Proportional Fairness for Combinatorial Optimization

Minh Hieu Nguyen, Mourad Baiou, Viet Hung Nguyen, Thi Quynh Trang Vo

To cite this version:

Minh Hieu Nguyen, Mourad Baiou, Viet Hung Nguyen, Thi Quynh Trang Vo. Proportional Fairness for Combinatorial Optimization. Latin American Theoretical Informatics Symposium (LATIN 2024), Mar 2024, Puerto Varas, Chile. hal-04240500v2

HAL Id: hal-04240500 https://hal.science/hal-04240500v2

Submitted on 5 Jan 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Proportional Fairness for Combinatorial Optimization

Minh Hieu Nguyen ${ }^{1}$, Mourad Baiou ${ }^{1}$, Viet Hung Nguyen ${ }^{1}$, and Thi Quynh Trang Vo ${ }^{1}$
INP Clermont Auvergne, Univ Clermont Auvergne, Mines Saint-Etienne, CNRS, UMR 6158 LIMOS, 1 Rue de la Chebarde, Aubiere Cedex, France
Corresponding author: viet_hung.nguyen@uca.fr

Abstract

Proportional fairness (PF) is a widely studied concept in the literature, particularly in telecommunications, network design, resource allocation, and social choice. It aims to distribute utilities to ensure fairness and equity among users while optimizing system performance. Under convexity, PF is equivalent to the Nash bargaining solution, a wellknown notion from cooperative game theory, and it can be obtained by maximizing the product of the utilities. In contrast, when dealing with non-convex optimization, PF is not guaranteed to exist; when it exists, it is also the Nash bargaining solution. Consequently, finding PF under non-convexity remains challenging since it is not equivalent to any known optimization problem. This paper deals with PF in the context of combinatorial optimization, where the feasible set is discrete, finite, and non-convex. For this purpose, we consider a general Max-Max Bi-Objective Combinatorial Optimization (Max-Max BOCO) problem where its two objectives to be simultaneously maximized take only positive values. Then, we seek to find the solution to achieving PF between two objectives, referred to as proportional fair solution (PF solution). We first show that the PF solution, when it exists, can be obtained by maximizing a suitable linear combination of two objectives. Subsequently, our main contribution lies in presenting an exact algorithm that converges within a logarithmic number of iterations to determine the PF solution. Finally, we provide computational results on the bi-objective spanning tree problem, a specific example of Max-Max BOCO.

Keywords: Combinatorial Optimization • Bi-Objective Combinatorial Optimization • Nash Bargaining Solution • Proportional Fairness

1 Introduction

Proportional fairness (PF) is a widely studied concept in the literature, particularly in telecommunications, network design, resource allocation, and social choice. The goal of PF is to provide a compromise between the utilitarian rule which emphasizes overall system efficiency, and the egalitarian rule - which emphasizes individual fairness. For example, in wireless communication systems, PF
is often used to allocate transmission power, bandwidth, and data rates among mobile users to maximize overall system throughput while ensuring fair access for all users [1]. In network scheduling and traffic management, PF plays a significant role in packet scheduling algorithms. It helps ensure that packets from different flows or users are treated fairly, preventing any single user from dominating network resources [2]. In resource allocation, PF is applied to prevent resource starvation and improve system efficiency by dynamically distributing resources based on the individual demands of users, thereby enhancing overall system performance and ensuring a fair utilization of available resources [3].

The PF concept is proposed for multi-player problems where each player is represented by a utility function [4]. It has been demonstrated that if the feasible set is convex, PF is equivalent to the Nash bargaining solution, which always exists and can be obtained by maximizing the product of the utilities (or equivalently, by maximizing a logarithmic sum problem) [1], [4], [5]. In this case, finding the optimal solution is computationally expensive since the objective remains nonlinear. Thus, in practice, heuristic algorithms are often employed to find approximate solutions that achieve near-PF in some special scenarios (see, e.g., [2], [6]). In contrast, when dealing with non-convex optimization, the existence of PF is not guaranteed, and if it exists, it is also the Nash bargaining solution [1], [7]. To address such a case, popular approaches involve considering certain non-convex sets, which are convex after a logarithmic transformation [7]. An alternative approach is to introduce the concept of local proportional fairness, which is always achievable, and then analyze its properties [8].

This paper deals with PF in the context of combinatorial optimization, where the feasible set is discrete, finite, and non-convex. For this purpose, we consider a general Max-Max Bi-Objective Combinatorial Optimization (Max-Max BOCO) problem with two objectives to be simultaneously maximized. Notice that a general Max-Max BOCO can be considered a two-player problem with two utility functions. Then, we seek to find the solution achieving PF between two objectives, referred to as proportional fair solution (PF solution).

Some approaches using PF as a criterion for solving the bi-objective minimization problems have been introduced in [9], [10], [11]. In these scenarios, the solution achieved PF, referred to as the Nash Fairness (NF) solution, always exists and can be obtained by an iterative algorithm based on the application of the Newton-Raphson method. The NF solution is also generalized in bi-objective discrete optimization, where the objectives can be either maximized or minimized. As a result, the PF solution described in this paper represents a specific instance of the NF solution for Max-Max BOCO, as mentioned in [12]. However, it is important to note that in [12], the authors primarily introduced the concept of NF solution and focused on calculating the NF solution set for the cases when it always exists, and there may be many NF solutions (i.e., for Max-Min BOCO and Min-Min BOCO). Generally, determining the PF solution in combinatorial optimization remains a challenging question, especially when it is not guaranteed to exist and cannot be directly obtained by applying the Newton-Raphson method.

In this paper, we first show that the PF solution, when it exists, can be found by maximizing a suitable linear combination of two objectives. Then, our main contribution lies in presenting an exact algorithm that converges within a logarithmic (of fixed parameters depending on the data) number of iterations to determine efficiently the PF solution for Max-Max BOCO. Finally, we provide computational results on the Bi-Objective Spanning Tree Problem (BOSTP), a specific example of Max-Max BOCO. Notice that when the linear combination of two objectives can be solved in polynomial time, by the result in this paper, the PF solution, if it exists, can be determined in weakly polynomial time. To the best of our knowledge, this is the first approach in combinatorial optimization where an efficient algorithm has been developed for identifying PF. Furthermore, it can also be used in convex optimization.

The paper is organized as follows. In Section 2, we discuss the characterization of the PF solution for Max-Max BOCO. In Section 3, we propose an exact algorithm for finding the PF solution. Computational results on some instances of the BOSTP will be presented in Section 4. Finally, in Section 5, we give some conclusions and future works.

2 Characterization of the PF solution

Since the objectives of Max-Max BOCO is to be simultaneously maximized, it can be formulated as

$$
\max _{x \in \mathcal{X}}(P(x), Q(x))
$$

where \mathcal{X} denotes the set of all feasible decision vectors x. For Max-Max BOCO, we suppose that \mathcal{X} is a finite set and $P(x), Q(x)>0, \forall x \in \mathcal{X}$.

Let $(P, Q)=(P(x), Q(x))$ denote the objective values corresponding to a decision vector $x \in \mathcal{X}$. Let \mathcal{S} represent the set of pairs (P, Q) corresponding to all feasible decision vector solutions. This paper will characterize the feasible solutions for Max-Max BOCO using pairs (P, Q) instead of explicitly listing the decision vector solutions. Thus, two feasible solutions having the same values of (P, Q) will be considered equivalent. Throughout this paper, we use the notation $" \equiv "$ to denote equivalent solutions. Since \mathcal{X} is finite, the number of feasible solutions is also finite, implying that \mathcal{S} is a finite set. For Max-Max BOCO, the PF solution ($P^{P F}, Q^{P F}$) should be such that, if compared to any other solution (P, Q), the aggregate proportional change is non-positive (see, e.g., [1], [4]). Mathematically, we have

$$
\frac{P-P^{P F}}{P^{P F}}+\frac{Q-Q^{P F}}{Q^{P F}} \leq 0 \Longleftrightarrow \frac{P}{P^{P F}}+\frac{Q}{Q^{P F}} \leq 2, \forall(P, Q) \in \mathcal{S}
$$

We recall that the PF solution does not always exist. For example, if \mathcal{S} contains two feasible solutions $\left(P_{1}, Q_{1}\right)=(2,2)$ and $\left(P_{2}, Q_{2}\right)=(1,4)$ then none of them is PF solution since $P_{1} / P_{2}+Q_{1} / Q_{2}>2$ and $P_{2} / P_{1}+Q_{2} / Q_{1}>2$.

Proposition 1. If $\left(P^{P F}, Q^{P F}\right)$ is a PF solution for Max-Max BOCO, then it is the unique solution that maximizes the product $P Q$.

Notice that the generalized version of Proposition 1 for non-convex optimization has been presented in [7]. In the following, we show that the PF solution, when it exists, can be obtained by maximizing a suitable linear combination of P and Q by considering the optimization problem:

$$
\mathcal{F}(\alpha)=\max _{(P, Q) \in \mathcal{S}} f_{\alpha}(P, Q)
$$

where $f_{\alpha}(P, Q)=P+\alpha Q$ and $\alpha \geq 0$ is a coefficient to be determined.
Notice that we assume the existence of the algorithms for maximizing the linear combinations of P and Q, including for maximizing P and Q.

Theorem 1. [12] $\left(P^{P F}, Q^{P F}\right) \in \mathcal{S}$ is the $P F$ solution if and only if $\left(P^{P F}, Q^{P F}\right)$ is a solution of $\mathcal{F}\left(\alpha^{P F}\right)$ with $\alpha^{P F}=P^{P F} / Q^{P F}$.

As Theorem 1 provides a necessary and sufficient condition for the PF solution, the main question is how to propose an exact algorithm for determining the PF solution based on Theorem 1. We answer this question in the next section.

3 Algorithm for determining the PF solution

3.1 Algorithm construction

In this section, we outline the idea of constructing an exact algorithm to determine the PF solution for Max-Max BOCO.

For a given $\alpha_{k} \geq 0$, let $T\left(\alpha_{k}\right):=P_{k}-\alpha_{k} Q_{k}$ where $\left(P_{k}, Q_{k}\right)$ is a solution of $\mathcal{F}\left(\alpha_{k}\right)$. Throughout this paper, let $\left(P^{P F}, Q^{P F}\right)$ denote the PF solution and $\alpha^{P F}$ denote the PF coefficient, a coefficient such that $\left(P^{P F}, Q^{P F}\right)$ is a solution of $\mathcal{F}\left(\alpha^{P F}\right)$ and $P^{P F}=\alpha^{P F} Q^{P F}$. We have $T\left(\alpha^{P F}\right)=P^{P F}-\alpha^{P F} Q^{P F}=0$. According to Theorem 1 and the uniqueness of the PF solution when it exists, determining the PF solution is equivalent to determining the PF coefficient $\alpha^{P F}$.

We first show the monotonic relationship between $\alpha \geq 0$ and the solution of $\mathcal{F}(\alpha)$ with respect to the values of P and Q. Consequently, we also deduce the monotonic relationship between α and $T(\alpha)$.

Lemma 1. Given $0 \leq \alpha^{\prime}<\alpha^{\prime \prime}$ and let $\left(P^{\prime}, Q^{\prime}\right),\left(P^{\prime \prime}, Q^{\prime \prime}\right) \in \mathcal{S}$ be the solutions of $\mathcal{F}\left(\alpha^{\prime}\right)$ and $\mathcal{F}\left(\alpha^{\prime \prime}\right)$, respectively. Then $P^{\prime} \geq P^{\prime \prime}$ and $Q^{\prime} \leq Q^{\prime \prime}$. Moreover, $T\left(\alpha^{\prime}\right)>T\left(\alpha^{\prime \prime}\right)$.

Proof. The optimality of $\left(P^{\prime}, Q^{\prime}\right)$ and $\left(P^{\prime \prime}, Q^{\prime \prime}\right)$ gives

$$
\begin{align*}
& P^{\prime}+\alpha^{\prime} Q^{\prime} \geq P^{\prime \prime}+\alpha^{\prime} Q^{\prime \prime}, \text { and } \tag{1a}\\
& P^{\prime \prime}+\alpha^{\prime \prime} Q^{\prime \prime} \geq P^{\prime}+\alpha^{\prime \prime} Q^{\prime} \tag{1b}
\end{align*}
$$

Adding (1a) and (1b) gives $\left(\alpha^{\prime}-\alpha^{\prime \prime}\right)\left(Q^{\prime}-Q^{\prime \prime}\right) \geq 0$. Since $\alpha^{\prime}<\alpha^{\prime \prime}, Q^{\prime} \leq Q^{\prime \prime}$. On the other hand, the inequality (1a) implies $P^{\prime}-P^{\prime \prime} \geq \alpha^{\prime}\left(Q^{\prime \prime}-Q^{\prime}\right) \geq 0$. Since $P^{\prime} \geq P^{\prime \prime}, Q^{\prime} \leq Q^{\prime \prime}$ and $\alpha^{\prime}<\alpha^{\prime \prime}$, we obtain $T\left(\alpha^{\prime}\right)=P^{\prime}-\alpha^{\prime} Q^{\prime} \geq$ $P^{\prime \prime}-\alpha^{\prime} Q^{\prime \prime}>P^{\prime \prime}-\alpha^{\prime \prime} Q^{\prime \prime}=T\left(\alpha^{\prime \prime}\right)$.

As a result of Lemma 1, if $\alpha^{\prime}<\alpha^{\prime \prime}$ and $\left(P^{\prime}, Q^{\prime}\right)$ is the solution of both $\mathcal{F}\left(\alpha^{\prime}\right)$ and $\mathcal{F}\left(\alpha^{\prime \prime}\right)$ then $\left(P^{\prime}, Q^{\prime}\right)$ is the solution of $\mathcal{F}(\alpha)$ for all $\alpha^{\prime}<\alpha<\alpha^{\prime \prime}$. Moreover, based on the monotonic relationship between α and $T(\alpha)$, for given $0 \leq \alpha_{i}<\alpha_{j}$ and $T\left(\alpha_{i}\right) T\left(\alpha_{j}\right)>0$, we have $\alpha^{P F} \notin\left(\alpha_{i}, \alpha_{j}\right)$ because for $\alpha^{\prime} \in\left(\alpha_{i}, \alpha_{j}\right)$ and an arbitrary solution $\left(P^{\prime}, Q^{\prime}\right)$ of $\mathcal{F}\left(\alpha^{\prime}\right), T\left(\alpha^{\prime}\right)$ has the same sign as $T\left(\alpha_{i}\right)$ and $T\left(\alpha_{j}\right)$ which implies $T\left(\alpha^{\prime}\right) \neq 0$ and then $\alpha^{\prime} \neq \alpha^{P F}$.

Let $\alpha^{\text {sup }}$ be an upper bound of $\alpha^{P F}$ such that $\alpha^{P F}<\alpha^{\text {sup }}$ (we will provide a detailed definition for $\alpha^{\text {sup }}$ in our algorithm). According to the results of Theorem 1 and Lemma 1, the main idea of our algorithm is based on the binary search algorithm in the interval $\left[0, \alpha^{\text {sup }}\right]$. More precisely, we use Procedure $S E A R C H()$ to identify the PF solution and the PF coefficient $\alpha^{P F}$ in such interval, ensuring that $T\left(\alpha^{P F}\right)=0$. Starting from an interval $\left[\alpha_{i}, \alpha_{j}\right] \subseteq\left[0, \alpha^{s u p}\right]$ with $T\left(\alpha_{i}\right)>0$ and $T\left(\alpha_{j}\right)<0$, Procedure $\operatorname{SEARCH}()$ selects α_{s} as the midpoint of the interval [α_{i}, α_{j}] and solve $\mathcal{F}\left(\alpha_{s}\right)$ to obtain a solution $\left(P_{s}, Q_{s}\right)$. Then, we use Procedure Verify_PF_sol () and Procedure Verify_ $P F_{-}$coeff () to verify whether $\left(P_{s}, Q_{s}\right)$ is the PF solution and whether α_{s} is the PF coefficient, respectively. If the verification is unsuccessful, the half-interval in which the PF coefficient cannot exist is eliminated, and we retain only one half-interval for further exploration within Procedure $\operatorname{SEARCH}()$. The choice is made between $\left[\alpha_{i}, \alpha_{s}\right.$] and $\left[\alpha_{s}, \alpha_{j}\right]$, depending on the sign of $T\left(\alpha_{s}\right)$. We continue these steps until we obtain an interval with a length smaller than a positive parameter ϵ defined by the input of the Max-Max BOCO problem. The selection method of ϵ guarantees the absence of the PF coefficient in such an interval. Consequently, our algorithm always converges in a logarithmic number of iterations in terms of ϵ and $\alpha^{s u p}$.

In the following, we present our algorithm's statement and proofs.

3.2 Algorithm statement and proofs

In this section, we first introduce Procedure Verify_PF_sol $\left(\alpha_{0}, P_{0}, Q_{0}\right)$ to verify whether a solution $\left(P_{0}, Q_{0}\right)$ of $\mathcal{F}\left(\alpha_{0}\right)$ is the PF solution. The correctness of this procedure will be shown in the next lemma.

```
Procedure 1 Verify whether a solution \(\left(P_{0}, Q_{0}\right)\) of \(\mathcal{F}\left(\alpha_{0}\right)\) is the PF solution
Input: \(\alpha_{0} \geq 0,\left(P_{0}, Q_{0}\right) \in \mathcal{S}\) is a solution of \(\mathcal{F}\left(\alpha_{0}\right)\).
Output: True if \(\left(P_{0}, Q_{0}\right)\) is the PF solution or False otherwise.
    procedure Verify_PF_sol \(\left(\alpha_{0}, P_{0}, Q_{0}\right)\)
        if \(P_{0}-\alpha_{0} Q_{0}=0\) then return True
        else
            \(\alpha^{\prime} \leftarrow P_{0} / Q_{0}\)
            solving \(\mathcal{F}\left(\alpha^{\prime}\right)\) to obtain the solution \(\left(P^{\prime}, Q^{\prime}\right)\).
            if \(f_{\alpha^{\prime}}\left(P^{\prime}, Q^{\prime}\right)=f_{\alpha^{\prime}}\left(P_{0}, Q_{0}\right)\) then return True
            else return False
            end if
        end if
    end procedure
```

Lemma 2. Given $\alpha_{0} \geq 0$ and $\left(P_{0}, Q_{0}\right) \in \mathcal{S}$ as a solution of $\mathcal{F}\left(\alpha_{0}\right)$. Let $\alpha^{\prime}=$ P_{0} / Q_{0} and $\left(P^{\prime}, Q^{\prime}\right)$ be a solution of $\mathcal{F}\left(\alpha^{\prime}\right)$. If $T\left(\alpha_{0}\right)=P_{0}-\alpha_{0} Q_{0} \neq 0$ then $\left(P_{0}, Q_{0}\right)$ is the PF solution if and only if $f_{\alpha^{\prime}}\left(P^{\prime}, Q^{\prime}\right)=f_{\alpha^{\prime}}\left(P_{0}, Q_{0}\right)$.

Proof. \Longrightarrow If $\left(P_{0}, Q_{0}\right)$ is the PF solution then $\left(P_{0}, Q_{0}\right)$ is also a solution of $\mathcal{F}\left(\alpha^{\prime}\right)$ due to Theorem 1. Thus, $f_{\alpha^{\prime}}\left(P^{\prime}, Q^{\prime}\right)=f_{\alpha^{\prime}}\left(P_{0}, Q_{0}\right)$.
\Longleftarrow If $f_{\alpha^{\prime}}\left(P^{\prime}, Q^{\prime}\right)=f_{\alpha^{\prime}}\left(P_{0}, Q_{0}\right)$ then $\left(P_{0}, Q_{0}\right)$ is also a solution of $\mathcal{F}\left(\alpha^{\prime}\right)$. Since $\alpha^{\prime}=P_{0} / Q_{0},\left(P_{0}, Q_{0}\right)$ is the PF solution due to Theorem 1.

Then, from a given $\alpha_{0} \geq 0$ and a solution $\left(P_{0}, Q_{0}\right)$ of $\mathcal{F}\left(\alpha_{0}\right)$, we discuss how to construct Procedure Verify_PF_coeff $\left(\alpha_{0}, P_{0}, Q_{0}\right)$ which aims to verify whether α_{0} is the PF coefficient and return the PF solution if the verification is successful. It is important to remind that if $T\left(\alpha_{0}\right)=P_{0}-\alpha_{0} Q_{0}=0$ then $\alpha_{0}=\alpha^{P F}$ and $\left(P_{0}, Q_{0}\right)$ is necessarily the PF solution due to Theorem 1 . However, if $T\left(\alpha_{0}\right) \neq 0$, we may not assert that $\alpha_{0} \neq \alpha^{P F}$ as well as $\left(P_{0}, Q_{0}\right)$ is not the PF solution. In general, although the PF solution is necessary a solution of $\mathcal{F}\left(\alpha^{P F}\right)$, we might not obtain the PF solution by solving $\mathcal{F}\left(\alpha^{P F}\right)$. The fact is that the problem $\mathcal{F}\left(\alpha^{P F}\right)$ may have multiple solutions, and we obtain one solution, which might not be the PF solution. More precisely, we state the following proposition.

Proposition 2. We might not obtain the PF solution by solving $\mathcal{F}(\alpha), \forall \alpha \geq 0$.
Proof. To prove this conclusion, we consider an example of the Bi-Objective Spanning Tree Problem (BOSTP) which is also a Max-Max BOCO problem. Let G be an undirected, connected graph, and each edge of G is associated with two positive values: profit and reliability. The BOSTP consists of finding a spanning tree of G, maximizing both the total profit and the minimum edge reliability.

This example of BOSTP with two values on each edge is illustrated in Figure 1. For example, the profit and reliability associated with edge (14) are 20 and 9.

Fig. 1: An example of the BOSTP

Let (P, Q) denote the solution for the total profit and the minimum edge reliability corresponding to a spanning tree solution. We show each distinct spanning tree by listing its edges and the corresponding solution (P, Q) as follows.

- (14) (15) (23) (25) and $\left(P_{1}, Q_{1}\right)=(70,9)$
- (14) (15) (23) (35) and $\left(P_{2}, Q_{2}\right)=(80,8)$
- (14) (15) (25) (35) and $\left(P_{3}, Q_{3}\right)=(74,8)$
- (14) (45) (23) (25) and $\left(P_{4}, Q_{4}\right)=(90,6)$
- (14) (45) (23) (35) and $\left(P_{5}, Q_{5}\right)=(100,6)$
- (14) (45) (25) (35) and $\left(P_{6}, Q_{6}\right)=(94,6)$
- (15) (45) (23) (25) and $\left(P_{7}, Q_{7}\right)=(86,6)$
- (15) (45) (23) (35) and $\left(P_{8}, Q_{8}\right)=(96,6)$
- (15) (45) (25) (35) and $\left(P_{9}, Q_{9}\right)=(90,6)$

Then, we can easily verify that $\left(P_{2}, Q_{2}\right)$ is the PF solution since

$$
\frac{P_{i}}{P_{2}}+\frac{Q_{i}}{Q_{2}} \leq 2, \forall 1 \leq i \leq 9
$$

Thus, we get $\alpha^{P F}=P_{2} / Q_{2}=10$. However, if $0 \leq \alpha<10$ (resp. $\alpha>10$) then $\left(P_{5}, Q_{5}\right)$ (resp. $\left.\left(P_{1}, Q_{1}\right)\right)$ is the solution of $\mathcal{F}(\alpha)$ and if $\alpha=10$, solving $\mathcal{F}(\alpha)$ may return $\left(P_{1}, Q_{1}\right)$ or $\left(P_{5}, Q_{5}\right)$ instead of the PF solution $\left(P_{2}, Q_{2}\right)$ because they are simultaneously the solutions of $\mathcal{F}(10)$ due to $P_{1}+10 Q_{1}=P_{2}+10 Q_{2}=$ $P_{5}+10 Q_{5}=160$. In this case, $T(10) \neq 0$ despite $\alpha^{P F}=10$.

Generally, if $\mathcal{F}\left(\alpha^{P F}\right)$ has multiple (distinct) solutions, including the PF solution, we might not obtain the PF solution by solving $\mathcal{F}(\alpha)$.

For Procedure Verify_PF_coeff (), we present the following optimization problem

$$
\mathcal{G}(\alpha)=\max _{(P, Q) \in \mathcal{S}} g_{\alpha}(P, Q)
$$

where $g_{\alpha}(P, Q)=P+\alpha Q-|P-\alpha Q|$ and $|$.$| denotes the absolute function.$

```
Procedure 2 Verify whether \(\alpha_{0}\) is the PF coefficient
Input: \(\alpha_{0} \geq 0,\left(P_{0}, Q_{0}\right)\) is a solution of \(\mathcal{F}\left(\alpha_{0}\right)\) and \(T\left(\alpha_{0}\right)=P_{0}-\alpha_{0} Q_{0} \neq 0\).
Output: The PF solution if \(\alpha_{0}\) is the PF coefficient or (Null, Null) otherwise.
    procedure Verify_PF_coeff \(\left(\alpha_{0}, P_{0}, Q_{0}\right)\)
        solving \(\mathcal{G}\left(\alpha_{0}\right)\) to obtain the solutions \(\left(P_{1}, Q_{1}\right)\)
        if \(g_{\alpha_{0}}\left(P_{1}, Q_{1}\right)=f_{\alpha_{0}}\left(P_{0}, Q_{0}\right)\) then return \(\left(P_{1}, Q_{1}\right)\)
        else return (Null, Null)
        end if
    end procedure
```

Lemma 3. For a given $\alpha_{0} \geq 0$, let $\left(P_{0}, Q_{0}\right),\left(P_{1}, Q_{1}\right) \in \mathcal{S}$ be the solutions of $\mathcal{F}\left(\alpha_{0}\right)$ and $\mathcal{G}\left(\alpha_{0}\right)$, respectively. If $T\left(\alpha_{0}\right)=P_{0}-\alpha_{0} Q_{0} \neq 0$ then α_{0} is the PF coefficient if and only if $g_{\alpha_{0}}\left(P_{1}, Q_{1}\right)=f_{\alpha_{0}}\left(P_{0}, Q_{0}\right)$.

Proof. \Longrightarrow Suppose that $\alpha_{0}=\alpha^{P F}$. According to Theorem 1, there exists the PF solution $\left(P^{P F}, Q^{P F}\right) \in \mathcal{S}$ such that $\left(P^{P F}, Q^{P F}\right)$ is a solution of $\mathcal{F}\left(\alpha_{0}\right)$ and $P^{P F}=\alpha_{0} Q^{P F}$. Since both $\left(P_{0}, Q_{0}\right)$ and $\left(P^{P F}, Q^{P F}\right)$ are the solutions of $\mathcal{F}\left(\alpha_{0}\right)$ and $P^{P F}-\alpha_{0} Q^{P F}=0$, we have

$$
P_{0}+\alpha_{0} Q_{0}=P^{P F}+\alpha_{0} Q^{P F}-\left|P^{P F}-\alpha_{0} Q^{P F}\right|
$$

The optimality of $\left(P^{P F}, Q^{P F}\right)$ gives

$$
P^{P F}+\alpha_{0} Q^{P F} \geq P_{1}+\alpha_{0} Q_{1}
$$

Since $\left|P_{1}-\alpha_{0} Q_{1}\right| \geq 0$, we deduce $P^{P F}+\alpha_{0} Q^{P F} \geq P_{1}+\alpha_{0} Q_{1}-\left|P_{1}-\alpha_{0} Q_{1}\right|$. Thus,

$$
\begin{equation*}
P^{P F}+\alpha_{0} Q^{P F}-\left|P^{P F}-\alpha_{0} Q^{P F}\right| \geq P_{1}+\alpha_{0} Q_{1}-\left|P_{1}-\alpha_{0} Q_{1}\right| \tag{2}
\end{equation*}
$$

Since $\left(P_{1}, Q_{1}\right)$ is a solution of $\mathcal{G}\left(\alpha_{0}\right)$, we have

$$
\begin{equation*}
P_{1}+\alpha_{0} Q_{1}-\left|P_{1}-\alpha_{0} Q_{1}\right| \geq P^{P F}+\alpha_{0} Q^{P F}-\left|P^{P F}-\alpha_{0} Q^{P F}\right| \tag{3}
\end{equation*}
$$

From (2) and (3), we get $P_{1}+\alpha_{0} Q_{1}-\left|P_{1}-\alpha_{0} Q_{1}\right|=P^{P F}+\alpha_{0} Q^{P F}-\mid P^{P F}-$ $\alpha_{0} Q^{P F} \mid=P_{0}+\alpha_{0} Q_{0}$ which implies $g_{\alpha_{0}}\left(P_{1}, Q_{1}\right)=f_{\alpha_{0}}\left(P_{0}, Q_{0}\right)$.
\Longleftarrow Suppose that $g_{\alpha_{0}}\left(P_{1}, Q_{1}\right)=f_{\alpha_{0}}\left(P_{0}, Q_{0}\right)$. We obtain $P_{1}+\alpha_{0} Q_{1}-\mid P_{1}-$ $\alpha_{0} Q_{1} \mid=P_{0}+\alpha_{0} Q_{0}$. Since $P_{1}+\alpha_{0} Q_{1}-\left|P_{1}-\alpha_{0} Q_{1}\right| \leq P_{1}+\alpha_{0} Q_{1} \leq P_{0}+\alpha_{0} Q_{0}$, we must have $\left|P_{1}-\alpha_{0} Q_{1}\right|=0$ and $P_{1}+\alpha_{0} Q_{1}=P_{0}+\alpha_{0} Q_{0}$. Consequently, $\left(P_{1}, Q_{1}\right)$ is a solution of $\mathcal{F}\left(\alpha_{0}\right)$ and $P_{1}=\alpha_{0} Q_{1}$. Thus, $\left(P_{1}, Q_{1}\right)$ is the PF solution and $\alpha_{0}=\alpha^{P F}$ due to Theorem 1 .

Notice that we can obtain the PF solution by solving $\mathcal{F}(10)$ and $\mathcal{G}(10)$ for the instance of the BOSTP mentioned in Proposition 2. Subsequently, for $0 \leq \alpha_{i}<\alpha_{j}$ and $\left(P_{i}, Q_{i}\right),\left(P_{j}, Q_{j}\right)$ as the solutions of $\mathcal{F}\left(\alpha_{i}\right)$ and $\mathcal{F}\left(\alpha_{j}\right)$, we present Procedure $\operatorname{SEARCH}\left(\alpha_{i}, P_{i}, Q_{i}, \alpha_{j}, P_{j}, Q_{j}, \epsilon\right)$ for determining the PF solution where the PF coefficient $\alpha^{P F}$ is in the interval $\left[\alpha_{i}, \alpha_{j}\right]$. We recall that the parameter ϵ is presented for the stopping condition of Procedure $S E A R C H()$ as mentioned in Section 3.1.

For Max-Max BOCO, ϵ can be determined as

$$
\begin{equation*}
\epsilon=\min \left\{\left|\frac{P^{\prime}-P^{\prime \prime}}{Q^{\prime \prime}-Q^{\prime}}-\frac{P^{\prime \prime}-P^{\prime \prime \prime}}{Q^{\prime \prime \prime}-Q^{\prime \prime}}\right|\right\} \tag{4}
\end{equation*}
$$

where $|$.$| denotes the absolute function, \left(P^{\prime}, Q^{\prime}\right),\left(P^{\prime \prime}, Q^{\prime \prime}\right),\left(P^{\prime \prime \prime}, Q^{\prime \prime \prime}\right) \in \mathcal{S}$ are the solutions of $\mathcal{F}\left(\alpha^{\prime}\right), \mathcal{F}\left(\alpha^{\prime \prime}\right), \mathcal{F}\left(\alpha^{\prime \prime \prime}\right)$ for which $0 \leq \alpha^{\prime}<\alpha^{\prime \prime}<\alpha^{\prime \prime \prime}, P^{\prime} \geq P^{\prime \prime} \geq$ $P^{\prime \prime \prime}, Q^{\prime}>Q^{\prime \prime}>Q^{\prime \prime \prime}$ and $\frac{P^{\prime}-P^{\prime \prime}}{Q^{\prime \prime}-Q^{\prime}} \neq \frac{P^{\prime \prime}-P^{\prime \prime \prime}}{Q^{\prime \prime \prime}-Q^{\prime \prime}}$.

Notice that if the objectives P, Q are positive integers (this hypothesis is natural in combinatorial optimization), from (4) we have

$$
\left|\frac{P^{\prime}-P^{\prime \prime}}{Q^{\prime \prime}-Q^{\prime}}-\frac{P^{\prime \prime}-P^{\prime \prime \prime}}{Q^{\prime \prime \prime}-Q^{\prime \prime}}\right|=\frac{\left|\left(P^{\prime}-P^{\prime \prime}\right)\left(Q^{\prime \prime \prime}-Q^{\prime \prime}\right)-\left(P^{\prime \prime}-P^{\prime \prime \prime}\right)\left(Q^{\prime \prime}-Q^{\prime}\right)\right|}{\left(Q^{\prime \prime}-Q^{\prime}\right)\left(Q^{\prime \prime \prime}-Q^{\prime \prime}\right)} \geq \frac{1}{Q_{\max }^{2}}
$$

since $\left|\left(P^{\prime}-P^{\prime \prime}\right)\left(Q^{\prime \prime \prime}-Q^{\prime \prime}\right)-\left(P^{\prime \prime}-P^{\prime \prime \prime}\right)\left(Q^{\prime \prime}-Q^{\prime}\right)\right| \in \mathbb{Z}_{+}, 0<Q^{\prime \prime}-Q^{\prime}, Q^{\prime \prime \prime}-Q^{\prime \prime} \leq$ $Q_{\max }$ where $Q_{\max }$ is the maximum value of Q. Thus, when the objectives of Max-Max BOCO take positive integer values, we can select ϵ as $1 / Q_{\text {max }}^{2}$.

Procedure 3 Determine the PF solution where the PF coefficient is in $\left[\alpha_{i}, \alpha_{j}\right]$
Input: $\left(\alpha_{i}, P_{i}, Q_{i}\right)$ and $\left(\alpha_{j}, P_{j}, Q_{j}\right)$ satisfying the following conditions:
$-0 \leq \alpha_{i}<\alpha_{j}$ such that α_{i}, α_{j} are not PF coefficients.

- $\left(P_{i}, Q_{i}\right)$ and $\left(P_{j}, Q_{j}\right)$ are solutions of $\mathcal{F}\left(\alpha_{i}\right)$ and $\mathcal{F}\left(\alpha_{j}\right)$, respectively.
$-\left(P_{i}, Q_{i}\right) \not \equiv\left(P_{j}, Q_{j}\right),\left(P_{i}, Q_{i}\right)$ and $\left(P_{j}, Q_{j}\right)$ are not PF solutions.
- a parameter ϵ as defined in (4).

Output: The PF solution if it exists or Null otherwise.
procedure $\operatorname{SEARCH}\left(\alpha_{i}, P_{i}, Q_{i}, \alpha_{j}, P_{j}, Q_{j}, \epsilon\right)$
$\alpha_{k} \leftarrow \frac{P_{i}-P_{j}}{Q_{j}-Q_{i}}$
if $\alpha_{k}=\alpha_{i}$ or $\alpha_{k}=\alpha_{j}$ then return Null
end if
solving $\mathcal{F}\left(\alpha_{k}\right)$ to obtain a solution $\left(P_{k}, Q_{k}\right)$
if Verify_PF_sol $\left(\alpha_{k}, P_{k}, Q_{k}\right)==$ True then return $\left(P_{k}, Q_{k}\right)$
end if
$\left(P^{\prime}, Q^{\prime}\right) \leftarrow$ Verify_PF_coeff $\left(\alpha_{k}, P_{k}, Q_{k}\right)$
if $\left(P^{\prime}, Q^{\prime}\right) \not \equiv($ Null, Null $)$ then return $\left(P^{\prime}, Q^{\prime}\right)$
else if $\left(P_{k}, Q_{k}\right) \equiv\left(P_{i}, Q_{i}\right)$ or $\left(P_{k}, Q_{k}\right) \equiv\left(P_{j}, Q_{j}\right)$ then return Null
else
if $\alpha_{j}-\alpha_{i} \geq \epsilon$ then
$\alpha_{s} \leftarrow \frac{\alpha_{i}+\alpha_{j}}{2}$
solving $\stackrel{2}{\mathcal{F}}\left(\alpha_{s}\right)$ to obtain a solution $\left(P_{s}, Q_{s}\right)$
if Verify_PF_sol $\left(\alpha_{s}, P_{s}, Q_{s}\right)==$ True then return $\left(P_{s}, Q_{s}\right)$
end if
$\left(P^{\prime \prime}, Q^{\prime \prime}\right) \leftarrow$ Verify_PF_coeff $\left(\alpha_{s}, P_{s}, Q_{s}\right)$
if $\left(P^{\prime \prime}, Q^{\prime \prime}\right) \not \equiv($ Null, Null $)$ then return $\left(P^{\prime \prime}, Q^{\prime \prime}\right)$
else
$T\left(\alpha_{s}\right) \leftarrow P_{s}-\alpha_{s} Q_{s}$
if $T\left(\alpha_{s}\right)>0$ then return $\operatorname{SEARCH}\left(\alpha_{s}, P_{s}, Q_{s}, \alpha_{j}, P_{j}, Q_{j}, \epsilon\right)$
else if $T\left(\alpha_{s}\right)<0$ then return $\operatorname{SEARCH}\left(\alpha_{i}, P_{i}, Q_{i}, \alpha_{s}, P_{s}, Q_{s}, \epsilon\right)$
end if
end if
else return Null
end if
end if
end procedure

It is necessary to select α_{k} at each iteration before selecting the midpoint α_{s}. The fact is that we might not obtain the PF solution by only selecting the
midpoints of the intervals. For example, in the instance of the BOSTP mentioned in Proposition 2, the PF solution can only be obtained by solving $\mathcal{F}(\alpha)$ and $\mathcal{G}(\alpha)$ with $\alpha=10$. However, by repeating choosing the midpoints of the intervals, we might not reach $\alpha_{s}=10$ (in contrast, for α_{k}, we can obtain $\alpha_{k}=10$).

By the following lemma, we show that our choosing method for α_{k} at each iteration and the parameter ϵ offer some specific criteria to promptly verify the existence of $\alpha^{P F}$ in the interval $\left[\alpha_{i}, \alpha_{j}\right.$].

Lemma 4. Let $\left[\alpha_{i}, \alpha_{j}\right]$ be an interval such that $0 \leq \alpha_{i}<\alpha_{j}, \alpha_{i}, \alpha_{j}$ are not PF coefficients. Let $\left(P_{i}, Q_{i}\right) \not \equiv\left(P_{j}, Q_{j}\right)$ be the solutions of $\mathcal{F}\left(\alpha_{i}\right), \mathcal{F}\left(\alpha_{j}\right)$ and they are not PF solutions. Let $\alpha_{k}=\frac{P_{i}-P_{j}}{Q_{j}-Q_{i}}$ and $\left(P_{k}, Q_{k}\right)$ be a solution of $\mathcal{F}\left(\alpha_{k}\right)$. If one of the following conditions is satisfied, then $\alpha^{P F} \notin\left[\alpha_{i}, \alpha_{j}\right]$.

1. Either $\alpha_{k}=\alpha_{i}$ or $\alpha_{k}=\alpha_{j}$;
2. $\alpha_{k} \neq \alpha^{P F}$ and either $\left(P_{k}, Q_{k}\right) \equiv\left(P_{i}, Q_{i}\right)$ or $\left(P_{k}, Q_{k}\right) \equiv\left(P_{j}, Q_{j}\right)$;
3. $\alpha_{k} \neq \alpha^{P F},\left(P_{k}, Q_{k}\right) \not \equiv\left(P_{i}, Q_{i}\right),\left(P_{k}, Q_{k}\right) \not \equiv\left(P_{j}, Q_{j}\right)$ and $\alpha_{j}-\alpha_{i}<\epsilon$;

Proof. Since $\alpha_{i}<\alpha_{j}$, we have $P_{i} \geq P_{j}, Q_{i} \leq Q_{j}$ due to Lemma 1. Suppose that $Q_{i}=Q_{j}$. The optimality of $\left(P_{j}, Q_{j}\right)$ gives

$$
\begin{equation*}
P_{j}+\alpha_{j} Q_{j} \geq P_{i}+\alpha_{j} Q_{i} \tag{5}
\end{equation*}
$$

Since $Q_{i}=Q_{j}$, we obtain $P_{j} \leq P_{i}$. Thus, $P_{i}=P_{j}$ and then $\left(P_{i}, Q_{i}\right) \equiv$ (P_{j}, Q_{j}) which leads to a contradiction.

Hence, $Q_{j}>Q_{i}$ and consequently, α_{k} is well defined.
We then show that $\alpha_{k} \in\left[\alpha_{i}, \alpha_{j}\right]$. The optimality of $\left(P_{i}, Q_{i}\right)$ gives

$$
\begin{equation*}
P_{i}+\alpha_{i} Q_{i} \geq P_{j}+\alpha_{i} Q_{j} \tag{6}
\end{equation*}
$$

From (5) and (6), we obtain $\alpha_{i} \leq \frac{P_{i}-P_{j}}{Q_{j}-Q_{i}} \leq \alpha_{j}$ which leads to $\alpha_{i} \leq \alpha_{k} \leq \alpha_{j}$.

1. If $\alpha_{k}=\alpha_{i}$ then $P_{i}+\alpha_{i} Q_{i}=P_{j}+\alpha_{i} Q_{j}$. Thus, $\left(P_{i}, Q_{i}\right)$ and $\left(P_{j}, Q_{j}\right)$ are both solutions of $\mathcal{F}\left(\alpha_{i}\right)$. Hence, for all $\alpha \in\left(\alpha_{i}, \alpha_{j}\right),\left(P_{j}, Q_{j}\right)$ is the unique solution of $\mathcal{F}(\alpha)$ as a result of Lemma 1. Similarly, if $\alpha_{k}=\alpha_{j},\left(P_{i}, Q_{i}\right)$ is the unique solution of $\mathcal{F}(\alpha)$ for all $\alpha \in\left(\alpha_{i}, \alpha_{j}\right)$. Since $\left(P_{i}, Q_{i}\right),\left(P_{j}, Q_{j}\right)$ are not PF solutions and α_{i}, α_{j} are not PF coefficients, we have $\alpha^{P F} \notin\left[\alpha_{i}, \alpha_{j}\right]$.
2. Let $\left(P_{k}, Q_{k}\right)$ be a solution of $\mathcal{F}\left(\alpha_{k}\right)$. Without loss of generality, we suppose that $\alpha_{k} \neq \alpha^{P F}$ and $\left(P_{k}, Q_{k}\right) \equiv\left(P_{i}, Q_{i}\right)$. Consequently, $\left(P_{i}, Q_{i}\right)$ is a solution of $\mathcal{F}\left(\alpha_{k}\right)$. Since $\alpha_{k}=\frac{P_{i}-P_{j}}{Q_{j}-Q_{i}}, P_{i}+\alpha_{k} Q_{i}=P_{j}+\alpha_{k} Q_{j}$. Thus, $\left(P_{j}, Q_{j}\right)$ is also a solution of $\mathcal{F}\left(\alpha_{k}\right)$.

As a result of Lemma 1, when $\alpha \in\left(\alpha_{i}, \alpha_{k}\right)\left(\right.$ resp. $\left.\alpha \in\left(\alpha_{k}, \alpha_{j}\right)\right)$, $\left(P_{i}, Q_{i}\right)$ (resp. $\left.\left(P_{j}, Q_{j}\right)\right)$ is the unique solution of $\mathcal{F}(\alpha)$. Consequently, $\alpha^{P F} \notin\left[\alpha_{i}, \alpha_{j}\right]$.
3. Similar to the proof above, we also have $Q_{i}<Q_{k}<Q_{j}$ and

$$
\alpha_{i} \leq \frac{P_{i}-P_{k}}{Q_{k}-Q_{i}} \leq \alpha_{k} \leq \frac{P_{k}-P_{j}}{Q_{j}-Q_{k}} \leq \alpha_{j}
$$

According to the definition of ϵ, if $\frac{P_{i}-P_{k}}{Q_{k}-Q_{i}}>\frac{P_{k}-P_{j}}{Q_{j}-Q_{k}}$ we obtain $\alpha_{j}-\alpha_{i} \geq$ $\frac{P_{i}-P_{k}}{Q_{k}-Q_{i}}-\frac{P_{k}-P_{j}}{Q_{j}-Q_{k}} \geq \epsilon$ which leads to a contradiction.

Thus, we have $\frac{P_{i}-P_{k}}{Q_{k}-Q_{i}}=\frac{P_{k}-P_{j}}{Q_{j}-Q_{k}}$. Consequently, $\frac{P_{i}-P_{k}}{Q_{k}-Q_{i}}=\alpha_{k}=\frac{P_{k}-P_{j}}{Q_{j}-Q_{k}}$ which implies $P_{k}+\alpha_{k} Q_{k}=P_{i}+\alpha_{k} Q_{i}=P_{j}+\alpha_{k} Q_{j}$. In other words, $\left(P_{i}, Q_{i}\right)$ and $\left(P_{j}, Q_{j}\right)$ are also the solutions of $\mathcal{F}\left(\alpha_{k}\right)$. Similar to the case $2, \alpha^{P F} \notin\left[\alpha_{i}, \alpha_{j}\right]$.

Combining these three procedures, our algorithm to determine the PF solution for Max-Max BOCO can be stated as follows.

```
Algorithm 4 Determine the PF solution for Max-Max BOCO
Input: An instance of Max-Max BOCO, \(\epsilon\) defined as (4).
Output: PF solution if it exists or Null otherwise.
    solving \(\mathcal{F}(0)\) to obtain a solution \(\left(P_{0}, Q_{0}\right)\)
    if Verify_PF_sol \(\left(0, P_{0}, Q_{0}\right)==\) True then return \(\left(P_{0}, Q_{0}\right)\)
    end if
    \(\alpha^{\text {sup }} \leftarrow P_{0} / Q_{0}+1\)
    solving \(\mathcal{F}\left(\alpha^{\text {sup }}\right)\) to obtain a solution \(\left(P^{\text {sup }}, Q^{\text {sup }}\right)\)
    if Verify_PF_sol \(\left(\alpha^{\text {sup }}, P^{\text {sup }}, Q^{\text {sup }}\right)==\) True then return \(\left(P^{\text {sup }}, Q^{\text {sup }}\right)\)
    else return \(\operatorname{SEARCH}\left(0, P_{0}, Q_{0}, \alpha^{s u p}, P^{s u p}, Q^{s u p}, \epsilon\right)\)
    end if
```

Notice that since $0<\alpha^{P F}$ and $0<\alpha^{s u p}, P_{0} \geq P^{P F}, Q_{0} \leq Q^{P F}$ and $P_{0} \geq$ $P^{s u p}, Q_{0} \leq Q^{\text {sup }}$ due to Lemma 1. Thus, $\alpha^{P F}=P^{P F} / Q^{P F} \leq P_{0} / Q_{0}<\alpha^{s u p}$. Moreover, $T(0)=P_{0}>0$ and $T\left(\alpha^{s u p}\right)=P^{s u p}-\alpha^{s u p} Q^{s u p}<P^{s u p}-\frac{P_{0}}{Q_{0}} Q^{s u p} \leq 0$.

Theorem 2. Algorithm 4 can determine the PF solution in a logarithmic number of iterations in terms of ϵ and $\alpha^{s u p}$.

Proof. The execution of Algorithm 4 is based on the binary search algorithm for the interval $\left[0, \alpha^{s u p}\right]$ with a length equals $\alpha^{s u p}$. At each iteration, we divided an interval into two half-intervals with equal length. Then, the half in which the PF coefficient cannot exist is eliminated, and the search continues on the remaining half. Since Algorithm 4 terminated in the worst case when it found an interval with a length smaller than ϵ, the number of iterations for Algorithm 4 is $O\left(\log _{2} \frac{\alpha^{s u p}}{\epsilon}\right)$. Consequently, Algorithm 4 can determine the PF solution in a logarithmic number of iterations in terms of ϵ and $\alpha^{s u p}$.

Due to Theorem 2, notice that if solving $\mathcal{F}(\alpha)$ and $\mathcal{G}(\alpha)$ can be done in polynomial time, then the PF solution can be determined in polynomial time.

4 Experimental study on the BOSTP

4.1 Definition and modeling

In this section, we first restate the BOSTP used in Section 3.2. The BOSTP is a variant of the spanning tree problem that merges the Maximum STP, which
involves maximizing the total profit, and the Max-Min STP, which aims to maximize the minimum edge reliability. Notice that the Maximum STP is algorithmically equivalent to the Minimum STP, a fundamental optimization problem that can be solved efficiently in polynomial time [13]. The Max-Min STP - which is also algorithmically equivalent to a variant called Min-Max STP mentioned in the prior literature [14] - aims at constructing solutions having a good performance in the worst case. For instance, in network design and optimization, the Max-Min STP can help ensure that the weakest link (edge with minimum reliability) in a communication or transportation network is as strong as possible, minimizing the risk of failure or congestion.

For the BOSTP, we find a spanning tree achieving proportional fairness between two objectives: the total profit and the minimum edge reliability. Notice that profit and reliability are two important criteria in the various applications of the spanning tree problem [15]. Furthermore, for the simplicity of calculation, we suppose that the values of profit and reliability are positive integers. Thus, the objective values of the BOSTP are also positive integers, and then the parameter ϵ can be selected as mentioned in Section 3.2.

We consider a finite, connected, undirected graph $G=(V, E)$ where $V=$ $[n]:=\{1, \ldots, n\}$ with $n \geq 2,|E|=m$ and $p_{e}, r_{e} \in \mathbb{Z}_{+}$are two weights associated with edge $e \in E$ representing profit and reliability on this edge, respectively. Let $\mathcal{T}(G)$ denote the set of all spanning trees in G. Let $P, Q>0$ denote the total profit and the minimum edge reliability in a spanning tree of G, respectively. The BOSTP can be formally formulated as $P=\sum_{e \in T, T \in \mathcal{T}(G)} p_{e}$ and $Q=\min _{e \in T, T \in \mathcal{T}(G)} r_{e}$. As shown in Section 3, for determining the PF solution, we aim to solve $\mathcal{F}(\alpha)$ and $\mathcal{G}(\alpha)$ for some $\alpha \in\left[0, \alpha^{\text {sup }}\right]$. According to Section 2, we present the formulation for $\mathcal{F}(\alpha)$.

$$
\begin{array}{rlr}
\mathcal{F}(\alpha): \max & P+\alpha Q & \\
\text { s.t. } & P=\sum_{e \in E} p_{e} x_{e} & \\
& Q \leq r_{e} x_{e}+\left(1-x_{e}\right) M & \\
& \sum_{e \in E} x_{e}=n-1 & \\
& \sum_{e \in \delta\left(V^{\prime}\right)} x_{e} \geq 1 & \\
& x_{e} \in\{0,1\} & \tag{7f}\\
& \forall e \in E
\end{array}
$$

where x_{e} is the binary variables representing the occurrence of edge e in the spanning tree solution. Constraint (7d) is the degree constraint that assures exactly $n-1$ edges in the spanning tree solution. Constraints (7e) are the subtour elimination constraints: $\delta\left(V^{\prime}\right)$ is the set of edges crossing the cut (one endpoint in V^{\prime} and one in $\left.V-V^{\prime}\right)$.

Constraints (7c) allow bounding Q by the minimum edge reliability in the spanning tree solution. Indeed, in case $x_{e}=1$, Constraints (7c) guarantee that Q is smaller than all the edge reliabilities in the tour. Otherwise, when x_{e} equals 0 , the largest edge reliability M assures the validity of Constraints (7c). As $P+\alpha Q$ is maximized, Q will take the minimum edge reliability values.

We present the following formulation, which contains all the constraints from (7b) to (7f) for $\mathcal{G}(\alpha)$. However, to prevent redundancy, these constraints have been omitted.

$$
\begin{align*}
\mathcal{G}(\alpha): \max & P+\alpha Q-t \tag{8a}\\
\text { s.t. } & t \geq P-\alpha Q \tag{8b}\\
& t \geq \alpha Q-P \tag{8c}
\end{align*}
$$

Using two constraints (8b) and (8c), the parameter t represents the absolute value of $P-\alpha Q$.

It is important to note that a special-purpose algorithm can be used for solving $\mathcal{F}(\alpha)$ as well as $\mathcal{G}(\alpha)$ in polynomial time, which is similar to the one for solving the Min-Max STP [14]. It is based on the fact that there are at most $O\left(n^{2}\right)$ different values of Q, and the Maximum STP can be solved in polynomial time. However, in this section, we show the computational results by solving directly the MIP formulations of $\mathcal{F}(\alpha)$ and $\mathcal{G}(\alpha)$ due to its simple setting and better running time.

4.2 Computational results on the instances of the BOSTP

We investigate the performance of the presented algorithm for the BOSTP on random NetworkX graph. It returns a $G_{n, p r o}$ random graph, also known as an Erdos-Renyi graph or a binomial graph [16] where n is the number of nodes and pro is the probability for edge creation. For this paper, we selected the number of nodes from the interval $[15,40]$ with probability pro $=0.5$. Moreover, the edge profit and the edge reliability are generated uniformly randomly in the intervals [100, 900] and [10, 90], respectively.

The solutions concerning the values of P, Q for the Maximum STP, Max-Min STP, and the PF solutions for the BOSTP are shown in Table 1. Notice that the Maximum STP and the Max-Min STP solutions are also feasible solutions for the BOSTP. We provided the time calculation and the number of iterations in the columns "Time" and "Iters". For each number of nodes n, we have generated two distinct graphs "GNn_1" and "GNn_2". The values of P, Q in case the PF solution does not exist are denoted as "Null". We use CPLEX 12.10 on a PC Intel Core i5-9500 3.00 GHz to solve these MIP formulations with 6 cores and 6 threads.

According to Table 1, we obtained the PF solutions for most instances and they are different from the solutions of the Maximum STP and the Max-Min STP. For the instance "GN20_1", we see that the PF solution has the same value of Q compared to the solution of the Max-Min STP but the value of P

Table 1: Computational results of Maximum STP, Max-Min STP, and BOSTP

Instance	Maximum STP				Max-Min STP				PF solution for BOSTP			
	\mathbf{P}	\mathbf{Q}	Time	\mathbf{P}	\mathbf{Q}	Time	\mathbf{P}	\mathbf{Q}	Time	Iters		
GN15_1	10809	18	0.01	7727	59	0.01	9837	57	0.26	2		
GN15_2	10812	10	0.02	7186	61	0.01	8587	57	0.48	3		
GN20_1	15554	12	0.01	9390	54	0.03	11860	54	0.24	1		
GN20_2	15152	14	0.02	9058	62	0.18	13179	61	0.30	2		
GN25_1	20300	13	0.05	11046	66	0.12	Null	Null	1.68	3		
GN25_2	20334	10	0.04	12052	73	0.23	15743	68	3.29	2		
GN30_1	24259	12	0.10	14062	74	0.30	21633	67	3.28	2		
GN30_2	24272	16	0.07	13359	74	0.08	18651	71	1.96	2		
GN35_1	28329	11	0.08	19314	77	0.24	Null	Null	5.24	4		
GN35_2	28554	17	0.05	17944	69	0.25	25138	68	4.42	2		
GN40_1	33531	10	0.14	20432	73	0.24	28358	72	6.45	3		
GN40_2	33681	12	0.14	17789	79	0.65	29171	68	5.07	2		

is much better. Generally, the PF solutions offer a more favorable compromise between two objectives than the solutions of the Maximum STP (resp. Max-Min STP): the significant increase in the values of Q (resp. P) compared to the slight drop in the values of P (resp. Q) in percentage. Table 1 also indicates that our algorithm seems to converge quickly regarding time calculation and number of iterations. It is worth noting that the upper bound on the number of iterations, as specified in Theorem 2, may theoretically be higher due to the determinations of $\alpha^{\text {sup }}$ and ϵ. However, in practice, adding the selecting method of α_{k} helps us quickly verify the existence of the PF solution rather than only using the binary search algorithm, especially when there is no PF solution. Another important remark is that the existence of the PF solution seems to be much related to the edge weights and the structure of the graph rather than to the size of the graph. Although we randomly selected the values of profit and reliability, the PF solutions appeared with a high frequency, approximately 85% over the total tested instances.

5 Conclusion

In this paper, we have applied proportional fairness in the context of Max-Max Bi-Objective Combinatorial Optimization (Max-Max BOCO) where the two objectives to be maximized take only positive values and the feasible set is discrete, finite and non-convex. We considered a general Max-Max BOCO problem where we looked for a solution achieving proportional fairness between two objectives which is referred to as proportional fair solution (PF solution). We first presented the characterization of the PF solution for Max-Max BOCO. Then, we designed an exact algorithm that converges within a logarithmic number of iterations to determine the PF solution. Finally, computational experiments on some in-
stances of the Bi-Objective Spanning Tree Problem have shown the effectiveness of our algorithm, indicating its rapid convergence.

For future works, in cases the PF solution does not exist, we are interested in modifying our algorithm to provide a near-PF solution that maximizes the product of the objectives, resembling a generalized Nash bargaining solution. Furthermore, the results of this paper could be extended to multi-objective combinatorial optimization involving more than two objectives.

References

1. Kelly, F.P., Maullo, A.K., and Tan, D.K.H.: Rate control for communication networks: shadow prices, proportional fairness, and stability. In: Journal of the Operational Research Society, 49(3), November 1997.
2. Kushner, H.J., and Whiting, P.A.: Convergence of proportional-fair sharing algorithms under general conditions. In: IEEE Transactions on Wireless Communications, 3(4):1250-1259, July 2004.
3. Nicosia, G., Pacifici, A., and Pferschy, U.: Price of Fairness for allocating a bounded resource. In: European Journal of Operational Research, 257(3), March 2017.
4. Bertsimas, D., Farias, V.F., and Trichakis, N.: The Price of Fairness. In: Operations Research, 59(1), pp 17-31, February 2011.
5. Nash, J.F.: The bargaining problem. In: Econometrica, Vol. 18, Issue 2, April 1950.
6. Changho Sub, Seunghoon Park, and Youngkwon Cho.: Efficient Algorithm for Proportional Fairness Scheduling in Multicast OFDM Systems. In: IEEE 61st Vehicular Technology Conference, Stockholm, May-June 2005.
7. Holger Boche, and Martin Schubert.: Nash Bargaining and Proportional Fairness for Wireless Systems. In: IEEE/ACM Transactions on Networking, Vol. 17, No. 5, October 2009.
8. Johannes Brehmer, and Wolfgang Utschick.: On Proportional Fairness in Nonconvex Wireless Systems. In: International ITG Workshop on Smart Antennas WSA, Berlin, February 2009.
9. Nguyen, M.H, Baiou, M., Nguyen, V.H., and Vo, T.Q.T.: Nash fairness solutions for balanced TSP. In: International Network Optimization Conference, March 2022. DOI:10.48786/inoc.2022.17
10. Nguyen, M.H, Baiou, M., and Nguyen, V.H.: Nash balanced assignment problem. International Symposium on Combinatorial Optimization, pp 172-186, May 2022. URL https://doi.org/10.1007/978-3-031-18530-4-13
11. Nguyen, M.H, Baiou, M., Nguyen, V.H., and Vo, T.Q.T.: Generalized Nash Fairness solutions for Bi-Objective Minimization Problems. In: Networks, 83(1), pp 83-99, Sept 2023. URL https://doi.org/10.1002/net.22182
12. Nguyen, M.H., Baiou, M., and Nguyen, V.H.: Determining the generalized Nash Fairness solution set for Bi-Objective Discrete Optimization. In: Submitted to Discrete Applied Mathematics, March 2023. URL https://hal.science/hal-04010827v1
13. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. In: American Mathematical Society, 7(1), 1956, pp 48-50.
14. Camerini, P.M.: The Min-Max Spanning Tree Problem. In: Information Processing Letters, Vol. 7, Number 1, 1978.
15. Sayed, B.E., and Ehsan, B.: Optimizing profit and reliability using a bi-objective mathematical model for oil and gas supply chain under disruption risks. In: Computer \& Industrial Engineering, Vol. 163, January 2022.
16. Erdos, P., and Renyi, A.: On random graphs. In: Publ. Math. 6, pp 290-297, 1959.

APPENDIX

Proposition 1. If $\left(P^{P F}, Q^{P F}\right) \in \mathcal{S}$ is a $P F$ solution for Max-Max BOCO, then it is the unique solution that maximizes the product $P Q$.
Proof. Suppose that $\left(P^{P F}, Q^{P F}\right) \in \mathcal{S}$ is a PF solution for Max-Max BOCO. We have

$$
\frac{P}{P^{P F}}+\frac{Q}{Q^{P F}} \leq 2, \forall(P, Q) \in \mathcal{S}
$$

Using Cauchy-Schwarz inequality, we obtain

$$
2 \geq \frac{P}{P^{P F}}+\frac{Q}{Q^{P F}} \geq 2 \sqrt{\frac{P Q}{P^{P F} Q^{P F}}}
$$

Thus, $P^{P F} Q^{P F} \geq P Q, \forall(P, Q) \in \mathcal{S}$.
Now suppose that there exists another PF solution $\left(P^{*}, Q^{*}\right) \in \mathcal{S}$ such that $P^{*} Q^{*}=P^{P F} Q^{P F}$. We also have

$$
2 \geq \frac{P^{*}}{P^{P F}}+\frac{Q^{*}}{Q^{P F}} \geq 2 \sqrt{\frac{P^{*} Q^{*}}{P^{P F} Q^{P F}}}=2
$$

Thus, the equality in the Cauchy-Schwarz inequality above must hold, which implies $P^{*}=P^{P F}$ and $Q^{*}=Q^{P F}$.

Theorem 1. $\left(P^{P F}, Q^{P F}\right) \in \mathcal{S}$ is the PF solution if and only if $\left(P^{P F}, Q^{P F}\right)$ is a solution of $\mathcal{F}\left(\alpha^{P F}\right)$ with $\alpha^{P F}=P^{P F} / Q^{P F}$.

Proof. \Longrightarrow Let $\left(P^{P F}, Q^{P F}\right)$ be the PF solution and $\alpha^{P F}=P^{P F} / Q^{P F}$. We have

$$
\begin{equation*}
\frac{P}{P^{P F}}+\frac{Q}{Q^{P F}} \leq 2, \forall(P, Q) \in \mathcal{S} \tag{9}
\end{equation*}
$$

Multiplying (9) by $P^{P F}>0$ and replacing $P^{P F} / Q^{P F}$ by $\alpha^{P F}$, we obtain

$$
P^{P F}+\alpha^{P F} Q^{P F} \geq P+\alpha^{P F} Q, \forall(P, Q) \in \mathcal{S}
$$

Hence, $\left(P^{P F}, Q^{P F}\right)$ is a solution of $\mathcal{F}\left(\alpha^{P F}\right)$.
$\Longleftarrow \operatorname{Let}\left(P^{P F}, Q^{P F}\right)$ be a solution of $\mathcal{F}\left(\alpha^{P F}\right)$ with $\alpha^{P F}=P^{P F} / Q^{P F}$. We have

$$
P+\alpha^{P F} Q \leq P^{P F}+\alpha^{P F} Q^{P F}, \forall(P, Q) \in \mathcal{S}
$$

Replacing $\alpha^{P F}$ by $P^{P F} / Q^{P F}$, we obtain (2) which implies $\left(P^{P F}, Q^{P F}\right)$ is the PF solution.

