Transfer Learning on Generalized Linear Regression

Mathias Bourel

Universidad de la Republica

August 7th 2023
JSM '23 - Toronto

Jairo Cugliari

Univ Lumière Lyon 2

Landscape of Transfer Learning (TL)

Basic definitions

$$
\begin{aligned}
& \text { domain } \mathscr{D}=\{\mathscr{} \\
&\text { task }, P(X)\} \text { where } X=\left\{x_{1}, \ldots, x_{n}\right\} \in \mathscr{C}^{n} \\
&=\{Y, f(\cdot)\}
\end{aligned}
$$

. Pan, S.J., \& Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, 22, 1345-1359.

Landscape of Transfer Learning (TL)

Basic definitions

domain $\mathscr{D}=\{\mathscr{C}, P(X)\}$ where $X=\left\{x_{1}, \ldots, x_{n}\right\} \in \mathscr{C}^{n}$
task $\mathscr{T}=\{\bigcup, f(\cdot)\}$
Given $\left\{\mathscr{D}_{S}, \mathscr{T}_{S}, \mathscr{D}_{T}, \mathscr{T}_{T}\right\}$, TL aims to help improve the learning of $f_{T}(\cdot)$ using information in $\mathscr{D}_{S}, \mathscr{T}_{S}$ where $\mathscr{D}_{S} \neq \mathscr{D}_{T}$ or $\mathscr{T}_{S} \neq \mathscr{T}_{T}$.
. Pan, S.J., \& Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, 22, 1345-1359.

Landscape of Transfer Learning (TL)

Basic definitions

domain $\mathscr{D}=\{\mathscr{C}, P(X)\}$ where $X=\left\{x_{1}, \ldots, x_{n}\right\} \in \mathscr{C}^{n}$
task $\mathscr{T}=\{\bigcup, f(\cdot)\}$
Given $\left\{\mathscr{D}_{S}, \mathscr{T}_{S}, \mathscr{D}_{T}, \mathscr{T}_{T}\right\}$, TL aims to help improve the learning of $f_{T}(\cdot)$ using information in $\mathscr{D}_{S}, \mathscr{T}_{S}$ where $\mathscr{D}_{S} \neq \mathscr{D}_{T}$ or $\mathscr{T}_{S} \neq \mathscr{T}_{T}$.

3 main research issues

what, how and when to transfer?
. Pan, S.J., \& Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, 22, 1345-1359.

Landscape of Transfer Learning (TL)

Basic definitions

domain $\mathscr{D}=\{\mathscr{C}, P(X)\}$ where $X=\left\{x_{1}, \ldots, x_{n}\right\} \in \mathscr{C}^{n}$
task $\mathscr{T}=\{\bigcup, f(\cdot)\}$
Given $\left\{\mathscr{D}_{S}, \mathscr{T}_{S}, \mathscr{D}_{T}, \mathscr{T}_{T}\right\}$, TL aims to help improve the learning of $f_{T}(\cdot)$ using information in $\mathscr{D}_{S}, \mathscr{T}_{S}$ where $\mathscr{D}_{S} \neq \mathscr{D}_{T}$ or $\mathscr{T}_{S} \neq \mathscr{T}_{T}$.

3 main research issues

what, how and when to transfer?

settings

inductive, transductive \& unsupervised TL
approaches instance, feature, parameter, RK
. Pan, S.J., \& Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, 22, 1345-1359.

The linear regression (LR) setting

Task : regression $\left(X=\mathbb{R}^{D}, \mathcal{Y}=\mathbb{R}, f(\cdot)=E[Y \mid X=\cdot]\right)$

- $\hat{f}(x)$ is an estimate of $f(x)$
- $\hat{y}=\hat{f}(x)$ is a prediction of y
- $\mathscr{R}=\mathbb{E}\left[(y-\hat{y})^{2}\right]\left(L_{2}\right.$ risk $)$
. Obst et al. (2022). Improved linear regression prediction by transfer learning. CSDA, vol. 174.

The linear regression (LR) setting

Task : regression $\left(X=\mathbb{R}^{D}, \mathcal{Y}=\mathbb{R}, f(\cdot)=E[Y \mid X=\cdot]\right)$

- $\hat{f}(x)$ is an estimate of $f(x)$
- $\hat{y}=\hat{f}(x)$ is a prediction of y
- $\mathscr{R}=\mathbb{E}\left[(y-\hat{y})^{2}\right]\left(L_{2}\right.$ risk $)$

Gain of using the alternative predictor $\hat{f}_{\square}(x)$

$$
\Delta \mathscr{R}(x)=\mathbb{E}\left[\left(y_{T}-\hat{f}_{T}(x)\right)^{2}\right]-\mathbb{E}\left[\left(y_{T}-\hat{f}_{\square}(x)\right)^{2}\right]
$$

. Obst et al. (2022). Improved linear regression prediction by transfer learning. CSDA, vol. 174.

The linear regression (LR) setting

Task : regression $\left(X=\mathbb{R}^{D}, \mathcal{Y}=\mathbb{R}, f(\cdot)=E[Y \mid X=\cdot]\right)$

- $\hat{f}(x)$ is an estimate of $f(x)$
- $\hat{y}=\hat{f}(x)$ is a prediction of y
- $\mathscr{R}=\mathbb{E}\left[(y-\hat{y})^{2}\right]\left(L_{2}\right.$ risk $)$

Gain of using the alternative predictor $\hat{f}_{\square}(x)$

$$
\Delta \mathscr{R}(x)=\mathbb{E}\left[\left(y_{T}-\hat{f}_{T}(x)\right)^{2}\right]-\mathbb{E}\left[\left(y_{T}-\hat{f}_{\square}(x)\right)^{2}\right]
$$

Linear model ($f(x)=x^{\top} \beta$, fixed design)

Data : $\left(X_{v, i}, Y_{v, i}\right), i=1, \ldots, N_{v}$ with $v \in\{S, T\}$ and $N_{T} \ll N_{S}$ $Y_{v}=X_{v} \beta_{v}+\epsilon_{v}, \quad \mathbb{E} \epsilon_{v}=0, \mathbb{E}\left\|\epsilon_{v}\right\|^{2}=\sigma_{v}^{2}, \quad \hat{\beta}_{v}=\left(X_{v}^{\top} X_{v}\right)^{-1} X_{v}^{\top} Y_{v}, \quad v \in S, T$

[^0]Ex. 1) Non-adaptive transfer : $\hat{f}_{\square}(x)=\hat{f}_{S}(x)$
What happens if we estimate $\hat{f}_{S}(x)=x^{\top} \hat{\beta}_{S}$ and predict $\hat{y}_{T}=\hat{f}_{S}(x)$?

$$
\Delta \mathscr{R}(x)=\mathbb{E}\left[\left(y_{T}-\hat{f}_{T}(x)\right)^{2}\right]-\mathbb{E}\left[\left(y_{T}-\hat{f}_{\square}(x)\right)^{2}\right]
$$

Ex. 1) Non-adaptive transfer: : $\hat{f}_{(}(x)=\hat{f}_{S}(x)$

What happens if we estimate $\hat{f}_{S}(x)=x^{\top} \hat{\beta}_{S}$ and predict $\hat{y}_{T}=\hat{f}_{S}(x)$?

$$
\begin{aligned}
\Delta \mathscr{R}(x) & =\mathbb{E}\left[\left(y_{T}-\hat{f}_{T}(x)\right)^{2}\right]-\mathbb{E}\left[\left(y_{T}-\hat{f}_{\square}(x)\right)^{2}\right] \\
& =x^{\top}(\underbrace{\sigma_{T}^{2}\left(X_{T}^{\top} X_{T}\right)^{-1}-\sigma_{S}^{2}\left(X_{S}^{\top} X_{S}\right)^{-1}-\left(\beta_{T}-\beta_{S}\right)\left(\beta_{T}-\beta_{S}\right)^{\top}}_{:=H}) x
\end{aligned}
$$

Ex. 1) Non-adaptive transfer: : $\hat{f}_{(}(x)=\hat{f}_{S}(x)$

What happens if we estimate $\hat{f}_{S}(x)=x^{\top} \hat{\beta}_{S}$ and predict $\hat{y}_{T}=\hat{f}_{S}(x)$?

$$
\begin{aligned}
\Delta \mathscr{R}(x) & =\mathbb{E}\left[\left(y_{T}-\hat{f}_{T}(x)\right)^{2}\right]-\mathbb{E}\left[\left(y_{T}-\hat{f}_{\square}(x)\right)^{2}\right] \\
& =x^{\top}(\underbrace{\sigma_{T}^{2}\left(X_{T}^{\top} X_{T}\right)^{-1}-\sigma_{S}^{2}\left(X_{S}^{\top} X_{S}\right)^{-1}-\left(\beta_{T}-\beta_{S}\right)\left(\beta_{T}-\beta_{S}\right)^{\top}}_{:=H}) x
\end{aligned}
$$

- Gain for any new x if H is known!!!

Ex. 1) Non-adaptive transfer: : $\hat{f}^{\prime}(x)=\hat{f}_{S}(x)$

What happens if we estimate $\hat{f}_{S}(x)=x^{\top} \hat{\beta}_{S}$ and predict $\hat{y}_{T}=\hat{f}_{S}(x)$?

$$
\begin{aligned}
\Delta \mathscr{R}(x) & =\mathbb{E}\left[\left(y_{T}-\hat{f}_{T}(x)\right)^{2}\right]-\mathbb{E}\left[\left(y_{T}-\hat{f}_{\square}(x)\right)^{2}\right] \\
& =x^{\top}(\underbrace{\sigma_{T}^{2}\left(X_{T}^{\top} X_{T}\right)^{-1}-\sigma_{S}^{2}\left(X_{S}^{\top} X_{S}\right)^{-1}-\left(\beta_{T}-\beta_{S}\right)\left(\beta_{T}-\beta_{S}\right)^{\top}}_{:=H}) x
\end{aligned}
$$

- Gain for any new x if H is known!!!
- Since H is a quadratic form, the eigen structure $\left(\lambda_{j}, e_{j}, j=1, \ldots, D\right)$ is key

Ex. 1) Non-adaptive transfer: : $\hat{f}_{f}(x)=\hat{f}_{S}(x)$

What happens if we estimate $\hat{f}_{S}(x)=x^{\top} \hat{\beta}_{S}$ and predict $\hat{y}_{T}=\hat{f}_{S}(x)$?

$$
\begin{aligned}
\Delta \mathscr{R}(x) & =\mathbb{E}\left[\left(y_{T}-\hat{f}_{T}(x)\right)^{2}\right]-\mathbb{E}\left[\left(y_{T}-\hat{f}_{\square}(x)\right)^{2}\right] \\
& =x^{\top}(\underbrace{\sigma_{T}^{2}\left(X_{T}^{\top} X_{T}\right)^{-1}-\sigma_{S}^{2}\left(X_{S}^{\top} X_{S}\right)^{-1}-\left(\beta_{T}-\beta_{S}\right)\left(\beta_{T}-\beta_{S}\right)^{\top}}_{:=H}) x
\end{aligned}
$$

- Gain for any new x if H is known!!!
- Since H is a quadratic form, the eigen structure $\left(\lambda_{j}, e_{j}, j=1, \ldots, D\right)$ is key $-[\max \mid \min]$ gain $=\left[\lambda_{\max } \mid \lambda_{\min }\right]$ eigen value of H in the direction of $\left[e_{\max } \mid e_{\text {min }}\right]$

Ex. 1) Non-adaptive transfer : $\hat{f}_{\square}(x)=\hat{f}_{S}(x)$

What happens if we estimate $\hat{f}_{S}(x)=x^{\top} \hat{\beta}_{S}$ and predict $\hat{y}_{T}=\hat{f}_{S}(x)$?

$$
\begin{aligned}
\Delta \mathscr{R}(x) & =\mathbb{E}\left[\left(y_{T}-\hat{f}_{T}(x)\right)^{2}\right]-\mathbb{E}\left[\left(y_{T}-\hat{f}_{\square}(x)\right)^{2}\right] \\
& =x^{\top}(\underbrace{\sigma_{T}^{2}\left(X_{T}^{\top} X_{T}\right)^{-1}-\sigma_{S}^{2}\left(X_{S}^{\top} X_{S}\right)^{-1}-\left(\beta_{T}-\beta_{S}\right)\left(\beta_{T}-\beta_{S}\right)^{\top}}_{:=H}) x
\end{aligned}
$$

- Gain for any new x if H is known!!!
- Since H is a quadratic form, the eigen structure $\left(\lambda_{j}, e_{j}, j=1, \ldots, D\right)$ is key
$-[\max \mid \min]$ gain $=\left[\lambda_{\max } \mid \lambda_{\min }\right]$ eigen value of H in the direction of $\left[e_{\max } \mid e_{\min }\right]$
- No possible positive transfer if $\lambda_{\max }<0$, while if $\lambda_{\min }>0$ transfer is positive $\forall x$

Ex. 1) Non-adaptive transfer : $\hat{f}_{\square}(x)=\hat{f}_{S}(x)$

What happens if we estimate $\hat{f}_{S}(x)=x^{\top} \hat{\beta}_{S}$ and predict $\hat{y}_{T}=\hat{f}_{S}(x)$?

$$
\begin{aligned}
\Delta \mathscr{R}(x) & =\mathbb{E}\left[\left(y_{T}-\hat{f}_{T}(x)\right)^{2}\right]-\mathbb{E}\left[\left(y_{T}-\hat{f}_{\square}(x)\right)^{2}\right] \\
& =x^{\top}(\underbrace{\sigma_{T}^{2}\left(X_{T}^{\top} X_{T}\right)^{-1}-\sigma_{S}^{2}\left(X_{S}^{\top} X_{S}\right)^{-1}-\left(\beta_{T}-\beta_{S}\right)\left(\beta_{T}-\beta_{S}\right)^{\top}}_{:=H}) x
\end{aligned}
$$

- Gain for any new \times if H is known!!!
- Since H is a quadratic form, the eigen structure $\left(\lambda_{j}, e_{j}, j=1, \ldots, D\right)$ is key
$-[\max \mid \min]$ gain $=\left[\lambda_{\max } \mid \lambda_{\min }\right]$ eigen value of H in the direction of $\left[e_{\max } \mid e_{\text {min }}\right]$
- No possible positive transfer if $\lambda_{\max }<0$, while if $\lambda_{\min }>0$ transfer is positive $\forall x$
- Let $\operatorname{Tr}(A)$: trace of $\left.\mathrm{A}, \Sigma_{v}=\left(1 / N_{v}\right) X_{v}^{\top} X_{v}\right)$, then positive gain if

$$
N_{S} \geq \frac{\sigma_{S}^{2} \operatorname{Tr}\left(\Sigma_{S}^{-1}\right)}{\left(\sigma_{T}^{2} / N_{T}\right) \operatorname{Tr}\left(\Sigma_{T}^{-1}\right)-\left\|\beta_{S}-\beta_{T}\right\|^{2}}
$$

Ex. 1) Non-adaptive transfer : $\hat{f}_{\square}(x)=\hat{f}_{S}(x)$

What happens if we estimate $\hat{f}_{S}(x)=x^{\top} \hat{\beta}_{S}$ and predict $\hat{y}_{T}=\hat{f}_{S}(x)$?

$$
\begin{aligned}
\Delta \mathscr{R}(x) & =\mathbb{E}\left[\left(y_{T}-\hat{f}_{T}(x)\right)^{2}\right]-\mathbb{E}\left[\left(y_{T}-\hat{f}_{\square}(x)\right)^{2}\right] \\
& =x^{\top}(\underbrace{\sigma_{T}^{2}\left(X_{T}^{\top} X_{T}\right)^{-1}-\sigma_{S}^{2}\left(X_{S}^{\top} X_{S}\right)^{-1}-\left(\beta_{T}-\beta_{S}\right)\left(\beta_{T}-\beta_{S}\right)^{\top}}_{:=H}) x
\end{aligned}
$$

- Gain for any new x if H is known!!!
- Since H is a quadratic form, the eigen structure $\left(\lambda_{j}, e_{j}, j=1, \ldots, D\right)$ is key
$-[\max \mid \min]$ gain $=\left[\lambda_{\max } \mid \lambda_{\min }\right]$ eigen value of H in the direction of $\left[e_{\max } \mid e_{\text {min }}\right]$
- No possible positive transfer if $\lambda_{\max }<0$, while if $\lambda_{\min }>0$ transfer is positive $\forall x$
- Let $\operatorname{Tr}(A)$: trace of $\left.\mathrm{A}, \Sigma_{v}=\left(1 / N_{v}\right) X_{v}^{\top} X_{v}\right)$, then positive gain if

$$
N_{S} \geq \frac{\sigma_{S}^{2} \operatorname{Tr}\left(\Sigma_{S}^{-1}\right)}{\left(\sigma_{T}^{2} / N_{T}\right) \operatorname{Tr}\left(\Sigma_{T}^{-1}\right)-\left\|\beta_{S}-\beta_{T}\right\|^{2}}
$$

In general H will be indefinite and its spectral components difficult to estimate

A test of positive gain : $\left.\mathscr{F}_{o}\right) \Delta \mathscr{R}(x) \leq 0$ vs $\left.\mathscr{F}_{a}\right) \Delta \mathscr{R}(x)>0$

Result

Let $\hat{\sigma}_{v}^{2}=\left\|Y_{v}-X_{v} \hat{\beta}_{v}\right\|^{2} /\left(N_{v}-D\right)$ be the estimator of noise variances σ_{v}^{2}. Consider $\hat{\rho}$ an estimator of the the quantity $\rho \geq\left\|\beta_{T}-\beta_{S}\right\| / \sigma_{T}$. Then, the following test is of approximate level a to test \mathscr{C}_{o}) against \mathscr{F}_{a})

$$
\mathbb{1}\left(\psi(x):=\frac{\hat{o}_{T}^{2}}{\hat{\sigma}_{S}^{2}} \frac{x^{\top}\left(X_{T}^{\top} X_{T}-\hat{\rho}\right)^{-1} x}{x^{\top}\left(X_{S}^{\top} X_{S}\right)^{-1} x}>q^{1-a}\right)
$$

where q^{1-a} is the quantile of order $1-a$ of r.v. $F \sim \mathcal{F}_{N_{T}-D, N_{S}-D}$. The associated p-value is

$$
p(x)=\mathbb{P}(F>\psi(x))
$$

Ex. 2) Transfer by fine-tuning : $\hat{f}_{\square}(x)=\Lambda\left(\hat{f}_{S}(x)\right)$

- We use batch gradient descent (GD) of step size α on the $\left\{\mathscr{D}_{T}, \mathscr{T}_{t}\right\}$ and L_{2} error
- At iteration k, the estimator of β can be written as (compare to Chen et al.))

$$
\hat{\beta}_{k}=A^{k} \hat{\beta}_{S}+\left(I-A^{k}\right) \hat{\beta}_{T}, \quad A=\left(I-\alpha \Sigma_{T}\right), \text { with } \Sigma_{T}=X_{T}^{T} X_{T}
$$

- Define $\Omega_{k}=\alpha^{-1} \Sigma_{T}^{-1}\left(I_{D}-A^{k}\right)$ and $B=\left(\beta_{T}-\beta_{S}\right)\left(\beta_{T}-\beta_{S}\right)^{\top}$, then the gain is

$$
\Delta \mathscr{R}(x)=x^{\top}\left(\sigma_{T}^{2}\left(\Sigma_{T}^{-1}-\alpha^{2} \Omega_{k} \Sigma_{T} \Omega_{k}\right)-\sigma_{S}^{2} A^{k} \Sigma_{S}^{-1} A^{k}-A^{k} B A^{k}\right) x:=x^{\top} H_{\alpha, k} x
$$

with a corresponding expression for the test.

[^1]
Adaptations to Generalized Linear Models (GLM)

The new model is $y=\Psi\left(x^{\top} \beta\right)+\epsilon$. We have to choose,

- a probability distribution for y,
- a loss function (needed for GD, risk),
- an expression of $\Delta \mathscr{R}$.

Adaptations to Generalized Linear Models (GLM)

The new model is $y=\Psi\left(x^{\top} \beta\right)+\epsilon$. We have to choose,

- a probability distribution for y,
$y \sim f_{\theta} \in \mathcal{E} \mathcal{F}$, the exponential family,

$$
\mathcal{E} \mathscr{F}=\left\{f_{\theta}: f_{\theta}(y)=\exp (\theta y-\Psi(\theta)\}\right.
$$

- a loss function (needed for GD, risk),
- an expression of $\Delta \mathscr{R}$.

Adaptations to Generalized Linear Models (GLM)

The new model is $y=\Psi\left(x^{\top} \beta\right)+\epsilon$. We have to choose,

- a probability distribution for y,
$y \sim f_{\theta} \in \mathcal{E} \mathcal{F}$, the exponential family,

$$
\mathcal{E} \mathscr{F}=\left\{f_{\theta}: f_{\theta}(y)=\exp (\theta y-\Psi(\theta)\}\right.
$$

- a loss function (needed for GD, risk),

$$
B_{\Phi}(\mathrm{p}, \mathrm{q})=\Phi(\mathrm{p})-\Phi(\mathrm{q})-\left\langle\nabla_{\Phi}(\mathrm{q}), \mathrm{p}-\mathrm{q}\right\rangle
$$

- an expression of $\Delta \mathscr{R}$.

Adaptations to Generalized Linear Models (GLM)

The new model is $y=\Psi\left(x^{\top} \beta\right)+\epsilon$. We have to choose,

- a probability distribution for y,
$y \sim f_{\theta} \in \mathcal{E} \mathcal{F}$, the exponential family,

$$
\mathcal{E} \mathscr{F}=\left\{f_{\theta}: f_{\theta}(y)=\exp (\theta y-\Psi(\theta)\}\right.
$$

- a loss function (needed for GD, risk),

$$
B_{\Phi}(\mathrm{p}, \mathrm{q})=\Phi(\mathrm{p})-\Phi(\mathrm{q})-\left\langle\nabla_{\Phi}(\mathrm{q}), \mathrm{p}-\mathrm{q}\right\rangle
$$

- an expression of $\Delta \mathscr{R}$.

Example : the logistic regression

Task : regression $\left(\mathscr{C}=\mathbb{R}^{D}, \mathscr{Y}=\mathbb{R}, f(\cdot)=E[\Psi(Y) \mid X=\cdot]\right)$, Ψ the logit link function

- $\hat{f}(x)$ is an estimate of $f(x)$
- $\hat{y}=\hat{f}(x)$ is a prediction of y
- $\mathscr{R}=\mathbb{E}[I(y, \hat{y})]$, with $/$ the negative binary entropy)

Example : the logistic regression

Task : regression $\left(\mathscr{C}=\mathbb{R}^{D}, \mathscr{Y}=\mathbb{R}, f(\cdot)=E[\Psi(Y) \mid X=\cdot]\right)$, Ψ the logit link function

- $\hat{f}(x)$ is an estimate of $f(x)$
- $\hat{y}=\hat{f}(x)$ is a prediction of y
- $\mathscr{R}=\mathbb{E}[/(y, \hat{y})]$, with / the negative binary entropy)

Gain of using the alternative predictor $\hat{f}_{\square}(x)$

$$
\Delta \mathscr{R}(x)=\mathbb{E}\left[/\left(y_{T}, \hat{y}_{T}\right)\right]-\mathbb{E}\left[/\left(y_{T}, \hat{y_{\square}}(x)\right]\right.
$$

Example : the logistic regression

Task : regression $\left(X=\mathbb{R}^{D}, \mathscr{Y}=\mathbb{R}, f(\cdot)=E[\Psi(Y) \mid X=\cdot]\right)$, Ψ the logit link function

- $\hat{f}(x)$ is an estimate of $f(x)$
- $\hat{y}=\hat{f}(x)$ is a prediction of y
- $\mathscr{R}=\mathbb{E}[/(y, \hat{y})]$, with / the negative binary entropy)

Gain of using the alternative predictor $\hat{f}_{\square}(x)$

$$
\Delta \mathscr{R}(x)=\mathbb{E}\left[/\left(y_{T}, \hat{y}_{T}\right)\right]-\mathbb{E}\left[/\left(y_{T}, \hat{y}_{\square}(x)\right]\right.
$$

Generalized Linear model $\left(f(x)=\Psi\left(x^{\top} \beta\right)\right.$, fixed design)
Estimation : use IWLS on source and GD (neg binary entropy) on target

Simulated dataset

Conclusion

- The framework for testing transferability is adaptable to generalized linear regression models.
- Strong use of the connection between Exponential Family and Bernstein divergences.
- Further work : gain insight on the gain to obtain a test.

[^0]: . Obst et al. (2022). Improved linear regression prediction by transfer learning. CSDA, vol. 174.

[^1]: . Chen, A., Owen, A.B., \& Shi, M. (2013). Data Enriched Linear Regression. Electronic Journal of Statistics, 9, 1078-1112.

