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Landscape of Transfer Learning (TL)Basic definitionsdomain D = {X,P(X )} where X = {x1, . . . , xn} ∈ Xntask T = {Y, f (·)}

Given {DS ,TS ,DT ,TT}, TL aims to help improve the learning of fT (·) using
information in DS ,TS where DS ̸= DT or TS ̸= TT .3 main research issues
what, how and when to transfer ?
settings approachesinductive, transductive & unsupervised TL instance, feature, parameter, RK

. Pan, S.J., & Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions on Knowledge and DataEngineering, 22, 1345-1359. 2 / 10
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The linear regression (LR) setting
Task : regression (X = RD , Y = R, f (·) = E [Y |X = ·])

f̂ (x ) is an estimate of f (x )
ŷ = f̂ (x ) is a prediction of y R = E[(y − ŷ )2] (L2 risk)

Gain of using the alternative predictor f̂□(x )
∆R(x ) = E[(yT − f̂T (x ))2] − E[(yT − f̂□(x ))2]

Linear model (f (x ) = x⊤β, fixed design)Data : (Xν,i ,Yν,i ), i = 1, . . . ,Nν with ν ∈ {S ,T} and NT ≪ NS

Yν = Xνβν + εν, Eεν = 0,E∥εν∥2 = σ2
ν , β̂ν = (X⊤

ν Xν)−1X⊤
ν Yν, ν ∈ S ,T

. Obst et al. (2022). Improved linear regression prediction by transfer learning. CSDA, vol. 174. 3 / 10
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Ex. 1) Non-adaptive transfer : f̂□(x ) = f̂S (x )What happens if we estimate f̂S (x ) = x⊤β̂S and predict ŷT = f̂S (x ) ?
∆R(x ) = E[(yT − f̂T (x ))2] − E[(yT − f̂□(x ))2]

= x⊤(σ2
T (X⊤

T XT )−1 − σ2
S (X⊤

S XS )−1 − (βT − βS )(βT − βS )⊤︸ ︷︷ ︸:=H

)x
Gain for any new x if H is known ! ! !

Since H is a quadratic form, the eigen structure (λj , ej , j = 1, . . . ,D) is key– [max|min] gain = [λmax |λmin] eigen value of H in the direction of [emax |emin]– No possible positive transfer if λmax < 0, while if λmin > 0 transfer is positive ∀x– Let Tr(A) : trace of A, Σν = (1/Nν)X⊤
ν Xν), then positive gain if

NS ≥ σ2
STr(Σ−1

S )(σ2
T /NT )Tr(Σ−1

T ) − ∥βS − βT∥2

In general H will be indefinite and its spectral components difficult to estimate
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∆R(x ) = E[(yT − f̂T (x ))2] − E[(yT − f̂□(x ))2]= x⊤(σ2

T (X⊤
T XT )−1 − σ2

S (X⊤
S XS )−1 − (βT − βS )(βT − βS )⊤︸ ︷︷ ︸:=H

)x
Gain for any new x if H is known ! ! !Since H is a quadratic form, the eigen structure (λj , ej , j = 1, . . . ,D) is key– [max|min] gain = [λmax |λmin] eigen value of H in the direction of [emax |emin]– No possible positive transfer if λmax < 0, while if λmin > 0 transfer is positive ∀x– Let Tr(A) : trace of A, Σν = (1/Nν)X⊤

ν Xν), then positive gain if
NS ≥ σ2

STr(Σ−1
S )(σ2

T /NT )Tr(Σ−1
T ) − ∥βS − βT∥2

In general H will be indefinite and its spectral components difficult to estimate

4 / 10



Ex. 1) Non-adaptive transfer : f̂□(x ) = f̂S (x )What happens if we estimate f̂S (x ) = x⊤β̂S and predict ŷT = f̂S (x ) ?
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A test of positive gain : Ho)∆R(x ) ≤ 0 vs Ha)∆R(x ) > 0

ResultLet σ̂2
ν = ∥Yν − Xνβ̂ν∥2/(Nν − D) be the estimator of noise variances σ2

ν . Consider ρ̂ anestimator of the the quantity ρ ≥ ∥βT − βS∥/σT . Then, the following test is of approximatelevel a to test Ho ) against Ha)
1

(
ψ(x ) := σ̂2

T

σ̂2
S

x⊤(X⊤
T XT − ρ̂)−1x

x⊤(X⊤
S XS )−1x

> q1−a

)
,

where q1−a is the quantile of order 1 − a of r.v. F ∼ FNT−D,NS−D . The associated p-value is
p(x ) = P(F > ψ(x ))

5 / 10



Ex. 2) Transfer by fine-tuning : f̂□(x ) = Λ(f̂S (x ))
We use batch gradient descent (GD) of step size α on the {DT ,Tt} and L2 errorAt iteration k , the estimator of β can be written as (compare to Chen et al.))

β̂k = Ak β̂S + (I − Ak )β̂T , A = (I − αΣT ),with ΣT = X⊤
T XT

Define Ωk = α−1Σ−1
T (ID − Ak ) and B = (βT − βS )(βT − βS )⊤, then the gain is

∆R(x ) = x⊤
(
σ2
T (Σ−1

T − α2ΩkΣTΩk ) − σ2
SA

kΣ−1
S Ak − AkBAk

)
x := x⊤Hα,kx

with a corresponding expression for the test.
. Chen, A., Owen, A.B., & Shi, M. (2013). Data Enriched Linear Regression. Electronic Journal of Statistics, 9,1078-1112. 6 / 10



Adaptations to Generalized Linear Models (GLM)
The new model is y = Ψ(x⊤β) + ε. We have to choose,

a probability distribution for y ,

y ∼ fθ ∈ EF, the exponential family,
EF = {fθ : fθ(y ) = exp(θy − Ψ(θ)}

a loss function (needed for GD, risk),

BΦ(p, q) = Φ(p) − Φ(q) − ⟨∇Φ(q), p − q⟩

an expression of ∆R.

Difference of deviances

7 / 10
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Example : the logistic regression
Task : regression (X = RD , Y = R, f (·) = E [Ψ(Y )|X = ·]), Ψ the logit link function

f̂ (x ) is an estimate of f (x )
ŷ = f̂ (x ) is a prediction of y R = E[l (y , ŷ )], with l the negative binaryentropy)

Gain of using the alternative predictor f̂□(x )
∆R(x ) = E[l (yT , ŷT )] − E[l (yT , ŷ□(x )]

Generalized Linear model (f (x ) = Ψ(x⊤β), fixed design)Estimation : use IWLS on source and GD (neg binary entropy) on target

8 / 10
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Simulated dataset
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Conclusion
The framework for testing transferability is adaptable to generalized linear regressionmodels.
Strong use of the connection between Exponential Family and Bernstein divergences.
Further work : gain insight on the gain to obtain a test.

10 / 10


