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Key Points:7

• Wave groups contribute to small-scale fluctuations in altimeter wave heights, ex-8

plaining 25% of the variance measured by CFOSAT in 80 km.9

• For the same wave height, fluctuations are larger in the presence of long and narrow-10

banded waves, typical of swell-dominated conditions.11

• Altimeters smooth out scales shorter than the square root of half the Hs times the12

altitude, and distort spatial patterns at that scale.13
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Abstract14

Recent satellite altimeter retracking and filtering methods have considerably reduced the15

noise level in estimates of the significant wave height (Hs), allowing to study processes16

with smaller spatial scales. In particular, previous studies have shown that wave-current17

interactions may explain most of the variability of Hs at scales 20 to 100 km. As the spa-18

tial scale of the measurement is reduced, random fluctuations emerge that should be as-19

sociated to wave groups. Here we quantify the magnitude of this effect, and the contri-20

bution of wave groups to the uncertainty in Hs measurements by altimeters, with a par-21

ticular focus on extreme extra-tropical storms. We take advantage of the low orbit al-22

titude of the China-France Ocean Satellite (CFOSAT), and the low noise level of the nadir23

beam of the SWIM instrument. Our estimate of wave group effects uses directional wave24

spectra measured by off-nadir beams on SWIM, and signal processing theory that gives25

statistical properties of the wave envelope, and thus the local wave heights, from the shape26

of the wave spectrum. We find that the standard deviation of Hs associated to wave groups27

is a function of satellite altitude, wave height and spectral bandwidth. For CFOSAT these28

fluctuations generally account for about 25% of the variance measured over a 80 km dis-29

tance. This fraction is largest in storms and in the presence of long swells. When the es-30

timated effect of wave groups is subtracted from the variance of Hs measurements, the31

remaining variability is higher in regions of strong currents.32

Plain Language Summary33

Satellite altimeters routinely provide measurements of the height of ocean waves,34

and improved instruments or processing techniques have led to more precise and detailed35

measurements. Here we use a combination of simulations and data from the China France36

Ocean satellite (CFOSAT) to interpret the small scale fluctuations in wave height mea-37

surements as the effect of wave ”groups” which are fluctuations of the heights of consec-38

utive waves associated to random waves. Due to spatial averaging within the radar foot-39

print, we find that the fluctuations of significant wave heights (Hs) associated to wave40

group are a function of satellite altitude, wave height and other properties of the ocean41

waves. For CFOSAT, wave groups give a standard deviation of Hs that is of the order42

of 3 to 5% of Hs, typically half of the standard deviation in Hs measurements.43
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1 Introduction44

Wind-waves impact all activities at sea, air-sea interactions and remote sensing,45

and there is a general need for obtaining more accurate and higher resolution informa-46

tion about the sea state. Today, satellite radar altimetry is the most extensive source47

of measurements with a global coverage, providing routine estimates of the significant48

wave height Hs (Ardhuin et al., 2019). As these data are getting used for a wide range49

of applications, it is important to understand what can be measured with altimeters, at50

what scale and with what uncertainty.51

The fundamental measurement of an altimeter is the echo power as a function of52

the travel time of radar pulses. This function is known as a ”waveform”. Time is con-53

verted to ”range”, i.e. the distance between the radar and the ocean surface, and this54

waveform is discretized in range gates with a resolution δR, with some examples shown55

in Appendix A. From the shape of the waveform one can estimate Hs. The horizontal56

scale of the measurement was particularly discussed by Chelton et al. (1989), who in-57

troduced the concept of oceanographic footprint. This footprint is the ocean area that58

contains the sea surface points that contribute to the measurement of sea level and wave59

height, and it is a disc of radius60

rC =

√
2h(Hs + δR)

1 + h/RE
(1)61

where h is the satellite altitude, RE is the Earth radius, Hs is the significant wave height62

and the range resolution δR = c/(2B) is defined by the radar bandwidth B and the speed63

of light c. We note that all Ku-band altimeters have used B = 320 MHz giving δR =64

0.47 m. With B = 500 MHz, SARAL-AltiKa uses δR = 0.32 m. As a result, rC is al-65

ways larger than 1 km. That size of the oceanic footprint corresponds to a single radar66

pulse. The sea echoes detected by the radar come from facets of the sea surface that are67

horizontal and reflect the signal back to the radar. These facets are randomly distributed68

within the oceanic footprint, with ranges that vary over many times the electromagnetic69

wavelength. The signal recorded in any given range gate is thus the sum of a large num-70

ber of echoes with random phases, giving rise to large fluctuation in measured power,71

generally known as Rayleigh fading. In the context of radar remote sensing, these fluc-72

tuations are called ”speckle noise” and have generally been considered to be the dom-73

inant source of altimeter measurement noise (Quartly et al., 2001; Tourain et al., 2021).74

This noise is reduced by averaging echoes from many pulses over a fraction of a second,75
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and these averaged waveforms are processed to estimate Hs. Because low Earth orbit76

satellites fly over the ocean at a speed around 7 km/s, averaging altimeter data over 0.05 s77

corresponds to a spatial average over 350 m, which is much smaller than rC and thus78

does not change much the effective footprint of the measurement.79

Even with this averaging, Hs estimates are typically more noisy than buoy mea-80

surements, which has led users of altimetry data to take longer averages of Hs, typically81

1 to 10 s, corresponding to a distance that spans 7 to 70 km (Dodet et al., 2022). While82

it effectively reduces noise, such averaging also blurs potentially interesting features, in83

particular the peaks of storms, coastal gradients (Passaro et al., 2021), and the signa-84

ture of surface currents (Quilfen & Chapron, 2019). Away from surface current gradi-85

ents and coastlines, sea states are uniform over scales of the order of 70 km (Tournadre,86

1993). Still, within these scales, the random nature of the wave field is another source87

of expected geophysical variability. Theoretical analysis, in situ time series and remote88

sensing (Borge et al., 2004) show that small scale variations in wave height contain a sig-89

nature of wave groups that can be estimated from the Power Spectral Density (PSD) of90

the surface elevation, hereinafter simply called ”wave spectrum” (Arhan & Ezraty, 1978;91

Tayfun & Lo, 1989). These groups are the result of the linear superposition of many in-92

dependent wave trains. Wave groups have typical time scales of a few tens of seconds93

to a few minutes, that translate to spatial patterns at scales of a few kilometers, hence94

around the possible resolution limit of altimeters, of the order of rC . At larger scales,95

non-linear wave-wave interactions should contribute to fluctuations at scales 10 to 20 min-96

utes, with spatial scales around 10 km, that should be important for wave growth (Lavrenov,97

2001) and may contain information on the wave period (Badulin, 2014).98

Co-location of altimeter, buoy and model data with wave heights from 1 to 8 m,99

has been used to estimate a typical uncertainty 7% for Hs > 2 m, in the case of 1 s av-100

eraged altimeter data (Dodet et al., 2022). Unfortunately, no estimate can be made for101

higher values due to the lack of co-located buoy and altimeter data. Understanding what102

makes up this uncertainty will help extrapolate uncertainties to higher values of Hs, pro-103

viding a better understanding of the climatology of sea state extremes. From the prin-104

ciple of the estimation of wave heights from radar waveforms (Brown, 1977), satellite al-105

timeters should be able to measure Hs values exceeding 30 m with a relative precision106

that gets better for higher values of Hs because the signal is spread out over a wider part107

of the waveform. At the same time, the higher winds that often occur with high waves108
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will lead to a lower signal recorded by the radar and a lower signal to noise ratio for the109

waveform. So far, only numerical models could be compared to the highest values of wave110

heights, and their random differences is usually lowest for the highest wave heights (Alday111

et al., 2021; Alday & Ardhuin, 2023). The highest values of Hs reported by altimeters,112

up to 20.1 m, are consistent with all other observations including the presence of swells113

with very long periods (Hanafin et al., 2012). There is thus no fundamental reason to114

doubt that altimeters can measure the highest possible wave heights, but there is not115

yet a clear understanding of biases and random errors for Hs above 8 m.116

In the present paper we focus our analysis on the fluctuations of Hs associated to117

wave groups and its contribution to Delay-only altimeters that provide the existing ref-118

erence time series for wave climate analysis (Timmermans et al., 2020; Dodet et al., 2020).119

The main question that we wish to answer is: how much wave groups contribute to the120

variability in Hs measurements? For this we take advantage of the unique opportunity121

provided by the SWIM instrument onboard the China-France Ocean Satellite (CFOSAT).122

SWIM provides both directional wave spectra from which we compute the spectrum of123

the wave envelope that contains wave groups, and along-track nadir altimetry. Our anal-124

ysis uses SWIM data over the globe for two full years 2020 and 2021.125

We start with two illustrative and contrasting examples in section 2, before pro-126

viding results for the globe in section 3. Discussions and conclusion follow in section 4.127

A side question that we had to address is: how does an altimeter measure Hs over a re-128

alistic surface that contains local perturbations associated with wave groups? For this129

we used a simplified simulated altimeter with numerical results shown in section 2 and130

an analytical derivation in Appendix A. Those results suggest that altimeters report a131

particular kind of average of wave heigts over a radius that is close to rC/2. When us-132

ing a least-square fit to radar waveforms, estimated Hs give a spurious amplification of133

true Hs perturbations located at a distance around rC/4 from nadir, and are blind to134

perturbations located right at the nadir.135

2 One particular storm and a theory of wave groups136

From now on, we will use the notation Ĥs for estimates of the significant wave heights137

provided by altimeter data, to clearly differentiate these from the true significant wave138

height Hs. Ĥs exhibits spatial variability that may be related to a true spatial variation139
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of Hs. As we will be considering different sizes of variability, we introduce the notation140

std(x, d) and var(x, d) that represent respectively the standard deviation and the vari-141

ance of a variable x performed over a spatial distance d.142

As described in Hauser et al. (2017, 2021), the instrument SWIM is a Ku-band wave143

scatterometer that illuminates successively 6 incidence angles (0◦, 2◦, 4◦, 6◦, 8◦ and 10◦).144

The nadir beam (0◦) works as all previous Poseidon radar altimeters and provides Ĥs145

measurements every 0.22 s, using an average over 0.055 s. As a result, the nadir beam146

data is expected to be similar to data from previous Ku-band altimeters, such as Poseidon-147

3B on Jason-3, with the specific difference given by a lower data rate (4.5 Hz instead of148

20 Hz) and a different measurement geometry associated to a rather low orbit. In prin-149

ciple, the low orbit altitude h = 519 km of CFOSAT makes it possible to resolve smaller150

scale variations of Hs as rC is reduced by a factor 1.4 compared to the Jason satellites151

that orbit at 1340 km altitude. The low noise level of the satellite and specific process-152

ing of the SWIM instrument also contribute to the capability of SWIM to resolve smaller153

along-track scales in the variations of Hs compared to previous altimeter datasets (Tourain154

et al., 2021).155

The off-nadir beams use the concept of the wave spectrometer (Jackson et al., 1985)156

based on a real-aperture radar and the normalized radar cross-section (NRCS) sensitiv-157

ity to local surface slope at near-nadir incidences, providing estimates of the directional158

wave spectra (with a 180◦ ambiguity in direction). The CNES mission center (or CFOSAT159

Wind and Waves Instrument Center - CWWIC) provides Level 2 products, hereafter called160

L2, both for the nadir beam and the off-nadir beams 6◦ to 10◦. The off-nadir L2 prod-161

ucts consist of 2D wave spectra discretized into 12 directions evenly spaced from from162

0 to 165◦, and 32 wavenumbers forming a geometric progression from 0.0125 to 0.28 m−1
163

with a common ratio of 1.105. These spectra are constructed from overlapping of antenna164

scans over 180◦ (on each side of the track) over boxes of about 70 km by 90 km. In or-165

der to allow comparison, the nadir product is resampled by averaging values of Ĥs over166

the box size (c. 80 km along track), its variation at this scale is quantified by taking its167

standard deviation over the same distance.168

The Ifremer Waves and Wind Operational Center (IWWOC) is in charge of devel-169

oping and testing different processing and provides an alternative Level 2 product for170

off-nadir beams. This product is referred to as L2S product and consists of 1D wave mod-171
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ulation spectra, one for each measurement azimuth. Whereas the L2 product uses the172

nadir Hs to rescale the spectrum, the L2S product is based on a theoretical modulation173

transfer function to transform the NRCS spectra into surface elevation spectra (Jackson174

et al., 1985). Also the L2 product uses a maximum wavelength of 500 m in order to avoid175

amplifying noise, where the L2S product does not use such a fixed value for the max-176

imum wavelength. As a result, L2 spectra are often badly distorted in the most severe177

storms where the spectrum is dominated by waves longer than 500 m. Because we fo-178

cused on extreme storms, we have used the L2S product to generate spectra similar to179

those in the L2 product, using the same ”boxes” as the L2 product and rescaling the spec-180

trum energy to correspond to the root mean square average of the significant wave height181

in that box. This rescaling is particularly motivated by our investigation of wave prop-182

erties along the nadir track, and it corrects an average bias of the order or 14% for the183

total energy of the spectrum. Alternative data processings are discussed in section 4. In184

practice we also used the homogeneously reprocessed Level 2+ (L2P) product provided185

by the Copernicus Marine Environment Monitoring System (CMEMS), in particular we186

used the quality flags specific to that product.187

2.1 Significant wave height variability in Storm Dennis188

On February 14th 2020, the European windstorm Dennis, which became one of the189

most intense extratropical cyclones ever recorded, underwent through its explosive in-190

tensification in the middle of the North Atlantic. Around 9:10 UTC that same day, Den-191

nis was sampled by CFOSAT, with Ĥs values up to 19.7 m for the native (4.5 Hz) sam-192

pling, and 17.9 m for the 1 Hz sampling (averaging over 1 second). Fig. 1.a shows a model193

snapshot of Hs in the north Atlantic and the corresponding descending track of CFOSAT,194

while Fig. 1.b shows the altimeter-estimated significant wave heights Ĥs for the three195

different samplings: native (4.5 Hz), 1 Hz and 80 km box averaged.196

On the periphery of the storm, where the average Hs is around 10 m, we were struck197

by the factor two difference in std(Ĥs)that spans more than 420 km (1 minute of data).198

Our working hypothesis is that this variability of Ĥs may be dominated by fluctuations199

associated to wave groups. These fluctuations have different magnitudes and spatial scales200

which can be estimated from the directional wave spectrum (Longuet-Higgins, 1984). Hence201

CFOSAT is a unique instrument for studying this effect as we have both Ĥs variability202

along the satellite track and directional wave spectra. In the following, we illustrate the203
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Ĥs=9.3m

std(Ĥs, 80 km)=0.49m

std(Ĥs, 80 km) =0.88m

a) b)

Figure 1. a) Map of significant wave heights in the North Atlantic at 09:00 on 14 February

2020, as provided by the model hindcast of (Alday et al., 2021), overlaid with circles located at

the center of SWIM box estimates for the L2 wave spectra. Circles are sized by the L2 Hs es-

timate and color corresponds to std(Ĥs); b) corresponding Ĥs values as a function of latitude

(y-axis) : black small dots represent native measurements at 4.5 Hz, blue stars represent the 1 Hz

averaged and grey circles represent the Ĥs averaged over a box. Two boxes are selected for the

case study: box A — highlighted in light blue — is at 62◦N, and box B — in dark blue — is at

44◦N.

expected signature of wave groups for the two sea state conditions that correspond to204

the particular SWIM boxes highlighted in light and dark blue. It is worth noting that205

in these two examples, the Ĥs values obtained from the sum of the L2S spectrum prior206

rescaling are around 7.5 m, which is lower than the 9 m given by the nadir beam and207

used in the L2 product and in this study to rescale the spectrum energy.208

2.2 Variability of Ĥs and envelope spectrum209

The patterns of individual waves vary with the shape of the wave spectrum, as il-210

lustrated in Fig. 2. A key difference between the north-side (left column) and south-side211

(right column) of storm Dennis is that the south-side has a longer peak wavelength around212

600 m, and a narrower spectrum, in particular in directions. The smaller width in di-213

rections gives longer wave crests while the smaller width in wavenumber magnitude gives214
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CFOSAT
 alongtrack

CFOSAT
 alongtrack

(c) (d)

(e) (f)

(g) (h)

(a) (b)

Figure 2. Left column corresponds to our chosen northern CFOSAT box, and right column

to the southern box. From top to bottom, (a, b): L2S wave spectra E(kx, ky) as provided by

IWWOC. (c, d): simulated surface elevation maps generated from the wave spectra using random

phases, (e, f): envelope η of the surface elevation, (g, h) along-track slices of elevation ζ and ±η

at x = 22 km.
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longer wave groups (see Longuet-Higgins, 1984, for a detailed definition of the length of215

wave groups).216

Although the surface elevations in Fig. 2.c or 2.d are realizations of a uniform sea217

state each given by a well defined wave height Hs and spectrum shape, any measurement218

that is sensitive to the surface elevation over a finite area will provide an estimate Ĥs219

that differs from Hs due to spatial fluctuations. We will now link this estimate Ĥs in the220

case of a radar altimeter, to the properties of the envelope. For this purpose we need to221

define a local wave height.222

2.2.1 Definition of a local wave height223

Let ζc be the complex surface such that ζ = Re(ζc) is the free surface. The en-224

velope η of the signal is defined by η = |ζc|. This defines a local amplitude of the sig-225

nal, that does not contain the small scale crest-to-trough (positive to negative) varia-226

tions of the original surface. From this envelope η we define the wave height Hr as a spa-227

tial average over a disc of radius r228

Hr(x, y) = 4

√
2

π
(η ⊗ gr)(x, y) (2)229

where ⊗ is the convolution operator and gr is a filtering kernel of radius r. Under the230

Gaussian approximation of the distribution of sea surface elevations this spatial aver-231

age actually converges to the usual significant wave height Hs.232

The envelope of a signal is known to act as a low-pass filter and its fluctuations,233

larger than those of an individual wave, can be related to wave groups, both in size and234

amplitude (Arhan & Ezraty, 1978; Longuet-Higgins, 1984; Masson & Chandler, 1993).235

Hence wave groups may contribute to the fluctuations of the estimated Ĥs provided236

by the nadir beam of SWIM, as indicated on Fig. 1.b. We will now attempt to quantify237

that contribution. In order to understand how much wave groups may contribute to Ĥs238

fluctuations in satellite data, we have to address two questions: First, what are the scales239

affected by wave groups?240

And second, what are the scales of the Hr variation that are resolved by satellite241

altimeters?242
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2.2.2 Surface elevation envelope and Hr spectrum243

One simple way to quantify the different scales present in the envelope is to com-244

pute its spectrum. The most simple theoretical result comes directly from the theory of245

Fourier transforms that gives the spectrum of a product of functions as the convolution246

of the Fourier transforms. In our case, the envelope squared is the product of the ele-247

vation by its complex conjugate, and this is true for spectra in one or two dimensions.248

For waves in one dimension with wavenumber k, the spectrum of the envelope squared249

Ψ2(k) is the convolution of the spectrum of the single-sided surface elevation spectrum250

E(k) by itself,251

Ψ2(k) = 8

∫ ∞

0

E(u)E(u+ k)du, (3)252

and we note that Ψ2(k) is also single-sided.253

In practice people have rather studied the variations of Hs and not that of H2
s . Al-254

though the details of the theory are more complex, the important result is that, for low255

frequencies, the spectrum of the envelope Ψ(k) has the same shape as the spectrum of256

the envelope squared Ψ2(k) (Rice, 1944). More specifically, Tayfun and Lo (1989) have257

showed that a good approximation for the spectrum of the envelope is given by258

Ψ(k) =
8− 2π

H2
s

Ψ2(k) (4)259

This same result is valid for spectra in two dimensions. We now consider the double-260

sided wave spectrum E(kx, ky), defined for (kx, ky) in the entire wavenumber plane and261

centrally symmetric, the region of the envelope spectrum for k ≪ kp, with kp the wavenum-262

ber peak, is proportional to263

Ψ2(kx, ky) = 8

∫ ∞

−∞

∫ ∞

−∞
E(u, v)E(u+ kx, v + ky)dudv, (5)264

in which Ψ2 is also double-sided.265

From eq. (2), the spectrum of Hr is266

ΨHr
(kx, ky) =

32

π
Ψ(k)Gr(kx, ky) (6)267

=
32

π

8− 2π

H2
s

Ψ2(kx, ky)︸ ︷︷ ︸
ΨH0

(kx,ky)

Gr(kx, ky) (7)268

with Hs the usual significant wave height and Gr the square of the Fourier transform269

of the filtering kernel gr. We call ΨH0(kx, ky) the spectrum obtained before applying the270

filter Gr(kx, ky).271
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Integrating this spectrum for kx > k1, with the x-axis taken in the along-track272

direction, amounts to integrating the expected variance up to the cut-off distance, d1 =273

2π/k1, giving var(Hr, d1). The group-induced variation of Ĥs is thus equal to274

var(Hr, d1) = 2

∫ ∞

−∞

∫ ∞

k1

ΨH0
(kx, ky)Gr(kx, ky)dkxdky (8)275

We now need to estimate the filter Gr associated with the SWIM altimeter.276

2.3 Altimeter measurements over varying wave heights Hr277

Going back to the fundamental altimeter measurement that is the waveform, Brown278

(1977) assumed a uniform ocean reflectivity and showed that the waveform is an area-279

weighted histogram of the radar echoes as a function of range R. Over a flat sea surface,280

this histogram is a Heaviside function because the part of the ocean surface with ranges281

between R and R + δR is an annulus of radius r =
√
R2 − h2 centered on the nadir282

point, with an area 2πRδR that is almost constant as long as R ≈ h. In the presence283

of waves, echoes from the sea surface at the elevation z = ζ and at the nadir (vertically284

under the satellite), will have a higher range when ζ < 0. These echoes will have the285

same range as other echoes from z = 0 and horizontal locations away from nadir. Given286

the very small incidence angles, the change in range caused by waves is ∆R = −ζ. For287

a Gaussian distribution of ζ with standard deviation σH = Hs/4, the presence of waves288

gives a smoothing of the histogram. Here we use the most simple theoretical waveform289

shape that is obtained in the limit of a very broad radar antenna pattern (Brown, 1977),290

wB(R, σH) =
1

2

[
1 + erf

(
R− h√
2σH

)]
. (9)291

When ”retracking” altimeter data, eq. (9) is inverted, giving the estimate Ĥs equal292

to 4 times the σH of the theoretical waveform that best fits the data. In practice the the-293

oretical waveform may also include effects of the antenna pattern and mispointing. Dif-294

ferent fitting methods have been developed to reduce the effect of noise or spurious echoes295

in the measured waveform (Rodriguez, 1988; Passaro et al., 2014; Tourain et al., 2021).296

Another important assumption needed to obtain the Brown waveform is that the sea state297

is homogeneous within the footprint. We thus have to discuss what sets the scale of the298

footprint, or more precisely where are the points on the sea surface that give the distinc-299

tive shape of the waveform and allow the fit to distinguish different values of Hs.300
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Compared to a flat sea surface, the elevation ζ at a distance r from the nadir point301

will change the range R of the surface point and make it look as if it was located at a302

different distance r+δr, so that points from different locations on the sea surface will303

map to the same range R. This is the same ”range bunching” or ”overlay” or ”surfboard304

effect” that is common to all radar systems (Peral et al., 2015). Following Chelton et al.305

(1989) we can estimate the apparent horizontal displacement. For a satellite altitude h306

and using ζ ≪ R, the calculation for a flat mean sea surface gives307

δr ≃
√

r2 − 2hζ − r. (10)308

For a spherical Earth of radius RE , ζ should be replaced by ζ/(1+h/RE). In the par-309

ticular case where ζ = −Hs and r = 0, δr is the radius rC of the oceanographic foot-310

print defined by Chelton et al. (1989), and given by eq. (1), when the range resolution311

δR is neglected compared to Hs. For Hs = 10 m, and h = 519 km, this gives rC =312

3.3 km. Based on the Gaussian distribution of the sea surface elevation, there is only a313

0.003% probability that ζ > Hs. Hence, we have the same negligible probability that314

points located at rC from nadir (i. e. at the edge of the ”Chelton footprint”) contribute315

to the waveform at ranges R < h, i.e. in the first half of the rising part of the wave-316

form. We may thus give the following interpretation of rC : points located at r > rC317

are outside of the footprint and have a very limited impact on the estimated value Ĥs.318

If wave heights Hr vary as a function of distance to nadir, then the waveform does319

not follow exactly the Brown form, as detailed in Appendix A. As different regions of320

the waveform contain different regions of the sea surface, one could imagine fitting dif-321

ferent parts of the waveform to measure variations in Hr as a function of distance from322

nadir. The theoretical limit to this capability is the blurring due to range bunching over323

a distance of the order rC/2. Speckle noise is another limiting factor, and probably the324

main one in practice for small values of Hs.325

Based on the analysis in Appendix A we expect that variations of Hr at scales much326

smaller than rC/4 will be smoothed out in altimeter data, whereas variations at scales327

much larger than rC/2 have no effect on the waveform that will follow the Brown shape328

for the local wave height. For our analysis of CFOSAT data we will define an ”effective329

altimeter radius” ra such that the variance associated to the random fluctuations of Hra330

— the envelope filtered with gra , a Gaussian filter of standard deviation ra — is the same331
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as that produced by an altimeter. The actual shape of the ”altimeter filter” is discussed332

in Appendix A333

2.4 Estimation of the equivalent ra scale for an idealized altimeter334

We have simulated the sampling of our simulated sea surface by a highly simpli-335

fied altimeter. We thus neglect radar noise, speckle and variations in ocean backscatter,336

and compute simulated waveforms as histograms of the number of discrete pixels as a337

function of range R discretized with the same resolution δR = 0.47 m used in actual338

SWIM data. The histogram is computed for a finite region of size rC by rC centered at339

the nadir point. The value of Ĥs for each simulated histogram is given by the least square340

fit to the theoretical waveform in by eq. (9) for R varying from h−Hs to h+Hs. As341

detailed in Appendix A, even this simplified altimeter makes a much more complex mea-342

surement than a simple Gaussian smoothing of the Hr field. We briefly tested that more343

realistic waveforms and different fitting procedures yield some quantitative differences.344

Taking the simulated sea surface from Fig. 2, we compare a map of simulated al-345

timeter data Ĥs in Fig. 3 with maps of local wave heights Hr, smoothed on different scales.346

As expected, the patterns of the envelope with radiuses larger than 2 km, those that per-347

sist in Fig. 3.f., match the large scales of the simulated altimeter data. From a quanti-348

tative point of view, the standard deviation of the simulated altimeter data, here 0.705 m,349

is of the same order as the standard deviation of actual SWIM measurements over the350

same SWIM box (0.88 m). We also note that this value is very close to that obtained351

for a filtering of the envelope between a scale r = rC/5 and r = rC/4.5. As r = rC/4.5352

gives the closest value, we define the effective altimeter radius ra as ra = rC/4.5.353

Looking at Fig. 3.a. it is clear that the map of Ĥs contains much smaller features354

than the envelope smoothed with ra = rC/4.5. All of these are spurious amplification355

of envelope perturbations that happen to be at the right distance from nadir, around rC/2,356

as explained in Appendix A. As a result, maxima of Ĥs given by the altimeter are not357

located at the true wave height maxima but slightly displaced by a distance of the or-358

der of rC/2. A striking example in Fig. 3 is the region of waves higher than 11 m around359

x = 20 km, y = 19 km. The altimeter gives a local minimum where the true wave height360

is maximum, and a round halo of maxima surrounding that point. Conversely a ring-361

shaped maximum in the envelope, such as around x = 35 km, y = 45 km, gives a lo-362
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c)

f)

b)

e)

a)

d)

Figure 3. Maps of different estimates of the wave heights obtained by either (a) simulat-

ing altimeter processing or (b — f) computing the local average Hr using eq. (2) where the gr

kernel is a Gaussian filter of standard deviation r varied from rC/5 to rC/2. In this example,

rC = 3063 m thus r values are respectively 613, 681, 766, 1021, and 1531 m. In practice the

smoothing is applied in a finite box of size 4rC by 4rC .

cal maximum in the simulated altimeter data. We have found that different retracking363

methods produce the same large scale patterns but may differ in small scale details. These364

differences are beyond the scope of the present paper. Even though the patterns do not365

exactly coincide, we will now assume that the sampling of the sea surface by the altime-366

ter is equivalent, in terms of variability of wave height to filtering the envelope with a367

Gaussian of standard deviation ra = rC/4.5.368

2.5 Predicting Hr variability and its contribution of Ĥs variability369

Based on our analysis, we expect that SWIM measurements are contaminated by370

wave group structures at scales of a few kilometers, following the variation of rC with371

wave height and satellite altitude. As illustrated by the two examples with different spec-372

tral widths, we note that for the same wave height, a wider spectrum leads to smaller373

scales of wave groups, part of which scales are smoothed away by the altimeter footprint374

and therefore not resolved. For a narrower spectrum, wave groups have larger scales and375
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amplitudes and a larger contribution to the variability of wave heights estimated by an376

altimeter.377

For a quantitative analysis we first consider the simpler case of waves propagat-378

ing in only one direction, with a sea surface ζ distributed with the normal law N (0, σH =379

Hs/4) with a single-sided (defined for k > 0) Gaussian spectrum with mean value kp380

and standard deviation σk381

E(k) =
H2

s

16σk

√
2π

e−(k−kp)
2/(2σ2

k). (11)382

The spectrum of the envelope is also Gaussian and writes, using eq. (3) and (4), and af-383

ter computing the correlation (for a single-sided spectrum),384

Ψ(k) =
8− 2π

H2
s

Ψ2(k),385

=
8− 2π

H2
s

8

∫ ∞

0

E(u)E(u+ k)du,386

=
16(4− π)

H2
s

H4
s

512
√
πσk

e−k2/(4σ2
k),387

=
(4− π)H2

s

32
√
πσk

e−k2/(4σ2
k). (12)388

Using eq. (6), with a Gaussian filter of standard deviation ra, the spectrum of Hra389

writes,390

ΨHra
(k) =

(4− π)H2
s

π
√
πσk

e−k2/(4σ2
k)︸ ︷︷ ︸

ΨH0
(k)

Gra(k) (13)391

Wave groups contain wavelengths larger than π/σk, with a constant spectral den-392

sity near k = 0. Around k = 0, the value of the Hra spectrum is 0.15H2
s /σk m2/(rad/m).393

Fig. 4 presents one dimensional wave spectra — in solid lines — of two typical sea394

states with the same Hs = 3.1 m and their associated ΨH0
(k) spectra — in dashed lines.395

The light blue spectrum is a JONSWAP spectrum (Hasselmann et al., 1973) with a peak396

period of 8 s and a peak enhancement factor γ = 3.3 that represents a moderate wind-397

sea. The dark blue spectrum is a narrow Gaussian spectrum with a peak period of 14 s398

and σk = 0.002 rad/m, typical of swell conditions in the open ocean. The altimeter smooth-399

ing function Gra = exp (−k2r2a) allows to define a cut-off wave number ka =
√
π/(2ra).400

As shown in Fig. 4 the wavelengths in altimeter-filtered envelopes, larger than the as-401

sociated wavelength cut-off 2π/ka (in black dash-dotted line), are large compared to the402

typical wavelengths contained in the wave groups (of order π
√
2/σk and represented by403

the dark and light blue vertical dash-dotted lines).404
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Figure 4. Example of two wave spectra — solid lines — in one dimension and the correspond-

ing spectra of Hs — dashed lines —, for typical swell conditions in the open ocean in dark blue,

and typical windsea in moderate wind conditions in light blue. Because the fluctuations of Hs

are filtered by the altimeter with the function Gra(k) — dotted lines —, the actual measured

variance of Hs is the shaded area, in light blue for the windsea and dark blue for the swell. The

vertical black line is the equivalent altimeter cut-off wavenumber at k = ka, whereas the vertical

dark and light blue lines represents the width of the Hs spectra.

Applying the one dimension version of eq. (8) gives the variance of altimeter-estimated405

Ĥs as the shaded areas in Fig. 4. For a Gaussian spectrum, in cases where the altime-406

ter filter scale is large enough not to be concerned about the shortest scales, this area407

is approximately ka times ΨH0
(k = 0) the PSD level at k = 0. This gives a standard408

deviation of Ĥs of the order of 0.39
√
ka/σkHs, which is 0.40 Hs for the one-dimensional409

swell example of Fig. 4.410

For a generic one-dimensional wave spectrum E(k), the reciprocal width 1/σk should411

be replaced by (2
√
π)Qk, with the peakedness parameter Qk defined similarly to the re-412

ciprocal of the the usual frequency bandwidth (Saulnier et al., 2011),413

Qk =

(∫∞
0

E(k)dk
)2∫∞

0
E2(k)dk

. (14)414

For a JONSWAP spectrum with a peak enhancement factor γ = 3, this definition gives415

Bk = 1.3kp and the standard deviation of Hr for the wind sea case above is 0.1Hs.416

For a realistic altimeter, we must consider waves in two dimensions, and the stan-417

dard deviation of Hra is the square root the variance as given by eq. (8). This variance418

is the integral of the Hra spectrum in the wavenumber plane. For large enough ra, the419
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integral can approximated as the value ΨHra
of the spectrum at (kx = 0, ky = 0) times420

an effective area in the wavenumber plane,421

var(Hra , d1) ≃ ΨH0(kx = 0, ky = 0)×
∫
ky∈R

∫
kx∈R\[−k1,k1]

Gra(kx, ky)dkxdky422

≃ ΨH0(kx = 0, ky = 0)× (π/2)
(
2/ra

2 − 4k1/(
√
πra)

)
423

≃ 32

π

8− 2π

H2
s

Ψ2(kx = 0, ky = 0)× (π/2)
(
2/ra

2 − 4k1/(
√
πra)

)
424

≃ Q2
kkH

2
s (4− π)

(
2/ra

2 − 4k1/(
√
πra)

)
, (15)425

where we have defined a two-dimensional spectral peakedness Qkk which is measured in426

meters,427

Q2
kk =

∫∫
R2 E

2(kx, ky)dkxdky(∫∫
R2 E(kx, ky)dkxdky

)2 =
32Ψ2(kx = 0, ky = 0)

H4
s

. (16)428

This expression gives the approximate value for the standard deviation,429

std(Hra , d1) ≃ HsQkk

√
(4− π)

[
2/r2a − 4k1/(

√
πra)

]
. (17)430

This variability of Hra , which we have defined as the contribution of wave groups to the431

variability of measured wave heights Ĥs is thus the product of three factors: the signif-432

icant wave height Hs, the shape of the wave spectrum as quantified by Qkk, and the ef-433

fective range of spatial scales over which the variance is integrated. That last factor is434

a function of the smoothing effect of the altimeter, represented by the scale ra, and the435

distance d1 = 2π/k1 over which we consider the variability.436

2.6 Practical implementation437

In the previous subsections, various considerations have been made. Here, we sum-438

marize them to give a flow chart for estimating the part of the variability due to wave439

groups std(Hra , d1) from CFOSAT products.440

1. Assemble the 1-dimensional L2S spectra for each azimuth to obtain an equivalent441

L2 spectrum, make it double-sided E2S(k, θ) and rescale it with Ĥs from nadir mea-442

surement,443

2. Interpolate E2S(k, θ) over a regular (kx, ky) grid, with kx the along track direc-444

tion, to obtain E(kx, ky),445
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3. Compute the spectrum of the envelope squared Ψ2(kx, ky) from the discrete cor-446

relation447

Ψ2(kx, ky) = 8
∑
k′
x

∑
k′
y

[
E(k′x, k

′
y), E(k′x + kx, k

′
y + ky)

]
dk′xdk

′
y (Step 3)448

4. Transform to a PSD of H0,449

ΨH0(kx, ky) =
32

π

8− 2π

H2
s

Ψ2(kx, ky) (Step 4)450

where Hs is computed as 4
√
E, with E =

∫∫
R2 E(kx, ky)dkxdky.451

5. Compute the altimeter smoothing filter Gra as452

Gra(kx, ky) = |F(gra)|2 = e−(k2
x+k2

y)r
2
a (Step 5)453

with F(·) the Fourier transform and ra = rC/4.5.454

6. Apply the filter to ΨH0
to obtain the PSD of altimeter Hra estimate,455

ΨHra
(kx, ky) = ΨH0(kx, ky)Gra(kx, ky) (Step 6)456

7. Integrate ΨHra
(kx, ky), the spectrum of Hra , over all cross-track wavenumbers ky457

and over along-track wavenumbers kx with a magnitude larger than 2π/d1, as il-458

lustrated on Fig. 5.e. Because we compare our estimate to Ĥs variations within459

a SWIM L2 box size that is 80 km along-track, d1 is taken as 80 km,460

var(Hra , d1) =

∫
ky∈R

∫
kx∈R\[−k1,k1]

ΨHra
(kx, ky)dkxdky (Step 7)461

Fig. 5 shows the results of steps 3, 6 and 7 for the two selected boxes of our case462

study. The top line corresponds to the Ψ2 spectra obtained from correlation, the mid-463

dle line shows ΨHra
, the PSD of our local Hra estimate. Note the different colour scales464

between the northern — A — and southern — B — boxes. The bottom line shows the465

one sided along-track kx-spectra. The vertical line shows the lower integration limit over466

kx that is used to obtain the variance of Hra .467

Fig. 6 shows wave height and corresponding standard deviation, both observed and468

estimated from L2S spectrum, as a function of the sampling time (UTC) over storm Den-469

nis. For the northern part of the storm, where the spectrum is broader, around box A470

(light blue vertical line), the standard deviation due to wave groups is around half the471

measured standard deviation (i.e. wave groups represent a quarter of the measured vari-472

ance). On the other hand, for the southern part, around box B (dark blue), the wave473
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std(Hs) = 0.27

std(Hs) = 0.73

(a)

(e)

(b)

(c) (d)

Figure 5. (a,c) corresponds to our chosen northern CFOSAT box, and (b,d) to the south-

ern box. Top line: envelope squared spectrum Ψ2(kx, ky) from convolution. Middle line:

ΨHra
(kx, ky), spectrum of Hra (including the equivalent altimeter filtering). Bottom line: 1D

along-track spectrum obtained by integrating over the cross-track axis, in light blue for the

northern box and dark blue for the southern box.

height variability is strongly dominated by wave groups — more than half the observed474

variance is explained by wave groups.475
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Figure 6. Values of measured Ĥs, averaged over boxes — black circles — , and corresponding

std(Ĥs, 80km) — black dotted lines — ; as provided in the L2 as a function of sampling time

(UTC), for the CFOSAT track shown in Fig. 1. Estimations of std(Hra , 80km) are also repre-

sented — in red and blue — using the two methods summarized at the end of section 2.

Alternatively we can approximate the full integral of the convolution by its value476

at k = 0 using the peakedness Qkk, giving a faster estimate of the variability due to477

wave groups. The first two steps are the same, then478

• Instead of the full convolution, compute only Qkk defined from eq. (16), which can479

be re-written as,480

Qkk =

√∫∫
R2 E2(kx, ky)dkxdky∫∫
R2 E(kx, ky)dkxdky

(Step 3bis)481

• skip steps 4–6 to estimate std(Hra , d1) directly using eq. (17),482

std(Hra , d1) ≃ QkkHs

√
(4− π)

[
2/r2a − 4k1/(

√
πra)

]
. (Step 7bis)483

This std(Hra , d1) estimated through Qkk is also shown in Fig. 6. The values are only slightly484

overestimated compared to the full correlation calculus, therefore, Qkk could be a use-485

ful parameter when working with wave groups.486
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3 Results at the global scale487

Beyond the particular case of storm Dennis, for which very large wavelength and488

narrow spectra lead to a dominant effect of wave groups in Ĥs variability, one may won-489

der how important are wave groups in general, and how important can they be compared490

to other known sources of Ĥs variability, including winds and currents. To answer this

0.0 0.2 0.4 0.6
std(Hs) [m]

0

50000

100000

150000

200000

o
cc

u
re

n
ce

s

observations

estimations for WG:

full correlation
via Bkk

0 5 10 15
Hs [m]

0.00

0.05

0.10

0.15

0.20

0.25

st
d
(H

s)
 /

 H
s

observations

estimations for WG

a) b)

1.5m

Figure 7. (a) Histograms of std(Ĥs, 80km) measured at nadir in blue and our estimate of

wave groups contribution std(Hra , 80km) in orange. (b) Mean — solid lines — and standard de-

viation — shaded areas — of std(H)/Ĥs over Ĥs bins of 0.2 m, both for std(Ĥs, 80km) measured

at nadir in blue and our estimate of wave group effects std(Hra , 80km) in orange.

491

question, we have applied the methodology presented in section 2 for storm Dennis to492

the full SWIM L2S archive for the years 2020 and 2021, estimating for each of the 2.4493

million SWIM L2 box the expected value of std(Hra , d1) associated to wave groups as494

filtered by the altimeter. The distribution of these values is shown in Fig. 7.a, with a typ-495

ical value around 7 cm, and maximum values around 60 cm. This variability is typically496

half of the measured standard deviation of Ĥs. We also computed std(Hra , d1) as esti-497

mated from the spectral peakedness parameter Qkk for the same time period, giving re-498

sults that are highly correlated to the full convolution, with a Pearson’s linear correla-499

tion R = 0.98.500

In practice the group-induced variability of Hra that that should be present in SWIM501

data is strongly correlated with the mean value of Hs. In Fig. 7.b we show the statis-502

tical distribution (mean and standard deviation) of std(Hra)/mean(Ĥs) as a function503

of Hs. For Hs below 1.5 m the altimeter estimates of Hs are known to have the largest504
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relative errors (Dodet et al., 2022), which is partially due to a stronger effect of speckle505

noise, as discussed in Appendix A.3. In that range the wave group variability is 3 times506

smaller than the observed variability. Above 1.5 m, the relative variability that is expected507

from wave groups increases with Hs (from 3.5% to 5%), whereas the observed variabil-508

ity decreases from 11% to 5% between Hs = 1.5 m and Hs = 10 m. The share of the509

variability expected from wave groups dominates the observed variability for wave heights510

above 8 m, and probably explains the increase in observed std(Hs)/mean(Hs) for Hs above511

12 m. Although there are very few data in that range, it is well known that dominant512

wave periods are generally higher for higher wave heights (Toba, 1973), corresponding513

to smaller bandwidths and thus an ever increasing variability due to wave groups.514

We now consider the spatial distribution of std(Ĥs), and in order to separate the515

possible effects of different sea states from the general trends associated to local aver-516

age value of Hs, we have chosen to show a map of the mean value of std(Ĥs, 80 km)/mean(Ĥs, 80 km)517

gridded at a resolution of 100 km. Before computing the local mean we have first removed518

all cases with Ĥs < 1.5 m. Fig. 8.a shows the distribution of Ĥs variability and com-519

pare it to the predicted variability of Hra in Fig. 8.b.520

Note that the range of values are different for both panels because the contribu-521

tion of wave groups is, on average, half of the measured std(Ĥs, 80 km). Both figures have522

some common patterns with a general increase from the west to the east of the ocean523

basins consistent with a dominance of swells in the east (Chen et al., 2002) with longer524

wavelengths and narrower spectra.525

Now that we have quantified the variance of Ĥs associated to wave groups, we can526

subtract this contribution of wave groups from the total variance of Ĥs in order to look527

at the other sources of variability in Ĥs. As shown in Fig. 8.c, the remaining standard528

deviation of Ĥs after correction of the effects of wave groups (total variance minus vari-529

ance due to wave groups) contains a background level of 0.1 to 0.2 m, possibly associ-530

ated to known artificial effects that include the automatic gain control, speckle noise (Quartly531

et al., 2001) and true small scale wind variability. Larger localized values are up to 0.3 m.532

These larger values are co-located with regions of strong ocean circulation mesoscale vari-533

ability. These same regions match the location of strong Hs gradient in along-track 1534

Hz data from SARAL-AltiKa, Jason-2 and Cryosat-2 that have been denoised using an535

Empirical Mode Decomposition (EMD), by Quilfen and Chapron (2019). Here, we have536
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(a)

(b)

(c)

Figure 8. Map of the average of a) std(Ĥs, 80 km)/mean(Ĥs, 80 km) — upper panel —, b)

std(Hra , 80 km)/mean(Ĥs, 80 km) — middle panel — and c) residual standard deviation of Ĥs,

in meters, after removing the effect expected from wave groups — lower panel —, for the years

2020 and 2021 for all the SWIM L2boxes with a Ĥs above 1.5 m. With the wave group contribu-

tion std(Hra , 80km) estimated from SWIM L2S spectra

applied the same EMD filtering to SWIM 4.5 Hz data, in order to remove small scale537

noise in Ĥs, giving results shown in Fig. 9. The EMD filtered part Fig. 9.c is directly538

comparable to the wave group signature highlighted in Fig. 8. These maps were constructed539

using SWIM nadir data from SALP/CAWATAC experimental 4.5 Hz products available540
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on Aviso+ that include both the raw significant wave height estimates Ĥs and the de-541

noised values H̃s using the EMD method. The magnitude and distribution of the expected

(a)

(b)

(c)

Figure 9. Maps of the average, for the year 2021, of (a) std(Ĥs, 80km) computed on original

SWIM nadir native values (4.5 Hz), (b) standard deviation of the residual of Hs, defined as the

difference between the original and the denoised wave height (c) std(H̃s, 80km) computed on

EMD filtered data H̃s.

542

effect of wave groups apparently corresponds to the variability that is removed by EMD543

denoising, without using wave spectrum information. Thus, the uncertainty variable as-544

sociated to the nadir 4.5 Hz data in the SALP/CAWATAC products which is derived545

from the standard deviation of the fluctuations removed by EMD should be related to546

Hs and Qkk. This estimation of the uncertainty may be useful for extrapolating uncer-547
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tainty estimates based on triple-collocation methods to high values of Hs. For satellite548

missions other than CFOSAT, the EMD filtered data are available but we do not have549

measured wave spectra from which Qkk could be estimated to verify this interpretation550

of the EMD filtering. The analysis of these other missions may use estimates of Qkk from551

numerical wave models and/or co-location of data with SWIM.552

4 Discussion553

4.1 Effect of spectral shape554

The accurate estimation of wave group contributions critically depends on the ac-555

curacy of the spectral shape, in particular the directional width and wavenumber width.556

Because of the hard wavelength cut-off in the L2 product we have chosen to work with557

the L2S spectra. Redoing the global analysis with the L2 product generally reduces the558

expected effect of wave groups. We note that a validation of spectral width from the L2559

product was performed by Le Merle et al. (2021), who found that SWIM L2 generally560

overestimate spectral width compared to buoy data. No such analysis has been performed561

for the L2S product. It would be also interesting to know how accurate could be the es-562

timation of std(Hra , d) estimated from model spectra, for the application to other satel-563

lite mission that do not measure the wave directional spectrum. The minimum distance564

d that could be investigated will depend on the wave model resolution.565

It should also be reminded that SWIM L2 spectra combine sparse measurements566

over a 70 km by 90 km box, as illustrated in Fig. 10. Because the wave field has gradi-567

ents, this combination generally produces a broader spectrum than a more local estimate568

of the wave spectrum, and this should produce a low bias in our estimate the effect of569

wave groups. In the example on Fig. 10 the assembly of the L2 spectrum combines data570

from two neighboring wave azimuths that are observed in distinct regions of the ocean571

separated by up to 72 km. We kept this assembly to be able to compare results from L2572

and L2S data, but it would be more logical, for the case of L2S data, to assemble a spec-573

trum with a spatial continuity of the footprints that correspond to azimuths around the574

spectral peaks.575
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Figure 10. (a) Representation of a two-dimensional spectrum E(kx, ky) with values given by

the colorbar obtained from assembling L2 1-dimensional spectra E(k) for all azimuths. The color

of each circle corresponds to the index of the beam footprint in which the SWIM was making the

measurement (b) Geographical layout of boxes — dashed and dash-dotted rectangles — and of

centers of the beam footprints on the sea surface. the footprint diameter is about 20 km so that

they actually overlap.

4.2 Effects of satellite altitude576

The particularly low orbit of CFOSAT at 519 km gives a rather small oceanic foot-577

print that allows for wave groups to be resolved in SWIM data. If we consider the higher578

altitudes used by other satellite missions, 891 km for the recently launched SWOT or579

1340 km for the Topex-Poseidon / Jason / Sentinel 6 series, the oceanic footprint gets580

bigger and wave groups are more likely to be more smoothed out. In Fig. 11, we illus-581

trate this effect with different altitudes following the method used for Fig. 3. Namely,582

for the same simulated ocean surface, the wave height is estimated by a least-square fit583

to the simplest Brown waveform given by eq. (9). As expected, the higher the satellite584

the lower the variability of Ĥs. It is not clear that this effect of satellite altitude is no-585

ticeable in real data that are contaminated by speckle noise and that use different wave-586

form fitting algorithms. More realistic simulations will be needed to compare the behaviour587

of different instruments and processing chains.588

4.3 Expected effect on delay doppler altimeters589

We have shown that the variability of Ĥs at small scale contains some geophysi-590

cal information and not just random noise related to the measurement. However, the noise591
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b)

e)

a)

d)

Figure 11. Maps of wave heights obtained a) by smoothing the envelope with Gaussian filter

of scale ra = 619 m; or by simulating altimeter waveforms without speckle and using the same

least-squares fit (Appendix A), for different altitudes: b) 519 km, c) 891 km, d) 1,340 km, with

corresponding ra of 619 m, 790 m and 940 m.

for Delay-only altimeters is probably dominated by the speckle noise in the waveforms592

(Sandwell & Smith, 2005; Quartly et al., 2019). Doppler processing of recent altimeter593

instruments starting with Cryosat-2 and Sentinel-3 can strongly reduce this speckle noise594

by forming and combining independent looks of the same sea surface (Egido et al., 2021).595

It will therefore be interesting to study the effect of wave groups in these measurements596

of wave height and sea level. Waves can also be resolved directly in the sea level estimates597

when data is processed at very high resolution (Altiparmaki et al., 2022; Villas Bôas et598

al., 2022). If the Doppler induced by orbital velocities is neglected, the delay-Doppler599

measurement is similarly based on the convolution of a surface elevation distribution with600

a flat surface response (Ray et al., 2015). Only the flat surface response is different from601
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the Delay-only processing. We thus expect that wave groups will have similar distortion602

of the waveforms and contributions to estimates of wave heights and sea level. The blur-603

ring effect caused by range bunching will now be confined to the direction perpendic-604

ular to the track, with maximum effect of a Hs perturbation located off the satellite track605

(depending on fitting algorithm), possibly also at a distance of the order of rC/2. Be-606

cause Delay-Doppler altimeters can actually resolve the along-track variability caused607

by wave groups instead of averaging it, we expect that Ĥs fluctuations caused by wave608

groups are much larger in Delay-Doppler altimetry, together with their spurious effect609

on sea level estimates. This may explain the relative smaller reduction of std(Ĥs, 7km)610

at large Hs which is found when Doppler resolution is enhanced to reduce the speckle611

effect, and a typical value of std(Ĥs, 7km) for Delay-Doppler Sentinel 3A data which that612

is around 0.7 m for Hs = 7 m (Egido et al., 2021), twice the typical value for SWIM613

data. This will be the topic of further studies.614

4.4 Wave groups and satellite measurements uncertainties615

Up to now, the uncertainty of satellite measurements has been determined by the616

triple-collocation method (Abdalla et al., 2011; Dodet et al., 2022), with the practical617

result that the uncertainty of altimeter data, either denoised or integrated along-track618

into super-observations, is of the order of 7% of Hs. However, that error contains rep-619

resentation errors (the co-located in situ data does not sample the same space and time620

frame), and cannot be extrapolated beyond the range of the co-located dataset, typically621

wave heights below 8 m. So what can we say about the largest measured wave heights622

of 20.1 m (Hanafin et al., 2012)? Can we use the measured variability of Ĥs, for exam-623

ple the 4.5 Hz or 20 Hz data that is used to make a 1 Hz average, to refine our estimate624

of the uncertainty of this average? In the present paper we have shown that wave groups625

are responsible for random fluctuations in the estimates Ĥs, that are generally propor-626

tional to Hs but with an effect that depends on the bandwidth of the spectrum, which627

is generally narrower for larger wave periods. As a result the variability associated to628

wave groups can be the dominant source of fluctuations in Ĥs measurements for severe629

storm conditions. Even though the measurement fluctuations are weakly correlated to630

the actual wave height variations (as demonstrated in Fig. 3) their magnitudes are strongly631

correlated. Hence the measured fluctuation std(Ĥs, 7km) contains both uncorrelated speckle632

noise effect, that can be expected to be reduced by 1/
√
N when averaged from N Hz to633
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1 Hz, and a true geophysical spatial variability associated to wave groups (and variable634

fetch, currents, etc.) that will only partially average out. We expect that an uncertainty635

model for averages of Ĥs measurements may take into account wave groups explicitly.636

In the case of SWIM, directional wave spectra can be used to separate the actual vari-637

ability of the 4.5 Hz data into wave group effects and noise plus other geophysical effects.638

For other altimeters, one may use empirical correlations between spectral bandwidth,639

wave height and wind speed. For this information to be useful for a theoretically-based640

uncertainty estimate, which is much needed for wave heights above 8 m, one may extend641

the parameterization of speckle effects proposed in Appendix A.3, to the actual target642

waveform and cost function used in the retracking algorithm.643

4.5 Considerations on the satellite resolution644

The present work should be useful for the exploration of the resolution limits of645

satellite altimeters and other remote sensing systems that use radar or optical imagery646

(Kudryavtsev et al., 2017). As processing methods are refined to produce higher reso-647

lution near the coast (Passaro et al., 2021) and the ice edge (Collard et al., 2022), some648

of the high resolution data will be dominated by wave groups. The associated variance649

of Hs may provide some constraint on the shape of the directional wave spectrum, but650

the detailed fluctuations are probably of little value for most applications as groups will651

travel at speeds of the order of 10 m/s and persist for only a few minutes. The contri-652

bution of wave groups to the variability of wave heights measured by altimeters is thus653

a real effect that contains part of the true variability of wave heights at the scale of the654

altimeter footprint. Methods developed to remove noise in the data, such as the data-655

driven Empirical Mode Decomposition (EMD) used by (Quilfen & Chapron, 2019) ap-656

pear to remove the effect of wave groups. An investigation of the variabilty of wave heights657

at the smallest scales cannot be based on denoised data alone, because they miss a large658

part of the true variability.659

In locations where Hs varies sharply such as over coral reefs, mud banks or across660

the sea ice edge, the high resolution wave heights will contain other effects, and these661

are particularly interesting. Some caution should be used when interpreting these sharp662

gradients. As we have found out, the maximum wave height will generally be displaced663

from the location of its true maximum. This displacement is smallest for the SWIM in-664

strument, thanks to the low orbit of CFOSAT, which makes it a particularly interest-665
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ing instrument for studying small scale wave height variations, in spite of its rather low666

rate for the nadir beam (4.5 Hz instead of 20 Hz for Jason), and the absence of Doppler667

processing.668

5 Conclusion669

In this paper, we took advantage of the low orbit altitude of CFOSAT, and the low670

noise level of the nadir beam of the SWIM instrument to study the along-track variabil-671

ity of wave height. The directional wave spectra measured by off-nadir beams on SWIM672

has been complementary to study the relationship between wave spectra and along-track673

Hs variability. After giving a theoretical estimate of the standard deviation of Hs as-674

sociated to wave groups as a function of the wave spectrum and satellite altitude, we com-675

puted this estimate for 2 years of CFOSAT data using L2S products. We found that the676

standard deviation of Hs associated to wave groups is generally about half of the stan-677

dard deviation of Hs measured over a 80 km distance, explaining 25% of measured Hs678

variance. This ratio of variances increases for storms and in the presence of long swells,679

it was found to be larger than 75% in 3% of the cases.680

The residual variability after subtracting the estimated effect of wave groups from681

the measured Hs variance correlates positively with along-track variance of filtered sig-682

nals, which brings out regions of strong currents. Studying these features is of major in-683

terest and requires some filtering out of the smaller scales. In turn, these smaller scales684

can be of interest, at least from a statistical point of view, as they are related to wave685

groups and the generation of infragravity waves and extreme sea level at the coast.686

The main novelty of the present work was to expose the limitations of the theo-687

retical Brown (1977) model that is used to retrieve wave heights and sea levels from al-688

timeter data. The Brown model assumes a Gaussian sea level distribution that is spatially-689

uniform at the scale of the footprint, which is correct when averaged over long enough690

scales along-track. For an individual measurement, the footprint may not be large enough691

for the Brown model to be valid, and we have demonstrated that the effect of wave groups692

on the waveforms, is equivalent to introducing a range-dependent wave height. This lim-693

itation is common to all altimeters that provide estimates of wave height and sea level694

based on theoretical waveforms, including Low Rate Mode (LRM) and Synthetic Aper-695

ture Radar Mode (SARM) processing. The resulting waveforms have distorted shapes696
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that can be similar to the effect of non-Gaussian sea level statistics (Srokosz, 1986; Ro-697

driguez, 1988), but with much larger distortions. To our knowledge this non-uniformity698

effect had never been considered. We have shown that the wave group effect averages699

out to zero over large scales when waveforms are fitted with a simple least square cost700

function, but that is not necessarily the case for the more sophisticated methods that701

are often used. We expect that further work will expand on our approach to consider702

spurious effects on sea level estimates as well as applications to recent delay-Doppler al-703

timeters.704
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Appendix A Non-homogeneous Hs and waveform retracking705

In this analysis we keep the most simple model of altimeter measurement that is706

also used in section 2: we neglect antenna pattern, thermal noise and mispointing effects,707

and neglect the Earth sphericity. These assumptions are meant to simplify the algebra708

as much as possible while keeping the essential features of non-homogeneity in wave heights.709

Likewise we have used the most simple cost function when fitting the waveform, while710

maximum likelihood methods are generally used with real data (Rodriguez, 1988; Hal-711

imi, 2013). We also start by ignoring speckle noise. The analysis performed below is eas-712

ily extended to consider the third parameter which is usually estimated in retracking wave713

forms, that is the Normalized Radar Cross Section.714

A1 Wave groups and Hs estimate715

We consider a small perturbation ∆H of Hs over an area A, localized around a range716

h+R0. The original normalized Brown waveform of eq. (9) corresponds to the histogram717

of the ocean area per unit range, divided by 2πh so that it varies between 0 and 1, with718

h the satellite altitude. The perturbation to the waveform is equivalent to removing the719

original Gaussian distribution of surface elevation with σH = Hs/4 over the area A,720

and replacing it by a new Gaussian with σ′ = (Hs+∆H)/4, over the same area A, and721

divide by the normalization factor 2πh. We define the parameter a = A∆H/(8πh), which722

should be small compared to H2
s . For a small change in Hs, this change in waveform is723

proportional to the derivative of the Gaussian distribution with respect to σH and we724

find that the waveform is now725

w(R) = wB(R, σH) + a
e−(R−h−R0)

2/(2σ2
H)

√
2π

(R− h−R0)
2 − σ2

H

σ4
H

+O(a2) (A1)726

We note that a smaller change ∆H over a larger area A changes the waveform in the same727

way as a larger change over a smaller area, provided that a is the same. For simplicity728

we redefine the Chelton footprint diameter as r′C =
√
2Hsh, and we find that taking729

an area of radius αr′C gives a = α2∆HHs/4.730

The shape of these simulated distorted waveforms is illustrated in Fig. A1.731

With the distortion shown here, fitting a Brown waveform would give a wave height732

of Hs,fit = 12.6 m for R0 = 2.5 m and Hs,fit = 10 m for R0 = 0, which is a strange733

way to average the Hs = 13 m over part of the footprint and 10 m in the rest of the734
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Figure A1. Example simulated waveforms in the presence of a localized change in Hs around

the range h + R0, for Hs = 10 m. The perturbations use a = 1.875 m2, that would correspond to

∆H=3 m over an area of radius r′C/4, a perturbation that is neither small nor localized.

footprint. Fig. A2 shows that such perturbations are of the order of the deviations from735

the mean waveform in the case of the Box B SWIM waveforms, and are absent in Box736

A. The main difference between the simulated waveforms and the true waveforms is the737

speckle noise that is of the order of 10 % for both box A and box B.
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Figure A2. Ensembles of CFOSAT/SWIM waveforms in (a) box A and (b) box B. These

are the L1A product, already corrected for the antenna pattern, and thus directly comparable to

Fig. A1. Individual waveforms are color-coded with the estimated wave height. The white line

represents the average waveform.
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For small values of the perturbation a, the deviation in the fitted Hs can be com-738

puted analytically. For simplicity we will assume that the waveforms are defined for −∞ <739

R < ∞, and the sum of the difference squared between w(R) and wB(R, σ′
H), when in-740

tegrated from R = −∞ to R = ∞ is the following cost function,741

C =

∫ ∞

−∞
{[wB(R, σH)− wB(R, σ′

H)] + [w(R)− wB(R, σH)]}2 dR

≃
∫ ∞

−∞

{
(σH − σ′

H)
∂wB(R, σH)

∂σH
+ [w(R)− wB(R, σ)]

}2

dR

= (σ′
H − σH)

2 1

4
√
πσH

+ (σ′
H − σH)

aR0

8
√
πσ5

H

e−R2
0/(4σ

2
H)(R2

0 − 6σ2
H) +

3a2

8
√
πσ3

H

.

Fitting σ′
H corresponds to solving ∂C/∂(σ′

H−σH) = 0. We note that error terms742

that are either not a function of (σ′
H − σH) or odd functions of R have no impact on the743

fitted value. For example the a2 term in eq. (A1) does not contribute any difference to744

the fit.745

We find that the fitted value differs from the background value Hs by a factor pro-746

portional to a and function of R0/Hs ,747

Hs,fit = Hs +
A

πh

∆H

Hs

[
2
R0

Hs

(
6−

(
4R0

Hs

)2
)
e−4R2

0/H
2
s

]
︸ ︷︷ ︸

J(R0/Hs)

, (A2)748

with the function J in brackets having a maximum close to 2 for R0 ≃ Hs/4, as shown749

in Fig. A3.750

We note that this perturbation is zero for R0 = 0, meaning that a localized change751

at the center of the footprint does not modify the estimated Hs. This lack of impact on752

Hs,fit comes from the fact that the perturbation of the waveform (the second term in eq. (A1)753

is an odd function of range and thus orthogonal to the even functions that are the Brown754

waveforms with zero epoch wB(R, σH). The maximum perturbation of Hs,fit occurs for755

Hs perturbations at a range R0 close to σH , i.e. corresponding to a distance from nadir756

of r′C/4. Eq. (A2) gives results that are fairly robust for finite values of a/H2
s , and would757

predict a wave height of 12.9 m in the case R0 = 2.5 m shown in Fig. A1.758

We now consider the average effect of the perturbation by computing the average759

over R0, taking all values of R0 from 0 to nHs, which corresponds to averaging over an760
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Figure A3. Functions J(R0/Hs) and J2(R0/Hs) corresponding to the term in square brackets

in eqs. (A2) and (A8). The maximum of J is at R0/Hs = 0.5
√

0.5(3−
√
6) ≃ 0.26, where J

takes a value close to 1.96. This location corresponds to a distance from nadir approximately

√
0.26r′C ≃ r′C/2.

area B = πnr′C
2
= 2nπHsh. The integral of the function in brackets is761

I =

∫ ∞

0

2
R0

Hs

(
6− 16

R2
0

H2
s

)
e−4R2

0/H
2
sdR0 = 0.5Hs. (A3)762

As a result, the average effect of a ∆H change over an area A = πα2r′C
2
= 2πα2hHs763

is, when n is large,764

δH,alti =
1

nHs

∫ nHs

0

(Hs,fit −Hs) dR0 =
1

2n

A

πh

∆H

Hs
=

α2

n
∆H . (A4)765

This average effect of the localized perturbation of Hs is the same as a true area aver-766

age, which is the perturbation times the ratio of the areas A and B, namely δH = ∆HA/B.767

In other words, the perturbation is amplified if located at 0.15 < r/r′C < 0.34 from768

nadir, by a factor J that is up to 2. Otherwise the perturbation is attenuated, so that769

on average it is equal to the true perturbation. This averaging property and the unbi-770

ased estimate of Hs,fit, with a perturbation that changes sign when ∆H changes sign,771

are specific to the simple least squares used here. For example, fitting the logarithm of772

the waveform produces a biased estimator and a non-zero response for R0 = 0. Hence773

the results presented here are specific to the fitting method.774

In practice, distributed anomalies of Hs are not only a function of the distance from775

nadir, so that a local estimate of Hs will combine positive and negative anomalies ∆H776
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that are located at the same distance from nadir, and will partially cancel. This explain777

that our best fit for r0 is rC/4.5, smaller than the rC/2 which is a more typical scale of778

the footprint. Instead of retracking the simulated altimeter data, we can reproduce the779

Hs variability by first summing the ∆H anomalies for a given r, compute the Hs,fit anomaly780

for that r using eq. (A2) and then sum those anomalies for all r, as demonstrated in Fig. A4.781

This procedure is equivalent to a spatial filter J (r) that is built from the J function, con-782

verting the range h+R0 to a horizontal distance from nadir r =
√
2hR0,783

J (r) = grC (r) + J ⊗ (Id− grC )(r) (A5)784

where, grC is a Gaussian filter with width rC , and Id is the identity function. The es-785

timated Hs thus comes from786

Hs(x) = 4

√
2

π
(J ⊗ η)(x) (A6)787

c)a) b)

Figure A4. Equivalent to Fig. 3: (a) Hs surface obtained from retracking and Hs surfaces

obtained from convoluting the envelope with (b) a spatial filter built from the J function, (c) a

gaussian filter with ra = rC/4.5.

A2 Wave groups and sea level estimate788

While perturbations at nadir do not change the Hs estimate, they would change789

the mean sea level ze (the epoch is −ze) when using a 2-parameter waveform790

wB2(R, σH , ze) =
1

2

[
1 + erf

(
(R+ ze)− h√

2σH

)]
. (A7)791

In the case shown in Fig. A1 with R0 = 0 the estimated mean sea level is z = −37 cm.792

We thus expect wave groups to contribute to fluctuations in the estimated sea level at793

the scale of groups. The estimation of that effect follows the same method used above.794
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Fitting wB2(R, σ′
H , ze) to our waveform w(R) given by eq. (A1) is obtained by minimiz-795

ing a modified cost function, that is the same as C but with one extra term ze∂wB2/∂ze796

inside the curly brackets, giving two extra non-zero terms proportional to z2e and ze. We797

note that the cross-term proportional to ze(σ
′
H−σH) is an odd function of R and thus798

integrates to zero. After integration over R we get the cost function,799

C2 = C +
z2e

2
√
πσH

+
aze

4
√
πσ2

H

e−R2
0/(4σ

2
H)

(
R2

σ2
H

− 2

)
.800

Taking the derivative of C2 with respect to ze gives801

ze = − A∆H

8πhHs

[(
2− 16

R2
0

H2
s

)
e−4R2

0/H
2
s

]
︸ ︷︷ ︸

J2(R0/Hs)

. (A8)802

The function J2 is plotted in Fig. A3. Hence ze has the strongest deviation when the803

wave height perturbation is centered at nadir, and the sign of the deviation is opposite804

to ∆H : i.e. a wave group centered at the nadir would give a spurious lower sea level. On805

average the ze deviation has a zero mean when R0 is varied. As a result of the differ-806

ent shapes of J and J2, there is no simple correlation of the Hs and ze perturbations,807

contrary to the correlations induced by speckle noise in the waveform measurement (Sandwell808

& Smith, 2005).809

There is some correlation for R0/Hs between 0.7 and 1.2 which may contribute to810

anti-correlation of sea level anomalies and wave heights at scales around rC , and thus811

may persist in 1 Hz data. We insist that these are spurious sea level variations. In deep812

water these spurious oscillations are much larger than the fraction of a millimeter asso-813

ciated to true sea level variations with bound infragravity elevation that is anti-correlated814

with the envelope of kilometer-scale wave groups (Ardhuin et al., 2004). The spurious815

sea level oscillations described are also probably generally larger in amplitude than the816

larger scale (20-km wavelength) true sea level variations associated to free infragravity817

waves that have no phase correlation with the local envelope (Ardhuin et al., 2014). In818

shallow water, the real sea level fluctuations can be more important.819

A3 Speckle noise820

Random fluctuations in the electromagnetic power measured by the radar combine821

an additive thermal noise that can often be neglected and a multiplicative noise that is822

caused by the Rayleigh fading of the interfering reflections off a random sea surface (Quartly823

et al., 2001). In fact speckle is to the radar power what wave groups are to the wave en-824
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ergy. A good model for the speckle is a multiplicative random noise, so that the mea-825

sured waveform for each range is multiplied by a factor (1+ε(R)) with ε(R) following826

a χ2 distribution with N(R) degrees of freedom depending on the number of pulses av-827

eraged and the pulse repetition frequency (Quartly et al., 2001).828

For the retracking, the effect of this speckle perturbation is one additional term ε(R)w(R)829

inside the curly brackets of the cost function. Expanding the square and expressing the830

integral, it gives two terms, one proportional to (σ′
H − σH) that is relevant to the Hs831

estimate and the other proportional to ze fit, so that the cost function is now,832

C3 ≃ C2 − 2(σ′
H − σH)

∫ ∞

−∞
ε(R)w(R)

∂wB2

∂σH
dR− 2ze

∫ ∞

−∞
ε(R)w(R)

∂wB2

∂ze
dR, (A9)833

with834

∂wB2

∂σH
= −R− h+ ze

σ2
H

√
2π

e−(R−h+ze)
2/(2σ2

H), (A10)835

and836

∂wB2

∂ze
=

1

σH

√
2π

e−(R−h+ze)
2/(2σ2

H). (A11)837

The estimated wave height that gives ∂C3/∂(σ
′
H − σH) = 0 thus has an extra term838

induced by speckle noise,839

Hs,fit = Hs +
A

πh

∆H

Hs
J(R0/Hs) + 16

√
2Hs

∫ ∞

−∞
ε(u)

(
1 + erf(2

√
2u)
)
ue−8u2

du, (A12)840

with u = (R − h + ze)/Hs. The speckle-induced perturbation of Hs,fit is a weighted841

sum of random fluctuations with zero mean. In practice we can consider ε(R) to be Gaus-842

sian, and the variance of the speckle perturbation is the sum of the variances associated843

to each range R times the weight squared. To get some useful order of magnitude we may844

take the variance of ε(R), which is 1/N(R), to be constant at 1/N . For large values of845

Hs, the discretized waveform is well approximated by the continuous form and the part846

of the variance of Hs,fit induced by the speckle is approximately 5.0 Hs/N , with a stan-847

dard deviation 2.24
√

Hs/N . Using the value N = 512 for the number of pulses of the848

SWIM nadir beam that we may assume to be independent, and Hs = 2 m, this gives849

a standard deviation of 0.14 m, broadly consistent with the background level in Fig. 8.c.850

However, we note that the magnitude of the variability of Hs,fit will depend on the method851

used to fit the waveform. In the case of the SWIM data, the adaptive method that is used852

is based on a maximum likelihood (Tourain et al., 2021). It is probably more robust to853

speckle noise perturbations than the least square estimate used here, in particular for854

this instrument that has a relatively high signal to noise ratio.855
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