As shown by W. H. Miller in a seminal article [

Introduction

The semiclassical initial value representation (SCIVR) is a major contribution to the theory of molecular processes 1,2 and spectra. [START_REF] Sun | Semiclassical initial value representation for rotational degrees of freedom: The tunneling dynamics of HCl dimer[END_REF][START_REF] Buchholz | Mixed semiclassical initial value representation time-averaging propagator for spectroscopic calculations[END_REF] In particular, it is a great tool for understanding quantum effects in molecular collisions [START_REF] Miller | Classical-limit quantum mechanics and the theory of molecular collisions[END_REF][START_REF] Miller | The Classical S-Matrix in Molecular Collisions[END_REF] and introducing quantum corrections in their classical dynamical simulations. [START_REF] Rodriguez-Fernandez | When classical trajectories get to quantum accuracy: II. The scattering of rotationally excited H 2 on Pd(111)[END_REF][START_REF] Bonnet | Chemical reaction thresholds according to classical-limit quantum dynamics[END_REF] It all began with the derivation by Miller of Eq. (29) of Ref. [START_REF] Miller | Classical S Matrix: Numerical Application to Inelastic Collisions[END_REF] , on which we will concentrate our efforts. This equation gives an SCIVR expression of S -matrix elements in action-angle variables. More specifically, S -matrix elements are given by integrals over initial values of shifted angles, different from the angles usually used in the quantum and classical scattering treatments, called natural angles from now on. [START_REF] Miller | Classical S Matrix: Numerical Application to Inelastic Collisions[END_REF][START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF][START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF][START_REF] Bonnet | Semiclassical descriptions of rotational transitions in natural and shifted angles : Analysis of unexpected results[END_REF] Shifted angles have the key property to be constant outside the interaction region, and this is what makes Miller's S -matrix elements (called IVR-S in the following) independent on the initial and final distances at which the calculation of classical trajectories is started and stopped (provided that they correspond to configurations outside the interaction region). [START_REF] Miller | Classical S Matrix: Numerical Application to Inelastic Collisions[END_REF] In contrast, SCIVR calculations in natural angles lead to S -matrix elements (called IVR-N) that may unphysically fluctuate with the previous distances, being therefore less accurate than IVR-S ones. [START_REF] Bonnet | Phase-index problem in the semiclassical description of molecular collisions[END_REF][START_REF] Bonnet | Semiclassical initial value theory of rotationally inelastic scattering: Some remarks on the phase index in the interaction picture[END_REF][START_REF]The unphysical fluctuation of IVR-N S -matrix elements was first observed for rotational transitions in inelastic collisions. 12,13[END_REF] Motivated by recent studies on light-induced rotational transitions, [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF][START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF][START_REF] Bonnet | Semiclassical descriptions of rotational transitions in natural and shifted angles : Analysis of unexpected results[END_REF] we revisit here the derivation of Miller's formulation for an inelastic molecular collision within the framework of the Tannor-Weeks theory of quantum molecular scattering. [15][START_REF] Tannor | Semiclassical calculation of chemical reaction dynamics via wave packet correlation functions[END_REF][START_REF] Garashchuk | Semiclassical application of the Møller operators in reactive scattering[END_REF] As a matter of fact, it will appear that the initial and final shifted angles involved in the IVR-S approach define three-segment classical paths that are exactly those involved in the classical-limit of Tannor-Weeks theory provided that the translational wave packets |g + and |g -into play in this theory are both placed at the very heart of the interaction region, i.e., at |0 . By assuming this to be the case, using van Vleck propagators, [START_REF] Gutzwiller | Chaos in Classical and Quantum Mechanics[END_REF][START_REF] Stockmann | Quantum Chaos. An Introduction[END_REF] and applying the stationary phase approximation (SPA), [START_REF] Miller | Classical-limit quantum mechanics and the theory of molecular collisions[END_REF][START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF][START_REF] Gutzwiller | Chaos in Classical and Quantum Mechanics[END_REF][START_REF] Stockmann | Quantum Chaos. An Introduction[END_REF][START_REF] Weber | Essential Mathematical Methods for Physicists[END_REF] we will show that the IVR-S expression of S -matrix elements is found, with an additional cut-off factor cancelling the energetically forbidden transition probabilities. In most cases, however, this factor is close to unity. We will also show that the Møller operators [START_REF] Tannor | Introduction to quantum mechanics. A time-dependent perspective[END_REF][START_REF] Zhang | Theory and application of quantum molecular dynamics[END_REF] underlie Miller's formulation, thus confirming for molecular collisions the results recently established in the simpler case of light-induced rotational transitions in the above mentioned studies. [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF][START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF][START_REF] Bonnet | Semiclassical descriptions of rotational transitions in natural and shifted angles : Analysis of unexpected results[END_REF] A good knowledge of the SPA [START_REF] Miller | Classical-limit quantum mechanics and the theory of molecular collisions[END_REF][START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF][START_REF] Gutzwiller | Chaos in Classical and Quantum Mechanics[END_REF][START_REF] Stockmann | Quantum Chaos. An Introduction[END_REF][START_REF] Weber | Essential Mathematical Methods for Physicists[END_REF] will greatly facilitate the reading of these developments.

On the practical side, the Skinner-Miller method 2,23 is a general SCIVR approach based on an exact expression of S -matrix elements involving the space-time propagator [see Eqs. (5) and (7)]. Skinner and Miller replace the latter by the van Vleck semiclassical propagator [START_REF] Gutzwiller | Chaos in Classical and Quantum Mechanics[END_REF][START_REF] Stockmann | Quantum Chaos. An Introduction[END_REF] (the Herman-Kluk one [START_REF] Herman | A semiclassical justification for the use of non-spreading wavepackets in dynamics calculations[END_REF] can be used as well) and the resulting expression is put in the form of an integral over initial phase-space variables. This integral is then numerically calculated instead of being estimated using the SPA, which in principle maximizes its accuracy (the dynamics must be sufficiently regular). However, the initial configuration space coordinates are natural in the Skinner-Miller method, 2,23 and we saw earlier that this may affect the accuracy of S -matrix elements. Therefore, we propose in this work a new implementation of the Skinner-Miller method in shifted coordinates that significantly improves both the numerical efficiency and accuracy of the calculations for processes involving long-range anisotropic forces.

The paper is laid out as follows. For the sake of clarity, Miller's original formulation is summarised in Sec. 2. The new formulation based on Tannor-Weeks theory is presented in Sec. 3. The Skinner-Miller method in shifted coordinates is proposed in Sec. 4. Final remarks are made in Sec. 5.

Summary of the original formulation

The content of this section does not always follow scrupulously the approach taken by Miller in his original articles, 1,5 but its spirit remains very close.

Collisional system

In this work, we consider the two-dimensional rotational excitation of a plane rotor. [START_REF] Bonnet | Phase-index problem in the semiclassical description of molecular collisions[END_REF][START_REF] Bonnet | Semiclassical initial value theory of rotationally inelastic scattering: Some remarks on the phase index in the interaction picture[END_REF][START_REF] Mccurdy | Interference effects in rotational state distributions: Propensity and inverse propensity[END_REF] However, the ideas discussed in the following are general. The classical Hamiltonian is

H = H 0 + V (R, φ) (1) 
with

H 0 = P 2 2µ + J 2 2I . (2) 
R is the distance between the rotor and the collision partner. φ is the orientation angle of the plane rotor, that we called natural angle in Refs. [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF][START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF][START_REF] Bonnet | Semiclassical descriptions of rotational transitions in natural and shifted angles : Analysis of unexpected results[END_REF] . P and J are the momenta conjugate to R and φ, respectively. V (R, φ) is the interaction potential and H 0 the unperturbed classical

Hamiltonian. The quantum counterparts of H and H 0 will be denoted by the same symbols.

The stationary states of H 0 are given by the product of a translational state

R|k = e ikR √ 2π (3) 
and a rotational state

φ|j = e ijφ √ 2π (4) 
where k is the modulous of the wave vector and j is the rotational quantum number. The normalization constant of R|k is chosen in view of the developments in Sec. 3. E will be the total energy of the collision. We wish to semiclassically estimate the probability amplitude S j 2 j 1 (E) that the incoming rotor in the initial state j 1 is in the final state j 2 after the collision.

SCIVR expressions in natural angles

For simplicity's sake, we will ignore until Sec. 4 the phase indices as well as the pure imaginary unit whenever it appears in the developments. In applications, however, these numbers are mandatory for an accurate description of quantum interferences (see Refs. [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF][START_REF] Bonnet | Semiclassical descriptions of rotational transitions in natural and shifted angles : Analysis of unexpected results[END_REF][START_REF] Bonnet | Phase-index problem in the semiclassical description of molecular collisions[END_REF][START_REF] Bonnet | Semiclassical initial value theory of rotationally inelastic scattering: Some remarks on the phase index in the interaction picture[END_REF][START_REF] Gutzwiller | Chaos in Classical and Quantum Mechanics[END_REF][START_REF] Stockmann | Quantum Chaos. An Introduction[END_REF] for more details).

Miller shows in Ref. [START_REF] Miller | Classical-limit quantum mechanics and the theory of molecular collisions[END_REF] that a formally exact expression of S j 2 j 1 (E) is

S j 2 j 1 (E) = µ k 1 k 2 e -i(k 1 R 1 +k 2 R 2 ) ∞ -∞ dt e iEt/ R 2 j 2 |e -iHt/ |R 1 j 1 (5) 
(the conventions adopted in the present work are such that there is a difference of sign with respect to Eq. (3.11) of Ref. [START_REF] Miller | Classical-limit quantum mechanics and the theory of molecular collisions[END_REF] ; this difference, however, is irrelevant since it only affects the overall phase). R 1 and R 2 are large enough so that beyond these values, V (R, φ) is 0. t is time, e -iHt/ is the evolution operator, and k 1 and k 2 , given by

k i = 2µ E - 2 j 2 i 2I , (6) 
i = 1, 2, are the magnitudes of the initial and final wave vectors. In Refs. [START_REF] Bonnet | Phase-index problem in the semiclassical description of molecular collisions[END_REF] and 26 , the authors first replace in Eq. ( 5) the mixed propagator R 2 j 2 |e -iHt/ |R 1 j 1 by the right-handside (RHS) of the identity

R 2 j 2 |e -iHt/ |R 1 j 1 = dφ 2 dφ 1 j 2 |φ 2 R 2 φ 2 |e -iHt/ |R 1 φ 1 φ 1 |j 1 . (7) 
Second, they replace in the resulting integral the time energy Fourier transform of the spacetime propagator R 2 φ 2 |e -iHt/ |R 1 φ 1 by the Gutzwiller semiclassical Green function. [START_REF] Gutzwiller | Chaos in Classical and Quantum Mechanics[END_REF] Calling Π 1 = -k 1 and Π 2 = k 2 the incoming and outgoing momenta, respectively, S j 2 j 1 (E) is then given by

S j 2 j 1 (E) = 1 2π √ 2π dφ 2 dφ 1 P aths Π 1 Π 2 P 1 P 2 1/2 ∂φ 2 ∂J 1 -1/2 exp i (Π 1 -P 1 )R 1 + (P 2 -Π 2 )R 2 + ( j 1 -J 1 )φ 1 + (J 2 -j 2 )φ 2 + Ω / (8) 
with

Ω = - t 0 dτ (R Ṗ + φ J). ( 9 
)
The boundary conditions (R 1 , φ 1 , R 2 , φ 2 ) and the total energy E determine one or several classical paths starting from (R 1 , φ 1 ) at time τ = 0 with (P 1 , J 1 ) and reaching (R 2 , φ 2 ) at a

given time τ = t with (P 2 , J 2 ) (if several paths exist, t may be different for each path). An example of such paths is represented in Fig. 1. action integral in the momentum space along the trajectories. Since Ṗ and J are 0 outside the interaction region, Ω is a constant of motion before and after the collision. It is clear from Eq. ( 6) that the factor Π 1 Π 2 P 1 P 2 in Eq. ( 8) decreases monotonically to 0 as j 1 and j 2 approach √ 2IE/ , making energetically forbidden transition probabilities impossible, as it should be. The partial derivative ∂φ 2 ∂J 1 in Eq. ( 8) is at constant R 1 , φ 1 , R 2 and E. However, in order to aleviate the notations, we will not specify the constant quantities in the partial derivatives (with some exceptions).

P 1 is negative while P 2 is positive. Ω is the 0      R R 1 R 2 t=t t=0
Instead of considering J 1 as a function of φ 1 and φ 2 (for fixed values of R 1 , R 2 and E), φ 2 can be considered as a function of φ 1 and J 1 . Therefore, dφ 2 can be replaced by ∂φ 2 ∂J 1 dJ 1 in Eq. ( 8), then leading to

S j 2 j 1 (E) = 1 2π √ 2π dφ 1 dJ 1 Π 1 Π 2 P 1 P 2 ∂φ 2 ∂J 1 1/2 exp i (Π 1 -P 1 )R 1 + (P 2 -Π 2 )R 2 + ( j 1 -J 1 )φ 1 + (J 2 -j 2 )φ 2 + Ω / . (10) 
This is the 2D SCIVR expression of S j 2 j 1 (E) in natural angles. We will simply call it 2D IVR-N. Eq. ( 10) corresponds to Eqs. ( 123)-(125) in Ref. [START_REF] Bonnet | Phase-index problem in the semiclassical description of molecular collisions[END_REF] . Note that the sum over paths in Eq. ( 8) has disappeared in Eq. ( 10) since φ 1 and J 1 fully specify the classical trajectories (together with E).

One may also use the stationary phase approximation [START_REF] Miller | Classical-limit quantum mechanics and the theory of molecular collisions[END_REF][START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF][START_REF] Gutzwiller | Chaos in Classical and Quantum Mechanics[END_REF][START_REF] Stockmann | Quantum Chaos. An Introduction[END_REF][START_REF] Weber | Essential Mathematical Methods for Physicists[END_REF] (SPA) to integrate over φ 1 in Eq. ( 8) (see, for instance, Eqs. ( 70)-( 72) and (116) in Ref. [START_REF] Bonnet | Phase-index problem in the semiclassical description of molecular collisions[END_REF] , or Eqs. ( 28), ( 29) and (A11) in Ref. [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF] ). This forces J 1 to be equal to j 1 so φ 2 can be considered as a function of φ 1 alone. In the resulting integral, dφ 2 can then be replaced by ∂φ 2 ∂φ 1 dφ 1 and the final expression of S j 2 j 1 (E) reads

S j 2 j 1 (E) = 1 2π dφ 1 Π 2 P 2 ∂φ 2 ∂φ 1 1/2 exp i (P 2 -Π 2 )R 2 + (J 2 -j 2 )φ 2 + Ω / . (11) 
This 1D IVR-N expression corresponds to Eqs. ( 121) and (122) in Ref. [START_REF] Bonnet | Phase-index problem in the semiclassical description of molecular collisions[END_REF] .

Classical S-matrix expression and introduction of shifted angles

The classical S-matrix (CSM) expression of S j 2 j 1 (E), obtained from Eq. ( 11) by integrating over φ 1 within the SPA, [START_REF] Bonnet | Phase-index problem in the semiclassical description of molecular collisions[END_REF][START_REF] Bonnet | Erratum: Phase-index problem in the semiclassical description of molecular collisions[END_REF] is

S j 2 j 1 (E) = T raj 2π ∂J 2 ∂φ 1 -1/2 e iΩ/ . ( 12 
)
The sum is over those classical trajectories satisfying the boundary conditions J 1 = j 1 and J 2 = j 2 . Eq. ( 12) is the most "classical" of all the semiclassical expressions of S j 2 j 1 (E). The squared modulous of each term of the sum is indeed the classical weight of the path corresponding to the term. Yet, Eq. ( 12) accounts for quantum interferences since each trajectory is assigned a phase, equal to its action integral in the momentum space, which allows it to interfere with the others, thus respecting the superposition principle. Eq. ( 12) is among the most intuitively appealing formulas relative to quantum interferences in molecular collisions.

The 1D IVR-N and CSM expressions have played a crucial role in the determination of simple semiclassical rules to assign statistical weights to classical trajectories in quasi-classical trajectory calculations. [START_REF] Rodriguez-Fernandez | When classical trajectories get to quantum accuracy: II. The scattering of rotationally excited H 2 on Pd(111)[END_REF][START_REF] Bonnet | Pair-correlated speed distributions for the OH+CH 4 /CD 4 reactions: Further remarks on their classical trajectory calculations in a quantum spirit[END_REF][START_REF] Bonnet | Simulation of the experimental imaging results for the OH + CHD 3 reaction with a simple and accurate theoretical approach[END_REF] However, the 1D IVR-N expression suffers from an important deffect: its predictions of S j 2 j 1 (E) vary significantly with R 1 and R 2 , contrary to quantum mechanical ones (this is also the case of the 2D IVR-N formula). [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF][START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF][START_REF] Bonnet | Semiclassical descriptions of rotational transitions in natural and shifted angles : Analysis of unexpected results[END_REF][START_REF] Bonnet | Phase-index problem in the semiclassical description of molecular collisions[END_REF][START_REF] Bonnet | Semiclassical initial value theory of rotationally inelastic scattering: Some remarks on the phase index in the interaction picture[END_REF][START_REF]The unphysical fluctuation of IVR-N S -matrix elements was first observed for rotational transitions in inelastic collisions. 12,13[END_REF] We now introduce the shifted angles that will allow us to eliminate this deffect. Following Miller, 1 one may use Eq. ( 9) and the relation of energy conservation

E = P 2 i /2µ + J 2 i /2I, i = 1, 2, to derive the following equations: ∂Ω ∂J 2 = -φ 2 (13) 
and

∂Ω ∂J 1 = φ 1 (14) 
with

φ 2 = φ 2 - µR 2 J 2 IP 2 (15) 
and

φ 1 = φ 1 - µR 1 J 1 IP 1 . ( 16 
)
φ 1 and φ 2 are the shifted angles, whose denomination is clearly justified by their analytical expressions. They have the property to be independent on R 1 and R 2 outside the interaction region. Eqs. ( 13) and (14) show that the shifted angles are conjugate to the momenta J 1

and J 2 at R 1 and R 2 . Note that ∂J 2 ∂φ 1 is at constant J 1 , and thus P 1 (these two momenta are related by E). Therefore, by virtue of Eq. ( 16), ∂J 2 ∂φ 1 can be replaced in Eq. ( 12) by ∂J 2 ∂φ 1 .

SCIVR expressions in shifted angles

In Ref. [START_REF] Miller | Semiclassical Theory of Atom-Diatom Collisions: Path Integrals and the Classical S Matrix[END_REF] and chapter 12.6 of Ref. [START_REF] Gutzwiller | Chaos in Classical and Quantum Mechanics[END_REF] , the authors show that one can pass from a matrix element of any unitary transformation in a given coordinate system to that in the conjugate coordinate system by Fourier transform and use of the SPA. Therefore, Miller could define on the basis of Eqs. ( 13) and ( 14) the following matrix element:

S φ 2 φ 1 (E) = 1 2π dj 2 dj 1 e ij 2 φ 2 S j 2 j 1 (E)e -ij 1 φ 1 , (17) 
where j 1 and j 2 are, respectively, the values of J 1 and J 2 in unit. He then replaced S j 2 j 1 (E) by the RHS of Eq. ( 12) (with ∂J 2 ∂φ 1 instead of ∂J 2 ∂φ 1 ), used the SPA to integrate over j 1 and j 2 and then considered the inverse Fourier transform of the resulting expression. The result of these manipulations is 1

S j 2 j 1 (E) = 1 2π √ 2π P aths dφ 2 dφ 1 ∂φ 2 ∂J 1 -1/2 exp i ( j 1 -J 1 )φ 1 + (J 2 -j 2 )φ 2 + Ω / . (18) 
Replacing dφ 2 by ∂φ 2 ∂J 1 dJ 1 gives

S j 2 j 1 (E) = 1 2π √ 2π dφ 1 dJ 1 ∂φ 2 ∂J 1 1/2 exp i ( j 1 -J 1 )φ 1 + (J 2 -j 2 )φ 2 + Ω / . (19) 
This is the 2D SCIVR expression of S j 2 j 1 (E) in shifted angles, which we call 2D IVR-S.

Again, the sum over paths in Eq. ( 18) has disappeared in Eq. ( 19) since φ 1 and J 1 fully specify the classical trajectories. We can also follow a route analogous to that from Eq. (8) to Eq. (11). The resulting formula is

S j 2 j 1 (E) = 1 2π dφ 1 ∂φ 2 ∂φ 1 1/2 exp i (J 2 -j 2 )φ 2 + Ω / . (20) 
This 1D IVR-S formula is Eq. ( 29) of Ref. [START_REF] Miller | Classical S Matrix: Numerical Application to Inelastic Collisions[END_REF] , i.e., the first SCIVR formula that paved the way to more sophisticated formulations in reaction dynamics, kinetics and spectroscopy. [START_REF] Miller | The semiclassical initial value representation: A potentially practical way for adding quantum effects to classical molecular dynamics simulations[END_REF][START_REF] Buchholz | Mixed semiclassical initial value representation time-averaging propagator for spectroscopic calculations[END_REF] Since the shifted angles are constants of motion outside the interaction region, as well as Ω, IVR-S predictions of S j 2 j 1 (E) do not depend on R 1 and R 2 and in general, they are more accurate than IVR-N ones. [START_REF] Bonnet | Phase-index problem in the semiclassical description of molecular collisions[END_REF][START_REF] Bonnet | Semiclassical initial value theory of rotationally inelastic scattering: Some remarks on the phase index in the interaction picture[END_REF] We note that the cut-off factor Π 1 Π 2 P 1 P 2 is not present in Eq. ( 19), nor 20), in contrast with Eqs. ( 10) and (11). 15) and ( 16) or equivalently, (21) and (22). The arrows show the direction of travel. See text for more details.

Π 2 P 2 in Eqs. (
0          R R 1 R 2 t=t+t 2 t=-t 1 t=t t=0
As outlined in a previous work, [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF] Eqs. ( 15) and ( 16) are associated with three-segment classical paths like the one shown in Fig. 2. The explanation is as follows. First, we call t 1 and t 2 the times µR 1 /|P 1 | and µR 2 /P 2 required to run the distances R 1 and R 2 with a free motion. Second, we rewrite Eqs. ( 16) and (15), respectively, as

φ 1 = φ 1 - J 1 I t 1 (21) 
and

φ 2 = φ 2 - J 2 I t 2 . ( 22 
)
Eq. ( 21) suggests that a trajectory is started from (R = 0, φ = φ 1 ) at τ = 0 with the negative momentum P 1 and is run backward in time during t 1 with the free classical Hamiltonian H 0 , i.e., without the interaction potential (red segment in Fig. 2). This subtracts J 1 t 1 /I from φ 1 and leads to (R 1 , φ 1 ) at τ = -t 1 . The trajectory is then run forward in time during

t 1 + t + t 2
with the full classical Hamiltonian H from (R 1 , φ 1 ) to (R 2 , φ 2 ) where τ = t+t 2 (green segment in Fig. 2). This step is the usual one in standard classical trajectory calculations (see Fig. 1; note that t in that figure is equal to t 1 + t + t 2 in Fig. 2). Finally, the trajectory is run backward in time with H 0 during t 2 , i.e., from (R 2 , φ 2 ) to (0, φ 2 ) where τ = t (blue segment in Fig. 2). This subtracts J 2 t 2 /I from φ 2 [Eq. (22)]. Therefore, the whole run from (0, φ 1 ) to (0, φ 2 ) involves three segments, the first and second being parallel at (R 1 , φ 1 ) where the arrow of time switches from backward to forward, the second and third being parallel at (R 2 , φ 2 ) where the arrow of time switches from forward to backward (see Fig. 2).

The green segment in Fig. 2 is typically created by a strongly repulsive wall in the interaction region. Note that the length of this segment is lower than the cumulative length of the red and blue segments. This suggests that t 1 + t + t 2 may be lower than t 1 + t 2 and that therefore, t may be negative. On the other hand, t is expected to be positive in the case where the green trajectory is trapped in a potential well.

In the next section, we show how Miller's IVR-S expressions can be obtained from the Tannor-Weeks formulation of S -matrix elements provided that it is applied in the spirit of the previous three segment paths.

3 New formulation 3.1 Tannor-Weeks expression of S-matrix elements

Tannor and Weeks derived a general time-dependent quantum mechanical expression of S j 2 j 1 (E). [15][START_REF] Tannor | Semiclassical calculation of chemical reaction dynamics via wave packet correlation functions[END_REF][START_REF] Garashchuk | Semiclassical application of the Møller operators in reactive scattering[END_REF] Formally exact, far-reaching and elegant, this expression reads

S j 2 j 1 (E) = (2π ) -1 η * 2 η 1 dt e iEt/ Φ - j 2 |e -iHt/ |Φ + j 1 (23) 
with

|Φ + j 1 = Ω + |g + |j 1 , (24) 
|Φ - j 2 = Ω -|g -|j 2 , (25) 
Ω + = lim

t 1 →+∞ e -iHt 1 / e iH 0 t 1 / , (26) 
Ω -= lim

t 2 →+∞ e iHt 2 / e -iH 0 t 2 / , (27) 
η 1 = µ 2 k 1 -k 1 |g + , (28) 
and

η 2 = µ 2 k 2 k 2 |g -. (29) 
|g + and |g -are two translational wavepackets having, respectively, an incoming and outgoing component (they do not need to be purely incoming or outgoing). Ω + and Ω -are the Møller operators mentioned in the introduction. [START_REF] Tannor | Introduction to quantum mechanics. A time-dependent perspective[END_REF][START_REF] Zhang | Theory and application of quantum molecular dynamics[END_REF] The remaining quantities have been previously defined.

Derivation of IVR-S expressions

Taking |g + and |g -equal to |R 1 and |R 2 leads to Miller's Eq. ( 5). The proof is straightforward using Eq. ( 3) and the fact that Møller operators reduce to the identity operator when applied to |j i R i , i = 1, 2. Replacing in Eq. ( 5) the mixed propagator R 2 j 2 |e -iHt/ |R 1 j 1 by the RHS of Eq. ( 7) makes the space-time propagator R 2 φ 2 |e -iHt/ |R 1 φ 1 appear. The paths that semiclassically contribute to it and thus to S j 2 j 1 (E) are those going from (R 1 , φ 1 ) to (R 2 , φ 2 ) in the period of time t (see the green path in Fig. 1). [START_REF] Gutzwiller | Chaos in Classical and Quantum Mechanics[END_REF] We have seen that this leads to the 2D and 1D IVR-N expressions which lack precision and exhibit unphysical behavior, and this is not what we want.

On the other hand, if we set both |g + and |g -at |0 , Eqs. ( 23)-( 27) and the two closure

relations dφ i |φ i φ i | = 1, i = 1, 2, lead to S j 2 j 1 (E) = (4π 2 ) -1 η * 2 η 1 dtdφ 1 dφ 2 e iEt/ e i(j 1 φ 1 -j 2 φ 2 ) 0φ 2 |e iH 0 t 2 / e -iH(t 2 +t+t 1 )/ e iH 0 t 1 / |0φ 1 . (30) 
Given the form of the propagator of this expression, it is obvious that the paths that semiclassically contribute to it and thus to S j 2 j 1 (E) are like the three-segment path in Fig. 2; the system indeed starts from (0, φ 1 ), is run backward in time during t 1 with H 0 , then forward in time during t 1 + t + t 2 with H, and finally backward in time with H 0 during t 2 up to (0, φ 2 ) [see the previous discussion around Fig. 2 and Eqs. ( 21) and (22)]. So we are on the right track.

The next step is to simplify Eq. ( 30) and put it into a form suitable for the numerical calculation of S j 2 j 1 (E). For the clarity of the following developments, it is convenient to use Eqs. ( 3), ( 28), (29), the fact that |g + = |g -= |0 and ad hoc closure relations in order to rewrite Eq. ( 30) as

S j 2 j 1 (E) = √ k 1 k 2 2πµ dR 2 dφ 2 dR 1 dφ 1 e i(j 1 φ 1 -j 2 φ 2 -k 1 R 1 -k 2 R 2 ) δ(R 2 )δ(R 1
) dt e iEt/ K 21 (31) with

K 21 = dR 2 dφ 2 dR 1 dφ 1 R 2 φ 2 |e iH 0 t 2 / |R 2 φ 2 R 2 φ 2 |e -iH(t 2 +t+t 1 )/ |R 1 φ 1 R 1 φ 1 |e iH 0 t 1 / |R 1 φ 1 . (32) 
We can then replace the three propagators by their van Vleck (vV) semiclassical expressions given by

R 1 φ 1 |e iH 0 t 1 / |R 1 φ 1 sc = µ 2π t 1 1/2 e i µ(R 1 -R 1 ) 2 -2 t 1 I 2π t 1 1/2 e i I(φ 1 -φ 1 ) 2 -2 t 1 , (33) 
R 2 φ 2 |e iH 0 t 2 / |R 2 φ 2 sc = µ 2π t 2 1/2 e i µ(R 2 -R 2 ) 2 -2 t 2 I 2π t 2 1/2 e i I(φ 2 -φ 2 ) 2 -2 t 2 , (34) 
and

R 2 φ 2 |e -iH(t 2 +t+t 1 )/ |R 1 φ 1 sc = T raj ∆ -1/2 2π e iΘ/ , (35) 
where

∆ = ∂(R 2 , φ 2 ) ∂(P 1 , J 1 ) = ∂R 2 ∂P 1 ∂φ 2 ∂J 1 - ∂R 2 ∂J 1 ∂φ 2 ∂P 1 (36) and Θ 
= t 2 +t -t 1 dτ (P Ṙ + J φ) -H(t 2 + t + t 1 ) (37) 
Note that the partial derivatives in Eq. ( 36) are at a constant value of the period of time

t 2 + t + t 1 .
A typical three-segment path contributing to the resulting integral is represented in Fig. 3. At this point, we apply the SPA in order to integrate over R 2 , φ 2 , R 1 and φ 1 and obtain the semiclassical expression of K 21 [see, for example, Eqs. (70)-( 72) and (116) in Ref. [START_REF] Bonnet | Phase-index problem in the semiclassical description of molecular collisions[END_REF] or Eqs. ( 28), ( 29) and (A11) in Ref. [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF] for practical applications of the SPA]. As shown in Chapter 12.5 of Gutzwiller's book, [START_REF] Gutzwiller | Chaos in Classical and Quantum Mechanics[END_REF] the semiclassical expression of K 21 necessarily has the mathematical form of a vV propagator. The stationary phase conditions are

0          R R 2 R 1 R 1 R 2
R 2 = R 2 + P 2 µ t 2 , (38) 
φ 2 = φ 2 + J 2 I t 2 , (39) 
R 1 = R 1 - P 1 µ t 1 (40) 
and

φ 1 = φ 1 - J 1 I t 1 . (41) 
The geometrical consequences of these conditions on the three-segment paths contributing to K 21 within the SPA are shown in Fig. 4. From Eqs. (33)-( 35) and ( 37)-( 41), the phase of

0          R R 2 R 1 R 1 R 2
Figure 4: Geometrical consequences of the stationary phase conditions (38)-(41) on the three-segment paths contributing to K 21 . Among the infinite and continuous set of threesegment paths represented in Fig. 3, only those for which the angles between segments are zero at R 1 and R 2 are retained. The momenta along the segments at these distances are thus equal. The total energies along the three segments are also equal.

K 21 is found equal to W = -H(t 2 + t 1 ) + Θ. ( 42 
)
W is the action integral along the three-segment path of Fig. 4. Moreover, the semiclassical expression of K 21 having the mathematical form of a vV propagator, the prefactor of K 21 is the same as the one in Eqs. ( 35) and (36) with R 2 and φ 2 replaced by R 2 and φ 2 . We thus arrive at

K 21 = 1 2π T raj ∂(R 2 , φ 2 ) ∂(P 1 , J 1 ) -1/2 e iW/ . (43) 
W can be rewritten as

W = -H(t 2 + t 1 ) + t 0 dτ (P Ṙ + J φ) -Ht (44) 
where τ = τ + t 1 and t = t 2 + t + t 1 . In addition, we have dt e iEt/ K 21 = e -iE(t 2 +t 1 )/ dt e iEt / K 21 .

By applying the equations of Appendix A to the three-segment path of Fig. 4 and using Eq. ( 44), the right integral in Eq. (45) becomes

dt e iEt / K 21 = µ √ 2π T raj P 1 P 2 ∂φ 2 ∂J 1 -1/2 e iΩ/ (46) 
with

Ω = W + Ht = -E(t 2 + t 1 ) + t 0 dτ (P Ṙ + J φ). ( 47 
)
The RHS of Eq. ( 46) is obtained from its left-hand-side (LHS) by using the stationary phase approximation. Therefore, in the RHS of Eq. ( 46), t has the value that makes stationary the phase of the integrand of the LHS of Eq. (46). t in Eq. ( 47) is thus a function of E, and the partial derivative ∂φ 2 ∂J 1 in the RHS of Eq. ( 46) is now at a fixed energy E instead of a fixed time t . By integrating by part the integral of Eq. (47) and using Eqs. ( 38)-(41), we obtain

Ω = -E(t 2 + t 1 ) + P 2 R 2 + P 2 2 µ t 2 + J 2 φ 2 + J 2 2 I t 2 -P 1 R 1 + P 2 1 µ t 1 -J 1 φ 1 + J 2 1 I t 1 + Ω (48)
where

Ω = - t 2 +t+t 1 0 dτ (R Ṗ + φ J) ( 49 
)
is the action integral in the momentum space along the green segment in Figs. 1 and4 (since t = t -t 2 -t 1 , t is fixed by E). Note that, although the definition of time t is different in Eqs. ( 9) and ( 49), both equations predict the same value of Ω. Using the fact that

P 2 i /µ + J 2 i /I = 2E, i = 1, 2, Eq. (48) becomes Ω = E(t 2 + t 1 ) + P 2 R 2 + J 2 φ 2 -P 1 R 1 -J 1 φ 1 + Ω. ( 50 
)
From Eqs. ( 31), ( 45), ( 46) and ( 50) and remembering that Π 1 = -k 1 and Π 2 = k 2 , we find

S j 2 j 1 (E) = 1 2π √ 2π dφ 2 dφ 1 Π 1 Π 2 P 1 P 2 1/2 ∂φ 2 ∂J 1 -1/2 exp i ( j 1 -J 1 )φ 1 + (J 2 -j 2 )φ 2 + Ω / . ( 51 
)
Proceeding as in Sec. 2.4 [see Eqs. ( 18)-( 20)], the 2D IVR-S and 1D IVR-S formulas of S j 2 j 1 (E) deduced from Eq. ( 51) are, respectively,

S j 2 j 1 (E) = 1 2π √ 2π dφ 1 dJ 1 Π 1 Π 2 P 1 P 2 1/2 ∂φ 2 ∂J 1 1/2 exp i ( j 1 -J 1 )φ 1 + (J 2 -j 2 )φ 2 + Ω / (52)
and

S j 2 j 1 (E) = 1 2π dφ 1 Π 2 P 2 ∂φ 2 ∂φ 1 1/2 exp i (J 2 -j 2 )φ 2 + Ω / . ( 53 
)
Eq. ( 53) is nothing but Miller's Eq. ( 20) of the present paper, with the additional cut-off factor Π 2 /P 2 cancelling the energetically forbidden transition probabilities. Note that this factor becomes the unit if the SPA is used in Eq. ( 53) to integrate over φ 1 and obtain the CSM Eq. ( 12). Therefore, the procedure summarized in Sec. 2.4, which consists in going back from the CSM theory to the SCIVR one, cannot bring back the factor Π 2 /P 2 . However, the fact that Π 2 /P 2 = 1 within the SPA implies that for those values of φ 1 that most contribute to S j 2 j 1 (E), Π 2 /P 2 is relatively close to 1. Therefore, in most cases, Eqs. ( 53) and ( 20) should lead to very close predictions.

Finally, taking R 1 and R 2 at 0 in Eqs. ( 38)-( 41) leads to

φ 2 = φ 2 + µR 2 J 2 IP 2 (54) 
and

φ 1 = φ 1 + µR 1 J 1 IP 1 , (55) 
recognized as Miller's Eqs. ( 22) and (23) in Ref. [START_REF] Miller | Classical S Matrix: Numerical Application to Inelastic Collisions[END_REF] . These equations allow us to fix R 1 and R 2 rather than t 1 and t 2 in the classical trajectory calculations. Note that taking both R 1

and R 2 at 0 transforms the three-segment path of Fig. 4 into that of Fig. 2.

To sum up, setting |g + and |g -at |R 1 and |R 2 cancels the action of Møller operators and lead to the IVR-N method derived in Ref. [START_REF] Bonnet | Phase-index problem in the semiclassical description of molecular collisions[END_REF] . In contrast, setting |g + and |g -at |0 maximizes the action of Møller operators and leads to Miller's IVR-S method. [START_REF] Miller | Classical S Matrix: Numerical Application to Inelastic Collisions[END_REF] It is in this sense that we can say that the Møller operators underlie Miller's original SCIVR formulation of S -matrix elements. [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF][START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF][START_REF] Bonnet | Semiclassical descriptions of rotational transitions in natural and shifted angles : Analysis of unexpected results[END_REF] We wish to emphasize that the mathematically exact 1D IVR-S formula is given by Eq. (34) of Ref. [START_REF] Bonnet | Semiclassical initial value theory of rotationally inelastic scattering: Some remarks on the phase index in the interaction picture[END_REF] (together with Eqs. ( 12) and ( 13) in the same reference). In that equation, the term under the square root is taken in absolute value and a phase index is considered.

In Ref. [START_REF] Bonnet | Semiclassical initial value theory of rotationally inelastic scattering: Some remarks on the phase index in the interaction picture[END_REF] , however, the cut-off factor Π 2 /P 2 was added pragmatically since it was present in the 1D IVR-N formula derived from first principles (Eq. (121) in Ref. [START_REF] Bonnet | Phase-index problem in the semiclassical description of molecular collisions[END_REF] ) and was making sense.

Skinner-Miller method in shifted angles

We first present the Skinner-Miller expression of S j 2 j 1 (E) in natural angles. [START_REF] Skinner | Application of the semiclassical initial value representation and its linearized approximation to inelastic scattering[END_REF] The starting point of its derivation is Eq. ( 5), together with (7). [START_REF] Miller | The semiclassical initial value representation: A potentially practical way for adding quantum effects to classical molecular dynamics simulations[END_REF][START_REF] Bonnet | Phase-index problem in the semiclassical description of molecular collisions[END_REF][START_REF] Skinner | Application of the semiclassical initial value representation and its linearized approximation to inelastic scattering[END_REF] By replacing in Eq. ( 7) the evolution operator by its vV IVR expression (see Eq. (2.4a) in Ref. [START_REF] Skinner | Application of the semiclassical initial value representation and its linearized approximation to inelastic scattering[END_REF] ), or the exact propagator by the vV propagator, [START_REF] Bonnet | Phase-index problem in the semiclassical description of molecular collisions[END_REF] one finds after some mathematical steps:

S j 2 j 1 (E) = √ k 1 k 2 4π 2 i e -i(k 1 R 1 +k 2 R 2 ) dP 1 dJ 1 dφ 1 ∂(R 2 , φ 2 ) ∂(P 1 , J 1 ) 1/2 e i[(Et+W )/ +j 1 φ 1 -j 2 φ 2 -πη/2] P -1 2 . (56) 
This expression takes into account the absolute value of the Jacobian, the pure imaginary number and the Maslov index present in the Gutzwiller modification of the vV propagator. [START_REF] Gutzwiller | Chaos in Classical and Quantum Mechanics[END_REF] As already stated, this is mandatory for a correct description of interference effects.

The numerical estimation of this expression for the system defined below was performed as follows. R 1 and R 2 were fixed at given values and a large set of incoming trajectories (100 3 )

were integrated from different points (P 1 , φ 1 , J 1 ) at time τ = 0, and were stopped at the moment when R became greater than R 2 . Such paths are represented in Fig. 1. t is then equal to τ , φ 2 to φ and P 2 to P . φ 1 was taken between 0 and 2π while the boundaries of P 1 (necessarily negative) and J 1 were determined by trial and error in such a way that the norm Σ j 2 |S j 2 j 1 (E)| 2 was as close to 1 as possible. W , given by Eq. (A.2), was calculated along the whole trajectory. The derivatives of the Jacobian ∂(R 2 ,φ 2 ) ∂(P 1 ,J 1 ) were deduced from the previous trajectories, as well as two additional sets integrated for a time t from (R 1 , P 1 + δP 1 , φ 1 , J 1 ) and (R 1 , P 1 , φ 1 , J 1 + δJ 1 ) with δP 1 and δJ 1 taken at very small values. (Alternately, these derivatives can be obtained by propagating the monodromy matrix. [START_REF] Eckhardt | Indices in classical mechanics[END_REF] ) A Runge-Kutta integrator [START_REF] William | Numerical Recipes: The Art of Scientific Computing[END_REF] was used with a 0.1 fs time step. The Jacobian was not only calculated at time t but also at any instant between 0 and t and the Maslov index η was identified with the number of times that the Jacobian changes sign between τ = 0 and τ = t (we ignored the very rare cases where the two eigenvalues of the Jacobian matrix can change sign at the same time).

The analogue of Eq. (56) in shifted angles, derived in Appendix B by substituting |0 for |g + and |g -in Eqs. ( 23)-( 29), is

S j 2 j 1 (E) = √ k 1 k 2 4π 2 i dP 1 dJ 1 dφ 1 ∂(R 2 , φ 2 ) ∂(P 1 , J 1 ) 1/2 e i[(Et+W )/ +j 1 φ 1 -j 2 φ 2 -πη/2] P -1 2 . (57) 
The numerical calculation of this expression is done as previously, the only difference being that the paths considered are now of the type shown in Fig. 2. No filtering method 2,32 was used in the previous calculations in order to compare the "intrinsic" efficiencies of Eqs. ( 56)

and (57).

The model potential energy considered in the following is given by Eq. ( 15) of Ref. [START_REF] Bonnet | Semiclassical initial value theory of rotationally inelastic scattering: Some remarks on the phase index in the interaction picture[END_REF] with β = 0.1 (all the remaining parameters are as defined in Ref. [START_REF] Bonnet | Semiclassical initial value theory of rotationally inelastic scattering: Some remarks on the phase index in the interaction picture[END_REF] ). We took R 1 and R 2 at 10 Å, a standard value in quasi-classical trajectory calculations that can be even greater for processes involving long-range anisotropic forces, especially at small collision energies. The rotational state distribution obtained from exact quantum scattering calculations (EQS) is represented in the upper panel of Fig. 5 by the blue circles. The same distribution obtained from the IVR-N approach [Eq. ( 56)] is represented by the orange diamonds. The agreement between both distributions is satisfying for |j 2 | ≤ 4, but not for 5 ≤ |j 2 | < 9. It was found that the minimum number of trajectories necessary to converge the IVR-N distribution is ∼ 80 3 . The IVR-S distribution [Eq. ( 57)], represented by the magenta squares in the lower panel of Fig. 5, is found to be in much better agreement with the EQS distribution than the IVR-N distribution. Moreover, the IVR-S distribution is converged with ∼ 20 3 trajectories, which is ∼ 100 times fewer trajectories compared to the IVR-N approach. The reason why it is so appears in Fig. 6 where contour plot representations of the cosines of the IVR-N and IVR-S phases are shown in the (φ 1 , J 1 ) plane for P 1 = Π 1 = -k 1 . We can see that the cosine of the IVR-N phase oscillates much more than that of the IVR-S phase over the same area of the (φ 1 , J 1 ) plane. Therefore, the numerical estimation of S j 2 j 1 (E) from Eq. (56) requires much more trajectories than that from Eq. (57). In fact, we obtained the IVR-N distribution of Fig. 5 by limiting J 1 to the range [-5,5], which roughly corresponds to the three widest slightly inclined bands in Fig. 6 where the cosine of the phase oscillates the least. This allowed to significantly reduce the number of trajectories. However, there are other bands above and below the previous bands, and the further away from the central band these bands are, the thinner they are. A more accurate IVR-N calculation of S j 2 j 1 (E) should take all these bands into account, and this could partially be achieved by using Filinov filtering. [START_REF] Miller | The semiclassical initial value representation: A potentially practical way for adding quantum effects to classical molecular dynamics simulations[END_REF][START_REF] Church | Validating and implementing modified Filinov phase filtration in semiclassical dynamics[END_REF] In the present case, however, the IVR-S population is already very accurate without any filtering. Of course, more complex dynamics will make it necessary to use Filinov filtering also for IVR-S calculations but for processes involving long-range anisotropic forces, the IVR-S phase will always oscillate much less than the IVR-N phase and therefore, it should be always easier to get accurate IVR-S distributions than accurate IVR-N ones. Furthermore, it has recently been shown, as mentioned in the introduction, that for light-induced rotational transitions, IVR-S calculations are inherently more accurate than IVR-N calculations, which asymptotically tend toward the predictions of classical S-matrix theory. [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF][START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF][START_REF] Bonnet | Semiclassical descriptions of rotational transitions in natural and shifted angles : Analysis of unexpected results[END_REF] There is a priori no reason why this should no be the case for molecular collisions. For our model process, it should be noted that with R 1 and R 2 taken at ∼ 5 Å, the IVR-N populations are in good agreement with EQS ones (compare the 3D-SCIVR and EQS distributions in Fig. 10 of Ref. [START_REF] Bonnet | Phase-index problem in the semiclassical description of molecular collisions[END_REF] ). However, the interaction potential involves short range forces that vanish beyond ∼ 4 Å. For many realistic processes, however, the existence of long-range anisotropic forces requires that R 1 and R 2 be taken at ∼ 10 Å or more. This is why we decided to compare the IVR-N and IVR-S implementations of the Skinner-Miller method with R 1 and R 2 taken at 10 Å, rather than 5 Å.

Concluding remarks

The initial value representation (IVR) was originally introduced by W. H. Miller in the semiclassical (SC) theory of molecular collisions in action-angle coordinates. [START_REF] Miller | Classical S Matrix: Numerical Application to Inelastic Collisions[END_REF] The central equation of Miller's formulation is Eq. ( 29) of Ref. [START_REF] Miller | Classical S Matrix: Numerical Application to Inelastic Collisions[END_REF] , which gives S-matrix elements as an integral over initial angles. The latter, however, are not the natural angles usually used in the quantum and classical scattering treatments. They are instead shifted with respect to the natural angles so as to be constant outside the interaction region. This brilliant idea not only makes S-matrix elements independent on the initial and final distances at which trajectories are started and stopped, but also significantly increases the accuracy of their predictions compared to those of SCIVR calculations in natural angles (see Fig. 8 in Ref. [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF] ).

Inspired by a recent study on light-induced rotational transitions, [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF][START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF][START_REF] Bonnet | Semiclassical descriptions of rotational transitions in natural and shifted angles : Analysis of unexpected results[END_REF] we have revisited for an inelastic molecular collision the derivation of Miller's equation within the framework of the Tannor-Weeks theory of quantum molecular scattering. 15 The starting point was the observation that the three-segment classical paths into play in Miller's formulation are exactly those involved in the classical-limit of Tannor-Weeks theory if the translational wave packets |g + and |g -into play in this theory are taken at |0 , in other words, at the very heart of the interaction region. Assuming this to be the case, using van Vleck propagators, and applying the stationary phase approximation, we have proved that Miller's expression of S -matrix elements is found, with an additional cut-off factor cancelling the energetically forbidden transition probabilities. In most practical cases, however, this factor is close to 1. We have also shown that the Møller operators 21,22 underlie Miller's formulation, thus corroborating for molecular collisions the results recently obtained in the simpler case of light-induced rotational transitions. [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF][START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF][START_REF] Bonnet | Semiclassical descriptions of rotational transitions in natural and shifted angles : Analysis of unexpected results[END_REF] Finally, a new implementation of the Skinner-Miller method in shifted coordinates was proposed, the original method being formulated in natural coordinates. [START_REF] Skinner | Application of the semiclassical initial value representation and its linearized approximation to inelastic scattering[END_REF] Both methods were applied to a rotational excitation model for which exact quantum results are available. The results show that the Skinner-Miller method in shifted coordinates is both easier to apply and more accurate than that in natural coordinates, especially for processes involving long-range anisotropic forces. This might be of particular interest for rotationally inelastic atom-diatom collisions, of great importance in interstellar chemistry 34 and stereodynamics. If one considers R 1 , R 2 and φ 1 as fixed parameters, t and φ 2 become functions of P 1 and J 1 alone. Eq. (B.1) can thus be rewritten as

S j 2 j 1 (E) = √ k 1 k 2 4π 2 iµ dP 1 dJ 1 dφ 1 ∂(t, φ 2 ) ∂(P 1 , J 1 ) ∂(R 2 , φ 2 ) ∂(P 1 , J 1 ) -1/2
e i[(Et+W )/ +j 1 φ 1 -j 2 φ 2 -πη/2] .

(B.2)

Note the disappearence of T raj when going from Eq. (B.1) to Eq. (B.2) since P 1 , J 1 and φ 1 univocally determine the trajectories, contrary to t, φ 2 and φ 1 . The green path in Fig. 7 is the projection on the plane (R, τ ) of the three-segment trajectory that starts from R 1 = 0 at τ = 0 with P 1 , J 1 and φ 1 . P 1 is negative but the green trajectory is integrated backward in time from τ = 0 to τ = -t 1 . Therefore, R increases from 0 to R 1 . The green trajectory is then integrated forward in time from τ = -t 1 to τ = t + t 2 where R = R 2 . Finally, it is integrated backward in time from τ = t + t 2 to τ = t where R = R 2 = 0. The blue trajectory is calculated in the same way except that the initial value of P is now P 1 + δP 1 .

Calling R τ the value of R at time τ along the right linear segment of the green trajectory in Fig. 7, we have R t = R 2 = 0. On the other hand, the value of R along the right linear segment of the blue trajectory is equal to δR t at time t, and 0 at t + δt. The velocity along the previous segment is thus equal to δR t /δt, that we can also denote by δR 2 /δt. In the limit where δP 1 tends to 0, δR 2 /δt is also the velocity along the right linear segment of the green trajectory. Therefore, (33) This statement is supported by the following argument. Shortly after the publication of Ref. [START_REF] Bonnet | Phase-index problem in the semiclassical description of molecular collisions[END_REF] , we simplified our model of plane rotor excitation in such a way that the dynamics could be analytically solved. This allowed us to perform much more accurate IVR-N calculations, in particular for large values of R 1 and R 2 (several hundred Å).

∂t
We were puzzled by the following finding: the larger the values of R 1 and R 2 we were taking, the closer the IVR-N distribution to that predicted by classical S-matrix theory.

These results remained unpublished but they triggered the research whose results are reported in Refs. [START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF][START_REF] Bonnet | Semiclassical initial value representation: From Møller to Miller[END_REF][START_REF] Bonnet | Semiclassical descriptions of rotational transitions in natural and shifted angles : Analysis of unexpected results[END_REF] and the present article.
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Figure 1 :

 1 Figure 1: Example of a classical path used to calculate the integrand of Eq. (8). The arrow shows the direction of travel.

Figure 2 :

 2 Figure 2: Three-segment classical trajectory associated with Eqs. (15) and (16) or equivalently,(21) and(22). The arrows show the direction of travel. See text for more details.

Figure 3 :

 3 Figure 3: Example of a three-segment path used to calculate K 21 if the three exact propagators in the integrand of Eq. (32) are replaced by the semiclassical propagators given by Eqs. (33)-(37). The red straight line is associated with Eq. (33), the blue straight line with Eq. (34) and the green curve with Eq. (35). The arrows show the direction of travel.

Figure 5 :

 5 Figure 5: Upper panel: rotational state distribution obtained from exact quantum scattering calculations (EQS; blue circles), and the Skinner-Miller method in natural angles (IVR-N; orange diamonds). Lower panel: same distribution obtained from the Skinner-Miller method in shifted angles (IVR-S; magenta squares) compared with the quantum one.
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Figure 6 :

 6 Figure 6: Upper panel: cosine of the IVR-N phase represented in the (φ 1 , J 1 ) plane for P 1 = Π 1 = -k 1 . Lower panel: cosine of the IVR-S phase represented in the (φ 1 , J 1 ) plane for P 1 = Π 1 .

Figure 7 :

 7 Figure 7: Three-segment classical paths involved in the derivation of Eq. (57).
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Appendix A: Semiclassical Green function

Consider a classical trajectory resembling the green path in Fig. 1. This path starts from (R 1 , φ 1 ) at time 0 and reaches (R 2 , φ 2 ) at time t. In this appendix, we call K 21 the vV expression of the propagator R 2 φ 2 |e -iHt/ |R 1 φ 1 , given by

where

is the action integral along the path. Using Eqs. ( 25), ( 31), ( 36)-( 38), ( 50), ( 52), ( 61), ( 65) and (66) of Ref. Note that the partial derivative on the RHS of Eq. (A. 3) is now at a fixed energy E instead of a fixed time t, as was the case in Eq. (A.1). [START_REF] Gutzwiller | Chaos in Classical and Quantum Mechanics[END_REF][START_REF] Stockmann | Quantum Chaos. An Introduction[END_REF] The RHS of Eq. (A.3) is the semiclassical Green function (to an irrelevant factor) first derived by Gutzwiller using the stationary phase approximation. [START_REF] Gutzwiller | Chaos in Classical and Quantum Mechanics[END_REF] Equality in Eq. (A.3) is strict only if tends to 0, which is rarely the case in practice.

Appendix B: Derivation of Eq. (57)

By substituting |0 for |g + and |g -in Eqs. ( 23)-( 29), we arrived at Eq. ( 30) or equivalently, Eqs. ( 31) and (43). These can be rewritten as

e i[(Et+W )/ +j 1 φ 1 -j 2 φ 2 -πη/2] . (B.1)