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ON THE EXPANSIVENESS OF COARSE MAPS BETWEEN
BANACH SPACES AND GEOMETRY PRESERVATION

BRUNO M. BRAGA AND GILLES LANCIEN

Abstract. We introduce a new notion of embeddability between Banach
spaces. By studying the classical Mazur map, we show that it is strictly weaker
than the notion of coarse embeddability. We use the techniques from metric
cotype introduced by M. Mendel and A. Naor to prove results about cotype
preservation and complete our study of embeddability between ℓp spaces. We
confront our notion with nonlinear invariants introduced by N. Kalton, which
are defined in terms of concentration properties for Lipschitz maps defined on
countably branching Hamming or interlaced graphs. Finally, we address the
problem of the embeddability into ℓ∞.

1. Introduction

This article deals with a new notion of nonlinear embeddability between Banach
spaces and how their geometries are preserved under this new notion. More pre-
cisely, the notion considered herein will be large scale in nature and even weaker
than the usual coarse embeddability. Before presenting it, we start by recalling
the basics of coarse geometry. Given metric spaces (X, d) and (Y, ∂), and a map
f : X → Y , one defines a modulus

ωf (t) = sup{∂(f(x), f(z)) | d(x, z) ≤ t}, for t ≥ 0,

and call f coarse if ωf (t) < ∞ for all t ≥ 0. In words, f is coarse if it sends
bounded sets to bounded sets in a uniform manner. Coarse maps are the usual
morphisms considered in the study of the large scale geometry of metric spaces
and, in particular, of Banach spaces. In order to deal with embeddings, one defines
a modulus

ρf (t) = inf{∂(f(x), f(z)) | d(x, z) ≥ t}, for t ≥ 0,

and call f expanding if limt→∞ ρf (t) = ∞. In words, f is expanding if it sends
elements far apart to elements likewise uniformly. The map f is then called a
coarse embedding if it is both coarse and expanding. Despite its seemingly weak
definition, coarse embeddability is known to capture the geometry of Banach spaces
in several remarkable ways; to cite a few, we mention the cotype preservation under
coarse embeddability into Banach spaces with nontrivial type proved in the seminal
paper of M. Mendel and A. Naor ([MN08, Theorem 1.11]) and the preservation of
asymptotic-c0-ness+reflexivity proved by the second named author together with
F. Baudier, P. Motakis, and Th. Schlumprecht ([BLS18, Theorem A]).

Functional analysts working in the nonlinear geometry of Banach spaces are in-
terested in knowing the minimal requirements needed for maps between Banach
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spaces to still generate an interesting notion of embeddability; here the word “in-
teresting” should be broadly interpreted as “it is strictly weaker than a previously
studied notion of embeddability but still strong enough to impose geometric re-
strictions”. For instance, C. Rosendal has started in [Ros17] with the program of
weakening the notion of expansiveness of a coarse map f by properties such as f
being uncollapsed in the sense that there are ∆, δ > 0 such that

∥x − z∥ ≥ ∆ implies ∥f(x) − f(z)∥ > δ,

or f being solvent, meaning that there is an increasing sequence (Rn)n in N such
that

∥x − z∥ ∈ [Rn, Rn + n] implies ∥f(x) − f(z)∥ > n.

Even maps f satisfying only that
∥x − z∥ = ∆ implies ∥f(x) − f(z)∥ > δ

have already been studied; those are called almost uncollapsed (see [Bra17]). In-
spired by a recent work by the two authors (see [BL23]), this paper initiates a yet
new approach of weakening the expansiveness condition. Indeed, all the weakenings
mentioned above are not localized: the positions of x and z in X do not matter,
but only the distance ∥x−z∥. However, in [BL23], the authors started the study of
an equivalence between metric spaces called asymptotic coarse equivalence and this
takes into account the asymptotic behavior of elements x in X as they approach
infinity. In particular, those maps are not necessarily expanding anymore, but only
satisfy expansiveness as x, z → ∞. This motivates the main definition of these
notes:

Definition 1.1. Let X and Y be Banach spaces and α ∈ [0, 1]. A map f : X → Y
is called expanding at rate α if for all L > 0 there is a map ρ : [0, ∞) → [0, ∞) with
limt→∞ ρ(t) = ∞ such that

∥x − z∥ ≥ L max{∥x∥α, ∥z∥α} + L implies ∥f(x) − f(z)∥ ≥ ρ(∥x − z∥).
In case ρ can always be chosen to be of the form t

C − C for some C > 0, we say
that f is linearly expanding at rate α.

A few comments are in place here. Firstly, notice that a coarse map X → Y
is expanding if and only if it is expanding at rate 0. Also, we restrict ourselves to
α ≤ 1 since the condition of ∥x − z∥ being at least of the order of max{∥x∥α, ∥z∥α}
will not happen (up to a bounded subset) if α > 1. We say that a coarse map f has
nontrivial coarse expansion if it is expanding at rate α for some α ∈ [0, 1]. Finally,
we recall that if a coarse map f between Banach spaces satisfies ρf (t) ≥ t

C − C for
some C > 0 and all t ≥ 0, then f is called a coarse Lispchitz embedding; a stronger
notion than coarse embedding. Hence, the notion of a coarse map f being linearly
expanding at some rate should be seen as a weakening of f being a coarse Lipschitz
embedding. We now describe the main findings of this paper.

1.1. Mazur maps and metric cotype. We first show that the existence of
coarse maps which are expanding at rate α, for α ∈ (0, 1], is strictly weaker than
coarse embeddability. In fact, as it turned out, there are several well-studied maps
which witness that: the Mazur maps. Recall, given p, q ∈ [1, ∞), the Mazur map
Mp,q : ℓp → ℓq is the homogeneous extension of the canonical map which adjusts
elements in the unit sphere of ℓp so that they fall into the unit sphere of ℓq; for
brevity, we postpone to Section 2 its formal definition. While ℓp coarsely embeds
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into ℓq if and only if either p ∈ [1, 2] or p ≤ q ([MN08, Corollary 7.3]), we show that
Mp,q is coarse and has nontrivial expansion as long as p > q. Precisely:

Theorem 1.2. Let 1 ≤ q < p and α ∈ ( p−q
p , 1]. Then Mp,q : ℓp → ℓq is a coarse

map, which is expanding at rate α. Moreover, Mp,q is linearly expanding at rate 1.

If p > 2 and p > q, we know from the aforementioned result of M. Mendel and A.
Naor that ℓp does not coarsely embeds into ℓq; in our terminology just introduced,
this means that there is no coarse map ℓp → ℓq which is expanding at rate 0. By
Theorem 1.2, we are then left to understand what happens for α’s in the interval
(0, p−q

p ]. We show, using techniques from metric cotype of [MN08], that there is no
such map for all α’s in (0, p−q

p ], when 2 ≤ q < p < ∞, and that there is no such
map for all α’s in (0, p−2

p ], when 1 ≤ q < 2 < p (see Corollary 3.4). We refer to
Section 3 for all relevant definitions. Let us just say for this introduction that, for
a Banach space X, we denote

qX = inf{q ∈ [2, ∞] | X has cotype q}.

We also prove the following general result about cotype preservation, which gener-
alizes [MN08, Theorem 1.11]:

Theorem 1.3. Let X and Y be Banach spaces and suppose Y has nontrivial type.
Let α ∈ [0, 1] and suppose there is a coarse map X → Y which is expanding at rate
α. Then qX ≤ qY

1−α .

We stress here that our results do more than generalizing [MN08, Theorem 1.11].
Indeed, Theorem 1.3 together with Theorem 1.2 give us optimal results on cotype
preservation (see Corollary 3.4).

1.2. Embeddings of metric graphs into Banach spaces. After our study of
cotype preservation and the embeddability of the ℓp’s, we turn our attention to the
embeddability of certain metric graphs into Banach spaces. Recall, given k ∈ N,
we let [N]k denote the set of all subsets of N with k elements and, given n̄ ∈ [N]k,
we write n̄ = (n1, . . . , nk) where n1 < . . . < nk. As initiated by N. Kalton (see
[Kal07, Kal13b]), the study of the embeddability of the sequence ([N]k)k (endowed
with appropriate metrics) is extremely useful when looking for coarse (or coarse
Lipschitz) invariants of Banach spaces. For instance, given k ∈ N, let dH = dH,k

denote the Hamming metric on [N]k, i.e.,
dH(n̄, m̄) = |{i ∈ {1, . . . , k} | ni ̸= mi}|, for n̄, m̄ ∈ [N]k.

The following important concentration property was introduced in [KR08] and
later formalized by A. Fovelle in [Fov22] in the format presented below:

Definition 1.4. Let p ∈ (1, ∞]. A Banach space X is said to have Hamming full
concentration property p, abbreviated HFC p, if there is C ≥ 1 such that for all
k ∈ N and all 1-Lipschitz maps ϕ : ([N]k, dH) → X, there is an infinite M ⊆ N such
that

diam(ϕ([M]k)) ≤ Ck1/p

(here we use the convention 1/∞ = 0 if p = ∞).

As shown in [KR08, Theorem 4.2], reflexive spaces with a p-asymptotically uni-
formly smooth renorming have the HFCp; see Example 4.4 for definitions. More-
over, as shown in [BLMS21, Theorems A and B], having HFC∞ is equivalent to X
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being asymptotic-c0 and reflexive. We postpone to Example 4.5 the formal defini-
tion of asymptotic-c0-ness, for now, we simply say that X has such property if copies
of the finite dimensional subspaces of c0 can be found in the finite codimensional
subspaces of X in a uniform manner.

It was known that for p ∈ (1, ∞), HFCp is stable under coarse-Lipschitz embed-
dings and that HFC∞ is even stable under coarse embeddings. We show that our
weaker notions of embeddability are already enough for the HFCp properties to be
preserved in the following sense:
Theorem 1.5. Let X and Y be Banach spaces and suppose Y has HFCp for some
p ∈ (1, ∞].

(1) Suppose p ∈ (1, ∞). If there is a coarse map f : X → Y which is linearly
expanding at rate 1, then X must have HFCp.

(2) Suppose p = ∞. If there is a coarse map f : X → Y which is expanding at
rate 1, then X must have HFC∞.

In particular, applying Theorem 1.5(2) together with the characterization of
HFC∞ mentioned above ([BLMS21, Theorems B]), yields immediately the following
corollary.
Corollary 1.6. If a Banach space X can be mapped by a coarse map which is also
expanding at rate 1 into a reflexive Banach space which is asymptotic-c0, then X
must be also reflexive and asymptotic-c0.

We also study interlacing pairs in Hamming graphs in Subsection 4.2 and use
this to obtain results about the embeddability of the James spaces Jp (Example
4.9); see Theorem 4.10 and Corollary 4.13 for details.

Another important metric we can endow each [N]k with is the interlaced metric:
we set distinct elements n̄, m̄ ∈ [N]k to be adjacent if either

n1 ≤ m2 ≤ . . . ≤ nk ≤ mk or m1 ≤ n1 ≤ . . . ≤ mk ≤ nk

and then we let dI = dI,k be the shortest path metric on [N]k given by this graph
structure. The study of those metric spaces was fundamental for N. Kalton to rule
out the coarse embeddability of c0 into reflexive spaces and gave rise to the so-called
property Q’s:
Definition 1.7. Let p ∈ (1, ∞]. A Banach space X is said to have property Qp, if
there is C ≥ 1 such that for all k ∈ N and all 1-Lipschitz maps ϕ : ([N]k, dI) → X,
there is an infinite M ⊆ N such that

diam(ϕ([M]k) ≤ Ck1/p

(here we use the convention 1/∞ = 0 if p = ∞). If p = ∞, we simply say X has
property Q.

We prove that our weakenings of coarse embeddability are also strong enough to
ensure the preservation of property Qp. Precisely, we prove the following:
Theorem 1.8. Let X and Y be Banach spaces and suppose Y has property Qp for
some p ∈ (1, ∞].

(1) Suppose p ∈ (1, ∞). If there is a coarse map f : X → Y which is linearly
expanding at rate 1, then X must have property Qp.

(2) Suppose p = ∞. If there is a coarse map f : X → Y which is expanding at
rate 1, then X must have property Q∞, i.e., property Q.
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In Section 5, we characterize Lipschitz embeddability into ℓ∞ in terms of our new
notion of embeddability; this extends a result of N. Kalton (see [Kal11, Theorem
5.3]). Precisely, we prove the following.
Theorem 1.9. The following are equivalent for a Banach space X:

(1) X Lipschitzly embeds into ℓ∞.
(2) There is a coarse map f : X → ℓ∞ which is linearly expanding at rate α,

for some α ∈ (0, 1).

2. Revisiting the Mazur map

The purpose of this section is to prove some estimates for the classic Mazur map
(see Lemma 2.2) and to deduce the proof of Theorem 1.2. Recall, the Mazur map
between the unit spheres of two Lebesgue sequence spaces, say ℓp and ℓq, is the
canonical map which adjusts p-summable sequences so that they are q-summable.
Precisely, given a Banach space X, BX denotes its closed unit ball and ∂BX its unit
sphere. Then, given p, q ∈ [1, ∞), the Mazur map is the map Mp,q : ∂Bℓp → ∂Bℓq

given by
Mp,q((xn)n) = (sign(xn)|xn|p/q)n

for all (xn)n ∈ ∂Bℓp . It is evident that Mp,q is a bijection with inverse Mq,p.
Moreover, it is well-known that this map is a uniform equivalence. Precisely, the
following estimates hold (see [BL00, Theorem 9.1] for a proof and [Maz29] for its
first appearance).
Theorem 2.1 (Mazur Map). Let p, q ∈ [1, ∞) with q < p and let Mp,q : ℓp → ℓq

denote the Mazur map. There is a constant C = C(p, q) > 0 such that

C∥x − y∥p/q ≤ ∥Mp,q(x) − Mp,q(y)∥ ≤ p

q
∥x − y∥

for all x, y ∈ ∂Bℓp
.

As it is usually done, we extend the map Mp,q to the whole ℓp by homogeneity;
by a abuse of notation, we still denote this extension by Mp,q. Precisely, for each
x ∈ ℓp, we let

Mp,q(x) =
{

∥x∥Mp,q

(
x

∥x∥

)
, if x ̸= 0,

0, if x = 0.

We emphasize some important properties of the Mazur map below:
• M−1

p,q = Mq,p for all p, q ∈ [1, ∞),
• ∥Mp,q(x)∥ = ∥x∥ for all x ∈ ℓp, and
• Mp,q

(
x

∥x∥

)
= Mp,q(x)

∥Mp,q(x)∥ for all x ∈ ℓp \ {0}.
The following is the main technical result of this section.

Lemma 2.2. Let p, q ∈ [1, ∞) with q < p.
(1) For all x, y ∈ ℓp, we have

∥Mp,q(x) − Mp,q(y)∥ ≤
(2p

q
+ 1

)
∥x − y∥.

(2) For all ε > 0 and all α ∈ (0, 1], there is L = L(p, q, ε, α) > 0 so that, for
all x, y ∈ ℓp with ∥x − y∥ ≥ ε max{∥x∥α, ∥y∥α}, we have

1
L

∥x − y∥
p
q − 1

α

(
p
q −1

)
≤ ∥Mp,q(x) − Mp,q(y)∥.
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Before proving Lemma 2.2, we isolate some simple estimates for future use (cf.
[Kal13a, Lemma 3.1]).

Lemma 2.3. Let X be a Banach space and x, y ∈ X with ∥x∥ ≥ ∥y∥ > 0. The
following holds

(1)
∥∥ x

∥x∥ − y
∥y∥

∥∥ ≤ 2 ∥x−y∥
∥x∥ and

(2) ∥x − y∥ ≤ ∥x∥ − ∥y∥ + ∥y∥
∥∥ x

∥x∥ − y
∥y∥

∥∥. □

Proof of Lemma 2.2. (1) Fix x, y ∈ ℓp. Without loss of generality, suppose ∥x∥ ≥
∥y∥ > 0. Then Theorem 2.1 and Lemma 2.3 imply

∥Mp,q(x) − Mp,q(y)∥ =
∥∥∥∥x∥Mp,q

( x

∥x∥

)
− ∥y∥Mp,q

( y

∥y∥

)∥∥∥
≤∥x∥

∥∥∥Mp,q

( x

∥x∥

)
− Mp,q

( y

∥y∥

)∥∥∥
+

(
∥x∥ − ∥y∥

)∥∥∥Mp,q

( y

∥y∥

)∥∥∥
≤

(2p

q
+ 1

)
∥x − y∥.

(2) Fix ε > 0, α ∈ (0, 1], and x, y ∈ ℓp with ∥x − y∥ ≥ ε max{∥x∥α, ∥y∥α}. It is
easily checked that we may assume that ∥x∥ ≥ ∥y∥ > 0.

Suppose first that ∥x∥ − ∥y∥ > ∥x−y∥
2 , then

∥Mp,q(x) − Mp,q(y)∥ ≥ ∥Mp,q(x)∥ − ∥Mp,q(y)∥
= ∥x∥ − ∥y∥

≥ ∥x − y∥
2

(here we use that ∥Mp,q(z)∥ = ∥z∥ for all z ∈ ℓp).
Suppose now that 0 ≤ ∥x∥ − ∥y∥ ≤ ∥x−y∥

2 . Then, by Lemma 2.3, we have

(2.1) ∥x − y∥ ≤ 2∥y∥
∥∥∥ x

∥x∥
− y

∥y∥

∥∥∥ ≤ 2∥x∥
∥∥∥ x

∥x∥
− y

∥y∥

∥∥∥.

Using Theorem 2.1 and the fact that ∥Mp,q(z)∥ = ∥z∥ for all z ∈ ℓp again, we have

∥x∥
∥∥∥ x

∥x∥
− y

∥y∥

∥∥∥ ≤ ∥x∥
Cq/p

∥∥∥Mp,q

( x

∥x∥

)
− Mp,q

( y

∥y∥

)∥∥∥q/p

= ∥x∥
Cq/p

∥∥∥ Mp,q(x)
∥Mp,q(x)∥ − Mp,q(y)

∥Mp,q(y)∥

∥∥∥q/p

≤
( 2

C

)q/p

∥x∥1−q/p∥Mp,q(x) − Mp,q(y)∥q/p.

As q < p and ∥x−y∥ ≥ ε max{∥x∥α, ∥y∥α} = ε∥x∥α, (2.1) and the inequality above
imply that

∥x − y∥ ≤ 2
( 2

C

)q/p

ε
q/p−1

α ∥x − y∥
1−q/p

α ∥Mp,q(x) − Mp,q(y)∥q/p.

Simplifying the above, we conclude that

∥x − y∥
p
q − 1

α

(
p
q −1

)
≤ 21+p/q

C
ε

1−p/q
α ∥Mp,q(x) − Mp,q(y)∥.
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The result then follows taking L to be the maximum of 2 and C−121+p/qε(1−p/q)/α.
□

Proof of Theorem 1.2. The first claim is immediate from Lemma 2.2 since α being
larger than p−q

p implies that p
q − 1

α

(
p
q − 1

)
is positive. The second claim follows

immediately from Lemma 2.2 also since p
q − 1

α

(
p
q − 1

)
= 1 if α = 1. □

As a consequence of Theorem 1.2, we obtain that the existence of a coarse map
between Banach spaces which is expanding at rate α, for α ∈ (0, 1], is strictly
weaker than coarse embeddability. Indeed, it contrasts with the well-known fact
that ℓp coarsely embeds into ℓq if and only if either p ≤ q or p, q ∈ [1, 2] (see [MN08,
Corollary 7.3]).

3. Expansion and cotype preservation

In Section 2, we showed that, for p, q ∈ [1, ∞) with q < p, there are coarse
maps with nontrivial expanding properties from ℓp to ℓq; which contrasts with the
known results about the coarse embeddability of ℓp into ℓq. Precisely, Theorem
1.2 shows there are coarse maps ℓp → ℓq which are expanding at rate α as long
as α > p−q

p . Since we know that ℓp coarsely embeds into ℓq if and only if either
p ≤ q or p, q ∈ [1, 2] (see [MN08, Corollary 7.3]), this result is not true for α = 0.
The main goal of the current section is to understand what happens for α’s in the
interval (0, p−q

p ]. Using techniques developed by M. Mendel and A. Naor in their
seminal paper about metric cotype ([MN08]), we show that the results of Section
2 do not hold for 2 ≤ q < p < ∞ and α ≤ p−q

p , nor for 1 ≤ q < 2 < p and α ≤ p−2
p .

We start this section recalling the necessary background on metric cotype. Given
m ∈ N, Zm denotes the set of integers modulo m. Given n, m ∈ N, µ = µm,n

denotes the normalized counting measure on Zn
m and σ = σn denotes the normalized

counting measure on {−1, 0, 1}n. For each j ∈ {1, . . . , n}, ej denotes the vector in
Zn

m whose j-th coordinate is 1 and all others are 0.

Definition 3.1 (Metric cotype). Let (X, d) be a metric space and q, Γ > 0. We
say that X has metric cotype q with constant Γ if for all n ∈ N there is an even
m ∈ N such that for all f : Zn

m → X we have
n∑

j=1

∫
Zn

m

d
(

f
(
x + m

2 ej

)
, f(x)

)q

dµ(x)(3.1)

≤ Γqmq

∫
{−1,0,1}n

∫
Zn

m

d
(
f(x + ε), f(x)

)q
dµ(x)dσ(ε).

Given n ∈ N and Γ > 0, we let mq(X, n, Γ) be the smallest even integer m such
that (3.1) holds for all f : Zn

m → X. If no such m exists, we set mq(X, n, Γ) = ∞.

The next lemma is the main technical result of this section and is a refinement
of [MN08, Lemma 7.1].

Lemma 3.2. Let (X, d) be a metric space, n ∈ N, q, s, Γ > 0, and r ∈ (0, ∞]. Let
α ∈ [0, rs

rs+1 ], ρ : [0, ∞) → [0, ∞), and maps fn : ℓn
r (C) → X, for n ∈ N, be such

that
∥x − z∥ ≥ max{∥x∥α, ∥z∥α} + 1 implies ∥fn(x) − fn(z)∥ ≥ ρ(∥x − z∥),
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for all n ∈ N and x, z ∈ ℓn
r (C). Then, we have that for all n ∈ N:

n1/qρ(2ns) ≤ Γ · mq(X, n, Γ) · ωfn

( 2πns+1/r

mq(X, n, Γ)

)
(if r = ∞, we use the conventions 1/∞ = 0 and ∞/∞ = 1).

Proof. To simplify notation, let m = mq(X, n, Γ). By a slight abuse of notation,
we let e1, . . . , en denote the standard basis of both Zn

m and ℓn
r (C). Define a map

h : Zn
m → ℓn

r (C) by letting

h(x) = ns ·
n∑

j=1
e

2πixj
m ej

for all x = (xj)n
j=1 ∈ Zn

m. Note first that, since t 7→ eit is 1-Lipschitz on R,

∥h(x + ε) − h(x)∥r ≤ ns
∥∥∥(2π|εj |

m

)n

j=1

∥∥∥
r

≤ 2πns+1/r

m
,

for all ε = (εj)n
j=1 ∈ {−1, 0, 1}n and all x = (xj)n

j=1 ∈ Zn
m. Let gn = fn ◦ h, then

∥gn(x + ε) − gn(x)∥ ≤ ωfn

(2πns+1/r

m

)
for all ε = (εj)n

j=1 ∈ {−1, 0, 1}n and all x = (xj)n
j=1 ∈ Zn

m. Therefore, integrating
with respect to x and ε, we have

(3.2)
∫

{−1,0,1}n

∫
Zn

m

∥gn(x + ε) − gn(x)∥qdµ(x)dσ(ε) ≤ ωfn

(2πns+1/r

m

)q

.

We now use the hypothesis on fn. As α ≤ rs
rs+1 , we have that

2ns = 2(ns+1/r)
rs

rs+1 ≥ (ns+1/r)α + 1,

for all n ∈ N. Hence,∥∥∥h
(

x + m

2 ej

)
− h(x)

∥∥∥
r

= 2ns ≥ (ns+1/r)α + 1,

for all x ∈ Zn
m and all j ∈ {1, . . . , n}. Therefore, as ∥h(y)∥r = ns+1/r for all y ∈ Zn

m,
it follows that ∥∥∥gn

(
x + m

2 ej

)
− gn(x)

∥∥∥ ≥ ρ(2ns)

for all x ∈ Zn
m and all j ∈ {1, . . . , n}. Hence,

(3.3)
n∑

j=1

∫
Zn

m

∥∥∥gn

(
x + m

2 ej

)
− gn(x)

∥∥∥q

dµ(x) ≥ nρ(2ns)q.

By the definition of m = mq(M, n, Γ), (3.2) and (3.3) show that

nρ(2ns)q ≤ Γqmqωfn

(2πns+1/r

m

)q

.

Taking the q-th root at both sides above finishes the proof. □

We now turn to our result about preservation of cotype by coarse maps satisfying
some weak expanding conditions. For completeness, we quickly recall the notions
of type and cotype. Let X be a Banach space and p ∈ (1, 2]. We say that X has
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type p if there is C > 0 such that
1
2n

∑
(εi)n

i=1∈{−1,1}n

∥∥∥ n∑
i=1

εixi

∥∥∥p

≤ C

n∑
i=1

∥xi∥p

for all n ∈ N and all x1, . . . , xn ∈ X. If X does not have type p for any p ∈ (1, 2],
X is said to have trivial type. If q ∈ [2, ∞), we say that X has cotype q if there is
C > 0 such that

1
2n

∑
(εi)n

i=1∈{−1,1}n

∥∥∥ n∑
i=1

εixi

∥∥∥q

≥ C

n∑
i=1

∥xi∥q

for all n ∈ N and all x1, . . . , xn ∈ X. We let
qX = inf{q ∈ [2, ∞] | X has cotype q},

where qX is taken to be infinity if X has no cotype in [2, ∞).
Let p ∈ [1, ∞] and C ≥ 1. We say that a Banach space X contains the ℓn

p ’s
C-uniformly if for all n ∈ N, ℓn

p linearly embeds into X with distortion at most C
and that X uniformly contains the ℓn

p ’s if it contains the ℓn
p ’s C-uniformly, for some

C ≥ 1. It is known that if X uniformly contains the ℓn
p ’s, then it contains the ℓn

p ’s
C-uniformly for all C > 1. We shall also use the following fundamental result of B.
Maurey and G. Pisier [MP76]: a Banach space X uniformly contains the ℓn

qX
’s. We

refer the reader to [Mau03, Theorem 6] for a precise statement and a self contained
proof of this result, as well as for a complete survey on these notions.

We are now ready to prove the following statement, which is slightly more precise
than Theorem 1.3.

Theorem 3.3. Let 2 ≤ q < p < ∞. Suppose that X is a Banach space uniformly
containing the ℓn

p ’s and that Y has cotype q and nontrivial type and suppose also
that 0 ≤ α ≤ p−q

p . Then there is no coarse map from X to Y that is expanding at
rate α.

Proof. Fix a coarse map f : X → Y which is expanding at rate α. In particular,
there exists ρ : [0, ∞) → [0, ∞) increasing with limt→∞ ρ(t) = ∞ for which

(3.4) ∥x − z∥ ≥ 1
2 max{∥x∥α, ∥z∥α} + 1 implies ∥f(x) − f(z)∥ ≥ ρ(∥x − z∥).

Suppose towards a contradiction that 0 < α ≤ p−q
p , that is, p ≥ q

1−α . Treating
ℓn

p (C) as a real Banach space, we have, by assumption, that for each n ∈ N, there
exists an isomorphic embedding gn : ℓn

p (C) → X with distortion at most 2. Without
loss of generality, assume
(3.5) ∥x∥ ≤ ∥gn(x)∥ ≤ 2∥x∥
for all n ∈ N and all x ∈ ℓn

p (C). For each n ∈ N, let hn = f ◦ gn. It easily follows
from (3.4) and (3.5) that for x, z ∈ ℓn

p (C),
∥x − z∥ ≥ max{∥x∥α, ∥z∥α} + 1 implies ∥hn(x) − hn(z)∥ ≥ ρ(∥x − z∥).

Note also that
(3.6) ωhn

(t) ≤ ωf (2t) for all n ∈ N and all t ≥ 0.

It follows from [MN08, Theorem 4.1] that there exists Γ > 0 such that mq(Y, n, Γ) =
O(n1/q), i.e., there exists A > 0 such that mq(Y, n, Γ) ≤ An1/q for all n ∈ N (here
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is there the hypothesis of Y having nontrivial type in used). On the other hand, by
[MN08, Lemma 2.3], we have that mq(Y, n, Γ) ≥ n1/q

Γ . We now apply Lemma 3.2
with q = q, r = p and s = 1

q − 1
p . Then 0 ≤ α ≤ p−q

p = rs
rs+1 . It then follows from

Lemma 3.2 and (3.6) that

ρ
(

2n
1
q − 1

p

)
≤ ΓAωhn

( 2πn1/q

mq(Y, n, Γ)

)
≤ ΓAωf (4πΓ)

for all n ∈ N. As 1
q − 1

p > 0 and limt→∞ ρ(t) = ∞, we obtain the expected
contradiction. □

Corollary 3.4. Let 1 ≤ q < p < ∞ and α ∈ [0, 1].
(1) If q ≥ 2, then there is a coarse map f : ℓp → ℓq which is also expanding at

rate α if and only if α > p−q
p .

(2) If q ≤ 2 < p, then there is a coarse map f : ℓp → ℓq which is also expanding
at rate α if and only if α > p−2

p .

Proof. (1) Assume first that α ∈ ( p−q
p , 1]. The existence of a coarse map f : ℓp → ℓq

which is expanding at rate α is ensured by Theorem 1.2.
Assume now that α ∈ [0, p−q

p ]. Since ℓp obviously contains the ℓn
p ’s uniformly

and ℓq has cotype q, Theorem 3.3 implies that there is no coarse map from ℓp to ℓq

that is expanding at rate α.
(2) Since q ≤ 2, ℓq has cotype 2. Hence, proceeding as in the previous item,

we have that there is no coarse map f : ℓp → ℓq which is also expanding at rate α

for α ∈ [0, p−2
p ]. If α ≥ p−q

p , the Mazur map Mp,q : ℓp → ℓq is also expanding at
rate α (Theorem 1.2). Finally, if q ∈ ( p−2

p , p−q
p ], the result follows since the Mazur

map Mp,2 : ℓp → ℓ2 is expanding at rate α. Therefore, if f : ℓ2 → ℓq is a coarse
embedding (see [Now06, Theorem 5]), then f ◦ Mp,2 has the required property. □

Proof of Theorem 1.3. If α = 0, this is [MN08, Theorem 1.11] and if α = 1, this
is obvious. Assume now that α ∈ (0, 1). We may also assume that qY < ∞. As
we have recalled, by [MP76] (alternatively, see [Mau03, Theorem 6]), X uniformly
contains the ℓn

qX
’s. On the other hand, for any q > qY , Y has cotype q. It then

follows from Theorem 3.3 that α > qX −q
qX

. Taking the infimum over all q > qY

yields the conclusion. □

4. Embedding of certain graphs and expansion

In this section we will show how to use some classical countably branching metric
graphs to rule out the existence of coarse maps which are linearly expanding (or
just expanding) at rate 1 or or less between Banach spaces. Our statements will
actually be about the stability of some concentration properties for Lipschitz maps
on certain graphs under these generalizations of coarse Lipschitz (or just coarse)
embeddings. We will deal with two different distances that are defined on the
following sets.

Definition 4.1. Let k ∈ N. We denote the set of all subsets of N with k elements
by [N]k and, given n̄ ∈ [N]k, we write n̄ = (n1, . . . , nk) where n1 < . . . < nk.
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4.1. Hamming graphs. We start this section by recalling the definition of the
Hamming metric and of the associated concentration property HFCp.

Definition 4.2. Let k ∈ N. The Hamming metric dH = dH,k on [N]k is defined as
follows: given n̄ = (n1, . . . , nk), m̄ = (m1, . . . , mk) ∈ [N]k, we let

dH(n̄, m̄) = |{i ∈ {1, . . . , k} | ni ̸= mi}|.
Note that ([N]k, dH) is a metric graph in the sense that if two elements of [N]k

are declared to be adjacent if and only if they are at distance 1, then the distance
between arbitrary elements of [N]k is the length of the shortest path joining them.
In particular, if X is a Banach space and ϕ : ([N]k, dH) → X is a Lipschitz map,
then the Lipschiz constant of ϕ is Lip(ϕ) = ωϕ(1). We now recall the following
definition, due to A. Fovelle (see [Fov22, Subsection 2.5]).
Definition 4.3 (Definition 1.4). Let p ∈ (1, ∞]. We say that a Banach space
X has the Hamming full concentration property for p (abbreviated as HFCp) if
there exists a constant C ≥ 1 such that for any k ∈ N and any 1-Lipschitz map
ϕ : ([N]k, dH) → X, there exists an infinite subset M of N such that

diam(ϕ([N]k)) ≤ Ck1/p.

In the above situation, we say that X has the HFCp with constant C.
Example 4.4. N. Kalton and L. Randrianarivony proved in [KR08, Theorem 4.2]
that, given p ∈ (1, ∞), any reflexive Banach space which is also p-asymptotically
uniformly smooth (abbreviated as p-AUS) must have HFCp. Although this will not
play an important role in these notes, we recall the definition of p-AUSness here
for the readers convenience: the modulus of asymptotic uniform smoothness of a
Banach space X is given by

ρ̄X(t) = sup
x∈∂BX

inf
Y ∈cof(X)

sup
y∈∂BY

∥x + ty∥ − 1,

where cof(X) denotes the set of all closed finite codimensional subspaces of X.
Then, for p ∈ (1, ∞), X is called p-AUS if there is C ≥ 1 such that ρ̄X(t) ≤ Ctp for
all t ≥ 0. Clearly, for p ∈ (1, ∞), ℓp is p-AUS, hence, the cited result above implies
that ℓp has HFCp. But, if q < p, ℓq fails HFCp as it is witnessed by the maps

n̄ = (n1, . . . , nk) ∈ [N]k 7→
k∑

i=1
ei ∈ ℓq, k ∈ N,

where (ei)∞
i=1 is the canonical unit basis of ℓq.

Example 4.5. A Banach space X is said to be asymptotic-c0 if the following
happens:

∃C ≥ 1, ∀n ∈ N, ∃X1 ∈ cof(X), ∀x1 ∈ BX1 , . . . , ∃Xn ∈ cof(X), ∀xn ∈ BXn

such that
∥∥∥ n∑

i−1
aixi

∥∥∥ ≤ C max
1≤i≤n

|ai| for all (ai)n
i=1 ∈ RN.

The second named author together with F. Baudier, P. Motakis, and Th. Schlumprecht
proved that the property of a Banach space having HFC∞ is equivalent to it being
reflexive and asymptotic-c0 (see [BLMS21, Theorem B]).
Proof of Theorem 1.5(1). Let f : X → Y be a coarse map which is linearly expand-
ing at rate 1. We start by fixing some constants: As f is coarse, ωf (1) < ∞ and it
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follows that there is K > 1 such that
ωf (t) ≤ Kt + K, for all t ≥ 0

(this easy consequence of the triangle inequality and the metric convexity of Banach
spaces can be found, for instance, in [Kal08, Lemma 1.4]). As f is linearly expanding
at rate 1, there is L > 1 such that

(4.1) ∥x − z∥ ≥ 1
8 max{∥x∥, ∥z∥} + 1 implies ∥f(x) − f(z)∥ ≥ 1

L
∥x − z∥ − L.

Let CY ≥ 1 be a constant such that Y has HFCp with constant CY and fix C >
6KLCY + 6L2.

Assume towards a contradiction that X does not have HFCp. Then there exist
k ∈ N and a 1-Lipschitz map ϕ : ([N]k, dH) → X such that

diam(ϕ([M]k)) ≥ Ck1/p

for all infinite M ⊆ N. Let
(4.2) λ = inf{k−1/pdiam(ϕ([M]k)) | M ⊆ N and |M| = ∞};
so, λ ≥ C (in particular, λ > 12). Pick now an infinite M ⊆ N such that

λ ≤ diam(ϕ([M]k))k−1/p ≤ 2λ.

In particular, there exists x ∈ X such that ϕ([M]k) is included in the closed ball of
radius 2λk1/p centered at x. By replacing ϕ by ϕ − x, we may assume that ϕ([M]k)
is included in 2λk1/pBX .

By the definition of λ, diam(ϕ([D]k)) ≥ λk1/p for all infinite D ⊆ M. So, for
any such D, we can find n̄, m̄ ∈ [D]k with n̄ < m̄ such that ∥ϕ(n̄) − ϕ(m̄)∥ ≥
λ
3 k1/p. Indeed, for all n̄, m̄ ∈ [D]k, we can find p̄ ∈ [D]k such that n̄ < p̄ and
m̄ < p̄. Therefore, if ∥ϕ(n̄) − ϕ(m̄)∥ were smaller than λ

3 k1/p for all n̄ < m̄ in [D]k,
the triangle inequality would imply that diam(ϕ([D]k)) < λk1/p; contradiction.
Moreover, identifying a pair (n̄, m̄), where n̄, m̄ ∈ [D]k and n̄ < m̄, with an element
of [M]2k and applying Ramsey’s theorem, we may furthermore assume, by passing
to an infinite subset of M if necessary, that

(4.3) ∥ϕ(n̄) − ϕ(m̄)∥ ≥ λ

3 k1/p for all n̄, m̄ ∈ [M]k with n̄ < m̄.

As ϕ([M]k) is included in 2λk1/pBX , (4.3) and the fact that λ > 12 imply that
1
8 max

{
∥ϕ(n̄)∥, ∥ϕ(m̄)∥

}
+ 1 ≤ λk1/p

4 + 1 ≤ λk1/p

3 ≤ ∥ϕ(n̄) − ϕ(m̄)∥

for all n̄, m̄ ∈ [M]k with n̄ < m̄. Therefore, by (4.1), we must have

(4.4) ∥(f ◦ ϕ)(n̄) − (f ◦ ϕ)(m̄)∥ ≥ λk1/p

3L
− L ≥ Ck1/p

3L
− L

for all n̄, m̄ ∈ [M]k with n̄ < m̄.
On the other hand, as ϕ is 1-Lipschitz and [M]k is a metric graph, our choice

of K implies that ωf◦ϕ(1) ≤ 2K and therefore that f ◦ ϕ is 2K-Lipschitz. As Y
has HFCp with constant CY , an homogeneity argument implies the existence of an
infinite subset M′ of M satisfying
(4.5) diam(f(ϕ([M′]k))) ≤ 2KCY k1/p.
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Therefore, (4.4) and (4.5) imply that

(4.6) C

3L
≤ 2KCY + L.

This contradicts our choice of C. □

Combining this result and Example 4.4, we obtain immediately the following.

Corollary 4.6. Let p, q ∈ [1, ∞) and assume that p < q. Then there is no coarse
map from ℓp to ℓq that is linearly expanding at rate 1.

Remark 4.7. It is important to recall here that if p > q, then the Mazur map
Mp,q : ℓp → ℓq is coarse and linearly expanding at rate 1 (Theorem 1.2).

In case p = ∞, a stronger version of Theorem 1.5 holds. Precisely, HFC∞
is preserved by coarse maps which are expanding at rate 1; no need for linear
expansion here. Since the argument is completely analogous, we only indicate the
mild differences in the proof below.

Proof of Theorem 1.5(2). The proof follows almost verbatim the one of Theorem
1.5(1). Precisely, let f : X → Y be a coarse map which is expanding at rate 1 and
K and CY be chosen as in the proof of Theorem 1.5(1). The expansion property
of f gives us ρ : [0, ∞) → [0, ∞) with limt→∞ ρ(t) = ∞ and such that

∥x − z∥ ≥ 1
8 max{∥x∥, ∥z∥} + 1 implies ∥f(x) − f(z)∥ ≥ ρ(∥x − z∥).

Since limt→∞ ρ(t) = ∞, we can choose C > 0 such that ρ(C/3) > 2KCY and,
assuming that X does not have HFC∞, we obtain k ∈ N and a 1-Lipschitz map
ϕ : ([N]k, dH) → X such that

diam(ϕ([M]k)) ≥ C

for all infinite M ⊆ N. Defining λ as in (4.2) (here 1/∞ = 0) and letting M ⊆ N be
as in the proof of Theorem 1.5, the proof then proceeds verbatim until (4.4) which
in this case is replaced by

(4.7) ∥(f ◦ ϕ)(n̄) − (f ◦ ϕ)(m̄)∥ ≥ ρ
(λ

3

)
> 2KCY

for all n̄, m̄ ∈ [M]k with n̄ < m̄. Then, (4.5) becomes
diam(f(ϕ([M′]k))) ≤ 2KCY .

and both those inequalities put together give us a contradiction. □

Proof of Corollary 1.6. By [BLMS21, Theorem B], we know that having HFC∞ is
equivalent to being reflexive and asymptotic-c0. The result is then an immediate
consequence of Theorem 1.5(2). □

4.2. Interlacing pairs in Hamming graphs. Property HFCp, for p ∈ (1, ∞],
implies reflexivity (this follows from [BKL10, Theorem 4.1]). Therefore this prop-
erty is not relevant to study embeddings between non reflexive Banach spaces.
With the goal of addressing this problem, the following weakening of the HFCp was
introduced in [LR18] and formalized in [Fov22, Subsection 2.5].

Definition 4.8. Let M be an infinite subset of N and let k ∈ N. The set of strictly
interlacing pairs in [M]k is given by

Ik(M) = {(n̄, m̄) ∈ [M]k × [M]k | n1 < m1 < n2 < m2 < · · · < nk < mk}.
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Given a Banach space X and p ∈ (1, ∞], we say that X has the Hamming interlaced
concentration property for p, abbreviated as HIC p, if there exists a constant C ≥ 1
such that for any k ∈ N and any 1-Lipschitz map ϕ : ([N]k, dH) → X, there exists
an infinite subset M of N such that

∥f(n̄) − f(m̄)∥ ≤ Ck1/p, for all (n̄, m̄) ∈ Ik(M).
Example 4.9. Recall, given p ∈ (1, ∞), that the James sequence space Jp is defined
by

Jp =
{

(x(n))n ∈ RN | lim
n

x(n) = 0 and

∥x∥Jp
= sup

p1<...<pn

( n∑
i=2

|x(pi) − x(pi−1)|p
)1/p

< ∞
}

.

So, the classic James sequence space J is simply J2 and, just as J , each Jp has
codimension 1 in its bidual; which makes them quasi-reflexive Banach spaces. M.
Raja and the second named author proved in [LR18, Theorem 2.2] that, for p ∈
(1, ∞), James space Jp has HICp and that, for q < p, Jq fails HICp.

We can prove the following variant of Theorem 1.5. Notice that the assumption
on the rate of expansion has been weakened.
Theorem 4.10. Let X and Y be Banach spaces and suppose Y has HICp for some
p ∈ (1, ∞). If there is a coarse map f : X → Y which is linearly expanding at rate
1
p , then X must have HICp.

Proof. The proof is similar to the one of Theorem 1.5, but we need to detail some of
the minor modifications. So, let f : X → Y be as in the statement and CY ≥ 1 be
such that Y has HICp with constant CY . There exists K ≥ 1 so that ωf (t) ≤ Kt+K
and L ≥ 1 such that

(4.8) ∥x − z∥ ≥ max{∥x∥1/p, ∥z∥1/p} + 1 implies ∥f(x) − f(z)∥ ≥ 1
L

∥x − z∥ − L.

Assume that X fails HICp and fix C > 3 (to be precised later). Then there exist
k ∈ N and a 1-Lipschitz map ϕ : ([N]k, dH) → X such that for any infinite M ⊆ N
there exists (n̄, m̄) ∈ Ik(M) so that ∥ϕ(n̄) − ϕ(m̄)∥ > Ck1/p. Since Φ is 1-Lipschitz
and diam([N]k) = k, we may assume that ϕ([N]k) ⊆ kBX . Let

(4.9) λ = inf
{

sup
(n̄,m̄)∈Ik(M)

∥ϕ(n̄) − ϕ(m̄)∥k−1/p | M ⊆ N and |M| = ∞
}

.

So, λ ≥ C. Pick now an infinite M ⊆ N such that
λ ≤ sup

(n̄,m̄)∈Ik(M)
∥ϕ(n̄) − ϕ(m̄)∥k−1/p < 2λ.

By the definition of λ, for all infinite D ⊆ M, there exists (n̄, m̄) ∈ Ik(D) such that
∥ϕ(n̄)−ϕ(m̄)∥ > 2

3 λk1/p. Identifying Ik(D) with [D]2k and using Ramsey’s theorem,
we can therefore assume that ∥ϕ(n̄) − ϕ(m̄)∥ > 2

3 λk1/p for all (n̄, m̄) ∈ Ik(M). It
follows that for all (n̄, m̄) ∈ Ik(M):

∥ϕ(n̄) − ϕ(m̄)∥ ≥ 2C

3 k1/p ≥ C

3 k1/p + 1 ≥ max{∥ϕ(n̄)∥1/p, ∥ϕ(m̄)∥1/p} + 1.

It then follows from (4.8) that

∥(f ◦ ϕ)(n̄) − (f ◦ ϕ)(m̄)∥ ≥ 2C

3L
k1/p − L,
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for all (n̄, m̄) ∈ Ik(M).
On the other hand f ◦ϕ is 2K-Lipschitz and Y has property HICp with constant

CY , so there exists an infinite subset M′ of M so that ∥(f ◦ ϕ)(n̄) − (f ◦ ϕ)(m̄)∥ ≤
2KCY k1/p, for all (n̄, m̄) ∈ Ik(M′). This yields a contradiction for an initial large
enough choice of C (depending on K, L, CY ). □

Remark 4.11. In the case p = ∞, the analogous statement is that HIC∞ is
preserved by coarse maps expanding at rate 0, in other words by coarse embeddings.
This was already noticed in [Fov22].

Problem 4.12. Let p ∈ (1, ∞]. We do not know if the property HICp is preserved
by coarse maps that are linearly expanding at rate 1.

As an immediate application of Theorem 4.10 and Example 4.9, we get the
following.

Corollary 4.13. Let p, q ∈ [1, ∞) and assume that p < q. Then there is no coarse
map from Jp to Jq that is linearly expanding at rate 1/q. □

4.3. Interlacing graphs. We now deal with the interlacing metric of [N]k, which
was introduced by N. Kalton in [Kal07] to rule out the coarse embeddability of c0
into reflexive spaces. We start by recalling the definition of the interlaced metric
and of property Qp.

Definition 4.14. Let k ∈ N. The interlacing metric dI = dI,k on [N]k is de-
fined as follows: we endow [N]k with a graph structure by letting distinct n̄ =
(n1, . . . , nk), m̄ = (m1, . . . , mk) ∈ [N]k be adjacent if either

n1 ≤ m1 ≤ . . . ≤ nk ≤ mk or m1 ≤ n1 ≤ . . . ≤ mk ≤ nk.

The metric dI is then the shortest path metric on [N]k with respect to this graph
structure.

Definition 4.15 (Definition 1.7). Let p ∈ (1, ∞]. We say that a Banach space X
has property Qp if there exists a constant C ≥ 1 such that for any k ∈ N and any
1-Lipschitz map ϕ : ([N]k, dI) → X, there exists an infinite subset M of N such that

diam(ϕ([N]k)) ≤ Ck1/p.

(here if p = ∞, we use the convention 1/∞ = 0). If p = ∞, we simply say, following
[Kal07], that X has property Q.

Example 4.16. N. Kalton proved in [Kal07, Corollary 4.3] that reflexive Banach
spaces have property Q. In [BLPP23], it is shown that, for p ∈ (1, ∞), a dual of a
p-AUS Banach space has Qp′ , where p′ is the conjugate of p and that the dual of
an asymptotic-c0 space has Q ([BLPP23, Theorem 4.1]).

We now extend the result insuring the stability of property Qp under coarse
Lipschitz embeddings.

Proof of Theorem 1.8(1). Again the proof follows the lines of the argument for
Theorem 1.5(1). let f : X → Y be as in the statement and CY be such that Y
has Qp with constant CY . Then the constants K, L, C are defined as in the proof
of Theorem 1.5(1) and assume that X fails Qp. Then there exist k ∈ N and a
1-Lipschitz map ϕ : ([N]k, dI) → X such that for any infinite M ⊆ N,

diam(ϕ([M]k)) ≥ C
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Let
(4.10) λ = inf{diam(ϕ([M]k))k−1/p | M ⊆ N and |M| = ∞};
and we pick an infinite M ⊆ N such that

λ ≤ diam(ϕ([M]k))k−1/p < 2λ.

So assume, as we may, that ϕ([M]k) ⊆ 2λk1/pBX . By the definition of λ and arguing
as in the proof of Theorem 1.5(1), we may assume that for all n̄ < m̄ ∈ [M]k,
∥ϕ(n̄)−ϕ(m̄)∥ ≥ λ

3 k1/p. As ϕ([M]k) is included in 2λk1/p ·BX , we deduce similarly
that

(4.11) ∥(f ◦ ϕ)(n̄) − (f ◦ ϕ)(m̄)∥ ≥ λk1/p

3L
− L ≥ Ck1/p

3L
− L

for all n̄, m̄ ∈ [M]k with n̄ < m̄. The contradiction then follows exactly as in the
proof of Theorem 1.5. □

Proof of Theorem 1.8(2). We just have to adapt similarly the proof of Theorem
1.5(2). We leave the details to the reader. □

Asymptotic uniform convexity is often used, together with the approximate mid-
point principle to find obstructions to the coarse Lipschitz embeddability. This is
how it is shown that ℓp does not coarse Lipschitz embed into ℓq for p > q (see
[JLS96]). We cannot find an approximate midpoint principle for coarse maps that
are linearly expanding at rate 1 and, as we already emphasized, there is a good rea-
son for that: it follows from Theorem 1.2 that Mp,q : ℓp → ℓq is a coarse map from
that is linearly expanding at rate 1 when p > q. However, the situation is different
for the family of James spaces (Jp)p and the use of property Q and its variants can
serve as a substitute to obtain some preservation of asymptotic uniform convexity.

Corollary 4.17. Let p, q ∈ (1, ∞) and assume that p > q. Then there is no coarse
map from Jp to Jq that is linearly expanding at rate 1.

Proof. It is proved by the authors, C. Petitjean and A. Procházka in [BLPP23,
Corollaries 3.4 and 3.8] that, for p ∈ (1, ∞), Jp has property Qp′ , where p′ is the
conjugate exponent of p, but fails Qr for all r > p. Then the conclusion follows
from Theorem 1.8(2). □

5. Embeddings into ℓ∞

In this last section, we prove that Lipschitz embeddability into ℓ∞ is equivalent
to the existence of a coarse map which is linearly expanding at some rate strictly
smaller than 1. We start with an intermediate result.

Proposition 5.1. Let α ∈ (0, 1). Let X be a Banach space and suppose there is
a Lipschitz map f : X → ℓ∞ which is also linearly expanding at rate α. Then X
Lipschitzly embeds into ℓ∞.

Proof. Fix L > 0 such that, for all x, z ∈ X,

∥x − z∥ ≥ L(max{∥x∥, ∥z∥})α + L implies ∥f(x) − f(z)∥ ≥ 1
L

∥x − z∥ − L.

Denote Q+ the set of positive rational numbers and define a map F : X → ℓ∞(Q+, ℓ∞)
by letting

F (x) = (q−1f(qx))q∈Q+ , x ∈ X.



ON THE EXPANSIVENESS OF COARSE MAPS BETWEEN BANACH SPACES 17

Since,
∥F (x) − F (z)∥ = sup

q∈Q+

q−1∥f(qx) − f(qz)∥ ≤ Lip(f)∥x − z∥,

for all x, z ∈ X, we have that Lip(F ) ≤ Lip(f).
Fix now x, z ∈ X with x ̸= z. As α ∈ (0, 1), there is t > 0 large enough so that∥∥∥ tx

∥x − z∥
− tz

∥x − z∥

∥∥∥ = t ≥ L
(

max
{ ∥tx∥

∥x − z∥
,

∥tz∥
∥x − z∥

})α

+ L.

Taking an even larger t if necessary, we can also assume that L < t
2L . We may also

assume that q = t
∥x−z∥ ∈ Q+. We obtain that

∥F (x) − F (z)∥ ≥ ∥x − z∥
t

∥∥∥f
( tx

∥x − z∥

)
− f

( tz

∥x − z∥

)∥∥∥
≥ ∥x − z∥

t

( t

L
− L

)
≥ 1

2L
∥x − z∥

As x and z were arbitrary, this shows that F is a Lipschitz embedding from X into
ℓ∞(Q+, ℓ∞), which is clearly isometric to ℓ∞. □

Proof of Theorem 1.9. The implication (1)⇒(2) is immediate. Suppose (2) holds
and let f : X → ℓ∞ be such a map. Let N ⊆ X be a net of X, i.e., for some δ, ε > 0
the set N is δ-separated and ε-dense in X. Since f is coarse and X is metrically
convex, as we have already seen (cf [Kal08, Lemma 1.4]), f is coarse-Lipschitz, in
fact, we have that

∥f(x) − f(z)∥ ≤ ωf (1)∥x − z∥ + ωf (1)
for all x, z ∈ X. Therefore, as N is δ-separated, f ↾ N , the restriction of f to N ,
is Lipschitz with Lip(f ↾ N) ≤ ωf (1)(1 + 1/δ) = C. Since any Lipschitz map into
ℓ∞ can be extended to larger subsets without increasing its Lipschitz constant (see
[Kal08, Section 3.3]), there is a Lipschitz map h : X → ℓ∞ such that h ↾ N = f ↾ N
and Lip(h) = C. As N is ε-dense in X and f and h coincide on N , we easily deduce
that ∥f − h∥ ≤ Cε + ωf (ε) on X. It then follows that h is also linearly expanding
at rate α. Then, by Proposition 5.1, there exists a Lipschitz embedding from X
into ℓ∞ and (1) follows. □

Problem 5.2. We do not know whether we can take α = 1 in the statement of
Theorem 1.9.

Problem 5.3. It is proved in [Kal11, Theorem 5.3] that the Lipschitz embeddabil-
ity of a Banach space X into ℓ∞ is in fact equivalent to its coarse embeddability.
We do not know whether it is also equivalent to the existence of coarse map from
X to ℓ∞ that is expanding at some nontrivial rate α ∈ (0, 1]; notice that Theorem
1.9 assumes linear expansion at some rate α ∈ (0, 1).

References
[BKL10] F. Baudier, N. Kalton, and G. Lancien. A new metric invariant for Banach spaces.

Studia Math., 199(1):73–94, 2010.
[BL00] Y. Benyamini and J. Lindenstrauss. Geometric nonlinear functional analysis. Vol.

1, volume 48 of American Mathematical Society Colloquium Publications. American
Mathematical Society, Providence, RI, 2000.

[BL23] B. M. Braga and G. Lancien. Asymptotic coarse Lipschitz equivalence. arXiv e-prints,
page arXiv:2302.12016, February 2023.



18 B. M. BRAGA AND G. LANCIEN

[BLMS21] F. Baudier, G. Lancien, P. Motakis, and Th. Schlumprecht. A new coarsely rigid class
of Banach spaces. J. Inst. Math. Jussieu, 20(5):1729–1747, 2021.

[BLPP23] B. M. Braga, G. Lancien, C. Petitjean, and A. Procházka. On Kalton’s interlaced
graphs and nonlinear embeddings into dual Banach spaces. J. Topol. Anal., 15(2):467–
494, 2023.

[BLS18] F. Baudier, G. Lancien, and Th. Schlumprecht. The coarse geometry of Tsirelson’s
space and applications. J. Amer. Math. Soc., 31(3):699–717, 2018.

[Bra17] B. M. Braga. Coarse and uniform embeddings. J. Funct. Anal., 272(5):1852–1875, 2017.
[Fov22] A. Fovelle. Hamming graphs and concentration properties in non-quasi-reflexive banach

spaces. Houston J. Math., 48(3):539–579, 2022.
[JLS96] W. Johnson, J. Lindenstrauss, and G. Schechtman. Banach spaces determined by their

uniform structures. Geom. Funct. Anal., 6(3):430–470, 1996.
[Kal07] N. Kalton. Coarse and uniform embeddings into reflexive spaces. Q. J. Math.,

58(3):393–414, 2007.
[Kal08] N. Kalton. The nonlinear geometry of Banach spaces. Rev. Mat. Complut., 21(1):7–60,

2008.
[Kal11] N. Kalton. Lipschitz and uniform embeddings into ℓ∞. Fund. Math., 212(1):53–69,

2011.
[Kal13a] N. Kalton. Examples of uniformly homeomorphic banach spaces. Israel J. Math.,

104:151–182, 2013.
[Kal13b] N. Kalton. Uniform homeomorphisms of Banach spaces and asymptotic structure.

Trans. Amer. Math. Soc., 365(2):1051–1079, 2013.
[KR08] N. Kalton and L. Randrianarivony. The coarse Lipschitz geometry of lp ⊕ lq . Math.

Ann., 341(1):223–237, 2008.
[LR18] G. Lancien and M. Raja. Asymptotic and coarse Lipshitz structures of quasi-reflexive

Banach spaces. Houston J. Math., 44(3):927–940, 2018.
[Mau03] B. Maurey. Type, cotype and K-convexity. In Handbook of the geometry of Banach

spaces, Vol. 2, pages 1299–1332. North-Holland, Amsterdam, 2003.
[Maz29] S. Mazur. Une remarque sur l’homéomorphie des champs fonctionnels. Studia Mathe-

matica, 1(1):83–85, 1929.
[MN08] M. Mendel and A. Naor. Metric cotype. Ann. of Math. (2), 168(1):247–298, 2008.
[MP76] B. Maurey and G. Pisier. Séries de variables aléatoires vectorielles indépendantes et

propriétés géométriques des espaces de Banach. Studia Math., 58(1):45–90, 1976.
[Now06] P. Nowak. On coarse embeddability into lp-spaces and a conjecture of Dranishnikov.

Fund. Math., 189(2):111–116, 2006.
[Ros17] C. Rosendal. Equivariant geometry of Banach spaces and topological groups. Forum

Math. Sigma, 5:Paper No. e22, 62, 2017.

(B. M. Braga) IMPA, Estrada Dona Castorina 110, 22460-320, Rio de Janeiro, Brazil.
Email address: demendoncabraga@gmail.com
URL: https://sites.google.com/site/demendoncabraga/

(G. Lancien) Laboratoire de Mathématiques de Besançon, Université de Franche-
Comté, CNRS UMR-6623, 16 route de Gray, 25030 Besançon Cédex, Besançon, France

Email address: gilles.lancien@univ-fcomte.fr
URL: https://lmb.univ-fcomte.fr/Lancien-Gilles


	1. Introduction
	1.1. Mazur maps and metric cotype
	1.2. Embeddings of metric graphs into Banach spaces

	2. Revisiting the Mazur map
	3. Expansion and cotype preservation
	4. Embedding of certain graphs and expansion
	4.1. Hamming graphs
	4.2. Interlacing pairs in Hamming graphs
	4.3. Interlacing graphs

	5. Embeddings into 
	References

