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Abstract: Some original poly(tetrasubstituted imidazole)s incorporating different units were syn-
thesized and characterized. These materials were obtained via a cascade polycondensation process
assisted by microwave irradiation that was developed by our team. This time, we integrated two
well-known chromophore structures into the macromolecular backbone, which were benzothiadia-
zole (BTD) and diketopyrrolopyrrole (DKPP). These new polymers were fully characterized: their
chemical structures were confirmed using NMR spectroscopy and their thermal, optical and electro-
chemical properties were investigated and compared with a reference polymer containing a phenyl
spacer instead of the mentioned chromophore units. These materials were found to exhibit a large
Stokes shift of up to 350 nm. Furthermore, a polymer presenting large absorption on the UV–visible
range and an emission close to the near-infrared region was obtained by coupling the mentioned
moieties. According to the established properties of this latter polymer, it presents a potential for
applications in biological imaging or optoelectronic devices.

Keywords: imidazole; benzothiadiazole; diketopyrrolopyrrole; fluorescent polymers; transfer
photoluminescence

1. Introduction

For some time, many new polymers with attractive optical and electronic properties
have been regularly synthesized [1–5]. Such polymers with appropriate structures can find
several applications and can, for instance, be used in different kinds of sensors like explosive
detection devices when possessing turn-on or turn-off fluorescence mechanisms [6,7], or
for essential biological component detection or destruction of tumorous cells [8–12]. When
prepared as polymer dot nano-particles, polymers can find applications in several areas
of interest such as biological imaging and in vivo probes [13]. For biomedical uses, the
targeted properties are a high brightness fluorescence in the near-infrared region (NIR),
a large Stokes shift or a good Förster resonance energy transfer (FRET) efficiency [14].
To attempt to reach these characteristics, one promising way is the synthesis of poly-
chromophore polymers with compatible donor and emitter moieties. That is to say, a good
overlap between the donor emission band and the absorption range of the final expected
emitter, i.e., the acceptor [15,16].

Fluorescent biological imaging techniques are powerful tools for the non-invasive
study of biological mechanisms. In particular, they provide high sensitivity and possess
optimal local resolution. Unfortunately, the traditionally used fluorophores are small

Processes 2023, 11, 2959. https://doi.org/10.3390/pr11102959 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11102959
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-9048-9908
https://doi.org/10.3390/pr11102959
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11102959?type=check_update&version=1


Processes 2023, 11, 2959 2 of 14

organic dyes, which present a restricted photo-stability. It thus seems of interest to develop
novel fluorophore materials. Moreover, for in vivo purposes, fluorescence in the near-
infrared range is needed due to its high potential for deep tissue penetration [17,18].

The constant development of polymer nanofibers has led to the emergence of a variety
of nanofibers with different structural properties, making their use in sensing applications
ever more widespread. This allowed the recent development of fluorescence sensors
based on polymer nanofibers mixed with fluorescent particles, for instance, the following
composites have found applications as optical sensors for the detection of food freshness,
pH, mercury ions, gas and volatile organic compounds: cellulose–CdTe quantum dots,
polyvinylpyrrolidone–rhodamine, chitosan–carbon dots, polyacrylonitrile–hydroxyphenyl
benzoxazole or polyacrylonitrile–small organic dyes [19]. Polymeric microcapsules are also
of interest. They can, for instance, contain anticancer drugs and fluorescent nanocrystals
for tumor treatment and diagnostics, respectively [20]. Due to their high fluorescence
quantum yield, perovskite nanocrystals could also find applications in sensors, for instance,
the detection of hazardous materials in food [21]. They should, however, be embedded
within a polymeric encapsulation in order to resist environmental stress. Organic dyes have
also thoroughly been investigated year after year in order to develop fluorescent probes
for various applications, such as biological component detection, bio-imaging and even
cancer/tumorous cell therapy. Recent fluorescence probes are mainly based on coumarin,
rhodamine, fluorescein, cyanine, boron–dipyrromethene or diketopyrrolopyrrole [12]. Even
if diketopyrrolopyrrole evidenced remarkable properties such as superior fluorescence
and exceptional photochemical and thermal stability, its development is still immature
and needs to be further developed. Its integration in a larger polymeric architecture will
therefore be proposed in this manuscript. Indeed, as small organic molecules usually exhibit
short emission wavelengths, an interesting strategy could be the redshift of both absorption
and emission properties by extension of the conjugated π-system. This is affordable with
the oligomerization/polymerization of small conjugated molecules. In this way, Zou
et al. produced a benzodithiophene–thiadiazoloquinoxaline alternated oligomer with
improved NIR fluorescence [22]. Hernández-Ortiz et al. even highlighted the possibility
of obtaining a change in fluorescence emission for the bithiophene–quinolinevinylene
alternated polymer [23]. This was possible thanks to a conformational photoisomerization
from the trans to the cis isomer of the same polymer, thus shifting the emission from green
to orange.

Organic electronics is another large research area that focuses on new macromolecular
systems. This field can serve as a source of inspiration in order to select the most promising
units to achieve the previously mentioned goals. Indeed, to design more efficient devices
(including solar cells, light-emitting diodes, thin film transistors, etc), it was necessary to
develop new π-conjugated structures with specific properties. As a first condition, the
polymers should have a good thermal resistance to ensure the lifetime of the devices.
Aromatic and heterocyclic materials have proved to be a great choice here, further allowing
relative ease for tuning semi-conducting properties by incorporating different electron
acceptor and donor functional groups [24]. Two well-known acceptor building blocks that
were incorporated in both polymers and small molecules for organic electronic applications
are benzothiadiazole [25–30] and diketopyrrolopyrrole [31–38]. Both possess electron-
withdrawing properties compatible with the aryl imidazole unit selected as donor moiety, as
well as attractive luminescent properties [39,40]. On the other hand, several tetrasubstituted
aryl imidazole heterocyclic compounds were recently synthesized within our group using a
new convenient multicomponent reaction via a cascade polycondensation process assisted
by microwave irradiation [41,42]. They possess very high thermal stability and have
also demonstrated some promising results as regards their fluorescence and electronic
properties [43–48]. The combination through donor/acceptor pairs of all these materials
within one polymer will have a determinant effect on its HOMO and LUMO levels, which
will undeniably also affect the optical properties. It would therefore be interesting to extend
and explore this new family of polymers that are now available to us.
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The main weakness of the selected acceptor structures is their poor solubility, which
could imply difficulties in polymer synthesis, purification, characterization and final use.
Therefore, several works were carried out to increase their solvent processing ability using,
for instance, aliphatic side chains or aromatic backbone spacers. These modifications could
considerably change the electronic and structural properties of the final polymer [49–51].
In particular, the addition of thiophene spacers will expand the conjugated system and,
interestingly, were also proven to increase the emission wavelength in the case of diketopy-
rrolopyrrole [52]. Another common way to increase polymer solubility is the incorporation
of some nitrogen heterocycle structures along the macromolecular backbone, which will
be achieved here using the intended aryl imidazole donor units. These latter molecular
architectures possess good solubility in common organic solvents [53,54].

According to all the mentioned advantages, we investigated the potential of combining
the different moieties within the same polymer. In order to appreciate the effect of each
moiety, a series of three polymers were synthesized and characterized. A full analysis was
therefore realized with the investigation of absorbance and fluorescence properties, thermal
transition and degradation temperatures, together with the determination of energy levels
using electrochemistry and a confirmation of the obtained polymers’ chemistry through size
exclusion chromatography (SEC) and 1H and 13C nuclear magnetic resonance spectroscopy
(NMR). The ultimate goal of this conducted work was to combine several chromophores
to cover a wide range of the visible spectrum, which was successfully achieved with the
polymer P3.

2. Materials and Methods
2.1. Materials

Bis(aryl α-diketone) (M4) is the precursor for the main aryl imidazole repeating unit
of all synthesized polymers. It was prepared as described in a previous work [41]. The
resulting aryl imidazole unit will be coupled with three different units (M1), (M2) and (M3),
which are bis(aryl dialdehyde), benzothiadiazole (BTD) and diketopyrrolopyrrole (DKPP)
derivatives, respectively. (M1) was prepared as described in the previous work [41] and the
procedure for (M2) and (M3) syntheses is further described in this paper.

Triphenylphosphine, copper iodide and bis(triphenylphosphine)palladium(II) dichlo-
ride Pd(PPh3)2Cl2 were purchased from Sigma Aldrich and were used as received. All other
reactants and solvents were of reagent grade and also used as received. Microwave-assisted
experiments were performed with a Milestone ETHOS microwave oven. The polymeriza-
tions were performed in a high-pressure Teflon® reactor equipped with a pressure captor
and an optical fiber as thermal sensor. The purification by flash chromatography was
performed on an Interchim puriflash® 300 and silica (std 15 µm) cartridge was used.

2.2. Synthesis
2.2.1. General Procedure for the Synthesis of M2 and M3

M2 protocol:
4,7-dibromo-2,1,3-benzothiadiazole (A) (2.5 g, 8.5 mmol) and 4-ethynylbenzaldehyde

(2.32 g, 18 mmol) were charged into a three-necked reaction vessel equipped with stir-
rer, argon inlet and reflux condenser. A mixture of dimethylacetamide (DMAc, 23 mL)
and triethylamine (23 mL), then copper iodide (57 mg, 0.3 mmol) and triphenylphos-
phine (56 mg, 0.2 mmol) were added and the solution was stirred for 15 min. Finally,
bis(triphenylphosphine)palladium(II) dichloride (60 mg, 0.085 mmol) was added and the
mixture was stirred at 80 ◦C overnight. The yellow precipitate was filtered and washed
with acetone, HCl (0.1 N) and methanol, dried under vacuum at 80 ◦C to yield 2.6 g of the
M2 titled compound (78% yield) as a yellow powder.

4,4′-[2,1,3-benzothiadiazole-4,7-diyldi(ethyne-2,1-diyl)]dibenzaldehyde (M2): (mp: no
melting point found before degradation temperature). 1H NMR (500 MHz, CDCl3, 25 ◦C):
δ 7.88 (d, J = 8.3 Hz, 4H; H-Ar), 7.94 (s, 2H; H-Ar), 8.00 (d, J = 8.4 Hz, 4H; H-Ar), 10.00
(s, 2H; CHO). 13C NMR (500 MHz, CDCl3, 25 ◦C): δ 195.0, 161.8, 161.4, 161.0, 160.6, 153.8,
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133.8, 118.4, 97.0, 88.8 ppm. (See Figures S1 and S2 in SI for the visualization of 1H and 13C
NMR spectra, respectively).

M3 protocol:
3,6-bis(5-bromothiophen-2-yl)-2,5-bis(dodecyl)pyrrolo [3,4-c]pyrrole-1,4-dione (B)

(1.4 g, 1.76 mmol) and 4-ethynylbenzaldehyde (0.47 g, 36 mmol) were charged into a
three-necked reaction vessel equipped with stirrer, argon inlet and reflux condenser. A
mixture of DMAc (13 mL) and triethylamine (13 mL), then copper iodide (12 mg, 0.06 mmol)
and triphenylphosphine (12 mg, 0.04 mmol) were added and the solution was stirred for
15 min. Finally, bis(triphenylphosphine)palladium(II) dichloride (12 mg, 0.02 mmol) was
added and the mixture was stirred at 80 ◦C overnight. The dark blue precipitate was
filtered and washed with water, the product was purified by flash chromatography using
chloroform as eluent to afford 0.92 g (58% yield) of the M3 titled compound as a dark
blue solid.

4-{2-[5-(2,5-bis(dodecyl)-4-{5-[2-(4-formylphenyl)ethynyl]thiophen-2-yl}-3,6-dioxopyrr
olo [3,4-c]pyrrol-1-yl)thiophen-2-yl]ethynyl}benzaldehyde (M3): mp = 157 ◦C. 1H NMR
(500 MHz, CDCl3 + trifluoroacetic acid, 25 ◦C): δ 0.86 (t, J = 6.95 Hz, 6H; CH3), 1.35–1.42 (m,
36H), 1.75 (m, 4H), 4.07 (t, J = 7.80, 4H), 7.50 (d, J = 4.15, 2H), 7.74 (d, J = 8.3, 4H), 7.97(d,
J = 8.4, 4H), 8.76 (d, J = 4.15, 2H), 10.00 (s, 2H). 13C NMR (500 MHz, CDCl3 + trifluoroacetic
acid, 25 ◦C): δ 195, 161.8, 161.3, 160.9, 160.5, 160.1, 140.8, 136.5, 134.8, 130.4, 129.3, 108.8,
97.3, 86.4, 42.9, 31.9, 29.8–29.1, 26.7, 22.6, 14.0 ppm. (See Figures S4 and S5 in SI for the
visualization of 1H and 13C NMR spectra, respectively).

2.2.2. General Procedure for the Polymerization of P1, P2 and P3

Polymers:
The polymerizations were performed under microwaves (2.45 GHz, 500 W) for 40 min

at 140 ◦C following a procedure already described in our previous work for polymer P1 [42].
The polymers were obtained by precipitation in methanol, filtered and then washed with
methanol using a Soxhlet extractor to remove p-buthylaniline and ammonium acetate.

P1 was obtained as off-white colored solid, P2 was obtained as an orange solid and
P3 was obtained as a dark blue metallic like solid. All polymers presented a monomodal
molecular weight distribution. 1H and 13C NMR spectra of P2 and P3 new polymers
are presented in SI (Figures S7–S10) and the typical SEC profile in Figure S11 (molecular
weights are given later in the manuscript).

2.3. Characterizations
2.3.1. Chemical Structure Control

Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance
500 MHz spectrometer (Bruker, Preston, VIC, Australia). Deuterated chloroform (CDCl3)
was used as solvent, with, if needed, the help of a drop of trifluoroacetic acid (TFA).

The molecular weights of the polymers were measured by size exclusion chromatog-
raphy (SEC) using a system equipped with a generic pump coupled with a differential
refractive index detector (Wyatt optilab-rEX (Waters Corporation, Milford, MA, USA) 25 ◦C
at 658 nm). Molecular weight parameters (Mw, Mn, Ð = Mw/Mn) are given in ‘polystyrene
equivalent molecular weights’ obtained using chloroform as eluent and a calibration with
polystyrene standards.

2.3.2. Thermal Analyses

Thermogravimetric analyses (TGA) were performed under nitrogen on a Mettler
TGA1 from 25 to 600 ◦C at 10 ◦C/min. The polymer glass transition temperatures (Tg)
were determined by Differential Scanning Calorimetry (DSC) from a TA instrument Q2000
measurements (TA Instruments, New Castle, DE, USA). Analyses were performed under
nitrogen, at a heating rate of 10 ◦C/min, on a 25–300 ◦C temperature range. Reported
values were obtained from the second heat scan, using the midpoint method.
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2.3.3. Optical Properties

Absorption spectra were measured using a Varian Cary50 UV–visible spectropho-
tometer (Spectralab Scientific Inc., Markham, ON, Canada). Polymer solution photolu-
minescence spectra (Agilent, Santa Clara, CA, USA) were recorded with an Agilent Cary
Eclypse spectrofluorometer. The fluorescence quantum yields were determined using the
procedure described by G.A. Crosby and J.N. Demas [55].

2.3.4. Electrochemical Properties

The electrochemical experiments were carried out with a Biologic SP-300 potentio-
stat (Bio-Logic, Knoxsville, TN, USA). The cyclic voltammetry was performed in a three-
electrode cell equipped with platinum working electrode (2.01 mm2), platinum counter-
electrode and Ag/Ag+ reference electrode (silver wire in an acetonitrile solution of AgNO3
(0.01 M) and tetrabutylammonium hexafluorophosphate TBAHFP (0.1 M)). Experiments
were conducted in anhydrous and nitrogen-saturated 0.1 M TBAHFP solutions and ana-
lyzed compounds were under the form of films (polymer diluted solutions dropped and
evaporated on the working electrode). Electrolyte solutions and scan rate conditions used
were propylene carbonate at 20 mV·s−1. The reference electrode was calibrated versus
the ferrocene/ferrocenium couple (Fc/Fc+) measured under the form of solution in same
experimental conditions. As the potential of Ag/Ag+ reference electrode can vary between
experiments due to the possible little evolution of [Ag+], presented potentials are referenced
to an external reference compound with a known E 1

2
, which was measured and verified to

be constant before and after all measurements campaigns (measured E1/2(Fc/Fc+) = 0.08 V
vs. Ag/AgCl). Reported oxidation and reduction potentials for polymers are the onset
potentials determined using the tangent method.

3. Results and Discussions

In order to successfully synthesize the poly(tetrasubstituted imidazole) copolymer se-
ries, the chosen experimental conditions involve bis(arylaldehyde) and bis(aryl α-diketone)
compounds in stoichiometric ratio [42]. While the reference polymer P1 was synthetized
using the previously developed (phenylene bis(oxy))dibenzaldehyde (M1), it was thus nec-
essary to functionalize both selected chromophore units to afford P2 and P3. Scheme 1 thus
presents the synthetic pathway to obtain the two required monomers M2 and M3, which
are the benzothiadiazole and diketopyrrolopyrrole derivatives, respectively. Intermediates
A and B were synthesized according to the reported procedures [35,56,57], following the
steps that can be found in Scheme S1 presented in the Supporting Information file.
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The described final step to reach the dialdehyde monomers consists of a Sonogashira
coupling reaction involving the dibrominated intermediates and the acetylenic benzalde-
hyde. The use of a mixture of triethylamine and dimethylacetamide (DMAc), in the presence
of the catalytic system comprising triphenylphosphine, copper iodide and PdCl2(PPh3)2,
provides a good yield and an easy workup. P1, P2 and P3 were then obtained as described
in Scheme 2: M1, M2 and M3 were allowed to react with M4 into a one-pot polycondensa-
tion with ammonium acetate and 4-butylaniline to furnish the polymers P1, P2 and P3 as
consistent materials.
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Scheme 2. Synthetic pathway for polymers P1, P2 and P3.

These poly(tetraaryl imidazoles) (PTAI) copolymers were synthesized using the Debus–
Radziszewski reaction under microwave irradiation. This technique is useful to quickly
and easily access some new macromolecular structures [58,59]. The chemical structure
of newcomer’s polymers P2 and P3 were checked using 1H and 13C NMR (see SI for all
spectra). The following Figure 1 presents as example of the 1H NMR spectrum of polymer
P3. This polymer was completely soluble in chloroform, providing a solution with low vis-
cosity. The incorporation of the DKPP monomer into the polymer backbone was evidenced
by the presence of characteristic peaks: C-H (A) from the thiophene rings and N-CH2 (B)
from the alkyl chains. In addition, the Ar-CH2 (C) signal attributed to the butylaniline
chemical group (belonging to the aryl imidazole units) shows a good correlation with the
expected ratios for M1-, M2- and M3-based repeating units (i.e., 0.6/0.2/0.2), respectively,
corresponding to all the components initially engaged in the polymerization.
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Figure 1. 1H NMR spectrum of polymer P3 at 25 ◦C in CDCl3 (the integration around 7 ppm could
be distorted by residual CHCl3 in CDCl3).

The molecular weights of all the polymers were high enough to make self-supporting
thin films using the classical solvent evaporation process, as shown in Figure 2 and con-
firmed by the SEC values reported in Table 1.
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Table 1. Thermal properties and molecular weights of synthetized copolymers.

Polymer Td 5% (◦C) a Tg (◦C) b Mn
(g·mol−1) c

Mw
(g·mol−1) c Ð c

P1 465 185 31,000 89,000 2.9

P2 450 NO * 29,000 107,000 3.6

P3 445 178 28,000 200,000 7.1
a Td 5% is the decomposition temperature at 5% weight lost. b Tg is the glass transition temperature at the
midpoint method. c Mn is the number average molecular weight, Mw the weight average molecular weight and
Ð the polydispersity index (=Mw/Mn). * NO: no Tg visible by DSC.

The thermal properties of the synthetized polymers were investigated using DSC
and TGA. The obtained traces are shown in Figure 3a,b, respectively. Data summarized
in Table 1 show that all materials possess a high thermal stability with a decomposition
temperature near 450 ◦C. P1 and P3 have a glass transition at around 180 ◦C. For P2,
no glass transition could be observed using the DSC technique, which is common with
the benzothiadiazole copolymer family [51,60]. For all the polymers, no melting and
crystallization peaks were observed. However, the backbone structure rigidity can lead to
melting temperatures above degradation. Despite this relative rigid molecular structure,
the synthetized materials still have a very good solubility in common organic solvents.
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In this work, we focused our attention on the incorporation of some well-known
chromophores such as benzothiadiazole and diketopyrrolopyrrole structures into the
polymer backbone, and the focal point of the present work concerns the investigation of
the resulting optical properties. These molecular patterns are widely used in solar cells and
other organic electronic devices. However, here, we study them in another kind of “push-
pull” structure using a non-common imidazole linkage. The push–pull design is provided
by the imidazole as a donor while the benzothiadiazole and diketopyrrolopyrrole units both
play the role of electron acceptors. Here, two different and isolated push–pull systems are
theoretically present in the polymer P3. This was confirmed by its UV–visible absorption
spectrum (Figure 4a), which covers each different copolymer fragment absorptions, the
latter being slightly redshifted when compared to those of the monomer units (see Figures
S3 and S6 in SI). On another note, the absorbance spectra of polymers P1, P2 and P3 in the
solid state were quite close to their equivalents in the solution state; however, a redshift of
about 20 nm was witnessed, which is commonly observed due to stacking in the solid state
(see Figure S12).
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As regards the luminescence properties of the synthetized polymers, all possess
luminescent properties in the solution state (Figure 3b), but only P1 and P2 exhibited a
signal in the solid state (Figure 2b). This should originate from a strong π–π aggregation
of the diketopyrrolopyrrole units [61], inducing a strong fluorescence quenching in the
solid state for P3. Interestingly, according to the liquid state photoluminescence spectra
(Figure 4b), we can observe a kind of FRET transfer with polymers P2 and P3 that affords
a large Stokes shift of up to 350 nm (λex = maximum of λabs reported in Table 2). The
fluorescence contribution of the BTD moiety at about 550 nm was estimated to be less than
0.2% in polymer P3 and, as expected, the incorporation of the DKPP structure affords a
maximum fluorescence emission between 650 and 700 nm (the latter being in accordance
with the monomer unit fluorescence, see Figures S3 and S6 in SI). It could be observed that
both the absorption and emission patterns of the DKPP moiety consist of two peaks. This
is the case for both the polymer P3 and its corresponding monomer unit M3 (see Figure S6
in SI). According to the literature [62], the two clear vibronic peaks correspond to the 0–1
and 0–0 transitions of DKPP, respectively.

Table 2. Optical characterizations (for Mod: model compound, see the SI).

Structure λabs (nm) (ε.103) a λem (nm) b Eopt
g (eV) c ϕ (%) d

P1 296 (43) 394 3.5 4

P2 327 (66); 441 (40) 579 2.3 23

P3 297 (50); 430 (5.5); 620 (6) 652–704 1.7 28

Mod 290 (15) 384 3.6 5
a λabs: wavelength of the maximum absorption and ε: absorption coefficient. b λem: wavelength of the maximum
emission. c Eopt

g : optical band gap. d ϕ: fluorescence quantum yield.

Table 2 presents the absorption and emission wavelengths at maximal intensities for
the three synthesized polymers, together with the optical bandgap (Eopt

g ) values decreasing
from 3.5 eV to 1.7 eV when passing from polymer P1 to polymer P3. The polymers’
fluorescence quantum yields were also determined and totaled up to about 25–30% for
polymers P2 and P3 (Table 2). These values are near the literature data for molecules or
polymers based on similar units [38,46], but it should be observed that polymer P1 presents
a very low fluorescence yield. This should be due to the n-π* excitation state, which is
a relative long lifetime radiation process that induces a low quantum yield of the single
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state fluorescence [63]. To confirm this result originating from the imidazole core, a small
tetraaryl imidazole model molecule (Mod) was synthesized (see the SI for its synthesis
and characterization: Scheme S2 and Figures S13–S16). The recorded absorbance and
fluorescence emission spectra permit us to calculate the fluorescence quantum yield of this
model molecule, which was found to be in the same range as that of polymer P1, i.e., about
5%. This means that the higher fluorescence yields found for P2 and P3 are due to the
molecular structures of the BTD and DKPP moieties.

On the other hand, a very good overlap was evidenced between the emission wave-
lengths of the P1 and P2 emitters and the absorption of the DKPP acceptor. If we consider
that the DKPP is only present in 20% of P3 repeating units, the yield of fluorescence using
FRET processing is thus very good.

In order to go further and estimate the energy levels of this new copolymer series, an
electrochemical study was conducted. Figure 5 presents the cyclic voltammograms (CV)
obtained for the three polymers. Concerning positive potentials, all polymers present one
irreversible oxidation peak with close values. The switching between the different acceptor
units demonstrated no significant impact on the associated HOMO levels (see Table 3).
Indeed, the observed oxidation answer is attributed to the shared imidazole donor moiety.
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Table 3. Electrochemical data and HOMO/LUMO levels of polymers.

Polymer EOX
onset (V)

a vs. Fc/Fc+

ERED
onset

(V) a vs.
Fc/Fc+

HOMO b

(IP, eV)
LUMO b

(EA, eV) ECV
g (eV) d

P1 0.67 - −5.8 ~−2.3 c -

P2 0.73 −1.35 −5.8 −3.8 2.08

P3 0.61 −0.82 −5.7 −4.3 1.43
a EOX

onset and ERED
onset are, respectively, the first onset oxidation and reduction potentials determined by CV and

are given versus the ferrocene/ferrocenium standard couple. b Except in c case, the HOMO and LUMO values
were calculated with respect to ferrocene (reference energy level = −5.1 eV below the vacuum level) according
to the following equations: HOMO = −[(EOX

onset vs. Fc/Fc+) + 5.1]; LUMO = −[(ERED
onset vs. Fc/Fc+) + 5.1].

c In this case, the LUMO level was estimated using Eopt
g. d ECV

g : electrochemical band gap.

Regarding the negative potentials, reduction waves were observed for only two
derivatives. For P1, the optical band gap value (given in Table 2 and determined using the
UV–visible absorption onset [64]) leads us to think that the reduction peak should take
place after −2.5 V. Due to the solvent front (beginning at ~−2.2 V for propylene carbonate),
it seems obvious that this polymer reduction cannot be observed using CV. The obtained
curve is, however, shown in Figure 5 (intensity values in ordinate were divided by ten in
order to be presented on the same graph as P2 and P3 voltammograms), and nothing was
detectable except the solvent breakdown. Consequently, the optical band gap was used
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to estimate the P1 polymer’s LUMO value. Respectively, for P2 and P3, a quasi-reversible
reduction peak at −1.35 V and an irreversible peak at −0.82 V vs. Fc/Fc+ were observed,
demonstrating both electrochemical band gaps in accordance with optical ones. The three
resulting LUMO levels (Table 3) are mainly controlled by the LUMO level of the polymers
acceptor moieties and thus driven by the increasing electron-withdrawing strength of the
following units: diphenyl ether < benzothiadiazole < diketopyrrolopyrrole.

It should be observed that for polymer P3, no second reduction wave was observed
at benzothiadiazole potential, even though this unit is present in the same quantity as the
diketopyrrolopyrrole unit. This might be related to an intramolecular decomposition due
to the first irreversible reduction and not reproducible using cycling.

4. Conclusions

New polychromophore materials were successfully synthesized using an innovative
multi-component polycondensation. These macromolecules have several interesting prop-
erties such as good thermal stability and high solubility. We demonstrated that it was
possible to tune their optical characteristics by changing the di-aryl aldehyde functionalized
monomer, which is a relatively easily accessible modification. In this work, we succeeded
in affording a polymer with a large Stoke shift of about 350 nm. This polymer family could
probably have several interesting applications in both biological imaging or optoelectronic
devices, and it seems of interest to investigate possible adjustments on the donor moiety,
i.e., the imidazole ring that is governed by the α-diketone monomer.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pr11102959/s1, Figure S1: 1H NMR spectrum of monomer M2 in
CDCl3, Figure S2: 13C NMR spectrum of monomer M2 in CDCl3, Figure S3: Excitation and emission
spectra of monomer M2 in CHCl3, Figure S4: 1H NMR spectrum of monomer M3 in CDCl3 +TFA,
Figure S5: 13C NMR spectrum of monomer M3 in CDCl3 + TFA, Figure S6: Excitation and emission
spectra of monomer M3 in CHCl3, Figure S7: 1H NMR spectrum of polymer P2 in CDCl3, Figure S8:
13C NMR spectrum of polymer P2 in CDCl3, Figure S9: 1H NMR spectrum of polymer P3 in CDCl3,
Figure S10: 13C NMR spectrum of polymer P3 in CDCl3, Figure S11: Typical SEC trace (P3), Figure S12:
UV–Vis absorbance spectra of P1, P2 and P3 (in solid state), Figure S13: 1H NMR spectrum of model
compound Mod in CDCl3, Figure S14: 13C NMR spectrum of model compound Mod in CDCl3,
Figure S15: Absorbance spectrum of the model compound Mod in CHCl3, Figure S16: Excitation
(left) and emission (right) spectra of the model compound Mod in CHCl3, Scheme S1: Synthetic
route to A and B compounds, chemical building blocks for monomers M2 and M3, Scheme S2:
Synthetic route for tetra-aryl imidazole model molecule (Mod), according to a procedure described
by K. Pradhan et al.
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