
When NLP meets SDN : an application to Global
Internet eXchange Network

Manh-Tien-Anh Nguyen∗‡, Sondes Bannour Souihi‡§, Hai-Anh Tran∗, and Sami Souihi†
∗School of Information and Communication Technology

Hanoi University of Science and Technology, Hanoi, Vietnam
†LISSI-TincNET Research Team University Paris-Est Creteil, France

§ CEA LIST, University of Paris-Saclay
‡TexPECT, France

Email: anh.nmt187213@sis.hust.edu.vn, sondes.souihi@cea.fr, nhth@soict.hust.edu.vn, sami.souihi@u-pec.fr

Abstract—Software-Defined Networking (SDN) and its exten-
sion Intent-Based Networking (IBN) are network paradigms that
enable dynamic, programmatically efficient network configura-
tion. IBN allows network operators to express an outcome or
business objective without the low-level configurations necessary
to program the network to achieve these demands. Existing
research proposals for IBN introduce several systems to translate
users intents into network infrastructure configurations. Despite
the positive aspects of these proposals, they still suffer from many
drawbacks. Some require users to learn a new intent definition
language. Some others may lack the appropriate grammar to
make these frameworks recognize the intent correctly. In this
paper, we introduce a framework leveraging the capabilities of
Natural Language Processing (NLP) for network management
from an operator utterances. In order to understand natural
language, our framework uses the sequence-to-sequence (seq2seq)
learning model based on recurrent neural networks (LSTM). The
model has been improved by using word embedding and user
feedback. As a proof of concept, we implement our framework
for network management in a Global Internet eXchange Net-
work and evaluate its practicality regarding NLP accuracy and
network performance.

Index Terms—Software-Defined Networking (SDN), Intent-
Based Networking (IBN), Natural Language Processing (NLP),
Artificial Intelligence (AI), Internet eXchange Points (IXP)

I. INTRODUCTION

In recent years, Software Defined Networking (SDN) [1]
has gotten much interest from academics and industry to
design network management systems. SDN technology is
a network management strategy that allows for dynamic,
programmatically efficient network configuration. It decouples
the control plane from the data plane and centrally integrates
the network logic at the controller level. This programmable
architecture makes network innovation and development much
more straightforward. However, the advantages offered by
SDN may reach their limits in the context of very large-scale
networks.

Driven by technology and demand, Intent-Based Network-
ing (IBN) was proposed to overcome the shortcoming of
SDN architecture. An IBN is an intelligent network that can
automatically convert, verify, deploy, configure, and optimize
itself to reach the desired network state based on the operators
requirements and automatically resolve abnormal events to
maintain network stability [2]. Furthermore, IBN allows net-
work administrators to express an outcome or business objec-
tive – the intent – that dictates how the network should behave
without the low-level configurations necessary to program the
network to achieve these demands. IBN architecture relies
on Natural Language Processing (NLP) to create an abstract,
cognitive layer to bridge the gap between network manage-

ment and the operator’s intent. Existing research proposals
for IBN introduce several structured network intent languages,
frameworks, and systems to translate users intents into network
infrastructure configurations [4]–[7]. While these proposals are
positive milestones, some intent languages require users to
learn a new intent definition language in each proposal, and
the others may lack the grammar to make these frameworks
recognize the intents correctly. Moreover, most proposals for
an abstract layer do not support the feedback feature, which
requires the user to confirm the output intent generated by
their system and increase the predicted intent accuracy after
each user’s requirement.

In this paper, we present a framework that leverages the
capabilities of Natural Language Processing (NLP) to manage
and configure Networks from operator’s utterances. Our frame-
work includes four main stages. Firstly, we create a chatbot
to classify the intent and recognize the named entities from
the operator’s utterance expressed by Natural Language. We
rely on Dialogflow [3], which uses word embedding for the
intent classification stage, and machine learning for the named
entities recognition stage to develop our chatbot interface.
Secondly, we apply a sequence-to-sequence (seq2seq) learning
model with neural networks [9] to convert the recognized
entities into a high-level structured network language called
SNIL (Section IV). Next, the structured language is then sent
to the user for feedback on the recognized entities. Finally, we
easily convert the structured network language into a network
policy for managing and configuring in Global Internet eX-
change Network (GXN) [8] that we considered a use case. A
GXN is a network of interconnected Internet eXchange Points
(IXP). For implementation, we use a software-based controller
Open Network Operating System (ONOS), as its controller.
Our system relies on the REST-API interface to communicate
with the ONOS controller and convert the structured network
language into ONOS intent.

The remainder of this paper is structured as follows. In
Section II, we review related work. In Section III, we present
our framework and its design using natural language pro-
cessing and machine learning for network management from
operator’s utterances. We propose a structured network intent
language which is similar to natural language to serve as
an abstract network layer in Section IV. In Section V, we
detail the evaluation of our framework, and we conclude in
Section VI.

II. RELATED WORK

In this section, we review related work. We consider as
related work previous efforts which combine SDN and intent.

2972

IC
C

 2
02

2
- I

EE
E

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

om
m

un
ic

at
io

ns
 |

97
8-

1-
53

86
-8

34
7-

7/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

C
45

85
5.

20
22

.9
83

86
33

Authorized licensed use limited to: CEA. Downloaded on October 13,2023 at 06:47:25 UTC from IEEE Xplore. Restrictions apply.

In fact, given the lack of strategies in this area, we review
intent languages that allow deploying network configurations
using high-level directives on SDN.

Major SDN controllers, such as the Open Network Oper-
ating System (ONOS) and OpenDayLight (ODL), implement
IBN capabilities that abstract the details of specific network
protocols, mechanisms, and topology. Intents allow network
applications or practitioners to specify declaratively what the
network ought to do at a policy level and how the network
ought to achieve the desired configuration. For example,
ONOS has an Intent Framework component [2], while a
network abstractions module of OpenDayLight is called Intent
Component [2].

Kiran et al. [4] developed the Intelligent Network De-
ployment Intent Renderer Application (iNDIRA) system to
enable intent-based networking. iNDIRA uses natural NLP to
allow users to express their intents, converted into Resource
Description Framework (RDF) graphs before getting translated
into low-level commands. Alsudais et al. [5] proposed an
intermediate network-agnostic layer that acts as the medium
between natural language input (spoken or written) and dif-
ferent network implementations. They have leveraged the
programmability that SDN offers to build a prototype tool
that takes natural language text as an input and builds abstract
tasks. Such tasks are then passed to a network controller to be
performed in real-time. Esposito et al. [6] presented a north-
bound interface solution for network intent specification based
on Behavior-Driven Development. Their approach allows in-
tent expressiveness in English, Mandarin, or any other natural
language, by leveraging the Gherkin programming language.
Their prototype includes an intent processor, an intent-policy
interpreter, and several Software-defined infrastructure-specific
policy actuators. Jacobs et al. [7] introduced a novel intent
refinement process and Nile, a high-level intent definition
language, aiming to be a step towards enabling self-driving
networks. The proposed refinement process leverages a user-
friendly chat interface and a model that extracts from natural
language to a structured intent program, written in Nile. The
extracted Nile intent acts as an abstraction layer for lower-
level configuration and policy languages, which allows them
to ask for feedback from the operator before compiling the
structured intent into network configurations.

While these approaches gain a lot of significant achieve-
ments, some intent languages require users to learn a new
intent definition language, and others may lack the grammar
necessary for these frameworks to recognize the intents cor-
rectly. Furthermore, the feedback feature, which requires the
user to check the output intent created by their framework and
raise the predicted intent accuracy after each user’s demand,
is not supported by most abstract layer ideas. In addition,
these proposals can not clearly distinguish between the intent
for retrieving the network information and the intent for
submitting the processed data to a destination network and
not being implemented in large-scale networks.

III. FRAMEWORK OVERVIEW

Figure 1 presents an overview of our process with four
main stages: intent classification & named entities recognition,
intent conversion, intent confirmation, and intent implementa-
tion. At the first stage, we develop a chatbot to classify the
intent and recognize the entities from the operator’s utterance
expressed by Natural Language. We rely on Dialogflow [3]
which uses word embedding for intent classification and

machine learning for entities recognition to implement the
chatbot interface. In our chatbot, we divide the user’s intent
into GET intent and POST intent. These two intent have
the same entities’ properties: username, network endpoints,
actions, QoS, and temporal configurations for the policy.

Secondly, we use a sequence-to-sequence learning model
with neural networks [9] to convert the recognized entities
from the previous stage into a high-level structured network
language called SNIL (Section IV).

Thirdly, the structured language is then sent to the user for
confirmation on the recognized entities with its intent type.
The operator may check the accuracy of the output intent
generated by our system and make adjustments if essential.
These stages are repeated until the operator confirms the
correct translation of the intents.

Finally, we compile the structured network language con-
firmed by the user into a network policy for managing and
configuring a Global Internet eXchange Network. For the de-
ployment, we use a software-based controller: Open Network
Operating System (ONOS). We use the REST-API interface
to communicate with the ONOS software-based controller.
Our framework retrieves the required information, converting
Natural Language intents into ONOS intent, and transmits it
through this interface.

Fig. 1. Framework Architecture.

A. Intent classification & Named entities recognition (IC &
NER)

First of all, we need to classify the intent and recognize the
actions with important information of the network activities
from the operator’s utterances. Moreover, we have to construct
a chatbot interface to interact with users, get users’ intents,
and respond to the users. In this step, we use a chatbot
development platform to build the IC & NER. Many state-
of-the-art chatbot platforms exist, such as Amazon’s Lex,
Google’s Dialogflow, IBM Watson Assistant, and Azure Bot
Service, but we decide to rely on Dialogflow to construct our
chatbot because of its convenience and reusability. Dialogflow,
previously known as API.ai, is a Google-owned developer
of human-computer interaction technologies based on natu-
ral language conversations. Machine learning is used in the
framework to generalize sample instances known as entities
and to make feature recognition easier in the dialog. In our

2973
Authorized licensed use limited to: CEA. Downloaded on October 13,2023 at 06:47:25 UTC from IEEE Xplore. Restrictions apply.

chatbot, the entities are username, actions, network endpoints,
SLA requirements, and temporal constraints. Figure 2 presents
the attributes and its example of an entity. Moreover, the
framework uses word embedding to classify intent. To further
assist us in determining the type of intent, we take the idea
of Representational State Transfer (REST) from web services
implementation. We divide the operator’s utterances into GET
intents and POST intents. The POST intents are used to
distinguish actions that add some network configuration or
require SLA into the network. The GET intents are used to
retrieve network information.

Fig. 2. Entity Definition.

In natural language processing (NLP), word embedding is
a term used for the representation of words for text analysis,
typically in the form of a real-valued vector that encodes the
meaning of the word such that the words that are closer in
the vector space are expected to be similar in meaning. Word
embeddings can be obtained using a set of language modeling
and feature learning techniques where words or phrases from
the vocabulary are mapped to vectors of real numbers. Con-
ceptually it involves the mathematical embedding from space
with many dimensions per word to a continuous vector space
with a much lower dimension.

Fig. 3. Intent Classification Workflow.

In the Dialogflow platform, an intent classifier is made up
of a few elementary components: some preprocessing pipeline
(mostly made up of a tokenizer), an embedding vectorizer, and
a simple classifier. Figure 3 illustrates the workflow of intent
classification. All of the magic here lies in the embedding
vectorizer. The embedding vectorizer makes use of large pre-
trained GloVe or FastText vectors [9]. These vectors have been
trained on large corpora made up of millions of documents.
This means that these word vectors are very well tuned to
have words with similar meanings very close to each other in
vector space. When we train a classifier that makes use of these
embeddings, most of its work is already cut out for it. Since
similar words will have very close word vectors, the classifier
can generalize more easily and assign the same label to words

with close vectors. Figure 4 presents how Word Embedding is
used in intent classification.

When we build an NLP model from scratch, we initialize
our embeddings randomly. Then we train it to distinguish
words with different meanings by grouping them. This requires
training the model on millions of sentences. For this reason,
we rely on Dialogflow for the first step, as it allows us to
refine a pre-trained model with minimal data.

Fig. 4. Intent Classification using Word Embedding.

Even while chatbots are highly beneficial for user in-
teractions, they do not meet all the intent-based network
planning requirements. The user utterances are represented
by key-value pairs derived from the entities retrieved from
natural languages. These pairings, on the other hand, do not
recognize the network configuration commands. For example,
if a network operator asks a chatbot to ”make a route from h1
to h2” the chatbot will respond, depending on how it is built.
A possible extraction result might be the following entities:
origin: ‘h1’, destination: ‘h2’, action: ‘route’. As a result, we
still need to convert the entities into a structured intent that
can be executed in a destination network following the chatbot
interaction.

B. Intent Conversion
After the chatbot interface classifies the intent and collects

all the necessary entities from the operator utterances, we need
to send this information to another module in real-time to
perform the second step. Thus, we rely on WebHook, which
is based on REST-API, to send these entities. A webhook (also
called a web callback or HTTP push API) is a way for an app
to provide other applications with real-time information. A
WebHook delivers data to other applications as it happens,
meaning we will get data immediately. To get all of the
recognized entities, we set up a WebHook from our chatbot to
our Intent Conversion. These entities are put into a previously
trained sequence-to-sequence learning model, which converts
them into structured intent language. We rely on NILE lan-
guage [7] to represent structured language called SNIL with
some extensions and modifications of its grammar (detailed in
Section IV). We adjust it in order to make SNIL have ability
to distinguish between the intent for retrieving the network
information and the intent for submitting the processed data to
a destination network, as well as can perform multiple actions
that common in network management.

2974
Authorized licensed use limited to: CEA. Downloaded on October 13,2023 at 06:47:25 UTC from IEEE Xplore. Restrictions apply.

As mentioned above, our framework uses the sequence-to-
sequence model to convert the recognized entities to struc-
tured intent language similar to NILE language. Sequence-
to-sequence models are deep learning models that aim to
map a fixed-length input with a fixed-length output where the
input and output length may differ. The model consists of
an encoder, an intermediate (encoder) vector, and a decoder.
The encoder uses a multilayered Long Short-Term Memory
(LSTM) to map the input sequence (in our case, the recognized
entities) to a vector of a fixed dimensionality, which aims to
encapsulate the information for all input elements in order to
help the decoder make accurate predictions. The decoder uses
another deep LSTM to decode the vector’s target sequence
(structured intent language). The encoding-decoding process
is illustrated in Figure 5. One of the essential advantages of
RNN architecture is that it allows different input lengths and
output sequences.

Fig. 5. Seq2seq learning model.

One of the drawbacks of utilizing neural networks for text-
to-text translations is the vast vocabulary of each language,
which necessitates big datasets and a significant amount of
time for the models to be trained. We can solve the above
limitation by anonymizing the entities and using previously
recognized entities as input and a restricted, well-defined
language as output. This pre-processing replaces each recog-
nized entity with a token representation and feeds the token
representation to the RNN encoder as input. For instance,
if the outputs of recognized entities are ”route” and ”host
1”, we would utilize anonymization to convert them to the
tokens’ @action’ and ’@location’ before starting the Intent
Conversion stage. Then, we deanonymize the resultant intents
to replace the tokens with the initially recognized entities.
Thus, we may drastically minimize the number of training
instances required for the model by utilizing anonymization
because we don’t have to examine every potential entity value
for network intents.

After performing entities’ anonymization, we transform
each input word to a unique numerical representation since
we cannot utilize words directly as input for the sequence-
to-sequence model. The numeric indices in a pre-built dic-
tionary containing all words in the model represent the
anonymized entities numerically. Figure 6 shows a list of
entities’ anonymization and its corresponding numerical rep-
resentation.

Fig. 6. Entities’ Anonymization and its numerical representation.

In addition, we implement Word Embedding vectorization
in the first layer of the RNN encoder to improve the learning
rates and prediction accuracy of our models. Word Embed-
ding vectorization will create an array of real values from a
sequence of anonymized entities, which is then parsed into

the encoder layer to generate the encoder vector. The RNN
decoder then uses the encoder vector as an input and translates
it into SNIL language. The structured language created by the
decoder layer is then sent to the Intent confirmation module
for the next stage.

C. Intent Confirmation
After receiving the structured network language from Intent

conversion, Intent confirmation will send this result to the
network operator via the chatbot interface for confirmation
of the recognized desired intent. The operator may check
the accuracy of the output intent generated by our system
and make adjustments if essential. The operator can edit
the intent until the structured network language satisfies the
requirement. After the operator’s feedback, the corrected intent
referred from our system is then sent to the target Controller
for implement it into the network infrastructure. Moreover,
the corrected intents are involved in the training dataset of
the seq2seq model, and a new training process is started.
This process gives our system better accuracy and guarantees
that the outcomes improve every time the user requires an
intent because we continuously update the weights for our
models. The new output intent referred from the following
user utterances will be predicted using the latest weights we
received.

D. Intent Implementation
Let us suppose that an operator wants to establish a route

from one point to another with a specific service level agree-
ment (SLA) (an amount of bandwidth, traffic, latency,. . .).
For this, the operator needs to discover all network devices,
gather all the information related to SLA, and understand their
respective configurations. However, it is not easy to collect all
the necessary information in a large-scale network.

Instead, the operator has to express their intent using natural
language to our framework. Then it automatically translates
the operator’s utterances into network configurations. This
section analyzes a case study to make a route from one point
to another with specific SLA in our network topology. We
use Mininet simulator to create a GXN composed of multiple
interconnected IXPs.

For instance, if a network operator asks a chatbot, “Es-
tablish a route from h1 to h2, with latency less than 10ms
and bandwidth more than 400Mbps, and allow UDP only”,
our framework will extract the entities from this intent then
translate it into SNIL intent. Hence, it will send the feedback
to the operator and repeat it until the operator confirms the
correct translation of the intents. Finally, it will convert SNIL
intent into ONOS intent through REST-API and deploy it to
the destination network.

IV. SNIL: STRUCTURED NETWORK INTENT LANGUAGE

At the previous stage, we have explained the process of
implementing user requirements expressed by natural language
into network infrastructure and then returning the result to
the operator. However, we did not mention one of the most
important elements from this process, the abstract network
layer. While network management requires operators to have
experience and expert skills in the network domain, natural
language is difficult to parse and implement directly into a
network infrastructure. Therefore, there is a missing link in
the interaction between network management and natural lan-
guage. Fortunately, the abstract network layer bridges the gap

2975
Authorized licensed use limited to: CEA. Downloaded on October 13,2023 at 06:47:25 UTC from IEEE Xplore. Restrictions apply.

between network management and natural language expressed
by operators and home users. The related work section has
discussed many proposed languages for the abstract layer with
many advantages for each proposed language. With all the
state-of-the-art proposed languages that we have explored, we
want to create a new structured network intent language with
as many advantages as possible. We propose SNIL (Structured
Network Intent Language) which is similar to NILE language
[7] to serve as abstract network layer language. Here, we
modify and extend this original version to satisfy network
management requirements.

Table I presents the main operation from our structured
network intent language. Two operations are compulsory:
from/to and add operations. All of the network intents must
have two operations to meet the complete requirements. The
other operations are used when we want to request the intent
with POST type, and therefore these operations are optional.
To guarantee the intent that satisfies syntax and semantics of
the structured network language with full information, we rely
on NILE [7] grammar and required operations for each intent
that we receive. If the operator expresses the intent with wrong
grammar or lack of information, the system warns the operator
via the chatbot interface to correct the intent. For instance, if
the operator expresses the intent: ”Make a route”, the system
will require the operator to provide from/to operation to obtain
the correct intent. Although this intent satisfies the semantic
of the language, it does not have all the required operations.
The confirmation stage will finish until the operator corrects
the intent.

TABLE I
OVERVIEW OF STRUCTURED NETWORK INTENT LANGUAGE OPERATIONS.

With SNIL, the operator can express complex intents in-
tuitively. For example, if a network operator asks a chatbot,
“Establish a route from h1 to h2, with latency less than 10ms
and bandwidth more than 400Mbps, and allow UDP only”,
our framework will recognize the entities from this intent and
translate it into structured intent language.Note that mapping
endpoints between logical and physical names (e.g., h1 and
h2) must be resolved during the implementation stage, as they
represent information specific to each network. This allows
users to express the intent in an abstract style (not to specify IP
addresses, but instead say something abstract like “h1”). This
example illustrates how expressive grammar the structured
intent language has; therefore, we can rely on this structured
language to represent many real-world network requirements.

V. EXPERIMENTS

In this section, we discuss our experimental results for
both the NLP domain and network domain. All our experi-
ments were done on machines with 6 core, 6 thread Intel(R)
Core(TM) i5-9400F CPU at 2.90GHz, 16GB of RAM, AMD
Radeon(TM) RX 570 8GB graphics card, running Ubuntu
20.04 LTS. The testing scenario is based on the ONOS con-
troller version 2.6.0 and the Mininet version 2.3.0 to emulate

the Global Internet eXchange Network on the full-meshed
topology of 5 edge switches connected with one core switch
for each IXP, totaling 3 IXPs interconnected. We relied on
Quagga Software Routing Suite to simulate the BGP process
at the participant’s routers. Finally, we made communication
between our system and ONOS controller through REST API
that we had already set up.

A. NLP evaluation
To evaluate the NLP domain, we measured the system’s

accuracy that depends on training dataset size to discover the
optimal result between dataset size and prediction accuracy.
Because dataset size impacts the training time crucially, we
determined the most optimal training dataset sizes for the
highest prediction accuracy to reduce the training time. We
automatically created the datasets with random sets of intent
types with recognized entities and structured network intent
language pairs. Each pair consists of a various number of
actions, endpoints, SLA rules, and temporal constraints. All
training iterations were implemented with 50 epochs, batch
size of 64, and a validation split of 20%. We measured seven
different sizes of training datasets: 200, 500, 1000, 3000,
5000, 7000, and 8000 pairs. We created a separate testing
dataset for each training dataset size, which contains 20%
of the training dataset’s pairs. To evaluate the accuracy for
each dataset size, we measured for each prediction in the
testing dataset the coefficient of determination (R-squared)
between the structured network language predicted by the
model and the expected output structured network language. In
our experiments, the more accurate the model is when the R-
squared value is closer to 1, this means that the model predicts
the output with high accuracy and fewer wrong results. The
measurements created a list of R-squared values for each
dataset size. Figure 7a presents the mean with 95% confidence
interval of R-squared values for each size of training datasets.
We can see that we can have more accurate results when
we increase the size of datasets, but we will have a longer
training time with larger datasets. From Figure 7a, it can be
observed that we need to train the model with only 7000
pairs to achieve desired results in our model. We have not
expanded the datasets to more than 8000 samples because,
with only 7000 entries, we have reached excellent results from
our model. Figure 7b shows the training times for each size of
the dataset. Thus, to get the desired results, we have to train
our model for approximately four hours for 7000 pairs, and
the larger size of datasets require a longer training time.

Fig. 7. Conversion accuracy and training time by each dataset sizes.

In addition, we measured the average response time of the
system that depends on multiple attributes such as the intent
type, the entity type, and the number of entities. The average
response time that we have measured consists of compilation

2976
Authorized licensed use limited to: CEA. Downloaded on October 13,2023 at 06:47:25 UTC from IEEE Xplore. Restrictions apply.

time and deployment time. We divided the operator’s intent
into five groups and estimated the average response time for
each group: GET intents, POST intents, only route action,
route action with SLA requirements, and route action with
traffic constraints. These are the most popular intent appearing
in network management. There are two intent types in our
system: GET intent and POST intent. These two intents
have different response times due to their attributes. Most
GET intents have response time lower than POST intents
because POST intents have to process and be configured into
the destination network, while GET intents have to gather
information from the network before sending it to the operator.
The other attribute that affects response time is the number
of entities. Intent having many QoS requirements and traffic
constraints will cause high response time than only routing
action. We produced a dataset with 50 intents per group,
totaling 250 different intents, and measured the mean response
time of each group. This experiment was deployed on the
Global Internet eXchange Network with about 400 network
elements approximately. We relied on the Mininet emulator
to create the network topology that interacted with the ONOS
controller. Figure 8 presents the result that we received.

Fig. 8. Average response time of each intent.

B. Network evaluation
Next, we explain the evaluation results from the network

domain of our system. To assess the feasibility of our system in
the network domain, we compare the throughput improvement
over time between using our system and manual configuration.
First, we make a route from one host to another and measure
throughput between two hosts over time. Next, we put some
noise into this route and track the fluctuation of throughput.
To evaluate the rapid adaptation when using the system,
we require our system to improve the throughput through
the chatbot interface immediately. Figure 9 compares the
throughput improvement over time when using the system and
configuring manually. The noise makes throughput between
two hosts reduce significantly, from almost 30 Mbps per
second to 15 Mbps per second. As expected, when using
the system, it would discover the other optimal path with
the highest throughput to make a route between two hosts,
and it just takes approximately three seconds to improve the
throughput to 30 Mbps per second again.

On the other hand, the dashed line in Figure 9 presents the
throughput improvement over time when configuring manu-
ally. We had to find all paths that could make the route between
two hosts manually for this stage. After that, we would choose
the path that has the highest throughput and configure it.
Because of these time-consuming processes, manual config-
uration takes about six-second to take another route that has

the same throughput as the beginning. From Figure 9, we can
see that throughput over time was dramatically improved while
the other was changed marginally when using the system.

Fig. 9. Throughput improvement over time.

VI. CONCLUSION

In this paper, we proposed a framework that helps op-
erators to express their intent with ease in Global Internet
eXchange Network. The framework leverages a chatbot in-
terface powered by Dialogflow and a sequence-to-sequence
learning model that converts entities from natural language to a
structured network intent language called SNIL. The structured
intents are then mapped into network policies and processed
to the destination network. We argued that by utilizing the
capabilities of Natural Language Processing into a large-
scale network such as the Global Internet eXchange Network,
network administration should be more convenient and inter-
esting. Our experiments on the NLP domain witnessed the
average response time of the system with high-speed for each
type of intents and the effect of dataset size on the translation
accuracy. In addition, we evaluate the throughput improvement
over time between our system and manual configuration to
show the effectiveness of our framework in the network
domain.

ACKNOWLEDGMENT

This research is partially funded by Vietnam National Foun-
dation for Science and Technology Development (NAFOS-
TED) under grant number 102.02-2019.314

REFERENCES

[1] Bannour, F., Souihi, S., and Mellouk, A. (2017). Distributed SDN con-
trol: Survey, taxonomy, and challenges. IEEE Communications Surveys
and Tutorials, 20(1), 333-354.

[2] Pang, L., Yang, C., Chen, D., Song, Y., and Guizani, M. (2020). A
survey on intent-driven networks. IEEE Access, 8, 22862-22873.

[3] Google Inc. Dialoglow. [Online]. Accessed on: Oct. 21, 2021. Available:
https://dialoglow.com/

[4] Kiran, M., Pouyoul, E., Mercian, A., Tierney, B., Guok, C., and Monga,
I. (2018). Enabling intent to configure scientific networks for high
performance demands. Future Generation Computer Systems, 79, 205-
214.

[5] Alsudais, A., and Keller, E. (2017, May). Hey network, can you un-
derstand me?. In 2017 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS) (pp. 193-198). IEEE.

[6] Esposito, F., Wang, J., Contoli, C., Davoli, G., Cerroni, W., and
Callegati, F. (2018, November). A behavior-driven approach to intent
specification for software-defined infrastructure management. In 2018
IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN) (pp. 1-6). IEEE.

[7] Selle Jacobs, A., José Pfitscher, R., Alves Ferreira, R., and Zambenedetti
Granville, L. (2020). Refining Network Intents for Self-Driving Net-
works. arXiv e-prints, arXiv-2008.

[8] Scholte, J. A. (2018). Internet governance. In The Routledge Handbook
of Transregional Studies (pp. 311-319). Routledge.

[9] Tripathy, J. K., Sethuraman, S. C., Cruz, M. V., Namburu, A., Mangalraj,
P., and Vijayakumar, V. (2021). Comprehensive analysis of embeddings
and pre-training in NLP. Computer Science Review, 42, 100433.

2977
Authorized licensed use limited to: CEA. Downloaded on October 13,2023 at 06:47:25 UTC from IEEE Xplore. Restrictions apply.

