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Introduction

Most pathogens interact with their hosts to reach an advantageous niche and ensure their successful dissemination. For instance, viruses interfere with important host-cell processes through protein-protein interactions to coordinate their life cycle [START_REF] Yamauchi | Virus entry at a glance[END_REF]. It has been shown that host cell networks subversion by pathogen proteins can be achieved through interface mimicry of endogenous interactions (i.e., interaction between host proteins) [START_REF] Franzosa | Structural principles within the human-virus proteinprotein interaction network[END_REF][START_REF] Garamszegi | Signatures of pleiotropy, economy and convergent evolution in a domain-resolved map of human-virus protein-protein interaction networks[END_REF]. This strategy relies on the presence in pathogen protein sequences of host-like elements, such as globular domains and short linear motifs (SLiMs), that can mediate the interaction with host proteins [START_REF] Davey | How viruses hijack cell regulation[END_REF][START_REF] Hagai | Use of host-like peptide motifs in viral proteins is a prevalent strategy in host-virus interactions[END_REF][START_REF] Via | How pathogens use linear motifs to perturb host cell networks[END_REF].

Over the last years, many computational methods have been developed to predict pathogen-host protein interactions, some of which are based on the detection of sequence or structural mimicry elements [START_REF] Arnold | Computational analysis of interactomes: current and future perspectives for bioinformatics approaches to model the host-pathogen interaction space[END_REF][START_REF] Nourani | Computational approaches for prediction of pathogen-host protein-protein interactions[END_REF]. Such approaches allowed, for instance, to suggest potential molecular mechanisms underlying the implication of gastrointestinal bacteria in human cancer [START_REF] Zanzoni | Perturbed human sub-networks by Fusobacterium nucleatum candidate virulence proteins[END_REF][START_REF] Guven-Maiorov | Prediction of Host-Pathogen Interactions for Helicobacter pylori by Interface Mimicry and Implications to Gastric Cancer[END_REF] or to discriminate between viral strains with different oncogenic potential [START_REF] Lasso | A Structure-Informed Atlas of Human-Virus Interactions[END_REF], thus showing that protein-protein interaction predictions can be instrumental in untangling microbe-host disease associations. Nevertheless, the source code of many of these tools are not freely available to the community (e.g., [START_REF] Becerra | Prediction of virus-host protein-protein interactions mediated by short linear motifs[END_REF][START_REF] Guven-Maiorov | Prediction of Host-Pathogen Interactions for Helicobacter pylori by Interface Mimicry and Implications to Gastric Cancer[END_REF][START_REF] Lasso | A Structure-Informed Atlas of Human-Virus Interactions[END_REF]) providing the predictions through a database (e.g., [START_REF] Lasso | A Structure-Informed Atlas of Human-Virus Interactions[END_REF]), or can be only used through a web interface (e.g. [START_REF] Guven-Maiorov | HMI-PRED: A Web Server for Structural Prediction of Host-Microbe Interactions Based on Interface Mimicry[END_REF]), thus limiting the prediction reproducibility and tool usability.

In this context, and inspired by our previous work [START_REF] Zanzoni | Perturbed human sub-networks by Fusobacterium nucleatum candidate virulence proteins[END_REF], we present mimicINT, a computational workflow for large-scale interaction inference between microbe and human proteins by detecting host-like elements and using experimentally identified interaction templates [START_REF] Mosca | 3did: a catalog of domain-based interactions of known threedimensional structure[END_REF][START_REF] Kumar | ELM-the eukaryotic linear motif resource in 2020[END_REF].

Implementation

mimicINT detects putative molecular mimicry elements in microbe sequences of interest that can mediate the interaction with host proteins (Figure 1). mimicINT is written in Python and R languages and exploits the Snakemake workflow manager for automated execution [START_REF] Köster | Snakemake-a scalable bioinformatics workflow engine[END_REF]. It consists of four main steps:

(i) the detection of host-like elements in microbe sequences; (ii) the collection of domains on the host protein (iii); the interaction inferences between microbe and host proteins; and (iv) the functional enrichment analysis on the list of inferred host interactors.

In the first step, mimicINT takes as input the FASTA-formatted sequences of microbe proteins (e.g., viral or other pathogen proteins susceptible to be found at the pathogen-host interface) to detect host-like elements: domains and SLiMs. The domain identification is performed by the stand-alone version of InterProScan [START_REF] Jones | InterProScan 5: genome-scale protein function classification[END_REF] using the domain signatures from the InterPro database [START_REF] Blum | The InterPro protein families and domains database: 20 years on[END_REF]. By default, mimicINT retains InterProScan matches with an E-value below 10 - 5 , a threshold value commonly used for detecting profile-based domain signatures in protein sequences in the context of interaction inference [START_REF] Schleker | Prediction and comparison of Salmonella-human and Salmonella-Arabidopsis interactomes[END_REF]. The host-like SLiMs detection exploits the motif definitions available in the ELM database [START_REF] Kumar | ELM-the eukaryotic linear motif resource in 2020[END_REF] and is carried out by the SLiMProb tool from the SLiMSuite software package [START_REF] Edwards | Computational Prediction of Disordered Protein Motifs Using SLiMSuite[END_REF]. As SLiMs are usually located in disordered regions [START_REF] Davey | Attributes of short linear motifs[END_REF], SLiMProb uses the IUPred algorithm [START_REF] Dosztányi | Prediction of protein disorder based on IUPred[END_REF] to compute the disorder propensity of each amino acid in the query sequences, and generates an average disorder propensity score for every detected SLiM occurrence.

For SLiM detection, the default IUPred disorder propensity threshold is set to 0.2, a value commonly used to limit false negatives [START_REF] Edwards | Computational prediction of short linear motifs from protein sequences[END_REF][START_REF] Edwards | Computational Prediction of Disordered Protein Motifs Using SLiMSuite[END_REF], and the minimum size of the predicted disorder region is set to 5, the optimal size to detect true positive SLiM occurrences [START_REF] Paulsen | Optimising intrinsic disorder prediction for short linear motif discovery[END_REF]. Nevertheless, the user can choose all running parameters for the host-like element detection in the mimicINT configuration file.

In the second step, mimicINT gathered the domain annotations of the host proteins from the InterPro database through a REST API query.

In the third step, mimicINT infers the interactions between host and microbe proteins. This analysis takes as input the list of known interactions templates gathered from two resources: (i) the 3did database [START_REF] Mosca | 3did: a catalog of domain-based interactions of known threedimensional structure[END_REF], a collection of domaindomain interactions extracted from three-dimensional protein structures [START_REF] Rose | The RCSB Protein Data Bank: new resources for research and education[END_REF], and (ii) the ELM database [START_REF] Kumar | ELM-the eukaryotic linear motif resource in 2020[END_REF]) that provides a list of experimentally identified SLIM-domain interactions in Eukaryotes. The inference checks whether any of the microbe proteins contains at least one domain or SLIM for which an interaction template is available. In this case, it infers the interaction between the given protein and all the host proteins containing the cognate domain (i.e., the interacting domain in the template). As motif-binding domains of the same group, like SH3 or PDZ, show different interaction specificities [START_REF] Gfeller | The multiple-specificity landscape of modular peptide recognition domains[END_REF] for the SLiM-domain interaction inference, we have implemented a previously proposed strategy [START_REF] Weatheritt | The identification of short linear motif-mediated interfaces within the human interactome[END_REF] to take these differences into account (see Supplementary Methods). This approach assigns a "domain score" that can be used to rank or filter inferred SLiM-domain interactions. Once this step is completed, the inferred interactions are stored in both tab-delimited and JSON files to facilitate the import in other applications, such as Cytoscape [START_REF] Shannon | Cytoscape: a software environment for integrated models of biomolecular interaction networks[END_REF].

In the final step, in order to identify the host cellular functions potentially targeted by the pathogen proteins, mimicINT executes a functional enrichment analysis of host inferred interactors. This analysis statistically assesses the over-representation of functional categories, such as Gene Ontology terms and biological pathways (e.g., KEGG and Reactome), using the g:Profiler R client [START_REF] Raudvere | Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update)[END_REF].

Given the degenerate nature of SLiMs [START_REF] Davey | Attributes of short linear motifs[END_REF], their detection is prone to generate false positive occurrences. For this reason, we implemented an optional sub-workflow that, using Monte-Carlo simulations, assesses the probability of a given SLiM to occur by chance in query sequences and, thus, can be used to filter out potential false positives [START_REF] Hagai | Use of host-like peptide motifs in viral proteins is a prevalent strategy in host-virus interactions[END_REF] (see Supplementary Methods).

To ease deployment and ensure reproducibility and scalability on high-performance computing infrastructures, mimicINT is provided as a containerized application based on Docker and Singularity [START_REF] Merkel | Docker: lightweight linux containers for consistent development and deployment[END_REF][START_REF] Kurtzer | Singularity: Scientific containers for mobility of compute[END_REF]. mimicINT is available at https://github.com/TAGC-NetworkBiology/mimicINT.

Results

We sought to evaluate the ability of mimicINT to correctly infer SLiM-domain interactions, as this inference can generate many false positives [START_REF] Weatheritt | The identification of short linear motif-mediated interfaces within the human interactome[END_REF], using the default parameters for SLiM detection (see Implementation). To do so, we used as controls two datasets of established motif-mediated interactions (MDI) from the ELM database [START_REF] Kumar | ELM-the eukaryotic linear motif resource in 2020[END_REF] (see Supplementary Methods): (i) 103 interactions between 87 viral and 44 human proteins (vMDI); (ii) 31 interactions between 16 bacterial and 23 human proteins (bMDI). We were able to correctly infer the majority of these interactions (91 vMDI, true positive rate = 88.3%; 21 bMDI, true positive rate = 67.7%). As the availability of negative SLiM-mediated interaction datasets is very limited [START_REF] Weatheritt | The identification of short linear motif-mediated interfaces within the human interactome[END_REF][START_REF] Idrees | SLiM-Enrich: computational assessment of protein-protein interaction data as a source of domain-motif interactions[END_REF][START_REF] Kumar | ELM-the eukaryotic linear motif resource in 2020[END_REF], we estimated the false positive rate (FPR) by applying mimicINT to two sets of randomly generated interactions sets (degree-controlled, vMDIrnd and bMDIrnd, respectively). Thirty-four vMDIrnd and 7 bMDIrnd were inferred as motif-mediated (FPR = 33% and FPR = 23%, respectively). We next annotated the human proteins in the two random sets with domain similarity scores. We kept only interactions for which the domain score was above 0.4 [START_REF] Weatheritt | The identification of short linear motif-mediated interfaces within the human interactome[END_REF], thereby reducing the number of random interactions predicted as motif-mediated to 9 (FPR = 8.7%) for vMDIrnd and 2 (FPR = 6.4%) for bMDIrnd. Finally, we tested mimicINT on two sets of experimentally verified negative 37 viral-human and 4 bacterial-human protein interactions from the Negatome 2.0 database [START_REF] Blohm | Negatome 2.0: a database of non-interacting proteins derived by literature mining, manual annotation and protein structure analysis[END_REF]. Only two virushuman interactions (5.4%) were inferred as motif-mediated by mimicINT.

In the light of these results, we used mimicINT to infer the interactions between human proteins and the Marburg virus (MARV), an emerging infectious agent for which experimental protein interaction data is scarce (23 interactions for VP24 protein in IMEx interaction databases [START_REF] Orchard | Protein interaction data curation: the International Molecular Exchange (IMEx) consortium[END_REF]).

We downloaded MARV protein sequences (7 proteins, Proteome ID: UP000180448) from UniprotKB in FASTA format. For domain detection, we considered only InterProScan matches in MARV sequences and ran mimicINT with default parameters.

In total, we inferred 11,431 interactions between 7 MARV and 2757 human proteins (see Supplementary Data). The vast majority of the inferred interactions, namely 10,101, are motif-domain interactions (MDI, 7 MARV and 2324 human proteins), and the remaining 1,339 are domain-domain interactions (DDI, 5 MARV and 479 human proteins). Interestingly, we observed an significant enrichment of known targets of other viruses among inferred interactors (1096 human proteins, 39.7% of the total, odds ratio = 1.3, P-value = 1.8x10 -8 , one-sided Fisher's Exact test) [START_REF] Orchard | Protein interaction data curation: the International Molecular Exchange (IMEx) consortium[END_REF]: 62 (13% of DDI interactors, odds ratio = 0.2, P-value = 1, one-sided Fisher's Exact test) are involved in 133 inferred DDIs, and 1059 (45% of MDI interactors, odds ratio = 1.3, P-value = 6.7x10 -6 , one-sided Fisher's Exact test) participated in 4591 inferred MDIs. By setting a stringent cutoff of 0.4 on the domain similarity scores, the number of inferred MDI decreases to 2082 (7 MARV and 597 human proteins), while the proportion of known viral targets among human interactors slightly increases (i.e., 50%, 299 proteins, odds ratio = 1.4, P-value = 4.7x10 -5 , one-sided Fisher's Exact test).

None of the 23 experimentally identified interactions of the MARV VP24 proteins were identified by mimicINT, probably due to the fact that they were detected by an affinitybased purification method [START_REF] Pichlmair | Viral immune modulators perturb the human molecular network by common and unique strategies[END_REF], which is more suited to identify indirect protein associations rather than direct interactions [START_REF] Snider | Fundamentals of protein interaction network mapping[END_REF].

However, 17 MARV inferred interactions (17 MDI and 4 DDI) are supported by experimental evidence in the closely related Zaire Ebola Virus [START_REF] Orchard | Protein interaction data curation: the International Molecular Exchange (IMEx) consortium[END_REF][START_REF] Batra | Protein Interaction Mapping Identifies RBBP6 as a Negative Regulator of Ebola Virus Replication[END_REF].

The functional enrichment analysis performed by mimicINT on the full list of inferred host interactors returned a list of 975 enriched annotations at FDR<0.01 (see Supplementary Data). We next filtered out the functional categories annotating less than 5 or more 500 proteins obtaining a list of 763 enriched annotations (241 GO biological processes, 63 GO Cellular components, 6 CORUM complexes, 130 KEGG and 237 Reactome pathways), which points towards cellular processes and pathways related to viral infection and immune system (see Supplementary Data), thus further reinforcing the biological relevance of the inferred interactions.

Conclusions

We present mimicINT, a computational workflow enabling large-scale interaction inference between microbe and host sequences. Given the increasing frequency of (re-)emerging infectious diseases, mimicINT can be instrumental to better understand the molecular details underlying microbial infections and to identify proteins and interactions as candidate points for therapeutic intervention. Although we developed mimicINT as a tool to infer protein interactions at the microbe-human interface, the workflow can be used to infer interaction among human proteins as well, or applied to organisms whose proteins bear either domains or SLiMs participating in known interaction templates. 
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