
HAL Id: hal-04240500
https://hal.science/hal-04240500v2

Submitted on 5 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proportional Fairness for Combinatorial Optimization
Minh Hieu Nguyen, Mourad Baiou, Viet Hung Nguyen, Thi Quynh Trang Vo

To cite this version:
Minh Hieu Nguyen, Mourad Baiou, Viet Hung Nguyen, Thi Quynh Trang Vo. Proportional Fairness
for Combinatorial Optimization. Latin American Theoretical Informatics Symposium (LATIN 2024),
Mar 2024, Puerto Varas, Chile. �hal-04240500v2�

https://hal.science/hal-04240500v2
https://hal.archives-ouvertes.fr

Proportional Fairness for Combinatorial
Optimization

Minh Hieu Nguyen1, Mourad Baiou1, Viet Hung Nguyen1, and Thi Quynh
Trang Vo1

INP Clermont Auvergne, Univ Clermont Auvergne, Mines Saint-Etienne, CNRS,
UMR 6158 LIMOS, 1 Rue de la Chebarde, Aubiere Cedex, France

Corresponding author: viet hung.nguyen@uca.fr

Abstract. Proportional fairness (PF) is a widely studied concept in the
literature, particularly in telecommunications, network design, resource
allocation, and social choice. It aims to distribute utilities to ensure fair-
ness and equity among users while optimizing system performance. Un-
der convexity, PF is equivalent to the Nash bargaining solution, a well-
known notion from cooperative game theory, and it can be obtained by
maximizing the product of the utilities. In contrast, when dealing with
non-convex optimization, PF is not guaranteed to exist; when it exists,
it is also the Nash bargaining solution. Consequently, finding PF under
non-convexity remains challenging since it is not equivalent to any known
optimization problem.
This paper deals with PF in the context of combinatorial optimization,
where the feasible set is discrete, finite, and non-convex. For this pur-
pose, we consider a general Max-Max Bi-Objective Combinatorial Op-
timization (Max-Max BOCO) problem where its two objectives to be
simultaneously maximized take only positive values. Then, we seek to
find the solution to achieving PF between two objectives, referred to as
proportional fair solution (PF solution).
We first show that the PF solution, when it exists, can be obtained
by maximizing a suitable linear combination of two objectives. Subse-
quently, our main contribution lies in presenting an exact algorithm that
converges within a logarithmic number of iterations to determine the PF
solution. Finally, we provide computational results on the bi-objective
spanning tree problem, a specific example of Max-Max BOCO.

Keywords: Combinatorial Optimization · Bi-Objective Combinatorial
Optimization · Nash Bargaining Solution · Proportional Fairness

1 Introduction

Proportional fairness (PF) is a widely studied concept in the literature, par-
ticularly in telecommunications, network design, resource allocation, and social
choice. The goal of PF is to provide a compromise between the utilitarian rule −
which emphasizes overall system efficiency, and the egalitarian rule − which em-
phasizes individual fairness. For example, in wireless communication systems, PF

2 Nguyen et al.

is often used to allocate transmission power, bandwidth, and data rates among
mobile users to maximize overall system throughput while ensuring fair access
for all users [1]. In network scheduling and traffic management, PF plays a sig-
nificant role in packet scheduling algorithms. It helps ensure that packets from
different flows or users are treated fairly, preventing any single user from dom-
inating network resources [2]. In resource allocation, PF is applied to prevent
resource starvation and improve system efficiency by dynamically distributing
resources based on the individual demands of users, thereby enhancing overall
system performance and ensuring a fair utilization of available resources [3].

The PF concept is proposed for multi-player problems where each player
is represented by a utility function [4]. It has been demonstrated that if the
feasible set is convex, PF is equivalent to the Nash bargaining solution, which
always exists and can be obtained by maximizing the product of the utilities (or
equivalently, by maximizing a logarithmic sum problem) [1], [4], [5]. In this case,
finding the optimal solution is computationally expensive since the objective
remains nonlinear. Thus, in practice, heuristic algorithms are often employed
to find approximate solutions that achieve near-PF in some special scenarios
(see, e.g., [2], [6]). In contrast, when dealing with non-convex optimization, the
existence of PF is not guaranteed, and if it exists, it is also the Nash bargaining
solution [1], [7]. To address such a case, popular approaches involve considering
certain non-convex sets, which are convex after a logarithmic transformation [7].
An alternative approach is to introduce the concept of local proportional fairness,
which is always achievable, and then analyze its properties [8].

This paper deals with PF in the context of combinatorial optimization, where
the feasible set is discrete, finite, and non-convex. For this purpose, we consider a
general Max-Max Bi-Objective Combinatorial Optimization (Max-Max BOCO)
problem with two objectives to be simultaneously maximized. Notice that a gen-
eral Max-Max BOCO can be considered a two-player problem with two utility
functions. Then, we seek to find the solution achieving PF between two objec-
tives, referred to as proportional fair solution (PF solution).

Some approaches using PF as a criterion for solving the bi-objective mini-
mization problems have been introduced in [9], [10], [11]. In these scenarios, the
solution achieved PF, referred to as the Nash Fairness (NF) solution, always ex-
ists and can be obtained by an iterative algorithm based on the application of the
Newton-Raphson method. The NF solution is also generalized in bi-objective dis-
crete optimization, where the objectives can be either maximized or minimized.
As a result, the PF solution described in this paper represents a specific instance
of the NF solution for Max-Max BOCO, as mentioned in [12]. However, it is im-
portant to note that in [12], the authors primarily introduced the concept of NF
solution and focused on calculating the NF solution set for the cases when it
always exists, and there may be many NF solutions (i.e., for Max-Min BOCO
and Min-Min BOCO). Generally, determining the PF solution in combinatorial
optimization remains a challenging question, especially when it is not guaran-
teed to exist and cannot be directly obtained by applying the Newton-Raphson
method.

Proportional Fairness for Combinatorial Optimization 3

In this paper, we first show that the PF solution, when it exists, can be
found by maximizing a suitable linear combination of two objectives. Then, our
main contribution lies in presenting an exact algorithm that converges within a
logarithmic (of fixed parameters depending on the data) number of iterations to
determine efficiently the PF solution for Max-Max BOCO. Finally, we provide
computational results on the Bi-Objective Spanning Tree Problem (BOSTP), a
specific example of Max-Max BOCO. Notice that when the linear combination of
two objectives can be solved in polynomial time, by the result in this paper, the
PF solution, if it exists, can be determined in weakly polynomial time. To the
best of our knowledge, this is the first approach in combinatorial optimization
where an efficient algorithm has been developed for identifying PF. Furthermore,
it can also be used in convex optimization.

The paper is organized as follows. In Section 2, we discuss the characterization
of the PF solution for Max-Max BOCO. In Section 3, we propose an exact
algorithm for finding the PF solution. Computational results on some instances
of the BOSTP will be presented in Section 4. Finally, in Section 5, we give some
conclusions and future works.

2 Characterization of the PF solution

Since the objectives of Max-Max BOCO is to be simultaneously maximized, it
can be formulated as

max
x∈X

(P (x), Q(x)),

where X denotes the set of all feasible decision vectors x. For Max-Max
BOCO, we suppose that X is a finite set and P (x), Q(x) > 0,∀x ∈ X .

Let (P,Q) = (P (x), Q(x)) denote the objective values corresponding to a
decision vector x ∈ X . Let S represent the set of pairs (P,Q) corresponding
to all feasible decision vector solutions. This paper will characterize the feasible
solutions for Max-Max BOCO using pairs (P,Q) instead of explicitly listing the
decision vector solutions. Thus, two feasible solutions having the same values of
(P,Q) will be considered equivalent. Throughout this paper, we use the notation
”≡” to denote equivalent solutions. Since X is finite, the number of feasible
solutions is also finite, implying that S is a finite set. For Max-Max BOCO,
the PF solution (PPF , QPF) should be such that, if compared to any other
solution (P,Q), the aggregate proportional change is non-positive (see, e.g., [1],
[4]). Mathematically, we have

P − PPF

PPF
+

Q−QPF

QPF
≤ 0 ⇐⇒ P

PPF
+

Q

QPF
≤ 2, ∀(P,Q) ∈ S,

We recall that the PF solution does not always exist. For example, if S
contains two feasible solutions (P1, Q1) = (2, 2) and (P2, Q2) = (1, 4) then none
of them is PF solution since P1/P2 +Q1/Q2 > 2 and P2/P1 +Q2/Q1 > 2.

4 Nguyen et al.

Proposition 1. If (PPF , QPF) is a PF solution for Max-Max BOCO, then it
is the unique solution that maximizes the product PQ.

Notice that the generalized version of Proposition 1 for non-convex optimiza-
tion has been presented in [7]. In the following, we show that the PF solution,
when it exists, can be obtained by maximizing a suitable linear combination of
P and Q by considering the optimization problem:

F(α) = max
(P,Q)∈S

fα(P,Q),

where fα(P,Q) = P + αQ and α ≥ 0 is a coefficient to be determined.
Notice that we assume the existence of the algorithms for maximizing the

linear combinations of P and Q, including for maximizing P and Q.

Theorem 1. [12] (PPF , QPF) ∈ S is the PF solution if and only if (PPF , QPF)
is a solution of F(αPF) with αPF = PPF /QPF .

As Theorem 1 provides a necessary and sufficient condition for the PF solu-
tion, the main question is how to propose an exact algorithm for determining the
PF solution based on Theorem 1. We answer this question in the next section.

3 Algorithm for determining the PF solution

3.1 Algorithm construction

In this section, we outline the idea of constructing an exact algorithm to deter-
mine the PF solution for Max-Max BOCO.

For a given αk ≥ 0, let T (αk) := Pk − αkQk where (Pk, Qk) is a solution
of F(αk). Throughout this paper, let (PPF , QPF) denote the PF solution and
αPF denote the PF coefficient, a coefficient such that (PPF , QPF) is a solution
of F(αPF) and PPF = αPFQPF . We have T (αPF) = PPF − αPFQPF = 0.
According to Theorem 1 and the uniqueness of the PF solution when it exists,
determining the PF solution is equivalent to determining the PF coefficient αPF .

We first show the monotonic relationship between α ≥ 0 and the solution of
F(α) with respect to the values of P and Q. Consequently, we also deduce the
monotonic relationship between α and T (α).

Lemma 1. Given 0 ≤ α′ < α′′ and let (P ′, Q′), (P ′′, Q′′) ∈ S be the solutions
of F(α′) and F(α′′), respectively. Then P ′ ≥ P ′′ and Q′ ≤ Q′′. Moreover,
T (α′) > T (α′′).

Proof. The optimality of (P ′, Q′) and (P ′′, Q′′) gives

P ′ + α′Q′ ≥ P ′′ + α′Q′′, and (1a)

P ′′ + α′′Q′′ ≥ P ′ + α′′Q′ (1b)

Adding (1a) and (1b) gives (α′−α′′)(Q′−Q′′) ≥ 0. Since α′ < α′′, Q′ ≤ Q′′.
On the other hand, the inequality (1a) implies P ′ − P ′′ ≥ α′(Q′′ −Q′) ≥ 0.
Since P ′ ≥ P ′′, Q′ ≤ Q′′ and α′ < α′′, we obtain T (α′) = P ′ − α′Q′ ≥

P ′′ − α′Q′′ > P ′′ − α′′Q′′ = T (α′′). □

Proportional Fairness for Combinatorial Optimization 5

As a result of Lemma 1, if α′ < α′′ and (P ′, Q′) is the solution of both F(α′)
and F(α′′) then (P ′, Q′) is the solution of F(α) for all α′ < α < α′′. Moreover,
based on the monotonic relationship between α and T (α), for given 0 ≤ αi < αj

and T (αi)T (αj) > 0, we have αPF ̸∈ (αi, αj) because for α′ ∈ (αi, αj) and an
arbitrary solution (P ′, Q′) of F(α′), T (α′) has the same sign as T (αi) and T (αj)
which implies T (α′) ̸= 0 and then α′ ̸= αPF .

Let αsup be an upper bound of αPF such that αPF < αsup (we will provide a
detailed definition for αsup in our algorithm). According to the results of Theo-
rem 1 and Lemma 1, the main idea of our algorithm is based on the binary search
algorithm in the interval [0, αsup]. More precisely, we use Procedure SEARCH ()
to identify the PF solution and the PF coefficient αPF in such interval, ensuring
that T (αPF) = 0. Starting from an interval [αi, αj] ⊆ [0, αsup] with T (αi) > 0
and T (αj) < 0, Procedure SEARCH () selects αs as the midpoint of the interval
[αi, αj] and solve F(αs) to obtain a solution (Ps, Qs). Then, we use Procedure
Verify PF sol() and Procedure Verify PF coeff () to verify whether (Ps, Qs) is
the PF solution and whether αs is the PF coefficient, respectively. If the verifi-
cation is unsuccessful, the half-interval in which the PF coefficient cannot exist
is eliminated, and we retain only one half-interval for further exploration within
Procedure SEARCH (). The choice is made between [αi, αs] and [αs, αj], depend-
ing on the sign of T (αs). We continue these steps until we obtain an interval
with a length smaller than a positive parameter ϵ defined by the input of the
Max-Max BOCO problem. The selection method of ϵ guarantees the absence
of the PF coefficient in such an interval. Consequently, our algorithm always
converges in a logarithmic number of iterations in terms of ϵ and αsup.

In the following, we present our algorithm’s statement and proofs.

3.2 Algorithm statement and proofs

In this section, we first introduce Procedure Verify PF sol(α0, P0, Q0) to verify
whether a solution (P0, Q0) of F(α0) is the PF solution. The correctness of this
procedure will be shown in the next lemma.

Procedure 1 Verify whether a solution (P0, Q0) of F(α0) is the PF solution

Input: α0 ≥ 0, (P0, Q0) ∈ S is a solution of F(α0).
Output: True if (P0, Q0) is the PF solution or False otherwise.
1: procedure Verify PF sol(α0, P0, Q0)
2: if P0 − α0Q0 = 0 then return True
3: else
4: α′ ← P0/Q0

5: solving F(α′) to obtain the solution (P ′, Q′).
6: if fα′(P ′, Q′) = fα′(P0, Q0) then return True
7: else return False
8: end if
9: end if
10: end procedure

6 Nguyen et al.

Lemma 2. Given α0 ≥ 0 and (P0, Q0) ∈ S as a solution of F(α0). Let α
′ =

P0/Q0 and (P ′, Q′) be a solution of F(α′). If T (α0) = P0 − α0Q0 ̸= 0 then
(P0, Q0) is the PF solution if and only if fα′(P ′, Q′) = fα′(P0, Q0).

Proof. =⇒ If (P0, Q0) is the PF solution then (P0, Q0) is also a solution of
F(α′) due to Theorem 1. Thus, fα′(P ′, Q′) = fα′(P0, Q0).

⇐= If fα′(P ′, Q′) = fα′(P0, Q0) then (P0, Q0) is also a solution of F(α′).
Since α′ = P0/Q0, (P0, Q0) is the PF solution due to Theorem 1. □

Then, from a given α0 ≥ 0 and a solution (P0, Q0) of F(α0), we discuss how
to construct Procedure Verify PF coeff(α0, P0, Q0) which aims to verify whether
α0 is the PF coefficient and return the PF solution if the verification is successful.
It is important to remind that if T (α0) = P0 − α0Q0 = 0 then α0 = αPF and
(P0, Q0) is necessarily the PF solution due to Theorem 1. However, if T (α0) ̸= 0,
we may not assert that α0 ̸= αPF as well as (P0, Q0) is not the PF solution. In
general, although the PF solution is necessary a solution of F(αPF), we might
not obtain the PF solution by solving F(αPF). The fact is that the problem
F(αPF) may have multiple solutions, and we obtain one solution, which might
not be the PF solution. More precisely, we state the following proposition.

Proposition 2. We might not obtain the PF solution by solving F(α), ∀α ≥ 0.

Proof. To prove this conclusion, we consider an example of the Bi-Objective
Spanning Tree Problem (BOSTP) which is also a Max-Max BOCO problem.
Let G be an undirected, connected graph, and each edge of G is associated
with two positive values: profit and reliability. The BOSTP consists of finding
a spanning tree of G, maximizing both the total profit and the minimum edge
reliability.

This example of BOSTP with two values on each edge is illustrated in Figure
1. For example, the profit and reliability associated with edge (14) are 20 and 9.

1

2

3

4

5

(20;9)

(16;10)

(14;11)

(20;9)

(36;6)

(24;8)

Fig. 1: An example of the BOSTP

Proportional Fairness for Combinatorial Optimization 7

Let (P,Q) denote the solution for the total profit and the minimum edge relia-
bility corresponding to a spanning tree solution. We show each distinct spanning
tree by listing its edges and the corresponding solution (P,Q) as follows.

- (14) (15) (23) (25) and (P1, Q1) = (70, 9)
- (14) (15) (23) (35) and (P2, Q2) = (80, 8)
- (14) (15) (25) (35) and (P3, Q3) = (74, 8)
- (14) (45) (23) (25) and (P4, Q4) = (90, 6)
- (14) (45) (23) (35) and (P5, Q5) = (100, 6)
- (14) (45) (25) (35) and (P6, Q6) = (94, 6)
- (15) (45) (23) (25) and (P7, Q7) = (86, 6)
- (15) (45) (23) (35) and (P8, Q8) = (96, 6)
- (15) (45) (25) (35) and (P9, Q9) = (90, 6)
Then, we can easily verify that (P2, Q2) is the PF solution since

Pi

P2
+

Qi

Q2
≤ 2,∀1 ≤ i ≤ 9,

Thus, we get αPF = P2/Q2 = 10. However, if 0 ≤ α < 10 (resp. α > 10) then
(P5, Q5) (resp. (P1, Q1)) is the solution of F(α) and if α = 10, solving F(α) may
return (P1, Q1) or (P5, Q5) instead of the PF solution (P2, Q2) because they
are simultaneously the solutions of F(10) due to P1 + 10Q1 = P2 + 10Q2 =
P5 + 10Q5 = 160. In this case, T (10) ̸= 0 despite αPF = 10.

Generally, if F(αPF) has multiple (distinct) solutions, including the PF so-
lution, we might not obtain the PF solution by solving F(α). □

For Procedure Verify PF coeff (), we present the following optimization prob-
lem

G(α) = max
(P,Q)∈S

gα(P,Q),

where gα(P,Q) = P + αQ− |P − αQ| and |.| denotes the absolute function.

Procedure 2 Verify whether α0 is the PF coefficient

Input: α0 ≥ 0, (P0, Q0) is a solution of F(α0) and T (α0) = P0 − α0Q0 ̸= 0.
Output: The PF solution if α0 is the PF coefficient or (Null, Null) otherwise.
1: procedure Verify PF coeff (α0, P0, Q0)
2: solving G(α0) to obtain the solutions (P1, Q1)
3: if gα0(P1, Q1) = fα0(P0, Q0) then return (P1, Q1)
4: else return (Null, Null)
5: end if
6: end procedure

Lemma 3. For a given α0 ≥ 0, let (P0, Q0), (P1, Q1) ∈ S be the solutions of
F(α0) and G(α0), respectively. If T (α0) = P0 − α0Q0 ̸= 0 then α0 is the PF
coefficient if and only if gα0

(P1, Q1) = fα0
(P0, Q0).

8 Nguyen et al.

Proof. =⇒ Suppose that α0 = αPF . According to Theorem 1, there exists the
PF solution (PPF , QPF) ∈ S such that (PPF , QPF) is a solution of F(α0) and
PPF = α0Q

PF . Since both (P0, Q0) and (PPF , QPF) are the solutions of F(α0)
and PPF − α0Q

PF = 0, we have

P0 + α0Q0 = PPF + α0Q
PF − |PPF − α0Q

PF |,

The optimality of (PPF , QPF) gives

PPF + α0Q
PF ≥ P1 + α0Q1,

Since |P1−α0Q1| ≥ 0, we deduce PPF +α0Q
PF ≥ P1+α0Q1−|P1−α0Q1|.

Thus,

PPF + α0Q
PF − |PPF − α0Q

PF | ≥ P1 + α0Q1 − |P1 − α0Q1|, (2)

Since (P1, Q1) is a solution of G(α0), we have

P1 + α0Q1 − |P1 − α0Q1| ≥ PPF + α0Q
PF − |PPF − α0Q

PF |, (3)

From (2) and (3), we get P1+α0Q1−|P1−α0Q1| = PPF +α0Q
PF −|PPF −

α0Q
PF | = P0 + α0Q0 which implies gα0

(P1, Q1) = fα0
(P0, Q0).

⇐= Suppose that gα0
(P1, Q1) = fα0

(P0, Q0). We obtain P1 + α0Q1 − |P1 −
α0Q1| = P0+α0Q0. Since P1+α0Q1−|P1−α0Q1| ≤ P1+α0Q1 ≤ P0+α0Q0, we
must have |P1−α0Q1| = 0 and P1+α0Q1 = P0+α0Q0. Consequently, (P1, Q1)
is a solution of F(α0) and P1 = α0Q1. Thus, (P1, Q1) is the PF solution and
α0 = αPF due to Theorem 1. □

Notice that we can obtain the PF solution by solving F(10) and G(10)
for the instance of the BOSTP mentioned in Proposition 2. Subsequently, for
0 ≤ αi < αj and (Pi, Qi), (Pj , Qj) as the solutions of F(αi) and F(αj), we
present Procedure SEARCH(αi, Pi, Qi, αj , Pj , Qj , ϵ) for determining the PF so-
lution where the PF coefficient αPF is in the interval [αi, αj]. We recall that the
parameter ϵ is presented for the stopping condition of Procedure SEARCH()
as mentioned in Section 3.1.

For Max-Max BOCO, ϵ can be determined as

ϵ = min {|P
′ − P ′′

Q′′ −Q′ −
P ′′ − P ′′′

Q′′′ −Q′′ |} (4)

where |.| denotes the absolute function, (P ′, Q′), (P ′′, Q′′), (P ′′′, Q′′′) ∈ S are the
solutions of F(α′), F(α′′), F(α′′′) for which 0 ≤ α′ < α′′ < α′′′, P ′ ≥ P ′′ ≥
P ′′′, Q′ > Q′′ > Q′′′ and P ′−P ′′

Q′′−Q′ ̸= P ′′−P ′′′

Q′′′−Q′′ .

Notice that if the objectives P,Q are positive integers (this hypothesis is
natural in combinatorial optimization), from (4) we have

|P
′ − P ′′

Q′′ −Q′ −
P ′′ − P ′′′

Q′′′ −Q′′ | =
|(P ′ − P ′′)(Q′′′ −Q′′)− (P ′′ − P ′′′)(Q′′ −Q′)|

(Q′′ −Q′)(Q′′′ −Q′′)
≥ 1

Q2
max

,

Proportional Fairness for Combinatorial Optimization 9

since |(P ′−P ′′)(Q′′′−Q′′)−(P ′′−P ′′′)(Q′′−Q′)| ∈ Z+, 0 < Q′′−Q′, Q′′′−Q′′ ≤
Qmax where Qmax is the maximum value of Q. Thus, when the objectives of
Max-Max BOCO take positive integer values, we can select ϵ as 1/Q2

max.

Procedure 3 Determine the PF solution where the PF coefficient is in [αi, αj]

Input: (αi, Pi, Qi) and (αj , Pj , Qj) satisfying the following conditions:
– 0 ≤ αi < αj such that αi, αj are not PF coefficients.
– (Pi, Qi) and (Pj , Qj) are solutions of F(αi) and F(αj), respectively.
– (Pi, Qi) ̸≡ (Pj , Qj), (Pi, Qi) and (Pj , Qj) are not PF solutions.
– a parameter ϵ as defined in (4).

Output: The PF solution if it exists or Null otherwise.
1: procedure SEARCH (αi, Pi, Qi, αj , Pj , Qj , ϵ)

2: αk ← Pi−Pj

Qj−Qi

3: if αk = αi or αk = αj then return Null
4: end if
5: solving F(αk) to obtain a solution (Pk, Qk)
6: if Verify PF sol(αk, Pk, Qk) == True then return (Pk, Qk)
7: end if
8: (P ′, Q′)← Verify PF coeff(αk, Pk, Qk)
9: if (P ′, Q′) ̸≡ (Null,Null) then return (P ′, Q′)
10: else if (Pk, Qk) ≡ (Pi, Qi) or (Pk, Qk) ≡ (Pj , Qj) then return Null
11: else
12: if αj − αi ≥ ϵ then

13: αs ← αi+αj

2

14: solving F(αs) to obtain a solution (Ps, Qs)
15: if Verify PF sol(αs, Ps, Qs) == True then return (Ps, Qs)
16: end if
17: (P ′′, Q′′)← Verify PF coeff(αs, Ps, Qs)
18: if (P ′′, Q′′) ̸≡ (Null,Null) then return (P ′′, Q′′)
19: else
20: T (αs)← Ps − αsQs

21: if T (αs) > 0 then return SEARCH(αs, Ps, Qs, αj , Pj , Qj , ϵ)
22: else if T (αs) < 0 then return SEARCH(αi, Pi, Qi, αs, Ps, Qs, ϵ)
23: end if
24: end if
25: else return Null
26: end if
27: end if
28: end procedure

It is necessary to select αk at each iteration before selecting the midpoint
αs. The fact is that we might not obtain the PF solution by only selecting the

10 Nguyen et al.

midpoints of the intervals. For example, in the instance of the BOSTP mentioned
in Proposition 2, the PF solution can only be obtained by solving F(α) and G(α)
with α = 10. However, by repeating choosing the midpoints of the intervals, we
might not reach αs = 10 (in contrast, for αk, we can obtain αk = 10).

By the following lemma, we show that our choosing method for αk at each
iteration and the parameter ϵ offer some specific criteria to promptly verify the
existence of αPF in the interval [αi, αj].

Lemma 4. Let [αi, αj] be an interval such that 0 ≤ αi < αj, αi, αj are not PF
coefficients. Let (Pi, Qi) ̸≡ (Pj , Qj) be the solutions of F(αi), F(αj) and they

are not PF solutions. Let αk =
Pi−Pj

Qj−Qi
and (Pk, Qk) be a solution of F(αk). If

one of the following conditions is satisfied, then αPF ̸∈ [αi, αj].

1. Either αk = αi or αk = αj;
2. αk ̸= αPF and either (Pk, Qk) ≡ (Pi, Qi) or (Pk, Qk) ≡ (Pj , Qj);
3. αk ̸= αPF , (Pk, Qk) ̸≡ (Pi, Qi), (Pk, Qk) ̸≡ (Pj , Qj) and αj − αi < ϵ;

Proof. Since αi < αj , we have Pi ≥ Pj , Qi ≤ Qj due to Lemma 1. Suppose that
Qi = Qj . The optimality of (Pj , Qj) gives

Pj + αjQj ≥ Pi + αjQi, (5)

Since Qi = Qj , we obtain Pj ≤ Pi. Thus, Pi = Pj and then (Pi, Qi) ≡
(Pj , Qj) which leads to a contradiction.

Hence, Qj > Qi and consequently, αk is well defined.
We then show that αk ∈ [αi, αj]. The optimality of (Pi, Qi) gives

Pi + αiQi ≥ Pj + αiQj , (6)

From (5) and (6), we obtain αi ≤ Pi−Pj

Qj−Qi
≤ αj which leads to αi ≤ αk ≤ αj .

1. If αk = αi then Pi + αiQi = Pj + αiQj . Thus, (Pi, Qi) and (Pj , Qj)
are both solutions of F(αi). Hence, for all α ∈ (αi, αj), (Pj , Qj) is the unique
solution of F(α) as a result of Lemma 1. Similarly, if αk = αj , (Pi, Qi) is the
unique solution of F(α) for all α ∈ (αi, αj). Since (Pi, Qi), (Pj , Qj) are not PF
solutions and αi, αj are not PF coefficients, we have αPF ̸∈ [αi, αj].

2. Let (Pk, Qk) be a solution of F(αk). Without loss of generality, we suppose
that αk ̸= αPF and (Pk, Qk) ≡ (Pi, Qi). Consequently, (Pi, Qi) is a solution of

F(αk). Since αk =
Pi−Pj

Qj−Qi
, Pi + αkQi = Pj + αkQj . Thus, (Pj , Qj) is also a

solution of F(αk).
As a result of Lemma 1, when α ∈ (αi, αk) (resp. α ∈ (αk, αj)), (Pi, Qi)

(resp. (Pj , Qj)) is the unique solution of F(α). Consequently, αPF ̸∈ [αi, αj].
3. Similar to the proof above, we also have Qi < Qk < Qj and

αi ≤
Pi − Pk

Qk −Qi
≤ αk ≤ Pk − Pj

Qj −Qk
≤ αj ,

According to the definition of ϵ, if Pi−Pk

Qk−Qi
>

Pk−Pj

Qj−Qk
we obtain αj − αi ≥

Pi−Pk

Qk−Qi
− Pk−Pj

Qj−Qk
≥ ϵ which leads to a contradiction.

Proportional Fairness for Combinatorial Optimization 11

Thus, we have Pi−Pk

Qk−Qi
=

Pk−Pj

Qj−Qk
. Consequently, Pi−Pk

Qk−Qi
= αk =

Pk−Pj

Qj−Qk
which

implies Pk + αkQk = Pi + αkQi = Pj + αkQj . In other words, (Pi, Qi) and
(Pj , Qj) are also the solutions of F(αk). Similar to the case 2, αPF ̸∈ [αi, αj]. □

Combining these three procedures, our algorithm to determine the PF solu-
tion for Max-Max BOCO can be stated as follows.

Algorithm 4 Determine the PF solution for Max-Max BOCO

Input: An instance of Max-Max BOCO, ϵ defined as (4).
Output: PF solution if it exists or Null otherwise.
1: solving F(0) to obtain a solution (P0, Q0)
2: if V erify PF sol(0, P0, Q0) == True then return (P0, Q0)
3: end if
4: αsup ← P0/Q0 + 1
5: solving F(αsup) to obtain a solution (P sup, Qsup)
6: if V erify PF sol(αsup, P sup, Qsup) == True then return (P sup, Qsup)
7: else return SEARCH(0, P0, Q0, α

sup, P sup, Qsup, ϵ)
8: end if

Notice that since 0 < αPF and 0 < αsup, P0 ≥ PPF , Q0 ≤ QPF and P0 ≥
P sup, Q0 ≤ Qsup due to Lemma 1. Thus, αPF = PPF /QPF ≤ P0/Q0 < αsup.
Moreover, T (0) = P0 > 0 and T (αsup) = P sup−αsupQsup < P sup− P0

Q0
Qsup ≤ 0.

Theorem 2. Algorithm 4 can determine the PF solution in a logarithmic num-
ber of iterations in terms of ϵ and αsup.

Proof. The execution of Algorithm 4 is based on the binary search algorithm
for the interval [0, αsup] with a length equals αsup. At each iteration, we divided
an interval into two half-intervals with equal length. Then, the half in which
the PF coefficient cannot exist is eliminated, and the search continues on the
remaining half. Since Algorithm 4 terminated in the worst case when it found
an interval with a length smaller than ϵ, the number of iterations for Algorithm
4 is O(log2

αsup

ϵ). Consequently, Algorithm 4 can determine the PF solution in
a logarithmic number of iterations in terms of ϵ and αsup. □

Due to Theorem 2, notice that if solving F(α) and G(α) can be done in
polynomial time, then the PF solution can be determined in polynomial time.

4 Experimental study on the BOSTP

4.1 Definition and modeling

In this section, we first restate the BOSTP used in Section 3.2. The BOSTP is
a variant of the spanning tree problem that merges the Maximum STP, which

12 Nguyen et al.

involves maximizing the total profit, and the Max-Min STP, which aims to maxi-
mize the minimum edge reliability. Notice that the Maximum STP is algorithmi-
cally equivalent to the Minimum STP, a fundamental optimization problem that
can be solved efficiently in polynomial time [13]. The Max-Min STP − which is
also algorithmically equivalent to a variant called Min-Max STP mentioned in
the prior literature [14] − aims at constructing solutions having a good perfor-
mance in the worst case. For instance, in network design and optimization, the
Max-Min STP can help ensure that the weakest link (edge with minimum reli-
ability) in a communication or transportation network is as strong as possible,
minimizing the risk of failure or congestion.

For the BOSTP, we find a spanning tree achieving proportional fairness be-
tween two objectives: the total profit and the minimum edge reliability. Notice
that profit and reliability are two important criteria in the various applications
of the spanning tree problem [15]. Furthermore, for the simplicity of calcula-
tion, we suppose that the values of profit and reliability are positive integers.
Thus, the objective values of the BOSTP are also positive integers, and then the
parameter ϵ can be selected as mentioned in Section 3.2.

We consider a finite, connected, undirected graph G = (V,E) where V =
[n] := {1, ..., n} with n ≥ 2, |E| = m and pe, re ∈ Z+ are two weights associated
with edge e ∈ E representing profit and reliability on this edge, respectively. Let
T (G) denote the set of all spanning trees in G. Let P,Q > 0 denote the total
profit and the minimum edge reliability in a spanning tree of G, respectively. The

BOSTP can be formally formulated as P =
∑

e∈T,T∈T (G)

pe andQ = min
e∈T,T∈T (G)

re.

As shown in Section 3, for determining the PF solution, we aim to solve F(α) and
G(α) for some α ∈ [0, αsup]. According to Section 2, we present the formulation
for F(α).

F(α) : max P + αQ (7a)

s.t. P =
∑
e∈E

pexe (7b)

Q ≤ rexe + (1− xe)M ∀e ∈ E (7c)∑
e∈E

xe = n− 1 (7d)∑
e∈δ(V ′)

xe ≥ 1 ∀V ′ ⊆ V, ∅ ≠ V ′ ̸= V (7e)

xe ∈ {0, 1} ∀e ∈ E (7f)

where xe is the binary variables representing the occurrence of edge e in
the spanning tree solution. Constraint (7d) is the degree constraint that assures
exactly n−1 edges in the spanning tree solution. Constraints (7e) are the subtour
elimination constraints: δ(V ′) is the set of edges crossing the cut (one endpoint
in V ′ and one in V − V ′).

Proportional Fairness for Combinatorial Optimization 13

Constraints (7c) allow bounding Q by the minimum edge reliability in the
spanning tree solution. Indeed, in case xe = 1, Constraints (7c) guarantee that Q
is smaller than all the edge reliabilities in the tour. Otherwise, when xe equals 0,
the largest edge reliability M assures the validity of Constraints (7c). As P +αQ
is maximized, Q will take the minimum edge reliability values.

We present the following formulation, which contains all the constraints from
(7b) to (7f) for G(α). However, to prevent redundancy, these constraints have
been omitted.

G(α) : max P + αQ− t (8a)

s.t. t ≥ P − αQ (8b)

t ≥ αQ− P (8c)

Using two constraints (8b) and (8c), the parameter t represents the absolute
value of P − αQ.

It is important to note that a special-purpose algorithm can be used for
solving F(α) as well as G(α) in polynomial time, which is similar to the one for
solving the Min-Max STP [14]. It is based on the fact that there are at most
O(n2) different values of Q, and the Maximum STP can be solved in polynomial
time. However, in this section, we show the computational results by solving
directly the MIP formulations of F(α) and G(α) due to its simple setting and
better running time.

4.2 Computational results on the instances of the BOSTP

We investigate the performance of the presented algorithm for the BOSTP on
random NetworkX graph. It returns a Gn,pro random graph, also known as an
Erdos-Renyi graph or a binomial graph [16] where n is the number of nodes and
pro is the probability for edge creation. For this paper, we selected the number
of nodes from the interval [15, 40] with probability pro = 0.5. Moreover, the edge
profit and the edge reliability are generated uniformly randomly in the intervals
[100, 900] and [10, 90], respectively.

The solutions concerning the values of P,Q for the Maximum STP, Max-Min
STP, and the PF solutions for the BOSTP are shown in Table 1. Notice that the
Maximum STP and the Max-Min STP solutions are also feasible solutions for
the BOSTP. We provided the time calculation and the number of iterations in
the columns ”Time” and ”Iters”. For each number of nodes n, we have generated
two distinct graphs ”GNn 1” and ”GNn 2”. The values of P,Q in case the PF
solution does not exist are denoted as ”Null”. We use CPLEX 12.10 on a PC
Intel Core i5-9500 3.00GHz to solve these MIP formulations with 6 cores and 6
threads.

According to Table 1, we obtained the PF solutions for most instances and
they are different from the solutions of the Maximum STP and the Max-Min
STP. For the instance ”GN20 1”, we see that the PF solution has the same
value of Q compared to the solution of the Max-Min STP but the value of P

14 Nguyen et al.

Table 1: Computational results of Maximum STP, Max-Min STP, and BOSTP
Instance Maximum STP Max-Min STP PF solution for BOSTP

P Q Time P Q Time P Q Time Iters

GN15 1 10809 18 0.01 7727 59 0.01 9837 57 0.26 2

GN15 2 10812 10 0.02 7186 61 0.01 8587 57 0.48 3

GN20 1 15554 12 0.01 9390 54 0.03 11860 54 0.24 1

GN20 2 15152 14 0.02 9058 62 0.18 13179 61 0.30 2

GN25 1 20300 13 0.05 11046 66 0.12 Null Null 1.68 3

GN25 2 20334 10 0.04 12052 73 0.23 15743 68 3.29 2

GN30 1 24259 12 0.10 14062 74 0.30 21633 67 3.28 2

GN30 2 24272 16 0.07 13359 74 0.08 18651 71 1.96 2

GN35 1 28329 11 0.08 19314 77 0.24 Null Null 5.24 4

GN35 2 28554 17 0.05 17944 69 0.25 25138 68 4.42 2

GN40 1 33531 10 0.14 20432 73 0.24 28358 72 6.45 3

GN40 2 33681 12 0.14 17789 79 0.65 29171 68 5.07 2

is much better. Generally, the PF solutions offer a more favorable compromise
between two objectives than the solutions of the Maximum STP (resp. Max-Min
STP): the significant increase in the values of Q (resp. P) compared to the slight
drop in the values of P (resp. Q) in percentage. Table 1 also indicates that our
algorithm seems to converge quickly regarding time calculation and number of
iterations. It is worth noting that the upper bound on the number of iterations,
as specified in Theorem 2, may theoretically be higher due to the determinations
of αsup and ϵ. However, in practice, adding the selecting method of αk helps us
quickly verify the existence of the PF solution rather than only using the binary
search algorithm, especially when there is no PF solution. Another important
remark is that the existence of the PF solution seems to be much related to
the edge weights and the structure of the graph rather than to the size of the
graph. Although we randomly selected the values of profit and reliability, the
PF solutions appeared with a high frequency, approximately 85% over the total
tested instances.

5 Conclusion

In this paper, we have applied proportional fairness in the context of Max-Max
Bi-Objective Combinatorial Optimization (Max-Max BOCO) where the two ob-
jectives to be maximized take only positive values and the feasible set is discrete,
finite and non-convex. We considered a general Max-Max BOCO problem where
we looked for a solution achieving proportional fairness between two objectives -
which is referred to as proportional fair solution (PF solution). We first presented
the characterization of the PF solution for Max-Max BOCO. Then, we designed
an exact algorithm that converges within a logarithmic number of iterations
to determine the PF solution. Finally, computational experiments on some in-

Proportional Fairness for Combinatorial Optimization 15

stances of the Bi-Objective Spanning Tree Problem have shown the effectiveness
of our algorithm, indicating its rapid convergence.

For future works, in cases the PF solution does not exist, we are interested
in modifying our algorithm to provide a near-PF solution that maximizes the
product of the objectives, resembling a generalized Nash bargaining solution.
Furthermore, the results of this paper could be extended to multi-objective com-
binatorial optimization involving more than two objectives.

References

1. Kelly, F.P., Maullo, A.K., and Tan, D.K.H.: Rate control for communication net-
works: shadow prices, proportional fairness, and stability. In: Journal of the Oper-
ational Research Society, 49(3), November 1997.

2. Kushner, H.J., and Whiting, P.A.: Convergence of proportional-fair sharing algo-
rithms under general conditions. In: IEEE Transactions on Wireless Communica-
tions, 3(4):1250–1259, July 2004.

3. Nicosia, G., Pacifici, A., and Pferschy, U.: Price of Fairness for allocating a bounded
resource. In: European Journal of Operational Research, 257(3), March 2017.

4. Bertsimas, D., Farias, V.F., and Trichakis, N.: The Price of Fairness. In: Operations
Research, 59(1), pp 17-31, February 2011.

5. Nash, J.F.: The bargaining problem. In: Econometrica, Vol. 18, Issue 2, April 1950.
6. Changho Sub, Seunghoon Park, and Youngkwon Cho.: Efficient Algorithm for Pro-

portional Fairness Scheduling in Multicast OFDM Systems. In: IEEE 61st Vehicular
Technology Conference, Stockholm, May-June 2005.

7. Holger Boche, and Martin Schubert.: Nash Bargaining and Proportional Fairness
for Wireless Systems. In: IEEE/ACM Transactions on Networking, Vol. 17, No. 5,
October 2009.

8. Johannes Brehmer, and Wolfgang Utschick.: On Proportional Fairness in Non-
convex Wireless Systems. In: International ITG Workshop on Smart Antennas -
WSA, Berlin, February 2009.

9. Nguyen, M.H, Baiou, M., Nguyen, V.H., and Vo, T.Q.T.: Nash fairness solutions
for balanced TSP. In: International Network Optimization Conference, March 2022.
DOI:10.48786/inoc.2022.17

10. Nguyen, M.H, Baiou, M., and Nguyen, V.H.: Nash balanced assignment problem.
International Symposium on Combinatorial Optimization, pp 172-186, May 2022.
URL https://doi.org/10.1007/978-3-031-18530-4 13

11. Nguyen, M.H, Baiou, M., Nguyen, V.H., and Vo, T.Q.T.: Generalized Nash Fairness
solutions for Bi-Objective Minimization Problems. In: Networks, 83(1), pp 83-99,
Sept 2023. URL https://doi.org/10.1002/net.22182

12. Nguyen, M.H., Baiou, M., and Nguyen, V.H.: Determining the generalized Nash
Fairness solution set for Bi-Objective Discrete Optimization. In: Submitted to Dis-
crete Applied Mathematics, March 2023. URL https://hal.science/hal-04010827v1

13. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling sales-
man problem. In: American Mathematical Society, 7(1), 1956, pp 48-50.

14. Camerini, P.M.: The Min-Max Spanning Tree Problem. In: Information Processing
Letters, Vol. 7, Number 1, 1978.

15. Sayed, B.E., and Ehsan, B.: Optimizing profit and reliability using a bi-objective
mathematical model for oil and gas supply chain under disruption risks. In: Com-
puter & Industrial Engineering, Vol. 163, January 2022.

16. Erdos, P., and Renyi, A.: On random graphs. In: Publ. Math. 6, pp 290-297, 1959.

16 Nguyen et al.

APPENDIX

Proposition 1. If (PPF , QPF) ∈ S is a PF solution for Max-Max BOCO, then
it is the unique solution that maximizes the product PQ.

Proof. Suppose that (PPF , QPF) ∈ S is a PF solution for Max-Max BOCO. We
have

P

PPF
+

Q

QPF
≤ 2, ∀(P,Q) ∈ S,

Using Cauchy-Schwarz inequality, we obtain

2 ≥ P

PPF
+

Q

QPF
≥ 2

√
PQ

PPFQPF
,

Thus, PPFQPF ≥ PQ,∀(P,Q) ∈ S.
Now suppose that there exists another PF solution (P ∗, Q∗) ∈ S such that

P ∗Q∗ = PPFQPF . We also have

2 ≥ P ∗

PPF
+

Q∗

QPF
≥ 2

√
P ∗Q∗

PPFQPF
= 2,

Thus, the equality in the Cauchy-Schwarz inequality above must hold, which
implies P ∗ = PPF and Q∗ = QPF . □

Theorem 1. (PPF , QPF) ∈ S is the PF solution if and only if (PPF , QPF) is
a solution of F(αPF) with αPF = PPF /QPF .

Proof. =⇒ Let (PPF , QPF) be the PF solution and αPF = PPF /QPF . We
have

P

PPF
+

Q

QPF
≤ 2, ∀(P,Q) ∈ S, (9)

Multiplying (9) by PPF > 0 and replacing PPF /QPF by αPF , we obtain

PPF + αPFQPF ≥ P + αPFQ, ∀(P,Q) ∈ S,

Hence, (PPF , QPF) is a solution of F(αPF).
⇐= Let (PPF , QPF) be a solution of F(αPF) with αPF = PPF /QPF . We

have

P + αPFQ ≤ PPF + αPFQPF , ∀(P,Q) ∈ S,

Replacing αPF by PPF /QPF , we obtain (2) which implies (PPF , QPF) is
the PF solution. □

