions. The beam motion is developed in terms of its mode shapes while the flow
pressure and velocity fields in each channel are developed in terms of Chebyshev poly-
nomials. Additionally, a tau-variant of the Galerkin approach enables the enforcement of
the nonlinear time-dependent boundary conditions in a well-posed manner. Ultimately,
the resulting system is a set of nonlinear differential–algebraic equations that can be
truncated at any suitable numbers of terms, leading to exploitable reduced formulations.
Compared to CFD methods, this type of formulations is not only more computationally
efficient, but also provide an easy discernment of the relevant parameters and often
a more intuitive interpretation of results. Convergence studies, in terms of both the
truncation of Chebyshev polynomials and beam modes, are performed to access to
what extent reduced formulations are viable in different scenarios, including linear
stability analysis as well as the calculation of limit-cycle oscillations with or without
intermittent impacts between the beam and the side-walls. The presented framework
can serve as a basis for a comprehensive analysis of the nonlinear dynamics of flexible
beams in confined flow. Namely, it is well adapted to the use of bifurcation analysis
tools for the continuation of periodic solutions, which will contribute to a richer
understanding of the underlying physics occurring in this type of FSI systems. Moreover,
the generic methodology presented here can also be adapted to different systems in the
field of fluid–structure interaction, providing compact time-dependent formulations for
nonlinear analysis.
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The dynamics of a flexible plate immersed in uniform axial flow are a widely studied subject and represent a canonical
xample of flow-induced vibration (Paidoussis, 2004; Nagakura et al., 2014). Systems of this type present a wide variety
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of dynamical behavior and some aspects of their physical modeling remain a challenging task to this day. Moreover,
because similar systems can be found in a large number of practical applications (e.g. paper industry, energy harvesting,
wind musical instruments, palatal snoring etc.), it has motivated a large body of literature, dealing with various plate-flow
configurations and using diverse modeling approaches (Alben, 2015; Hidalgo et al., 2015; Aurégan and Depollier, 1995;
Avanzini and Walstijn, 2004).

One of the most important features defining the dynamics of plates subject to axial flow are the plate boundary
onditions, for which Guo & Paidoussis have presented an elucidative study (Guo and Paidoussis, 2000). Assuming inviscid
nd incompressible flow, and using the linearized unsteady Bernoulli equation, they studied the relation between various
late boundary conditions and the type of instabilities emerging. Their analysis shows that plates can lose stability by
ivergence, single-mode flutter or coupled-mode flutter, depending on the support conditions at the leading and trailing
dges. On the one hand, plates fixed at both ends (pinned or clamped) first lose stability by divergence, although post-
ivergent flutter may also occur. On the other hand, plates with at least one free-end undergo a flutter instability, either
y single-mode or coupled-mode flutter depending on particular flow-plate configurations.
The particular example of cantilevered plates is perhaps the most thoroughly analyzed configuration, serving as a

enchmark example for comparing various modeling approaches (Tosi and Colonious, 2019; Huang, 1995a). The flutter
nstabilities occurring in these systems can take many forms and critical stability boundaries have been shown to depend
n several non-dimensional parameters like the fluid-plate mass ratio M∗, the reduced velocity U∗ (inverse Strouhal
umber) or the Reynolds number Re. Moreover, in cases where the flow is bounded in a channel of a certain height, the
onfinement ratio H∗(channel height to plate length) is also an important parameter to consider. For example, the works of
hoele and Mittal (2016) or Cisonni et al. (2017) present a large number of benchmark results illustrating the dependence
f the linear stability boundaries on several non-dimensional parameters. A classical result in such systems is that of the
‘cascading’’ stability boundary in the (M∗

−U∗) plane. At low mass ratios, the flutter instability is of the single-mode type,
nvolving the first two in-vacuo beammodes. However, as the mass ratio increases, the system develops successive ‘‘mode-
ransitions’’, whereby the principal flutter instability becomes of the coupled-mode type, involving multiple higher-order
eam modes.
In recent years, we have seen an increasing number of studies where the fluid–structure interaction (FSI) system is

imulated directly by solving the Navier–Stokes equations in 2D or 3D domains (Cisonni et al., 2017; Tetlow and Lucey,
009). Such approaches allow for a more realistic representation of the FSI system, as they explicitly account for flow
onlinearities, circulatory flow, viscosity, etc. Yet, the computational cost associated with such approaches becomes a
andicap when analyzing systems whose behavior depends on a wide variety of parameters. On this note, 1D models,
sing simplified equations for the flow, are not only more computationally efficient but also more tractable, and may
rovide valuable insights into the fundamental physics of the problem. Notably, the discernment of relevant parameters
nd the interpretation of results become more intuitive.
In the context of simplified approaches, we underline the work of Nagakura and Kaneko (1993) that have used leakage

low theory to model the linear stability of a cantilever beam in a confined narrow passage. More recently, Tosi and
olonious (2019) have compared the stability results from a similar simplified model against those from direct numerical
imulations in a 2-D domain. They underline the potential of such modeling approaches as stability boundaries converge
ver a wide range of non-dimensional parameters, at least for relatively narrow passages.
On the whole, modeling efforts pursued so far deal mostly with the stability analysis, using linearized equations of

otions. Knowledge of the conditions for instability and the dependence of various parameters on stability boundaries
s undeniably an important aspect of the FSI system dynamics. However, this gives us little insight about the ensuing
onlinear behavior, which might be of valuable interest in various practical applications. For unbounded flows, a number
f theoretical and experimental studies can be found, illustrating the variety of possible limit cycles oscillations arising
n this type of systems (Taneda, 1968; Tang et al., 2003; Yadykin et al., 2001). In bounded flows, however, modeling
resents additional difficulties as the large amplitude motion of the plate will often lead to contact against the channel
alls, as various modeling and experimental reports have shown (Wu and Kaneko, 2005; Fujita et al., 2007; Balint and
ucey, 2005).
In a recent work by the authors (Soares et al., 2022), an initial step was taken in the nonlinear analysis of a fluttering

antilever beam in a confined passage. A semi-analytical approach, based on formal solutions for the flow variables, was
eveloped to solve a 1-D model consisting of a cantilever beam surrounded by bounded axial flow on its upper and lower
ides. This allowed for the formulation of a closed set of nonlinear ODEs describing coupled FSI dynamics, including
low nonlinearities and flow dissipation through head-loss terms. Additionally, impacts between the flexible beam and
he side walls were accounted by including an elastic contact model. Periodic solutions of the FSI system were then
ursued through numerical time-domain integrations, revealing a wide variety of limit cycle oscillations, both with and
ithout intermittent impacts, as well as aperiodic dynamics. Henceforth, we will designate this previous formulation as

‘analytical’’, as it does not contain any error inducing (spatial-discretization) procedures regarding the flow variables.
The natural next step in the nonlinear analysis of fluttering beams in axial flow is the use of algorithms for the

ontinuation of periodic solutions. Unlike the point-wise description given by time-domain integrations, bifurcation
nalysis of the system dynamics allows for a wider comprehensive overview of the nonlinear dynamics, as periodic
olutions as sought out in a continuous manner with respect to a particular ‘‘control’’ parameter. The harmonic balance
ethod (Krack and Gross, 2019) is a useful and commonly used tool in these contexts, whereby the time-dependent
2
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Fig. 1. Diagram of the 1D model.

variables of a nonlinear ODE/DAE system are expanded in a Fourier series, and periodic solutions are then calculated by
solving for the Fourier coefficients of the (time) discretized algebraic system. This type of analysis, particularly in the
context of simplified formulations, can contribute significantly to the understanding of the underlying physics occurring
in these FSI systems and perhaps clarify some persistent and unanswered questions in the field: (1) Is the nature of the
Hopf bifurcation in fluttering beams super-critical or sub-critical? (see Eloy et al., 2008; Tang and Paidoussis, 2007); (2)
Can the commonly observed hysteretic behavior be explained by multi-stability in certain configurations? ; (3) What is
the nature of the aperiodic/chaotic dynamics frequently reported in experiments? In previous work (Soares et al., 2022),
an analytical approach was able to decompose the 1-D continuous problem into a set of ODEs. However, an effective time–
space separation was not reached as the resulting spatial operators were not constant (i.e. during temporal integrations,
for example, the spatial operators need to be calculated at each time-step). Hence, however useful for time-domain
integrations of the nonlinear system, this formulation is less adequate for use in continuation algorithms.

In this paper, we seek the establishment of a framework for the bifurcation analysis of these type of FSI systems, by
discretizing the continuous problem into a set of time-domain ODE/DAEs (with constant spatial operators). In broad terms,
the flow continuity and momentum partial differential equations are converted into sets of time-dependent equations
(ODE and algebraic) by expanding the flow velocity and pressure fields in terms of series of space-dependent orthogonal
functions, such as Chebyshev or Legendre polynomials. Suitable boundary conditions are obtained by formulating them
in terms of the expanded field variables, at the boundary locations. Such procedure follows the so-called Tau-variant of
the Galerkin approach, described, for example, in Boyd (2000) and Lanczos (1956). Aside from discretizing the continuous
problem into a set of time-dependent differential equations, this approach also provides a formulation with exploitable
model reduction capacities, where expansions of the flow velocity, flow pressure or beam motion can be truncated at any
suitable number of terms.

In Section 2 the 1-D FSI model is presented and the Galerkin formulation is described in Section 3. Subsequently,
in Section 4, several convergence studies are conducted by comparing results from the previously derived theoretical
solution (Soares et al., 2022) to those of the present Galerkin formulation, at various orders of truncation for both the
flow variables and beam modes, to assess the model reduction capacities of the formulation.

2. Model description

The model presented here deals with the fluid–structure interaction of a flexible beam confined by flow on each upper
and lower sides, as illustrated in Fig. 1. Even though the presented formulation is applicable to beams with arbitrary
boundary conditions, in this paper we will deal solely with the particular case of cantilevered beams subject to flow from
the clamped side to the freely moving side. The flow in each channel is described by bulk-flow equations, where the
pressure and velocity fields are taken as cross-sectionally averaged. In the same spirit of formulations based on leakage
flow (Inada and Hayama, 1990a), nonlinear localized dissipation at the entrance and exit of the domain is added in the
form of head-losses (or pressure losses), which are imposed at the boundary conditions using a classical quasi-static
Bernoulli condition.

2.1. Structure dynamics

The dynamics of the beam are defined in a modal framework, i.e. in terms of a finite number (M) of in-vacuo beam
odes. The dimensionless vertical displacement of the beam y(x, t) is developed as modal summation by

y(x, t) =

M∑
m=1

φm(x)qm(t) (1)

where qm(t) and φm(x) are the (dimensionless) participation factors and shapes of each beam mode m, respectively. The
dynamics of the beam are given, as usual, by the modal equations

¨ ˙
2
mmqm(t) + 2mmωmζmqm(t) + mmωmqm(t) = Fm(t) , m = 1, 2 . . . M (2)

3
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where mm, ωm, ζm and Fm(t) are the modal masses, angular frequencies, damping ratios and external forces associated
with each beam mode m. Note that all variables are presented in nondimensional form with respect to the characteristic
length L, the total mass of the beam m0 = ρsAL, and a characteristic frequency ω0 = 2π

√
EI/ρsA/L2, that is

x = x
/
L ; t = tω0

mm = mm

/
m0 ; ωm = ωm

/
ω0 ; y(x, t) = y(x, t)

/
L

qm(t) = qm(t)
/
L ; q̇m(t) = q̇

m
(t)
/
ω0L ; q̈m(t) = q̈

m
(t)
/
ω2

0L

(3)

where A and EI are the cross-sectional area and bending stiffness of the beam, respectively, and the under-dashes x denote
he physical variables. The external modal forces Fm(t) are then given by the projection of the flow pressure fields on the
upper and lower sides of the beam, p1(x, t) and p2(x, t), unto the modal basis, that is

Fm(t) = M∗

∫ 1

0
(p2(x, t) − p1(x, t))φm(x)dx , m = 1, 2 . . . M (4)

where the fluid-beam mass ratio is written explicitly as

M∗
=
ρL
ρse

(5)

where ρ and ρs are the densities of the fluid and the beam, respectively; e denotes the thickness of the beam. The
dimensionless pressures are related to the physical pressures by

pc(x, t) =
p
c
(x, t)

ρω2
0L2

(6)

where the subscript c refers to the upper (c = 1) or lower (c = 2) channels. In Section 2.2, it will become evident that
this choice of scaling for the pressure (6) is the most practical, given that the natural normalization for the flow velocities
will be 1

/
ω0L and the pressure will be related to flow velocity p∼ρu2 (see boundary conditions (12)).

.2. Fluid dynamics

In the context of bulk-flow theory (Hirs, 1973; Antunes and Piteau, 2010; Piteau and Antunes, 2012), we assume that
hannel heights are relatively small compared to the characteristic length of the system L. In such scenarios, the variations
n the flow pressure pc(x, y, z, t) and velocity uc(x, y, z, t) along its cross-section are generally negligible, and hence the
flow variables are taken as the cross-sectionally averaged, pc(x, t) and uc(x, t). The fluctuating channel heights hc(x, t) are
defined in terms of the channel profiles Hc(x) and the beam motion as{

h1(x, t) = H1(x) − y(x, t)

h2(x, t) = H2(x) + y(x, t)
(7)

where H1(x) and H2(x) are the distances from the upper and lower walls to the position of the membrane at rest,
respectively. It is worth noting that we assume changes along the channel cross-section ∂Hc

/
∂x are sufficiently smooth

to avoid flow separation. Then, assuming an inviscid and incompressible flow, the momentum and continuity equations
of the fluid for each channel c are given in a nondimensional form by

∂uc

∂t
+ uc

∂uc

∂x
+
∂pc
∂x

= 0 (8)

∂hc

∂t
+
∂

∂x
(hcuc) = 0 (9)

where the dimensionless channel heights hc(x, t) are then given explicitly by

h1(x, t) = H1(x) −

M∑
m=1

φm(x)qm(t) ; h2(x, t) = H2(x) +

M∑
m=1

φm(x)qm(t) (10)

here the dimensionless channel profiles are related to the physical profiles by Hc(x) = Hc

/
L. The dimensionless flow

elocities are related to the physical velocities by

uc(x, t) =
uc(x, t)
ω0L

(11)

Note that here, for simplicity, we have neglected distributed head-losses, potentially arising from viscous/boundary
effects. Nevertheless, these can easily be incorporated via a distributed dimensionless head-loss frictional term in the
form u |u | f or its quadratic simplification u2f , where f is a Fanning friction coefficient, as done for example in Antunes
c c c

4



F. Soares, J. Antunes, V. Debut et al. Journal of Fluids and Structures 118 (2023) 103842

w
r
h
d
t
F
s
a

3

u
(
F

r

n

b

Fig. 2. Chebyshev polynomials of the first kind. (color online).

and Piteau (2010). Nevertheless, flow dissipation is included at the boundaries of the domain. These are enforced at the
boundary conditions and aim to encapsulate, in a simplified manner, the energy losses occurring outside the domain. The
complex phenomena associated with these energy losses is diverse and can vary significantly with local geometry (e.g. area
constriction/expansion) and flow conditions. However, a commonly approach is to use a quasi-steady Bernoulli relation
which includes head-loss terms, whose coefficients are typically taken from empirical data. This method is traditionally
used to treat leakage-flow instabilities (Nagakura and Kaneko, 1993; Inada and Hayama, 1990a,b). Here, the boundary
conditions are set as if two reference pressure chambers (where flow velocity is zero) exist far from the boundaries of
the domain. Consequently, the localized head-loss terms will represent energy losses occurring in the path between the
reference chambers and the domain entrance/exit. The second order system (8)–(9) is then submitted to the following
flow boundary conditions at x = 0 and x = 1:

pc(0, t) = P0(t) −
1
2
[uc(0, t)]2 −

1
2

|uc(0, t)| uc(0, t)K0

pc(1, t) = PL(t) −
1
2
[uc(1, t)]2 +

1
2

|uc(1, t)| uc(1, t)KL
(12)

here K0 and KL are the head-loss coefficients, while P0 and PL(t) are the imposed dimensionless pressures at each
eference pressure chambers. For configurations with a cantilevered plate/beam, the head-loss coefficient K0 will not
ave a significant effect on the dynamics, as it acts on the clamped end of the structure. For steady flow in the positive
irection, it acts simply as a control-valve, effectively limiting the flow energy entering the domain. On the other hand,
he expected turbulent effects at the trailing-edge suggest that KL will have a significant effect on the coupling dynamics.
or such configurations, several studies have shown that setting K0 = 0 and KL = 1 yields satisfactory results, as predicted
tability boundaries compare reasonably well with results from 2-D models (Soares et al., 2022; Tosi and Colonious, 2019)
s well as experiments (Nagakura and Kaneko, 1993).

. Galerkin formulation

Similarly to the expansion procedure done for the beam displacement y(x, t), we assume that both the velocity fields
c(x, t) and the pressure fields pc(x, t) are developed in terms of a series of Chebyshev polynomials of the first kind
Fig. 2). These are well suited to, in a compact manner, describe fields with simple linear changes (something that the
ourier series cannot achieve using only a few terms, for example), but also fields of any complexity.
The Chebyshev polynomials of the first kind in the interval x = [−1, 1] are easily computed by the following recurrent

elations:

T0(x) = 1 ; T1(x) = x ; Tn(x) = 2xTn−1(x) − Tn−2(x) (13)

Similar to the Fourier series, Chebyshev polynomials constitute a complete basis of orthogonal functions. However,
ote that their orthogonality is not ‘‘direct’’, but with respect to the kernel w(x) = (1 − x2)−1/2, that is

∫ 1

−1

Tn(x)Ts(x)
√
1 − x2

dx =

⎧⎪⎨⎪⎩
π for n = s = 0
π

2
for n = s ̸= 0

0 for n ̸= s

(14)

Because we need to project the Chebyshev basis in our domain interval x = [0, 1], we introduce the shifted Chebyshev
asis

T (x) = 1 ; T (x) = 2x − 1 ; T (x) = 2(2x − 1)T (x) − T (x) (15)
0 1 n n−1 n−2

5
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and the associated shifted orthogonality kernel

w(x) =
1√

1 − (2x − 1)2
(16)

.1. Discretization of flow variables

The dimensionless velocity fields at each channel uc(x, t), truncated to N + 1 polynomials, are given by

u1(x, t) =

N∑
n=0

T n(x)⌣un(t) ; u2(x, t) =

N∑
n=0

T n(x)⌢un(t) (17)

nd the dimensionless pressure fields, truncated to R + 1 polynomials, give

p1(x, t) =

R∑
r=0

T r (x)⌣pr (t) ; p2(x, t) =

R∑
r=0

T r (x)⌢pr (t) (18)

Note that, following standard notation, the first term in the Chebyshev series is taken at n = 0, i.e. T0(x). Hence, a sum
f polynomials truncated to N (as above) corresponds effectively to a series of N + 1 polynomials.
Substituting the development for the pressure fields (18) unto the beam equations (2) leads to

mmq̈m(t) + 2mmωmζmq̇m(t) + mmω
2
mqm(t) = M∗

R∑
r=0

Srm(⌢pr (t) −
⌣pr (t)) (19)

or m = 1, 2, . . . ,M , where the spatial operator matrix is given by

Smr =

∫ 1

0
T r (x)φm(x)dx ,

{
r = 0, 1, . . . , R

m = 1, 2, . . . ,M
(20)

When convenient, to avoid duplication of expression, we will show the discretization procedure of the fluid equations
only for the upper channel (c = 1), even though similar equations will arise for the lower channel (c = 2). Replacing the
evelopments (17)–(18) into the momentum equation (8), leads to(

N∑
n=0

T n(x)⌣̇un(t)

)
+

(
N∑

n=0

T n(x)⌣un(t)

)(
N∑

n=0

T n
′

(x)⌣un(t)

)
+

(
R∑

r=0

T r
′

(x)⌣pr (t)

)
= 0 (21)

here the upper dash X ′ denotes a spatial derivative ∂/∂x. Similarly, replacing the developments (17)–(18) on the
ontinuity equation (9) in the upper channel leads to

−

M∑
m=1

φm(x)q̇m(t) + H ′

1(x)

(
N∑

n=0

T n(x)⌣un(t)

)
+ H1(x)

(
N∑

n=0

T n
′

(x)⌣un(t)

)

−

(
M∑

m=1

φ′

m(x)qm(t)

)(
N∑

n=0

T n(x)⌣un(t)

)
−

(
M∑

m=1

φm(x)qm(t)

)(
N∑

n=0

T n
′

(x)⌣un(t)

)
= 0

(22)

Finally, substituting (17)–(18) into the boundary conditions (12), leads to

R∑
r=0

T r (0)⌣pr (t) = P0(t) −
1
2

[
N∑

n=0

T n(0)⌣un(t)

]2

−
1
2

[
N∑

n=0

T n(0)⌣un(t)

] ⏐⏐⏐⏐⏐
N∑

n=0

T n(0)⌣un(t)

⏐⏐⏐⏐⏐ K0 (23)

R∑
r=0

T r (1)⌣pr (t) = PL(t) −
1
2

[
N∑

n=0

T n(1)⌣un(t)

]2

+
1
2

[
N∑

n=0

T n(1)⌣un(t)

] ⏐⏐⏐⏐⏐
N∑

n=0

T n(1)⌣un(t)

⏐⏐⏐⏐⏐ KL (24)

.2. Galerkin projection

Following the typical Galerkin procedure, the momentum and continuity equations (21) and (22) would be projected
nto the polynomial series developed for the pressure and for the velocity, respectively. However, if we were to project
he continuity equations into the N + 1 Chebyshev polynomials used to expand the velocity fields and the momentum
quations onto the R + 1 polynomials used for the pressure, we would end up with an overdetermined system, i.e.
(N + R + 2) variables and 2(N + R + 2) + 4 equations, when the four boundary conditions are taken into account.
his issue arises from the fact that, unlike in the case of the beam, for example, the expansion polynomials do not obey
he flow boundary conditions.
6
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Hence, we use the so-called ‘‘Tau-variant’’ of the Galerkin method where the projection is made onto a reduced version
f the truncated polynomial series (Lanczos, 1956; Boyd, 2000). That is, the continuity equations will be projected unto
reduced basis of only N Chebyshev polynomials and the momentum equations unto R, instead of the usual N + 1 and
+1, respectively. Reducing the projection of each equation by one term, allows the construction of a determined system,
ncluding the four boundary conditions. As a note, it is unclear where to truncate the series, i.e. instead of the above
entioned truncation, both continuity equations could be truncated to N −1 terms instead, or the momentum equations

o R − 1 terms. All three approaches were attempted and the former was seen to be the most stable numerically.
It will become evident that the orthogonal properties of the Chebyshev polynomials are useful for the projection of

he momentum equations as it greatly simplifies the resulting spatial operators. Hence, before the Galerkin projection, we
re-multiply the momentum equations by the (shifted) kernel w(x), resulting in the following set of R ordinary differential

equations for the upper channel
N∑

n=0

Enr ⌣̇un(t) +

N∑
n=0

N∑
s=0

Fnsr⌣un(t)⌣us(t) +

R∑
t=0

Htr
⌣pt (t) = 0 , r = 0, 1, . . . , R − 1 (25)

where the associated matrices are given by

Enr =

∫ 1

0
T n(x)T r (x)w(x)dx =

1
2

∫ 1

−1

Tn(x)Tr (x)
√
1 − x2

dx ,

{
n = 0, 1, . . . ,N

r = 0, 1, . . . , R − 1

Htr =

∫ 1

0
T t

′

(x)T r (x)w(x)dx =

∫ 1

−1

Tt ′(x)Tr (x)
√
1 − x2

dx ,

{
t = 0, 1, . . . , R

r = 0, 1, . . . , R − 1

Fnsr =

∫ 1

0
T n

′

(x)T s(x)T r (x)w(x)dx =

∫ 1

−1

Tn′(x)Ts(x)Tr (x)
√
1 − x2

dx ,

⎧⎪⎨⎪⎩
n = 0, 1, . . . ,N

s = 0, 1, . . . ,N

r = 0, 1, . . . , R − 1

(26)

Due to the orthogonal properties of the Chebyshev polynomials, the matrices in (26) have relatively simple structures:
matrix Enr is diagonal, Htr is sparse upper triangular and the tri-dimensional matrix Fnsr also has similar sparsity properties.
To clarify, we define these matrices explicitly in the appendix. For the lower channel, an equivalent set of R equations is
derived, simply replacing ⌣u and ⌣p by ⌢u and ⌢p, in (25).

Contrary to the momentum equations, in the projection of the continuity equations, the usefulness of the orthogonality
properties is not clear in a general sense. From (22) one obtains the following sets of N nonlinear algebraic equations,
which stand for the continuity equation in the upper and lower channels, respectively,

−

M∑
m=1

Amnrm(t) +

N∑
s=0

Bsn
⌣us(t) −

M∑
m=1

N∑
s=0

Dmsnqm(t)⌣us(t) = 0 , n = 0, 1, . . . ,N − 1 (27)

M∑
m=1

Amnrm(t) +

N∑
s=0

Csn
⌢us(t) +

M∑
m=1

N∑
s=0

Dmsnqm(t)⌢us(t) = 0 , n = 0, 1, . . . ,N − 1 (28)

whose dense spatial operators are given explicitly by

Amn =

∫ 1

0
φm(x)T n(x)dx ,

{
m = 1, 2, . . . ,M

n = 0, 1, . . . ,N − 1

Bsn =

∫ 1

0

[
H ′

1(x)T s(x) + H1(x)T s
′

(x)
]
T n(x)dx ,

{
s = 0, 1, . . . ,N

n = 0, 1, . . . ,N − 1

Csn =

∫ 1

0

[
H ′

2(x)T s(x) + H2(x)T s
′

(x)
]
T n(x)dx ,

{
s = 0, 1, . . . ,N

n = 0, 1, . . . ,N − 1

Dmsn =

∫ 1

0

[
φ′

m(x)T s(x) + φm(x)T s
′

(x)
]
T n(x)dx ,

⎧⎪⎨⎪⎩
m = 1, 2, . . . ,M

s = 0, 1, . . . ,N

n = 0, 1, . . . ,N − 1

(29)

3.3. Formulation of the nonlinear coupled system

The structural modal equations, coupled with the pressure at each channel, can be described as a first-order system
by defining the modal velocities rm(t) = q̇m(t). In a matrix form, it reads[

[I] 0
]{

{Ṙ(t)}
˙

}
+

[
2[Ω][Z] [Ω]

2]{
{R(t)}

}
=

{
[M] [S]⌢P(t) −

⌣P(t)
}

(30)

0 [I] {Q(t)} −[I] 0 {Q(t)} 0

7
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where [Ω] and [Z] are M×M diagonal matrices whose diagonals contains the modal frequencies and damping coefficients
of the beam, respectively; the M×M diagonal matrix [M] is defined by diag(M) = M∗/mm; and R(t), Q(t), ⌣P(t) and ⌢P(t) are
olumn vectors containing the M modal responses of the beam and the R+ 1 pressures at the upper and lower channels,
espectively. The matrix [S] is a M × (R + 1) matrix, whose elements are defined in (20).

Finally, assembling the structural equations (30), the flow continuity equations (27)–(28), the flow momentum
quations (25) and the four boundary conditions (23)–(24) leads to the fully coupled nonlinear system,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[I] 0 0 0 0 · · · 0

0 [I] 0 0 0

0 0 [E] 0 0

0 0 0 [E] 0

0 0 0 0 0
...

. . .

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṙ

Q̇
⌣̇U
⌢̇U
⌣̇P
⌢̇P

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2[Ω][Z] [Ω]
2 0 0 [M][S] −[M][S]

−[I] 0 0 0 0 0

0 0 0 0 [H] 0

0 0 0 0 0 [H]

−[A] 0 [B] 0 0 0

[A] 0 0 [C] 0 0

0 0 0 0 {T0}
T 0

0 0 0 0 0 {T0}
T

0 0 0 0 {TL}
T 0

0 0 0 0 0 {TL}
T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R

Q
⌣U
⌢U
⌣P
⌢P

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

0

−{
⌣Fr}

−{
⌢Fr}

{
⌣Dn}

−{
⌢Dn}

⌣V0
⌢V0
⌣VL
⌢VL

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(31)

here the matrices [A], [B], [C], [E], [H] and [S] contain the projection coefficients for the linear terms, defined in (20),
26) and (29). That is:

[A] = Anm → size :N × M [E] = Ern → size : R × (N + 1)

[B] = Bns → size :N × (N + 1) [H] = Hrt → size : R × (R + 1)

[C] = Cns → size :N × (N + 1) [S] = Smr → size :M × (R + 1)

(32)

The R + 1 sized vectors describing the pressure terms on the four flow boundary conditions are given by

{T0} = T r (0) r = 0, 1, 2 . . . R

{TL} = T r (1) r = 0, 1, 2 . . . R
(33)

All the nonlinear terms are encapsulated in the right-hand-side of (31). The vectors containing the nonlinear terms in
the continuity equations, {

⌣Dn} and {
⌢Dn}, and in the momentum equations, {

⌣Fr} and {
⌢Fr}, are given by

{Dn} =

M∑
m=1

N∑
s=0

Dmsnqm(t)us(t) ; {Fr} =

N∑
n=0

N∑
s=0

Fnsrun(t)us(t) (34)

here the generic us(t) is replaced by the velocities in a particular channel, upper ⌣us(t) or lower ⌢us(t), to obtain the
orresponding vectors {

⌣Dn} and {
⌣Fr} or {

⌢Dn} and {
⌢Fr}. Finally, the nonlinear terms in the boundary condition equations

re given by

V0 = P0(t) −
1
2

(
1 + sign

(
N∑

n=0

T n(0)un(t)

)
K0

)[
N∑

n=0

T n(0)un(t)

]2

VL = PL(t) −
1
2

(
1 − sign

(
N∑

n=0

T n(1)un(t)

)
KL

)[
N∑

n=0

T n(1)un(t)

]2 (35)

here, again, replacing the generic us(t) by ⌣us(t) or ⌢us(t) will yield the corresponding vectors {
⌣V0} and {

⌣VL} or {
⌢V0} and

⌢VL}.
The coupled system (31) is a system of first-order nonlinear differential–algebraic equations (DAE) of size 2(M + N +

+2), the matrix connected with the derivative vector is singular. The state differential variables are R, Q, ⌣U, ⌢U, and the
tate algebraic variables are

⌣P, ⌢P. Moreover, we note that the DAE system is of differential index-2 (Hairer and Wanner,
996), as the algebraic equations (flow continuity) do not contain the algebraic variables

⌣P, ⌢P explicitly. In any case, due
o the orthogonality properties of the beam modes φ(x) and Chebyshev polynomials T (x), the mass matrix will also be
iagonal (although singular), which may bring some benefits when calculating solutions numerically.
It is worth mentioning that, the linearized version of this model as already been validated against 2-D viscous

odels (Tosi and Colonious, 2019; Soares et al., 2022) as well as experiments (Nagakura and Kaneko, 1993). However,
8
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Fig. 3. Illustration of the beam violation right before contact and corresponding impact force. (color online).

rigorous experiments to characterize large amplitude LCOs in this type of systems has not been performed as of yet.
Hence, a meaningful experimental validation of the proposed model is not readily available. Nevertheless, the resulting
LCOs (more extensive presented in our previous work Soares et al., 2022) seem to be physically plausible, and consistent
with experimental observations (Gallegos and Sharmaa, 2019; Lee et al., 2021), at least qualitatively.

3.4. Impact model

Numerous experimental (and modeling) observations (Alben, 2015; Aurégan and Depollier, 1995; Fujita et al., 2007;
Lee et al., 2021; Huang, 1995b) demonstrate that nonlinear motions of cantilevered plates in confined axial flow regularly
present intermittent impacts between the beam and the side-walls. Consequently, previous attempts at modeling the
limit-cycle oscillations (LCO), eventually encountered limitations in their solutions, at regimes where the motion of the
plate is large enough that collisions become inevitable.

In the current bulk-flow formulation, the addition of dynamic impact between the beam and the side walls is not
a trivial task. One of the major challenges relates to the fact that the solutions for flow velocity and pressure fields
present singularities at the moment of contact, i.e. when the channel height hc(x, t) = 0. Consequently, classical penalty
ethods, reliant on ‘‘interpenetration’’, are incompatible with the flow model, which will result in negative flow gaps.
ere, following our previous work (Soares et al., 2022), we use a pragmatic approach to include purely elastic impacts
hich is compatible with the bulk-flow formulation.
Since the fluid equations do not allow for beam penetration, an impact force Fi(x, t) is applied on the beam before

ontact, in regions of the beam which have trespassed a small regularization parameter ε (Fig. 3), with ε/H ≪ 1. In
ssence, we allow some flow leakage at the moments of ‘‘contact’’, such that an impact force can applied to the beam
ithout fully restricting the flow dynamics.
Here we use a simplified version of a classic Hertz model where the impact force is linearly proportional to a violation

arameter v(x, t), describing the penetration distance between the beam a ‘‘virtual’’ wall defined by Hc(x)−ε, as illustrated
n Fig. 9. Then, the impact force Fi(x, t) is given by

Fi(x, t) =

{
ki vc(x, t) if vc(x, t) > 0

0 otherwise
(36)

where ki is an impact stiffness and the violation amplitude is given, in our case, by vc(x, t) = ε − hc(x, t). The sign of
Fi(x, t) is defined for each channel: Fi > 0 for c = 2; Fi < 0 for c = 1.

Depending on the particular physical problem to be addressed, this modeling approach can surely be refined by
including dissipative terms or the flow conditions at the moments of contact. However, this simple pragmatic model
is effective enough for the purposes of the current paper. The interested reader can find a more detailed discussion in
Soares et al. (2022), where this modeling approach was introduced.

3.5. Linearized system

Often the primary concern in the analysis of FSI systems is related to assessing the conditions leading to linear
instability. To linearize the system containing flow nonlinear equations, we firstly separate the governing variables into
their steady and fluctuating components. Here, we adopt the conventional notation g(x, t) = g(x)+ g̃(x, t). By means of a
Taylor-series expansion, we linearize the equations by keeping only the zero-order g(x) and first-order g̃(x, t) components.
Because under linearized conditions the flow must assume a particular direction, we use plus-minus ± and minus-plus ∓

signs to distinguish the two cases, and avoid duplication of expressions. The uppers signs are used for flow in the positive
direction (P0 > PL) while the lower signs for flow in the negative direction (P0 < PL).

For the steady system, we can simply take the original system (31) and remove the time-derivative terms as well as
the modal velocities R. Then, the steady system is governed by the following set of M + 2(N + R+ 2) nonlinear algebraic
9
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equations⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[Ω]
2 0 0 [M][S] −[M][S]

0 0 0 [H] 0

0 0 0 0 [H]

0 [B] 0 0 0

0 0 [C] 0 0

0 0 0 {T0}
T 0

0 0 0 0 {T0}
T

0 0 0 {TL}
T 0

0 0 0 0 {TL}
T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Q
⌣U
⌢U
⌣P
⌢P

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

−{
⌣Fr}

−{
⌢Fr}

{
⌣Dn}

−{
⌢Dn}
⌣V0
⌢V0
⌣VL
⌢VL

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(37)

The steady components of the nonlinear terms, on the right-hand-side, are given by

{Dn} =

M∑
m=1

N∑
s=0

Dmsnqmus ; {Fr} =

N∑
n=0

N∑
s=0

Fnsrunus (38)

{V0} = P0 −
1
2
(1 ± K0)

[
N∑

n=0

T n(L)un

]2

{VL} = PL −
1
2
(1 ∓ KL)

[
N∑

n=0

T n(L)un

]2 (39)

here the generic us is replaced by the velocities in a particular channel, upper ⌣us or lower ⌢us, to obtain the corresponding
ectors {

⌣Dn}, {
⌣Fr}, {

⌣V0}, {
⌣VL} or {

⌢Dn}, {
⌢Fr}, {

⌢V0}, {
⌢VL}.

For the first-order system, we simply linearize the nonlinear terms on the right-hand-side of the original system (31),
esulting in⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[I] 0 0 0 0 0

0 [I] 0 0 0 0

0 0 [E] 0 0 0

0 0 0 [E] 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṙ

Q̇
⌣̇U
⌢̇U
⌣̇P
⌢̇P

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2[Ω][Z] [Ω]
2 0 0 [M][S] −[M][S]

−[I] 0 0 0 0 0

0 0 [F̃] 0 [H] 0

0 0 0 [F̃] 0 [H]

−[A] −[D2] [B] − [D1] 0 0 0

[A] [D2] 0 [C] + [D1] 0 0

0 0 {
⌣̃V0} 0 {T0}

T 0

0 0 0 {
⌣̃V0} 0 {T0}

T

0 0 {
⌣̃VL} 0 {TL}

T 0

0 0 0 {
⌣̃VL} 0 {TL}

T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R

Q
⌣U
⌢U
⌣P
⌢P

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= {0}

(40)

here the linearized components of the nonlinear terms are given by

F̃ =

N∑
n=0

Fnsrun +

N∑
s=0

Fnsrus (size (N + 1) × R) (41)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
[D1] =

M∑
m=1

Dmsnqm (size (N + 1) × N)

[D2] =

N∑
Dmsnus (size M × N)

(42)
s=0

10
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{Ṽ0} = (1 ± K0)
N∑

s=0

T s(0)T n(0)us (size 1 × (N + 1))

{ṼL} = (1 ∓ KL)
N∑

s=0

T s(1)T n(1)us (size 1 × (N + 1))
(43)

here the generic us is replaced by the velocities in a particular channel, upper ⌣us or lower ⌢us, to obtain the corresponding
atrices

[⌣D2
]
,
[⌢D2

]
and vectors {

⌣̃V0}, {
⌢̃V0}, {

⌣̃VL}, {
⌢̃VL}.

. Convergence studies

In this paper we will not present an extensive report of numerical results and will restrict ourselves to showing that
he results obtained using this present Galerkin approach are positively validated by those obtained with the analytical
olution (Soares et al., 2022). The interested reader is referred to the following works (Tosi and Colonious, 2019; Nagakura
nd Kaneko, 1993; Soares et al., 2022) where results from the proposed 1-D model have been compared to more realistic 2-
viscous models as well to experiments. Here, we will focus mainly on the convergence properties of the new formulation.
everal periodic solutions will be shown using various orders of truncation for our series, both in terms of the Chebyshev
olynomials used for the flow variables as well as the mode shapes used for the flexible beam to access the viability for
ompact formulations in different scenarios.
Following reference studies (Shoele and Mittal, 2016; Cisonni et al., 2017), we will present results in terms of the

ollowing dimensionless parameters

M∗
=
ρL
ρse

; U∗
=

U0

ω0L
; H∗

=
H0

L
(44)

here U∗ is a reduced velocity (inverse of a Strouhal number), M∗ is the fluid-beam mass ratio and H∗ is the confinement
atio. In our formulation, H0 = H1 + H2 and the fluid velocity U0 is given by the steady component of the inlet velocity,
i.e. U0 = (⌣u0 +

⌢u0)/2.

.1. Linear stability analysis

In our previous analytical formulation, which did not rely on any error-inducing (discretization) procedures regarding
he flow variables, the resulting first-order linearized system was of size 2M + 2 where the variables were the modal
isplacements qm and velocities rm plus two global unsteady flow rates Q̃c(t), one for each channel. The resulting
eneralized eigenproblem was regular and composed of two dense non-singular matrices. The ensuing 2M+2 eigenvalues
ontained 2M (coupled) modes associated with the various fluid-loaded beammodes plus two eigenvalues associated with
he flow in each channel (trivial steady flow modes, equivalent to flow ‘‘rigid body’’ mode).

However, in the current formulation, the resulting linear DAE system has a singular mass matrix. Such systems
re known to produce both finite and infinite eigenvalues. With a few exceptions, infinite eigenvalues are generally
ttributed to ‘‘nondynamic’’ modes, essentially trivial (for further details, see Soares et al., 2022). Nevertheless, the singular
igenvalue problem can be solved numerically to obtain both finite and infinite eigenvalues (Eigenvalue Solver eig(), 2022).
n our linearized DAE system (40), of size 2(M +N +R+2), we obtain 2M +2 finite eigenvalues and 2(N +R)+2 infinite
nes (this is coherent with the results from our analytical formulation). All infinite eigenvalues are associated with purely
ressure-based eigenvectors (where all other components of the eigenvectors are null). This is expected since the pressure
oefficients pr (t) are the algebraic variables of the DAE system.
For simplicity, we consider here configurations with flow in the positive direction, i.e. PL < P0, and symmetric channels

ith constant height, H1 = H2. Additionally, we will consider truncations of the Chebyshev terms equal for both the
xpansions of the velocity and pressure fields, i.e. N = R.
As an initial assessment of the current formulation and its model reduction capacities, in Fig. 4, we compare the stability

oundaries resulting from the analytical formulation against those from the current approach, using various orders of
runcation N for the expansion of the flow variables. The confinement ratio was set at H∗

= 1/10. In all cases, a relatively
arge number of beam modes were considered (M = 20), to ensure errors associated to the beam discretization were
egligible. Modal damping ratios of the beam were fixed for all modes at ζm = 0.01.
In Fig. 4(a) we see the typical ‘‘cascading’’ stability boundary discussed in the introduction. The ‘‘modal transitions’’

(occurring at, for example, M∗
≃ 0.7 and M∗

≃ 2.5) are associated with a change in the shape of the primary unstable
coupled) mode. To illustrate, Fig. 5 shows the neutrally stable (complex) mode shapes ψ(x) at different points (1)–(3)
n the cascade of the stability boundary, as indicated in Fig. 4. We notice that at low mass ratios (Fig. 5-(1)) the primary
nstable mode shape is composed primarily by components of the 1st and 2nd in-vacuo beam modes. However, as the
ass ratios increase, the higher order in-vacuo beam modes become dominant in the unstable motion. As seen clearly in
ig. 4(b), these transitions in the stability boundary are also accompanied by a discontinuous increase in the instability
requency.
11
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p
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i

Fig. 4. (a) Stability boundaries in the (M∗
− U∗) plane for a system with confinement ratio H∗

= 1/10, using the analytical formulation (black line)
and the Galerkin formulation (colored lines) with various orders of truncation N; (b) Corresponding critical frequencies, where ω∗

= ωcrit/ω0 . (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Complex mode-shapes of the neutrally-stable modes associated with the boundary points (1)–(3), indicated in Fig. 4. The real and imaginary
arts of the mode shapes are indicated in blue and red, respectively. The gray lines illustrate the actual beam motion associated with the corresponding
omplex mode shapes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

With that said, interpretation of the results regarding the convergence of the Galerkin approach becomes more
ntuitive. In Fig. 4 we note that, for low-to-moderate mass ratios (M∗ ≲ 1), a relatively small number of polynomials
in the expansion of flow variables (N > 4) is sufficient for an accurate description of the stability boundary. However,
as mass ratios increase the order of truncation N necessary for converge also increases. Naturally, this is explained by
the fact that the spatial distribution of the fluctuations in flow velocity and pressure will accompany the prevailing beam
motion. Hence, when higher-order (in-vacuo) beam modes are predominant in the unstable motion, the flow velocities
and pressures will also require an expansion of Chebyshev polynomials of the same order.

Although not shown here, an investigation regarding the truncation of beam modes M was carried out. As is self-
evident, conclusions are similar to those discussed above, i.e. accurate results entail that the considered number of beam
modes M include the dominant components of the unstable (fluid–structure coupled) mode. For relatively low mass-ratios
(M∗ < 0.5), as is typically the case for configurations in air, two in-vacuo modes (M = 2) are generally sufficient. For
larger mass-ratios (M∗ > 0.5), a larger number of beam modes is necessary.

4.2. Nonlinear analysis

We now investigate the viability of the current formulation for solving the fully nonlinear system (including beam-wall
impacts) using time-domain integrations. Here, several time-domain solutions will be presented, and compared to results
from the analytical formulation, in order to assess the convergence properties of the new formulation in terms of both

the truncation of the flow variables expansions N(= R), as well as the number of considered beam modes M .

12
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Fig. 6. Overview of the resulting limit-cycle oscillations: (a) snapshots of the beam motion; temporal evolution of the (b) modal velocities; (c) zoom
f modal velocities; (d) velocity coefficients and (e) pressure coefficients of the flow in the upper channel. (color online).

The time-domain integrations of the (numerically challenging) DAE system of differential index-2 (31) were performed
sing an implicit Runge–Kutta scheme based on a 7-stage Radau IIA method. The algorithm can be found on the Matlab’s
entral File Exchange (Mahooti and Radau, 2020) and was programmed by MeysamMahooti based on the routine RADAU5
escribed in Hairer and Wanner (1996).
To illustrate the model reduction capacities of the current approach, we examine an example limit-cycle in a symmetric

onfiguration H1 = H2, where intermittent impacts occur between the beam-tip and side walls. The main non-dimensional
arameters were taken as H∗

= 1/10, M∗
= 0.1, U∗

= 8.5 and ζm = 0.05 (for all modes). The value of the dimensionless
impact stiffness was set to ki = 105, based on the wish to simulate relatively stiff impacts without the having to include an
overwhelming amount of beam modes (it will be shown later that M = 20 was sufficient to describe impacts accurately).
The impact regularization parameter was set to 1% of the channel height, ε/H0 = 0.01, to allow a reasonable margin of
ontact ‘‘penetration’’.
Firstly, to give an overview of the resulting LCO, Fig. 6 shows (a) snapshots of the beam motion as well as (b) the

emporal evolution of the modal velocities rm(t), (c) the velocity coefficients (d) and pressure coefficients in the upper
channel, ⌣pr (t) and ⌣un(t) (due to symmetry, the lower channel flow variables are equivalent, but in phase opposition).
Here, the truncation of the beam modes and Chebyshev polynomials were set to large values, M = N = R = 30, deemed
sufficient to describe the LCO accurately, as will be shown in the following sub-sections.

Fig. 6-(b) shows us that the beam motion during the LCO is dominated by the first three in-vacuo beam modes.
oreover, we note that higher-order beam modes are excited intermittently after each impact (Fig. 6-(c)). Nevertheless,

heir influence remains small in the overall LCO pattern. In Fig. 6-(d) and (e), we see that, in general, the most significant
scillations in the flow variables are given by the first 3–4 coefficients of the Chebyshev expansions ⌣u0−3(t) and ⌣p0−3(t).
his is coherent with what was shown in linear stability analysis, in that the spatial profile of the flow oscillations will
ypically accompany the motion of the beam. However, right before an impact, many higher-order components ⌣un>3(t)
nd ⌣pr>3(t) become prominent, meaning that velocity and pressure profiles will present larger (spatial) gradients at these
nstances.

.2.1. Convergence of Chebyshev truncation
In this section we aim to assess the model reduction capacities of the present model. Periodic solutions for the

onfiguration presented above (Fig. 6) have been calculated, using various orders of truncations for the velocity and
ressure expansions N(= R). Since, in this case, intermittent impacts occur solely at the tip of the beam, and since all
n-vacuo beam mode shapes φ(x) contain maxima at the beam-tip, a reasonable global indicator of the LCO is given by
he beam-tip velocity ẏ(L, t). Fig. 7 shows the phase-portrait of the beam-tip (left) and the temporal evolution of the
normalized) beam-tip velocity ẏ(L, t), in solutions calculated with various orders of truncation N . The solution obtained
13
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Fig. 7. Phase portrait of the beam-tip during an LCO with intermittent impacts (left) and temporal evolution of the beam-tip velocity ẏ(L, t) (right),
using various truncations of the Chebyshev expansions N(= R). (color online).

Fig. 8. Description of the velocity (left) and pressure (right) profiles in the upper channel at time ti , right before contact between the beam-tip and
he upper wall, using various truncations for the Chebyshev expansion N = R. The corresponding profiles calculated with the analytical model are
hown in black. (color online).

ith the analytical formulation was also plotted for comparison, even though it is indistinguishable from the solution
ith N = 8 (plots are overlapped). Here, the number of considered beam modes was maintained fixed at M = 30.
From Fig. 7 we note that, in fact, the LCO seems to be reasonably well represented by relatively low truncations

rders (N ≥ 4). At truncations above N ≥ 8, the evolution of the beam-tip velocity (as well as the phase-portrait) is
ndistinguishable from the analytical results (plots are overlapped). Even at N = 5, we notice only very minor quantitative
ifferences. At N = 4, deviations start to become more evident, with a noticeable underestimation of the fundamental
requency of oscillation (∼2%). Nevertheless, the overall motion remains relatively well represented. Finally, at N = 3
esults collapse dramatically, with a gross misrepresentation of the oscillation pattern and a significant overestimation of
he fundamental frequency (∼8%).

These observations suggest that, even in the presence of impacts (strong nonlinearities) and the consequent appearance
f sharp (spatial) gradients in the profiles of the flow pressure and velocity, the overall LCO can nevertheless be well
epresented by relatively low truncation orders N . That is, the occurrence of impacts does not seem to have a significant
ffect on the previously described logic that: the truncation order N must be sufficient to accompany the dominant beam
otion profile. In this case, the first three in-vacuo beam modes dominate, and hence truncations of N ≥ 4 will in general
uffice.
To clarify, Fig. 8 shows the velocity and pressure spatial distribution on the upper channel at a moment ti before

ontact between the beam-tip and the upper wall. Here, we notice the very sharp gradients near the beam-tip (x ≈ 1). As
xpected, we see that a large order of truncation N is necessary to properly describe the sharp flow gradients, which are
everely misrepresented by the solutions using low truncations, showing a very prominent Gibbs effect. However, despite
hese severe misrepresentations, we have seen that low orders of truncation (N ≥ 4) are effectively able to reproduce
he overall LCO accurately. This could possibly be explained by two reasons: (1) the misrepresentations of the sharp
low profiles are very brief and (2) the observed Gibbs phenomena will be ‘‘dissipated’’ once the (pressure) profiles are
rojected unto the dominant beam modes (of relatively low-order).
Here it is worth underlining that here we have considered the convergence of the flow fields assuming the same

runcation for the pressure and velocity, i.e. N = R. In a linear context, where oscillations are arbitrarily small, this
s a reasonable assumption as both velocity and pressure fields will tend to have the same gradients (following the
eam motion) (Soares et al., 2022). However, in a nonlinear context, flow velocity and pressure profiles can differ
ignificantly, and it is not evident which variable will present larger gradients and hence necessitate larger truncations.
oreover, this also likely a problem-dependent issue. Nevertheless, based on the numerous simulations conducted for

his work, our experience suggests that often, the pressure fields will present larger gradients, as illustrated in Fig. 8. This
14
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Fig. 9. Temporal evolution of the beam-tip velocity ẏ(L, t) during a LCO with intermittent impacts, calculated with different number of considered
beam modes M . (color online).

Fig. 10. (a) Spectra of the beam-tip velocity ẏ(L, t) in the analytical solution (top); (b) Spectral envelopes of solutions with various beam mode
truncations M . (color online).

suggests, tentatively, that using smaller truncations for the velocity field, i.e. N < R, could eventually be a viable option.
evertheless, the studies presented here, with N = R for simplicity, effectively provide a conservative upper bound on

the necessary truncation.

4.2.2. Convergence of beam mode truncation
Now we examine that effect of the number of considered modes M on the resulting LCOs. Fig. 9 shows the temporal

volution of the beam-tip velocity in various solutions using a different number of considered beam modes M . Here, the
truncation of the Chebyshev expansions used for the flow variables was fixed at N = R = 30.

The top plot in Fig. 9 shows us that, in this case, the overall motion of the LCO does not seem to be significantly
affected by the number of considered modes M , so long as M ≥ 4. The main difference between the various solutions
is concentrated at the moments of impact (right plot). Impacts generate rapid changes in the velocity of the beam-tip.
Consequently, many in-vacuo beam modes are excited. We notice that when the number of considered modes is relatively
low (M < 20), impacts lead to a residual oscillation of the beam-tip. Moreover, is it worth noting that the frequency of
these residual oscillations is approximately equal to the frequency of the highest considered mode. This suggests that, at
low truncations M , the impact energy transferred to the beam, that would otherwise be distributed evenly between all
modes, is going to be concentrated on the highest considered mode (stiffest mode).

To clarify this effect, the spectra (and spectral envelopes) of the beam-tip velocity are shown in Fig. 10. In Fig. 10-(a)
we can observe that the motion of the tip is composed of many harmonic components (>100). Moreover, because the
beam motion is symmetric, its spectra contain only odd harmonic components. If we perform a (spline) interpolation
of the spectral peaks, we can calculate a ‘‘spectral envelope’’, as illustrated in Fig. 10-(a). In this envelope we notice
several ‘‘formants’’, whose frequency effectively corresponds to the frequency of the in-vacuo beam modes, excited during
mpacts. In Fig. 10-(b), we notice these formants are modified when a different number of beammodes is considered. More
oncretely, the energy near the frequency of the highest considered mode M is increased.
Finally, it is worth noting that solutions with M = 20 are sufficient to rigorously describe the stiff impacts considered.

his is coherent with the general presupposition that the modal stiffness of the highest considered beam mode mMω
2
M

ust be somewhat larger than the impact stiffness ki. In this particular case, the dimensionless beam stiffness m20ω
2
20 =

1.23 × 105, while the dimensionless impact stiffness ki = 105.

5. Conclusion

In this paper we presented a Galerkin formulation for the nonlinear modeling of a flexible beam in confined flow. The
motion of a 1-D flexible beam was described in terms of its modes of vibration while the flow velocity and pressure in
each channel was spatially discretized via an expansion in terms of a series of space-dependent orthogonal functions,
such as Chebyshev polynomials. The tau-variant of the Galerkin approach enabled the enforcement of the nonlinear
boundary conditions in a well-posed manner. This led to a purely time-dependent system of nonlinear DAEs of index-2
15
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and presented an elegant framework that can be used for a comprehensive study of the nonlinear dynamics of these FSI
systems using bifurcation analysis (e.g. harmonic balance method, continuation, etc.).

Comparisons with previous work (Soares et al., 2022) validated the current approach and allowed us to assess the
onvergence properties and model reduction capacities of the present formulation, in the context of both linear stability
nalysis and the calculation of LCOs. The presented convergence studies suggest that, even in the presence of strong
onlinearities stemming from beam-wall impacts, LCOs can be accurately represented using relatively low orders of
runcation for the flow variables. In sum, results indicate that the orders of truncation for the expansion of flow variables
hould be sufficient to accompany the dominant beam motion. In realistic scenarios (M∗ < 2) where contact between the
beam and the side-walls do not occur, a truncation of N ≤ 5 for the flow variables with only two or three beam modes
will generally suffice for an accurate description of the LCOs.

Regarding the beam mode truncation, results suggest that even in the presence of stiff impacts, lower orders truncation
of beam modes may, at least in some cases, not alter the overall oscillation pattern of the LCO, and still provide
fair approximations. This indicates that, despites the presence of intermittent impacts, the fluid–structure interaction
continues to play a dominant role in the fluttering dynamics, as similarly reported in a recent experimental study (Lee
et al., 2021).

The presented framework can serve as a basis for a comprehensive analysis of the nonlinear dynamics of flexible
beams in confined flow. Namely, using bifurcation analysis tools for the calculation and continuation of periodic solutions
will contribute to a more comprehensive understanding of the underlying physics occurring in this type of FSI systems.
Moreover, the generic methodology presented here can also be adapted to different systems in the field of fluid–structure
interaction, providing compact time-dependent formulations for nonlinear analysis.
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Appendix. Exploiting the orthogonality of Chebyshev polynomials

Here we illustrate the structure of the matrices (26) resulting from the orthogonal projection of the momentum
equations. The matrix associated with the time-derivative of the velocity field is given by

Enr =

∫ 1

0
T n(x)T r (x)w(x)dx =

1
2

∫ 1

−1

Tn(x)Tr (x)
√
1 − x2

dx ,

{
n = 0, 1, . . . ,N

r = 0, 1, . . . , R − 1
(45)

Notice the relation between the shifted T n(x) and unshifted basis Tn(x). This matrix is diagonal and has the following
structure

Enr =
π

4

⎡⎢⎢⎢⎢⎢⎣
2 0 · · · 0

0 1 0
... 0 1

0
. . .

⎤⎥⎥⎥⎥⎥⎦ (46)

The matrix associated with the pressure term is

Htr =

∫ 1

T t
′

(x)T r (x)w(x)dx =

∫ 1 Tt ′(x)Tr (x)
√

2
dx ,

{
t = 0, 1, . . . , R

(47)

0 −1 1 − x r = 0, 1, . . . , R − 1
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and has the following upper-triangular structure

Htr = π

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 3 0 5 0

0 2 0 4
. . . 6

0 3
. . . 5 0

. . .

...
. . . 4 0 6

0 5 0
. . .

0 6

0
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(48)

The tri-dimensional matrix associated with the nonlinear convection term is given by

Fnsr =

∫ L

0
T n

′

(x)T s(x)T r (x)w(x)dx =

∫ 1

−1

Tn′(x)Ts(x)Tr (x)
√
1 − x2

dx ,

⎧⎪⎨⎪⎩
n = 0, 1, . . . ,N

s = 0, 1, . . . ,N

r = 0, 1, . . . , R − 1

(49)

and its structure can be illustrated by the following

F0sr = 0 ; F1sr =
π

2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 · · · 0

0 1 0

0 0 1
...

. . .

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
; F2sr = π

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 0 · · · 0

2 0 1
. . .

0 1 0 1 0
...

. . . 1
. . .

0 0
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

F3sr =
3π
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 2 0 · · · 0

0 2 0 1 0

2 0 1 0 1

0 1 0 1
. . .

. . .

... 0 1
. . .

. . .

0
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; F4sr = 2π

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 0 2 0 0 · · · 0

2 0 2 0 1 0

0 2 0 1 0 1
. . .

2 0 1
. . . 1

. . .
. . .

0 1 0 1
. . .

0 0 1
. . .

. . .

...
. . .

. . .

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; etc.

(50)
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