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Basic definitions
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settings approaches
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The linear regression (LR) setting
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Ex. 1) Non-adaptive transfer : #5(x) = #5(x)
What happens if we estimate fs(x) = x ' Bs and predict 7 = f5(x)?

AR(x) = Ellyr — fr(x)’] - Ellyr — fa(x))]
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Let Tr(A) : trace of A, ¥, = (1/N,)X,[ X,), then positive gain if

2Tr(Zgl)
(02/N7)Tr(E7Y) — [IBs — Br?

In general H will be indefinite and its spectral components difficult to estimate

Ns >
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Let 62 = || Y, — X,By]?/(N,, — D) be the estimator of noise variances 02. Consider p an
estimator of the the quantity p > ||B1 — Bs||/o7. Then, the following test is of approximate
level a to test F(,) against 9(,)

62 TXTX _ a1
1<¢(X):—TX(T i) X>q1“a>,

C 02 xT(XJ Xs)~1x
where g'~? is the quantile of order 1 — a of r.v. F ~ Fny—-D,Ns—D- The associated p-value is

p(x) = P(F > ¥(x))
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o We use batch gradient descent (GD) of step size a on the {97, T} and L, error
o At iteration k, the estimator of 8 can be written as (compare to Chen et al.))

Be = ABs + (I — A)Br, A= (l —aX7),with L7 = X; X7
o Define Qx = a *X7}(Ip — A¥) and B = (B — Bs)(BT — Bs)", then the gain is
AR(x) = xT (o%(z;l — P T — 2AFTZIAK - AkBA"> X 1= X Ho kX

with a corresponding expression for the test.

. Chen, A., Owen, A.B,, & Shi, M. (2013). Data Enriched Linear Regression. Electronic Journal of Statistics, 9,
1078-1112.
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Adaptations to Generalized Linear Models (GLM)

The new model is y = ¥(x"B) + €. We have to choose,

o a probability distribution for y,

@ a loss function (needed for GD, risk),

@ an expression of AR.
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Example : the logistic regression

Task : regression (€ = RP, Y =R, f(-) = E[¥Y(Y)|X = -]), ¥ the logit link function

f(x) is an estimate of (x) o R = E[l(y, y)], with / the negative binary
9 = f(x) is a prediction of y entropy)
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Example : the logistic regression

Task : regression (€ = RP, Y =R, f(-) = E[¥Y(Y)|X = -]), ¥ the logit link function
o R = E[l(y, y)], with | the negative binary

o f(x) is an estimate of f(x)
o § = f(x) is a prediction of y entropy)

v

Gain of using the alternative predictor #;(x)
AR(x) = Ell(yr, y7)] = El/lyT, J0o(x)]

Generalized Linear model (f(x) = ¥(x'pB), fixed design)
Estimation : use IWLS on source and GD (neg binary entropy) on target
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Simulated dataset
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o The framework for testing transferability is adaptable to generalized linear regression
models.

o Strong use of the connection between Exponential Family and Bernstein divergences.

o Further work : gain insight on the gain to obtain a test.
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