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Abstract

This paper considers information-theoretic models for integrated sensing and communication (ISAC)
over multi-access channels (MAC) and device-to-device (D2D) communication. The models are general
and include as special cases scenarios with and without perfect or imperfect state-information at the
MAC receiver as well as causal state-information at the D2D terminals. For both setups, we propose
collaborative sensing ISAC schemes where terminals not only convey data to the other terminals but
also state-information that they extract from their previous observations. This state-information can be
exploited at the other terminals to improve their sensing performances. Indeed, as we show through
examples, our schemes improve over previous non-collaborative schemes in terms of their achievable
rate-distortion tradeoffs. For D2D we propose two schemes, one where compression of state information

is separated from channel coding and one where it is integrated via a hybrid coding approach.
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I. INTRODUCTION

Next-generation wireless networks are expected to support several autonomous and intelligent
applications that rely heavily on accurate sensing and localization techniques [1]. Important
examples are intelligent transport systems, where vehicles continuously sense environmental
changes and simultaneously exchange sensing-information and data with already detected
vehicles, base stations, or central servers. Such simultaneous sensing and data-communication

applications are also the focus of this work. More specifically, we are interested in multi-terminal
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scenarios where different terminals communicate data with each other and simultaneously exploit
the backscattered signals for sensing purposes.

A common but naive approach to address sensing and communication is to separate the
two tasks in independent systems and split the available resources such as bandwidth and
power between the two systems. In our information-theoretic model, such a system corresponds
to resource-sharing (e.g., time-sharing) between communication and sensing. However, the
high cost of spectrum and hardware encourages integrating the sensing and communications
tasks via a single waveform and a single hardware platform [2], [3]. A large body of
works studied integrated sensing and communication (ISAC) scenarios from a communication-
theoretic or signal-processing perspective (see, e.g., [4]], [5] and references therein), mostly
investigating appropriate choices for the employed waveform that in ISAC applications has to
serve both the sensing and the communication tasks. Interestingly, different tradeoffs between the
communication and sensing performances can be obtained by changing the employed waveform.

The fundamental performance limits of integrated sensing and communication systems were
first considered in [6]]. Specifically, [6] introduced an information-theoretic model for integrated
sensing and communication based on a generalized-feedback model, which captures two
underlying assumptions used in radar signal processing. On the one hand, generalized feedback
captures the inherently passive nature of the backscattered signal observed at the transmitter
(Tx), which cannot be controlled but is determined by its surrounding environment. On the other
hand, it models the fact that the backscattered signal depends on the waveform employed by the
Tx. It was proposed to use the classical average per-letter block-distortion to measure the Tx’s
sensing performance on the i.i.d. state-sequence. The authors of [|6], see also [7] characterized
the exact capacity-distortion tradeoff of arbitrary discrete memoryless channels (DMCs) with
generalized feedback. This quantity naturally measures the inherent tradeoff between increasing
data rate and reducing sensing distortion in such integrated systems. Interestingly, the results
show that the optimal tradeoff is achieved by standard random code constructions as used
for traditional data communication, where the statistics of the channel inputs (and thus of the

codewords) however has to be adapted to meet the desired sensing performance. Notice that this



observation is consistent with the signal-processing literature on the search for adequate channel
input waveforms which allow to meet the desired sensing performance while still achieving
high communication rates. Similar results were also derived for discrete memoryless broadcast
channels (DMBCs) [7] where a single transmitter communicates with two receivers. Both the
DMC and the DMBC are thus single-Tx networks, and the optimal sensing is a simple per-symbol
estimation of the hidden state given the channel inputs and outputs at the sensing terminal. The
optimality of such a simple symbol-by-symbol estimator stems from the fact that for a fixed input
sequence the generalized feedback channels and the state-sequence both behave in a memoryless
manner.

The sensing situation becomes more interesting and challenging when the sensing terminal is
not the only terminal feeding inputs to the channel. In this case, the effective disturbance for
the sensing is not necessarily memoryless since the inputs from the other terminals also create
disturbances and can have memory. In this case, a strategy that first attempts to guess the other
Txs’ codewords followed by a symbol-wise estimator based on the observations and the guessed
codewords can lead to a smaller (and thus better) distortion. This has also been observed in [8],
where communication is over a DMC and state estimation is performed at the receiver (Rx) side.
In this case, the optimal sensing strategy is first to decode the Tx’s codeword and then apply
an optimal symbol-by-symbol estimator to this codeword and the observed channel outputs. A
similar strategy was applied in the two-transmitter single-Rx multi-access channel (MAC) ISAC
scenario of [9] where through the generalized feedback each Tx first decodes part of the data
sent by the other Tx and then applies a symbol-by-symbol estimator to the decoded codeword as
well as its own channel inputs and outputs. In fact, the ISAC scheme of [9] is based on Willems’
scheme for the MAC with generalized feedback, where each Tx encodes its data into two super-
positioned codewords, whereof the lower data-layer is decoded by the other Tx. This data is then
repeated by both Txs in the next block as part of a third lowest-layer codeword, allowing the two
Txs to transmit data cooperatively Somewhat naturally, [9] suggests to use this decoded lower
data-layer also for sensing purposes in the sense that each Tx applies the symbol-by-symbol

estimator not only to its inputs and outputs but also to this decoded codeword. In this article,



which is based on the conference paper [10], we suggest to use this decoded codeword not only
to exchange data,but also to exchange sensing information. The concept of exchanging sensing
information for ISAC has been studied in the signal processing literature under the paradigm of
collaborative sensing.

In this sense, we introduce the concept of collaborative sensing for ISAC also to the
information-theoretic literature, where we focus on the MAC and the related device-to-device
(D2D) communication, i.e., the two-way channel. For the MAC, we naturally extend Willem’s
coding scheme so as to convey also state-information from one Tx to the other over the
communication path that is built over the generalized feedback link. The proposed scheme
can be considered as a separate source-channel coding scheme in the sense that each Tx
first compresses the obtained outputs and inputs so as to extract state information, and then
transmits the compression index using a pure channel code (here Willems’ coding scheme)
to the other Tx. The proposed scheme obtains a better sensing performance than a previous
ISAC scheme [9] without collaborative sensing, and thus a better distortion-capacity tradeoff.
For D2D communication, we present a similar collaborative sensing ISAC scheme based on
source-channel separation and using Han’s two-way channel scheme. Furthermore, we present
an improved scheme that is based on joint source-channel coding (JSCC), more specifically on
hybrid coding. We show enhanced performances of both simple collaborative sensing schemes.
In both the MAC and the D2D scenario, the maximum rates achieved by our proposed scheme
for given sensing distortions are strictly concave functions of the distortion pairs, and thus also
improve over classical time- or resource-sharing strategies.

Recently, various other information-theoretic works have analyzed the fundamental limits of
ISAC systems, such as [[11]-[14]. For example, [14]] analyzes systems with secrecy constraints,
while [11]—[13]] study channels that depend on a single fixed parameter and transmitters or sensor
nodes wish to estimate this parameter based on backscatter signals. Their model is thus suited for
scenarios where the estimation parameters change at a much slower time scale compared to the
channel symbol period. Specifically, while in [12] sensing (parameter estimation) is performed

at the transmitter, in [11] it is performed at a sensor that is close but not collocated with the



transmitter. The study in [13] analyzes the detection-error exponents of open-loop and close-loop

coding strategies.

Summary of Contributions and Outline of this Article:

« In Section ([l we introduce our information-theoretic ISAC MAC model with state-sensing
at the Txs. We also show that it is of general nature and in particular can model scenarios
with partial or perfect channel state information at the Rx as well as scenarios where the
Txs wish to reconstruct functions or distorted versions of the actual state that is governing
the channel.

« In Section |lIIl we describe our collaborative-sensing ISAC MAC scheme and show at hand of
examples that it improves both over simple time-sharing as well as over previous schemes.
Notice that our scheme does not employ Wyner-Ziv compression, but the equally strong
implicit binning technique, as used for example in [15].

o Section |[V]| describes our information-theoretic ISAC D2D model with state-sensing at both
terminals. Again, we show that our model is rather general and includes scenarios with
strictly-causal perfect or imperfect state-information at the terminals.

« In Section [V]we propose two collaborative-sensing ISAC D2D schemes. The first is based on
a separate source-channel coding approach and the second on an improved JSCC approach
using hybrid coding. In both schemes, the transmitted codeword carries not only data
but also compression information that the other terminal can exploit for sensing. While
the separation-based scheme employs Wyner-Ziv compression to account for the side-
information at the other Tx, the JSCC based scheme uses implicity binning as in standard

hybrid coding.

Notations: We use calligraphic letters to denote sets, e.g., X. Random variables are denoted
by uppercase letters, e.g., X, and their realizations by lowercase letters, e.g., x. For positive
integers n, we use [1 : n] to denote the set {1,---,n}, X™ for the tuple of random variables
(X1,---,X,) and 2™ for (z1,...,x,). We abbreviate independent and identically distributed
as i.i.d. and probability mass function as pmf. Logarithms are taken with respect to base 2. We

shall use 7V (Pxy) to indicate the of strongly jointly-typical sequences {(z",y")} with respect
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Fig. 1. State-dependent discrete memoryless multiaccess channel with sensing at the transmitters.

to the distribution Pyy as defined in [16]. For an index k € {1,2}, we define k := 3 — k and

for an event .4 we denote its complement by .A. Moreover, 1{-} denotes the indicator function.

II. TWO-USER MULTIPLE-ACCESS CHANNEL WITH GENERALIZED FEEDBACK: SYSTEM

MODEL

In this section we consider the two-user multi-access channel (MAC) with generalized
feedback, where two Txs wish to convey independent data to a common Rx and through the
generalized feedback link they estimate the respective state sequences ST and S3 governing the

transition law over the MAC and the generalized feedback.

A. System Model

Consider the two-Tx single-Rx MAC scenario in Fig. [Il The model consists of a two-
dimensional memoryless state sequence {(51, 52;)}i>1 whose samples at any given time ¢ are
distributed according to a given joint law Pg, g, over the state alphabets &; x Ss. Given that at
time-z Tx 1 sends input X;,; = x; and Tx 2 input X, ; = x5 and given state realizations S; ; = s;
and Sy ; = sy, the Rx’s time-7 output Y; and the Txs’ feedback signals Z; ; and Z,; are distributed
according to the time-invariant channel transition law Py 7, 7,(s, 5, x,x, (", 5 |51, 52, 21, Z2). Input
and output alphabets X}, X5, V., Z1, Z5, 51, Sy are assumed ﬁniteﬂ A (2R 2Rz n)_code consists
of

1) two message sets Wy = [1: 2"R1] and W, = [1 : 2"R2];

"Notice that our results can also be extended to well-behaved continuous channels.



2) a sequence of encoding functions €2, ;: Wi, X Z,i_l — X, fori=1,2,....nand k =1,2;
3) a decoding function g: V" — Wy X Ws;
4) for each k = 1,2 a state estimator ¢y: X' X Z! — S’,?, where S, and S, are given
reconstruction alphabets.
Fix a blocklength n, rates Ry, R, > 0, and a (2"% 2"%2 n)-code ({Q1.:},{Q0.i}, 9, b1, da)-
Let then the random message W;, be uniformly distributed over the message set WV, for each
k = 1,2, and the generate the inputs according to the encoding function Xy ; = Q (Wi, Z,i’l),
for i =1,...,n. The Txs’ state estimates are obtained as Sn o= (S‘kyl, . ,Sk,n) = (X7, Z7)
and the Rx’s guess of the messages as (Wl, WQ) = g(Y™). We shall measure the quality of
the state estimates 5’,’; by bounded per-symbol distortion functions d,: Sy, x Sj, — [0, 00), and
consider expected average block distortions
SR -
A; )= - ;E[dk(sk,iask,i)]a k=12 (D

The probability of decoding error is defined as:
PM = Pr(W1 AWy or W, W2>. )

Definition 1. A rate-distortion tuple (Ry, Ry, D1, Dy) is achievable if there exists a sequence

(in n) of (2"R1,2"R2 n) codes that simultaneously satisfy

lim P =0 (3a)
n—oo
im A" <D, fork=1,2. (3b)
n—oo

Definition 2. The capacity-distortion region CD is the closure of the set of all achievable tuples

(Rh R27 D17 DQ)

Remark 1 (On the States). Notice that the general law Ps,s, governing the states S7 and S%
allows to model various types of situations including scenarios where the state sequences are
highly correlated (even identical) or scenarios where the state-sequences are independent.

Our model also includes a scenario where the channel is governed by an internal i.i.d. state



sequence S™ of pmf Pg and the states ST, Sy are related to S™ over an independent memoryless
channel Pg, g, 5. For example, the states ST and S5 can be imperfect or noisy versions of the
actual state sequence S™. To see that this scenario can be included in our model, notice that
since no terminal observes S™ nor attempts to reconstruct S", both the distortions and the error

probabilities only depend on the conditional law

PYZ1Z2|X1X25152 (y, 21, Z2|x17 T2, 51, 52) -

Ps(5)Ps, s,5(51, 52|5)
PS1SQ(817 82)

, )

Z Py 2, 2,11 x,5 (Y 21, 22|71, T2, 5)

S
where Ps,s,(s1,52) = Y. Ps(5)Ps,s,/5(51,52|s) denotes the joint pmf of the two states.
Computing the channel law in (@) and plugging it into our results in the next section, thus
immediately also provides results for the described setup where the actual state is S™ and the

states ST and S3 are noisy versions thereof.

Remark 2 (State-Information). Our model also includes scenarios with perfect or imperfect

state-information at the Rx. In fact, considering our model with an output
Y = (T,Y) ®)

where Y' denotes the actual MAC output and T the Rx’s imperfect channel state-information
about the states ST and S5 . Notice that in our model, the Rx observes the state-information T"
only in a causal manner. Causality is however irrelevant here since the Rx only has to decode
the messages at the end of the entire transmission. Therefore, plugging the choice () into our
results for T the Rx state-information and Y' the actual MAC output, our results in the following

section directly lead to results for this related setup with Rx state-information.

Remark 3 (The Relay-Channel). The MAC with generalized-feedback model includes the relay-
channel as a special case. It suffices to restrict Ry = 0, in which case Tx 2 degenerates to a
relay terminal. The results we elaborate in the following section does immediately apply also to

the relay channel.



III. A COLLABORATIVE ISAC SCHEME FOR THE MAC

Before describing our collaborative ISAC scheme for the MAC, we review literature on the
MAC and in particular Willem’s scheme for the MAC with generalized feedback, which acts as
a building block for our scheme.

While the capacity region of the MAC without feedback was determined in [17], [18], single-
letter expressions for the capacity are only known in special cases such as the two-user Gaussian
MAC with perfect feedback [19] or a class of semi-deterministic MACs [20] with one-sided
perfect feedback. In [21], Kramer derived a multi-letter characterization of the capacity region
of a general MAC with perfect feedback. For most channels it seems however challenging to
evaluate this multi-letter characterization even numerically. In contrast, various inner and outer
bounds on the capacity region of the MAC with generalized or perfect feedback are known. Outer
bounds are typically based on the dependence balance bound idea by Hekstra and Willems [22]],
see also [23]]. Various inner bounds were proposed based on schemes that each Tx decodes part
of the data sent by the other Tx, which allows the two Txs to cooperatively resend these data
parts in the next block using a more efficient coding scheme, see [22], [24]—[27]. The one most
relevant to our work is Willems’s inner bound [25], which we explain in more detail in the

following subsection.

A. Willems’ Coding Scheme with Generalized Feedback and the ISAC extension

Willems’ scheme splits the blocklength n into B + 1 blocks of length N =n/(B + 1) each.
Accordingly, throughout, we let X{Y(b),XQJY(b),S{Y(b),Sg(b),Z{Y(b), Zé\f(b),Y(% denote the block-b
inputs, states and outputs, e.g., S{\f(b) = (Sip—1)N+15---,S1pn). We also represent the two

messages W, and W, in a one-to-one way as the 253-length tuples
Wy = (Wk,c,(1)> s Whe(8)s Whp, (1), - -+ Wk,p,(B))a ke {1,2}, (6)

where all pairs (Wi, ), Wi p)) are independent and uniformly distributed over [2V7e] x
[2NR’€’P] for Ry, = 2 Ry . and Ry, = 2L Ry, and Ry + Ry, = Ry.

An independent superposition code is constructed for each block b (see also Figure [2):
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Fig. 2. Operations at Tx 1 in Willems’ scheme during the first three blocks. After each block b Tx 1 decodes message W . (1)
based on its generalized feedback output Z {V (v)- The decoded message is then retransmitted in block b+ 1 jointly with Wy ¢ ().

o A lowest-level code Cy ;) consisting of oNRie . 9NRae codewords U, () (Wy,e, wa,) is
constructed by drawing all entries i.i.d. according to a auxiliary pmf P, .

« At the lowest level of encoding, we apply superposition coding to combine two codebooks
{ur vy (Wi, | wie,wa.)} onto each codeword ugy, (w1, wa.), for k € {1,2} and wy, . €
[2VFke], by drawing the i-th entry of each codeword according to Py, y, (- | ug) where ug
denotes the i-th entry of u) (w; ., wa.).

« For each second-layer codeword u,’gv (0) (Wi c|Wi,e; wa ), we apply superposition coding by
drawing the i-th entry of a codebook xfx(b) (W) p W}, s W1 e, W2 e) according to Py, v, (- |
uo, uy,), where k € 1,2 and wj, , € [2V7»] and u), represents the i-th entry of uy), (wj,, |
W1,c, w2,c)-

As depicted in Figure [2] in Willems’ scheme, Tx 1 sends the following block-b channel inputs

24 = 1) <W1,p,(b)‘W1,c,(b)a Wi e, -1), WZ,C,(b—l)) : be{l,...,B+1}, (7

where VAVZQ(b_l) denotes the message part that Tx 1 decodes after reception of the block-(b— 1)
generalized feedback signal Zf\,[(b_n’ e.g., through a joint typicality decoding rule. Also, we set
throughout W, . (o) = Wk,c,(o) = Wip 1) = 1, for k € {1,2}.

Decoding at the Rx is performed backwards, starting with the last block B+ 1 based on which

the Rx decodes the pair of common messages (WLC’(B), W2,c,(B)) using for example a joint-



typicality decoder. It then uses knowledge of these common messages and the outputs in block
B to decode the block-B private messages (W1, (g), Wa, (5)) and the block (B — 1) common

messages (WLC’(B,U,WQ’C,(B,D), etc. The backward decoding procedure is also depicted in

Figure [3]
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Fig. 3. Backward decoding procedure at the Rx in Willems’ scheme. The pair of common messages (W1,c,(b_1), W27C,(b_1))
and private messages (W1 ;. (), Wa,p,(v)) are jointly decoded based on the block-b outputs Y(% and using the previously decoded

(W e (0)s Wae,(v))-

As Willems showed, his scheme can achieve the following rate-region.

Theorem 1 (Willems” Achievable Region [25])). Any nonnegative rate-pair (R1, Ry) is achievable

over the MAC with generalized feedback if it satisfies the following inequalities

Ry < (XY | XiUpUo) + I(U: Zg | Xilo), ke {1,2), ®)
Ry + Ry < I(X1 X2;Y), 9)

Rl -+ Rg S I(XlXQ;Y | UOUlUQ) -+ I(Ul; ZQ | XQU()) + [(UQ; Zl | Xon), (10)

for some choice of pmfs Py, Pu, vy, Pusivy, Pxioovy, Pxolvou,, and where above mutual
informations are calculated according to the pmf Py, Py, v, Pusv, Px.vev, Pxajvevs Psy s

Py 7,25/, 8.1 X, One hereby can restrict to auxiliary variables over alphabets of sizes |U,| <




(%] + 1) ltho

,Jor k=12, and |Up| < | X[ ] + L.

Kobayashi et al. [9] extended Willems’ scheme to a ISAC scenario by adding a state estimator

at the two Txs. Specifically, for any block b each Tx k applies the symbol-per-symbol estimation

Sewy = o (x]k:\,[(b)a Z/iv,(b),ufgv,(b) (Wl_c,c,(b) ’ Wi.e,0-1) W;‘c,c,(bq))) ; be{l,....,B}, (11

where qu denotes the optimal estimator of Sy based on the tuple (Xj, Zx, Uz):

Gi(n, 2 up) = arg min Y Poyx 7,05 (sklan, 20, ug) di(sy, s7,). (12)
Sk ESk SLESK
Thus, any of the two Txs bases its state-estimation not only on its inputs and outputs of a given
block but also on the codeword that it decoded from the other Tx.
For the last block B + 1, Tx k can produce any trivial estimate, e.g., éjkv (B+1) because its
influence on the average distortion vanishes as the number of blocks grows, B — oc.

Combining the described state-estimation with Willems’ scheme, the following rate-distortion

region can be shown to be achievable.

Theorem 2. [Kobayashi et al’s ISAC region [9]] A rate-distortion tuple (Ry, Ry, D1, Ds) is
achievable if it satisfies (§)—(10) and

E|dy (k. 6 (X0 20, Up)) | < Duy k=12 (13)

for some choice ofpmfs PUO, PU1|U07 PU2|U07 PX1|U1U07 PX2|U2U0-

B. Our Proposed Collaborative ISAC Scheme

We present our collaborative ISAC scheme. It extends the scheme in [9] in that the second-layer
codeword of Willems’ code construction is not only used to transmit data but also compression
information useful for state sensing. Each Tx generates compression information, which is
primarily intended to be used by the other Tx to improve its sensing performance. In our scheme,

the Rx however also decodes this information and uses it to improve its decoding performance.
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Fig. 4. Our proposed scheme at Tx 1 during the firts three blocks
1) Code construction: Choose pmfs Py, , Py, v, Pos|vy, Pxijvivys Px.jvsu,, and define the pmf

PU0U1U2X1XQS1SQYZ1Z2V1V2 - PU()PUl|U0PU2|UOPX1|U1UOPXQ|U2UOPSlSQPYZ1Z2‘X1XQSISQ

PV1|X1Z1U2U0PV2|X2Z2U1U0' (14)

Employ Willems’ three-level superposition code construction for the given choice of pmfs,
except that each second-layer codeword is indexed by a pair of indices. We thus denote
the second-layer codewords by uy (W) ji | wie,wae) and ug g (wy ., jo | wie, wa)
and accordingly the corresponding third-layer codewords by xi\f(b) (w) ,|w) ., 1, Wi e, woe) and
27 gy (Wh W5 ¢, Jo, Wi e, wa,.), where the indices j; and j take value in the sets [274] and [272]
for some positive auxiliary rates R, and Ry ,.

We further construct a compression codebook for each block and each of the two Txs, For each
b e {1,...,B} and each sixtuple (w1, Wac, W], J1Wh,, Jo) € [2VFLe] x [2MF2e] ¢ [2VFLe]
2] [2MHze] x [2VF20] we generate a sequence vy (J1 | W] ., 1, Wh e, J2, Wi, Woe) for
each j; € [2V712] and a sequence v, (J5 | W] ., J1, Wh e, Jo, Wi e, wo) for each jy € [28F2e].
The sequences U{\j(b) (g1 | wh g, g1, Wh g, Jo, Wi e, W) and vé\f(b) (75 | Wh s g1, Wh g, Jo, Wi, Wo,c) are
obtained by drawing their i-th entries according to Py, v, (- | w0, U1, u2) and Py, v, (- |

uo, U1, Uz ), respectively, for ug, u1, us denoting the i-th entries of the sequences ué\{ (b)(wlvc, Wae),



(1 * 7-(1
(“é\,[(b—l) (Wlﬁv(b—?)’ Wz(,c),(b—z)> ’ ui\,[(b—n <W17c,(b—1)7 J 1,(b—2) Wi e (0-2)s W2(7c)7(b_2))
A A z-(1
Uév,(b—n <w2> J2 ‘ Wi e (b-2), W2(,c)7(b—2)> ;
* T-(1
Ijl\j(b—l) (Wl,p,(bfl) ) Wi e -1, J1,(b—2)a Wi -2); WQ(,c),(bfZ))’

Ji(b—Q)? Wl,c,(bfl)a w27 52) Wl,c,(b72), WQ(,]-C),(I)72)) 3 Z:{Y(b—l)) G zN(PU0U1U2X1V1Z1)(16)

Ul -1y (jik

2 (1 % 2 (1
(ué\,{(b—2) (Wl,c,(b*3)>W2(,c),(b73)>> ug(b—z) <W17C,(b72)a‘]1,(b—2) ’ Wl,c,(b73)>W2(’c)7(b73)>>
N i) 7(1) 77(1)
Uy, (b—2) <W2,c,(b—2)> J2,(b—3) ’ Wic k-3, WQ,C,(b—3)>’
* 21
Wl,c,(b—2)7 J1,(b73)7 Wl,c,(b—3)7 W2(7C)7(b_3)> )

* 77 (1) 7(1) (1)
Wl,c,(b—Q)y Jl,(b73)7 WQ,C,(b—2)7 J27(b_3)7 Wl,c,(b—?)); WQ,C,(b—3)) )

Z{\,f(b72)> € 7;N(PUOU1U2X1V2Z1>‘ (17)

x{\{(ba) (Wl,p,(b—2)

V3 p2) <j2

U{\,](b) (W] s J1 | W1, wa,), and Ué\f(b) (W es J2 | W1, Wa).

2) Operations at the Txs: In each block b, Tx k sends the block-b sequence

. 5 (k
Xli\,[(b) = x]k\,[(b) <Wk,p,(b) ‘ Whe.)s i, 0-1) Whie,(b-1) W,—ic),(b_l)) ; (15)

where Tx k generates the indices J,j’(b_l) and W,;,’Q(b_l) during a joint decoding and compression
step at the end of block b — 1 as follows. (For convenience we again set Wy, (g+1) = Wi 0) =
W/’gk,c,(o) - JIE,(B+1) =1)

After receiving the generalized feedback signal Z ,i\f(b_l), Tx k looks for a triple of indices j;,
Wy, and Jj; satisfying the joint typicality check (16),

and if b > 2 also the typicality check (17), which are displayed on top of the page. It randomly

picks one of these triples and sets

*

* . 7-(1 N 2(1 A
Jl,(b—l) = W2(,()b—1) = Wy, Jg(y()b_g) = J2- (18)
Tx k also produces the block-b state estimate

An * T -(k
Sty = o (éka,(m (Wk,p,@ Whee,6)s Ji6-1), Whie,0-1), WE(,C),(bfl)) )



A

k
26 U ) (Wk,cxb) | Tho-10s Wi, -1 W;f,c),(b_l)> )

AR (Jk,(b) | Whe,0) Tk (-1)» Whe (1) W,;(;i),(b_lﬁ ) (19)
where
01Tk, 2, ug, V) = arg mig Z P, 1x, 2,03 Vi (8K 11y 285 ug, Vi) di(S, 8)- (20)
53, €Sk SEESK

Without loss in performance as B — oo, the estimate in the last block B + 1 can again be set

to a dummy sequence.

3) Decoding at the Rx: Decoding at the Rx is similar to Willems’ scheme and uses
backward decoding. The difference is that the Rx in block 0 not only decodes the mes-
sage tuple (lepj(b), Wap.), Wi, -1), WQ,C,(b_l)) but also the compression indices Ji(b—l) and
J3 b_2)- Specifically, in a generic block b € {2,..., B}, the Rx looks for a unique sixtuple

(W1 py Wo py W1 ¢, W e, 1, Jo) € [2VF1w] x [2NF20] x [2NF1e] 5 [2N 2] x [2NB10] x [2VR20] satisfying

N N 7 ~ N i -
(u07b(w1,caw2,c)7 Uy (v) (Wl,c,(b),jl wl,caw270>a Ua (b) (WQ,C,(b)7.]2 ‘ wl,caw2,c>7

A

N : N 7 ~
$1,(b)<w1,p Wl,c,(b)Jl,wl,c,wzc),wg,(b)(wzp Wz,c,(b),j2,w1,c,w2,c>7

Uf(b) (jl,(b) ‘ Wl,c,(b)ajl;WZ,C,(b)7j2>w1,caw2,C> )

Ué\,[(b) <j2,(b) ‘ Wl,c,(b)ajl; WZ,C,(b)7j2>w1,caw2,C> ) Y(%) € 7;]6\[(PUOU1U2X1X2Y)(21)

If such a unique sixtuple exists, it sets Wl,c,(b,l) = Wi, Wl,n(b) = Wi, VAVQ,C,(b,l) = Wa,,
Wg,n(b) = Wap, jl,(b—l) = 71, and jgv(b_l) = jo. Otherwise it declares an error.

The Rx finally declares the messages Wi and W, that correspond to the produced guesses
{(Wip. () Wee.) }-

In Appendix [B] we show that as N — oo and B — oo, the described scheme achieves
vanishing probabilities of error, the compressions are successful with probability 1, and the

asymptotic expected distortions are bounded by D; and D, whenever B is sufficiently large and



Ry > I(Vi; X2y | U) (22a)

Ry, +Ryc < I(UVi; X325 | UoUs) (22b)
Riv+Ryy + Rye < I(UpVis X5 Z5, | UgUg) + 1(Vi; X3 Z5 | U) (22¢)
Rep < I(Xi3 YViVa | UX;) (22d)

Riw + Rip < I(Xi Y | UpXp) + I(Va; X1 XoY VA | U) + 1(Vi; X1.XoY | U)(22¢)
Riw + Ry + Ry < I(X1 XY | UpUp) + 1(Va; X1 XoY' Vi | U)
+I(Vi; X1 XoY [ U) (22f)
Rip+ Rop < I(X1Xo;YVIV2 | U) (22¢)
Riy+ Rip+ Roy+ Rop < I(X1 X0, YV | Up) + I(Vi; X1 XoY | U) + I(Va; X1 X, Y V4 | U)(22h)

Riy+ Ri+ Ry + Ry < I(X1 Xy Y) + I(V; Xu XY | U) + 1(Va; Xi Xo YV | U),  (220)
where U = (Uy, Uy, U,) and

for ¢ defined in (20).
Using the Fourier-Motzkin Elimination (FME) algorithm it can be shown, see Appendix [C

that such a choice of rates is possible under the rate-constraints (23)).

Theorem 3. The capacity-distortion region CD includes any rate-distortion tuple
(R1, Ry, D1, Dy) that for some choice of pmfs Py, Pu,uy, Pusjve, Pxi et Pxa|UoUs
Py, jvovsx1 20 Pyo|ugt Xo 2, and pmf Py, v, x,X.8,5.Y 2, 2,1 v, aS defined in (14), satisfies In-
equalities (23) on top of the next page (where U := (Uy,Uy,Us)) as well as the distortion
constraints (22]). It suffices to consider auxiliary random variables with alphabets of sizes

Us| < |X1|| XS] + 9 and for k= 1,2: |[Ux| < (|Xk| +9)|Uo| and |Vi| < (| Xk|| Zk||Uz||Uo| + 9).

Notice that Theorem [3] recovers the previous achievable region in Theorem [2] through the

choice V; = V5 =constants, which removes the collaborative sensing between the two Txs.



Ry < I(Uk; X525 | UgUg) + I(Vi; X5 Zg | U) — 1(Vi; XiZy, | U) + min{
I(Xe Y | UpXp) + 1(Vis X0 oY | U) + I(Vis X1 XYV | U)
—I(Vk;Xka \ Q%
(X1 XY | UgUp) + I(Vis X1 XoY | U) + I(Vi; X0 XoYV; | U)
—I(Vi; X5 Zi | U),
](X1X2;Y | UO) + ](Vk§X1X2Y | Q) + ](VEQX1X2YV1¢ | Q)
—I(Vis XZi | U) = 1 (Vs X3 Z5 | U), I(Xis YVAVa [UXR)}, k=12, (23a)

Ry + Ry < I(Up; XaZy | UgUn ) + I(Va; XuZy | U) — I(Va; X225 | U)
LUy XoZs | UgUs) + I(Vi: XoZo | U) — I(Vi; X1 Z1 | U) + min{
(X4 X0 Y | UpUs) + I(Vi; Xa XoY | U) + I(Va; Xa XoYV4 | U) — I(Vi; XaZy | U),
I(X1 X3 Y | UpUy) + I (Vi; Xa XoY | U) + 1(Va; X Xo YV | U) — 1(Va; XoZo | U),
I(X X0, Y | Up) + I(Vi; X XoY | U) + I(Va; X XoY'Vy | U)
—I(Vi; XaZ1 | U) — 1(Va; X225 | U),
I(X1 Xo; YVIVL | U)} (23b)

Ry + Ry < I(Xi Xo;Y)+I(Vi; Xi XoY |U) — I(Vi; XaZy | U)
+I(Vo; Xa XoY' V1 | U) — I(Va; XoZs | U)
(23¢)
and for £ =1,2

I(Uy; X5 Zg | UoUy) + 1(Vi; X5 Zg | U)
I(Xh Xo, Y | Up) + I(Vi; Xa XoY | U) + I(Va; X0 XYV, | U)

I(Vi; XuZy | U), (23d)
](V1;X1Z1 |Q>

+1(Va XaZs | U) (230)
I(Xe; Y | UpXz) + I(V; X XoY | U) + T(Vo; XKy XoY VY | U) > I(Vi; XiZi | U). (231)

>
>

Remark 4 (Wyner-Ziv Coding). In our scheme, no binning as in Wyner-Ziv coding is used for
the compression of the Vi- and Vy-codewords. Instead, decoder side-information is taken into
account through the additional typicality check and by including the Vi- and V5-codewords
in the typicality check (21). These strategies are known as implicit binning and allow multiple

decoders to exploit different levels of side-information, see [15]].

C. Examples

The following two examples show the improvement of Theorem [3] over Theorem 2] In the first

example, one of the transmitting nodes directly receives state information through its feedback,



and allows to easily illustrate the concept of collaborative sensing. The second example presents
a more realistic model, and provides a more practical implementation of our collaborative sensing

scheme.

Example 1. Consider a MAC with binary input, output, and state alphabets X} = Xy =) =
Sy = {0, 1}. State Sy ~ Ber(ps), while Sy = 0 is a constant. The channel input-output relation
is described by

Y = 5,X,, (Z1,Z5) = (52, X1). (24)

For this channel, the following tuple
(R17R27D17D2) = (ana 070)7 (25)

lies in the achievable region of Theorem 3| through the choice Vi = Z1 = S5 and (5'2 =V, 5’1 =
0). Distortion Dy = 0 is however not achievable in Theorem @ because S5 is independent of
(U, Us, Uy, X1, X3) and thus of (Xa, Uy, Z3), and the optimal estimator is the trivial estimator

Sy = V5(Xa, Zo,Uy) = 1{ps > 1/2) which achieves distortion Dy = min{1 — pg, ps}.

Example 2. Consider binary noise, states and channel inputs By, By, Sy, X, € {0, 1}. The noise
to the receiver By is Bernoulli-ty, and By, the noise on the feedback to Tx k, is Bernoulli-ty. All
noises are independent and also independent of the states S, S>, which are i.i.d. Bernoulli-p,.

We can then des are described the channel as

Y/ - SIXI + SQXQ + BO; Y = (Y/a Slv 52)7 (26)

71 =51X1 + 53X, + By, Zy = 51X1 4+ 53X, + Bs. (27)

where the summation operators '+’ denote real additions. In this example the Rx thus has perfect
channel state-information, see also Remark |2l Hamming distance is considered as a distortion
measure: d(s,$) = s @ § where the operator *®’ is a binary operation representing module-2

addition.



We compare Theorems [2] and [3| on the following choices of random variables. Let

X =Uy® X b, forke{l,2} (28)
——

2,
where Uy, X129,0,,05 are all independent Bernoulli random variables of parameters
D, q1, 42,71, 72. For the evaluation of Theorem [3] we further choose the compression random

variables

1{Z, =1} +2-1{Z, =2} if B, =0
Vi = Wk = {1,2} (29)

“ if £, =1
for a binary Ej, independent of (Si, Ss, By, By, B, Uy, Uy, Us, Y21, X9, 01, 63). For this choice, Tx
k conveys information about 7, to Tx k, which helps this latter to better estimate its state Sy,
For instance, when E; = 0, Tx-2 receives another noisy observation of the output which helps

it to better estimate its state, because

(

0 if Z,e{0,1},V4=0

Y=4q1 if=1 : (30)

2 if Ze{2,3},1i=0

1.2

0.6

R] +R2

04

=== Theorem 3
—— Theorem 2

2 3 4 5 6 7 8
D, 1072

Fig. 5. Sum-rate distortion tradeoff achieved by Theorems [2] and [3] in Example [2] for given channel parameters ps = 0.9,
to = 0.3, tl = 0.1 and t2 =0.1.

For channel parameters p; = 0.9, ¢ty = 0.3, t; = 0.1 and ¢, = 0.1 and above choices of random
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variables, Figure E] shows the maximum sum-rate R, + Ry in function of distortion D, achieved
by Theorems [3| and 2] where recall that for the region in Theorem 2] we set V; = V5, = 0. Notice
that both curves are strictly concave and thus improve over classic time- and resource sharing
strategies. The minimum distortions achieved by Theorems [3| and [2| are D3 i, = 0.035 and
Dy in = 0.04.

IV. DEVICE-TO-DEVICE COMMUNICATION (THE TWO-WAY CHANNEL)

In this section, we consider the ISAC two-way channel, where two terminals exchange data
over a common channel and based on their inputs and outputs also wish to estimate the state-

sequences that govern the two-way channel.

A. System Model

Consider the two-terminal two-way communication scenario in Fig. [f] The model consists of
a two-dimensional memoryless state sequence {(S7;, S2;)}i>1 Whose samples at any given time
1 are distributed according to a given joint law Ps, g, over the state alphabets S; x S,. Given
that at time-¢ Tx 1 sends input X;; = x; and Tx 2 input X,,; = x2 and given state realizations
S1,; = s1 and Sy; = s9, the Txs’ time-¢ feedback signals Z; ; and Z,; are distributed according to
the stationary channel transition law Py, 7,(s,5,x,x,(*, *|51, 52, ¥1, 22). Input and output alphabets

X, X5, V, 21, 259,81, S, are assumed ﬁnite

Transmitter 1 Transmitter 2
S{L Estimator |< —t Estimator S’g
. 21 Z3,i .
W2 En/Decoder PZ]_ Z2|X1X25152 En/Decoder Wl
X1 Xo i
7] Psys, W,

Fig. 6. State-dependent discrete memoryless two-way channel with sensing at the terminals.

A (27Ri 2nR2 1) code consists of

The results can be extended to well-behaved continuous channels.
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1) two message sets Wy = [1: 2"R1] and W, = [1 : 2"Re];

2) sequences of encoding functions Q. ;: Wy x Z; ' — X, fori =1,2,...,nand k = 1,2;

3) decoding functions gi: Z" — W, for k =1, 2;

4) state estimators ¢y : X' X Z" — 3,? for k = 1,2, where S; and S, are given reconstruction

alphabets.

Fix a blocklength n, rates Ry, Ry > 0, and a (2%, 2772 n)-code ({Q1,:}, {Q.}, 91, 92, d1, P2).
Let then the random message W) be uniformly distributed over the message set VWV, for each
k = 1,2, and generate the inputs according to the encoding function Xy ; = Qy (Wi, Z,i’l), for
i=1,...,n. Tx k € {1,2} obtains its state estimate as S := (Sx1,--- , Spn) = Ou(X7, Z1)
and its message guess as Ws_j, = gp(Z7, W)

We shall measure the quality of the state estimates S,?; by bounded per-symbol distortion

functions dj,: S X Sg [0,00), and consider expected average block distortions

AW = %i]}i [dk (Sk S,g)} k=12 G1)

i=1

The probability of decoding error is defined as:
Pe(n) = PI'(Wl 7é W1 or WQ 7& W2> . (32)

Definition 3. A rate-distortion tuple (R, Rq, D1, D3) is achievable if there exists a sequence (in

n) of (2R 2"R2 n) codes that simultaneously satisfy

lim P™ =0 (33a)
n—oo
lim A <Dy, fork=1,2. (33b)
n—oo

Definition 4. The capacity-distortion region CD is the closure of the set of all achievable tuples

(R17 R27 Dla DQ)

Remark 5 (State-Information at the Terminals). Considering a two-way channel where

Zk = (Sfle,c)v ke {172}7 (34)
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for some output Z,. This models a situation where each terminal obtains strictly causal state-
information about the other terminal’s state. Inner bounds for this setup with strictly causal
state-information can immediately be obtained from our results presented in the next section
by plugging in the choice in (34). The same remark applies also to imperfect strictly-causal

state-information in which case the output should be modelled as
Zk - (Tk7 Zl/€)7 k€ {17 2}7 (35)

where Z, again models the actual channel output and T}, models the strictly causal imperfect
state-information at Terminal k. Alternatively, T}, could even be related to the desired channel
state Sy, and not only to the other terminal’s state Sy. Plugging the choice (33) into our results for
an appropriate choice of Ty leads to results for this related setup with imperfect or generalized
state-information at the terminals.

In contrast, our model does not include causal or non-causal state-information. These are
interesting extensions of our work, but left for future research. They would certainly require new

tools such as dirty-paper coding [28].

V. A COLLABORATIVE ISAC SCHEME FOR DEVICE-TO-DEVICE COMMUNICATION

We first review Han’s scheme for pure data communication over the two-way channel and
then include the collaborative sensing idea in Han’s scheme. Finally we integrate collaborative

sensing and communication through joint source-channel coding (JSCC).

A. Han’s Two-Way Coding Scheme

The capacity region of the two-way channel, and thus the optimal coding scheme is still open
for general channels. Various inner and outer bounds on the capacity region have been proposed.
For example, Schalkwijk proposed an interesting inner bound for a binary multiplier channel
based on a method that iteratively describes message points, an approach that is reminiscent of
single-user feedback schemes. Han [29]] and Kramer [30] proposed schemes that correlate the
inputs of the two terminals in a block-fashion. While for Han’s coding scheme the correlation

ensures a stationary distribution of the inputs and outputs across the blocks and thus still allows
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Wi, uf ) (W)

N ;
1 uy oy (Wa, b W,
—| Enc 1 \ Z(b)( ()) (b)

®N(, N N N N (N (, N N N N
> fi (“‘1.(17)!ul.(h—l)ﬁll.(b—l)ﬂZl,(b—l)) f2 (Uz.(b),uz,(bfnvLz.(bq)Azz,(bfl)/ - Enc 2 [«

Decoding with

W, (b=1)

WYZ, b—1 < > N N
L ﬁz\.(bwzz\,(b)““év.(b—l)x—»

N N N
Ty (b)) #1,(6) U1, (b—1)

PZ1Z2\X1X25152

a:f{(h_l),zl‘(,’_w xz,(b—l)vzé.(b—l)

ZfY(b) - Zév.,(b)

S| 2w

Ps, 5,

|
|
l
|
|
|
|
|
|
- - ! N N
Decoding with | T1,(b) T2,(b)
t
|
|
|
I
|
|
|
|
|
|

Two-Way Channel with Memory

Fig. 7. Han’s coding scheme in a given block b. Encoders transform the discrete-memoryless two-way channel into a channel
with memory so as to be able to correlate the inputs of the two terminals. Encoding is then performed through the independent
codewords uf{ () and uév (v)- Decoding of block-(b—1) messages is performed based on the inputs/outputs in the two consecutive
blocks b — 1 and b.

for single-letter rate-expressions, Kramer has to resort to multi-letter rate-expressions based on
directed mutual informations. An interesting outer bound on the capacity region was proposed
by Hekstra and Willems [22]] again based on the dependence-balance idea, similar to the MAC
with feedback.

The ISAC scheme we present in this manuscript is based on Han’s coding scheme, which is

depicted in Figure [/| and described in the following. For convenience of notation, define

Przixixa(21, 22001, 02) = Y Psys,(51,52) Pz, 2%, 50505 (21, 22|71, 2, 51, 52). (36)
$1€81,82€S52

Han’s scheme splits the blocklength n into B + 1 blocks of length N = n/(B + 1) each.
Accordingly, throughout, we let X[, , XJ\,), ST So)s 211y Za») denote the block-b inputs,
states and outputs, e.g., S{\f(b) = (51(b—1)N+1, ..., S1pn). We also represent the two messages

Wi and W, in a one-to-one way as the B-length tuples
Wi = Wiy, Wis)), ke {1,2}, (37)

where each W, ;) is independent and uniformly distributed over [QN Rk} for Ry, & %Rk.
Construct an independent code Cj ) = {uff (b)(l), o ,ufc\f ®) (2”Rk)} for each of the two

terminals by picking entries i.i.d. according to some pmf Py, . As shown in Figure [/, Terminal
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k encodes Message W), ;) by means of the codeword uf{v (b)(Wk,(b)) and sends the sequence

Xy = I (o) (W) wiomyy (Wio-1)s Tho-1)s Zh0-1)) (38)

over the channel during block b. Notice that by applying the function f; to the block-b codeword
symbols as well as to the symbols of the block-(b—1) codeword ukN 1) (Wi,-1)) and the block-
(b — 1) channel inputs and outputs ka (b-1) and z,i\f(b_l), the terminals introduce memory to the
channel. An interesting point of view is to consider the transition of the codewords u]lv ) and
ug(b) to the channel outputs zf,[(b) and zé\j(b) as a virtual two-way channel with block-memory
over which one can code and decode. Naturally, decoding of each message part W}, ;) is not
based only on the signals in block (b) because other blocks depend on this message as well.
In Han’s scheme, decoding is over two consecutive blocks. Specifically, Terminal £ decodes the
block-b message W7, ;) using a joint-typicality decoder based on the block-b inputs, outputs, and
own transmitted codewords x,, 2, and u},, as well as on the block-(b + 1) inputs and
outputs ), 1) and 2, ,y.

Notice that without any special care, the rate-region that is achievable with above scheme
has to be described with a multi-letter expression because the joint pmf of the tuple
xff(bﬂ), zf(bﬂ), ujl\f(b),xf(b), zf(b) that Terminal 1 uses to decode codeword ug(b)(Wk’(b)) varies
with the block b. However, if one chooses a joint pmf Py, y,x, x,2,2, satisfying the stationarity

condition

pU1U2X1X221Z2 (Ul, Ug, X1, T2, 21, 22)

= Z Pz z01x0x, (21, 22|21, m2) L{an = fi(ur, @, 21, 1)}

UL,U2,T1,T2,21,22

]1{902 = fz(umﬂ%fz, 52)} : PU1(Ul)PUg(Uz)PU1U2X1XQle2(fL17ﬁz; T1,T9, 21, 52), (39)

where Py, and Py, are the marginals of Py, v, x, x,2, z,» then the pmf of the tuple of sequences

index b. This allows to characterize the rate region achieved by the described coding scheme
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using a single-letter expression. All rate-pairs (R;, Ry) are achievable that satisfy

Ry < I(Uy; Xa, Zy, Uy, Xo, Z5) (40a)

R2 §I<U2;X1aZ1a017X1721)7 (40b)

where (Uy, Uy, X1, Xo, Zy, Zy, Uy, Us, X1, Xy, Z1, Z5) are distributed according to the pmf

= Py, z,1x, x5 (21, 22|21, 22) {1 = fi(ur, Uy, T1, Z1) }1{xo = fo(ug, s, To, Z2)}

- Py, (u1) Pu, (ua) Puy vy x, X0 2, 2, (U1, T, T1, Ta, 21, 22). (41)

This recovers Han’s theorem:

Theorem 4 (Han’s Achievable Region for Two-Way Channels [29]). Any nonnegative rate-pair
(R1, Ry) is achievable over the two-way channel if it satisfies Inequalities (40) for some choice

of pmf Py u,x,x,2,2, and functions f, and [, satisfying the stationarity condition (39).

For certain cases the above theorem can be simplified, and for certain channels the simplified
region even coincides with capacity. The simplification is obtained by choosing the two functions
f1 and f; to simply produce the codewords ujlv (b-1) and ué\f(b_l) from the previous bloc and
ignore the other arguments. In this case, the set of rates that can be achieved coincides with the

following inner bound that was first proposed by Shannon [31].

Theorem 5 (Shannon’s Inner Bound, [31]). A pair of nonnegative pairs (Ry, Rs) is achievable

if it satisfies

Ry < I(Xy; Z5|X2) (42a)

Ry < I(Xo; Z1|X4), (42b)

for some input pmfs Px, and Px, and where (X1, X2, 7y, Z5) ~ Px, Px, Py, 7,x, x,-

3The delay of a block introduced in this scheme is not crucial, it simply comes from the fact that Han’s scheme decodes the
block-(b— 1) codewords based on the block-b outputs. In this special case without adaptation, Han’s scheme could be simplified
by transmitting and decoding the codewords u{v (b—1) and ué\f (b—1) directly in block b — 1 without further delay.
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B. Collaborative Sensing and Communication based on Han’s Two-Way Coding Scheme

We extend Han’s coding scheme to include also collaborative sensing, that means each terminal
compresses its block-b inputs and outputs so as to capture information about the other terminal’s
state and sends this state-information in the next-following block. In this first collaborative
sensing and communication scheme that we present here, the sensing (compression) does not

affect the communication (except possibly for the choice of the pmf Py, v, x, x,2,z,)- In fact, we

Wi, ) ur @) (W) J5 -1y
—»| Enc 1 > f1®N(U{\{(b)7u{\f(b—l)’le\,f(b—l)vzf,f(b_n)

I -1 ! l

J* WZ-Compression |«
D <O aN Nl
< L) 71,0) 1. (b-Dfe Vo N
L1 (b—1)7 ?1,(b—1)" - — p 2
Z17Z2|X1X25152 .
N N
z z
) | A 1,(b) 1 2,(b)
Wa,-1) NDeC(xiing V]:[fith ~ S{Y(b)asé\,](b)
T1,0)7 21,00 U1, 00-1) 1 P
e [ 2N S1.S2
Jo,(b—2) 1,(b=1)7 “1,(b-1)

Fig. 8. A first collaborative-sensing version of Han’s coding scheme. The figure illustrates the encoding and decoding operations
in a given block b at Terminal 1; Terminal 2 behaves analogously. To facilitate sensing at Terminal 2, Terminal 1 compresses
its block-b channel inputs and outputs, together with its inputs, outputs, and codeword from the previous block (b — 1) (which
are all resent in block b) using Wyner-Ziv compression [32] to account for the side-information at Terminal 2.

again use Han’s encodings and decodings as described in the previous subsection, except that
the block-b codeword not only encodes message W ;) but also a compression index ‘]l:(b—l)
that carries information about the block-(b — 1) state Sy ,_1). This compression index is then
decoded at Terminal k after block (b+ 1) simultaneously with message Wi ). See Figure
The analysis of the communication-part of our ISAC scheme is similar as in Han’s scheme.
Since the compression indices take parts of the place reserved for ordinary messages in Han’s
scheme, their rates Rwz; and Rwz2 have to be subtracted from Han’s communication rates.
We thus have the following constraints for reliable communication and reliable decoding of the

compression indices:

Ry + Rwzy < I(Uy; Xy, Zy, Us, Xo, Z5) (43a)
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Ry + Rwzo < I(Uy; X1, 71, Uy, X1, Z4). (43b)

It remains to explain the compression and state estimation in more details. In our scheme, the
index J} (b—1) is obtained by means of a Wyner-Ziv compression [32] that lossily compresses
the tuple (23, 1) 2 (b_1)> UR (b_2): Th.(b_2)» Zh(b_2)) fOr a decoder that has side-information

N N N N

(I’ ) Uk, (b—2) Tk

R(b-1)7 h (b1 k7(b72),zg(b72)). In order for the decoder to be able to correctly

reconstruct the compression codeword, the Wyner-Ziv codes need to be of rates at least [32]
Rz > 1(Vis X, Ze, U, Xiey Zel X3 3 U, Xi 1), k€ {12}, (44)

where the tuple (Ul,Ug,Xl,Xg,Zl,Zg,ffl,UQ,Xl,Xg,Zl,ZQ) refers to the auxiliary random
variables chosen by Han’s scheme of joint pmf as in and V; and V5, can be any random

variables satisfying the Markov chains:
Vie = (Xi, Zi, Ur, X, Zk) = (X, Zg, Ug, X, Z5, Sk Sp). (45)

In Wyner-Ziv coding, the encoder produces a codeword that is then reconstructed also at the
receiver. We shall denote these codewords by Ul]f\f(b—l)(‘]lz,(b—lwE’ﬁ(b—l))’ for k € {1,2}, where
i (5—1) denotes a binning-index that does not have to be conveyed to the Terminal k because this
latter can recover it from its side-information. Thus, after block (b+ 1) and after decoding index
,’;(b_l), with high probability Terminal k can reconstruct the codeword v,ff (b—l)(‘]l:,(b—ly fk,(b—l))
chosen at Terminal .
Terminal k can wait arbitrarily long to produce an estimate of the state-sequence S;'. We
propose that it waits after the block-(b + 1) decoding to reconstruct the block-b state S,fy(b) by
applying an optimal symbol-by-symbol estimator to the related sequences of inputs, outputs, and

N .

channel codewords of blocks b — 1 and b, as well as on the compression codeword Uk )

AN Tx@QN N N N ~ N N N ~
Siw) = O (%},(b)axk,(b)azk,(b)yuk,(b)aUk,(b—1)7$k,(b—1)7Zk,(b-1)a“1?:,(b—1)>7 (46)
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where

05,1 (Vks Thos 25 Ug, Up, Ty 2y Ug) 1= AT r/nig > Py ix, 2o (sklwe, 2, ug) di(se, s)). (47)
k€ kSkESk

By and and standard typicality arguments, one obtains the following theorem. (The

theorem is a special case of the next-following theorem, for which we provide a detailed analysis

in the extended version [33]].)

Theorem 6 (Inner Bound via Separate Source-Channel Coding). Any nonnegative rate-distortion

quadruple (Ry, Rs, D1, Ds) is achievable if it satisfies the following two rate-constraints

Ry < I(Uy; Xa, Zo, Uy, Xo, 22) —1(V1; X4, Z4, U, X1, Z1|X2, Za, Uy, Xo, 22) (48a)

Ry < I(Us; X1, Z1, Uh, X1, Z0) — I(Va; X, Zo, Uy, Xo, Zo| X1, Z1, U1, X1, Z1),  (48b)
and the two distortion constraints

E|di(S1, 654(Va, X1, 21, Ua, Un, X1, 2, 0)) | < Dy (480)

E[dQ(SQ, ¢S;72(V1,X2,ZQ,Ul,ffz,f(g,ZQ,ﬁQ))] <D, (484d)

for some choice of pmf Py,u,x, x,z7, 2, and functions f, and fo satisfying the stationarity condition
(39) and V1, V; satisfying the Markov chains ({5)).

Similarly to Shannon’s inner bound, we can obtain the following corollary by setting X = Uy.

Corollary 1 (Inner Bound via Non-Adaptive Coding). Any nonnegative rate-distortion quadruple

(R1, Ry, D1, D5) is achievable if it satisfies the following two rate-constraints

Ry < I(Xy1; Xo, Zy) — I(Vi; X4, Z1| Xs, Zs) (49a)

Ry < I(X9; X1, Zy) — 1(Va; Xo, Z5| X1, Z4), (49b)
and the two distortion constraints

E|di(S1. 65, (Va, X1, X, 20))| < Dy (49¢)
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E|ds(S2, 955(Vi, X1, X, Z2) | < D, (49d)

for some choice of pmfs Px,, Px,, Py, x, 2, and Py, x, z,.

As the following example shows, above corollary achieves the fundamental rate-distortion

tradeoff for some channels.

Example 3. Consider the following state-dependent two-way channel
Zl :Xl@XQ@SQ and ZQZXl@XQ@Sl, (50&)

where inputs, outputs, and states are binary and S| and Sy are independent Bernoulli-p, and
po random variables, for pi,ps € [0,1/2]. Notice that Terminal 1’s outputs depend on the state
desired at Terminal 2 and Terminal 2’s outputs on the state desired at Terminal 1, which calls
for collaborative sensing.

Whenever Dy, < pg, we chooose
Vii=2,® X, ® By = X; & S; @ By S1)

where By, is an independent Bernoulli-D). random variable. If D) > py, choose V). a constant.
Inputs X, and X5 are chosen independent Bernoulli-1/2, i.e., capacity-achieving on channels

with Bernoulli-noses. When Dy, < py, the optimal symbo-by-symbol state-estimator is
O 1 (Vk, w1, T2, 27) = v D 5 (52)

and otherwise it is the constant estimator $;7%(vk, x1, %9, 25) = 0.
For the described choice of random variables, Corollary[l|evaluates to the set of rate-distortion

tuples (Ry, R, D1, Do) satisfying
R <1 — Hy(pr) — max{0, Hy(p;) — Hy(Dz)}, ke {1,2}, (53)

and achieves the fundamental rate-distortion region as we show through a converse in Ap-

pendix lf__Xl The region in (53) is concave (because the rate-distortion function max{0, Hy(p;) —
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H,(Dy)} is convex), and thus improves over classic time- and resource-sharing schemes. It
also improves over a similar ISAC scheme without collaborative sensing where the compression
codewords V| and V5, are set to constants. In this latter case, only rate-distortion tuples are

possible that satisfy Dy > py, for k € {1,2}.

Remark 6. For certain channels and state-distributions Theorem [0] can be improved with the

idea of coded time-sharing. The same applies for Theorem[7] in the next-following section.

C. Collaborative Sensing and JSCC Scheme

In this scheme, we fully integrate the compression into the communication scheme, in a
similar way that hybrid coding [34] uses a single codeword for compression and channel coding

in source-channel coding applications.

Wi, | Hybrid Coding with |uly) (W), J7 1)
—>x1,<b71>’Zl*}é”ﬂ’“l&b%’ > f?N(u{V,(b),u%,l),:cﬁ(b,l),zﬁ(b,l))

N
T1,(b—2)1 #1,(b—2)>

A A N

T1,(b—-1)

SN D le— =N N

1,(b—1) 1,(b) R T3, (b)

Pz, 2,1X1 X251 52
) B
. 1,(b) ‘ 2,(b)
W2,(b—1<)_ NDeC(])vding xith B S{\,[(b) Sé\,[(b)
L1,(b)> Z1,(b)> U1,(b—1) 1

5 -] N N | Ps, s, I
J2,(b—2) TY(b—1)1 21, (b—1) |a—

Fig. 9. A ISAC scheme integrating collaborative sensing for D2D into Han’s two-way coding scheme by means of hybrid
coding. A single codeword is used both for compression and for channel coding.

Encoding and decoding in block b of the new scheme are depicted in Figure 9] The main
difference compared to the scheme in the previous subsection is that here the block-b codeword
ul ) is correlated with the inputs and outputs in the previous block (b — 1)E| This correlation

introduces additional dependence between blocks, which was previously missing because of the

*In the previous scheme, the compression codeword v{\f (v) Was correlated with the block-(b — 1) signals but not the channel
coding codeword uf{ (v)- Now the codeword uzl\” (») acts both as a compression codeword and as a channel coding codeword.
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independence of the compression codewords and the codewords used for channel coding in the
next block. To still obtain a stationary distribution on the codewords and channel inputs/outputs,
which then allows for a single-letter characterization of the performance of the scheme, one has
to choose a joint pmf Pyry; 7, 7, x, x,0,0,, conditional pmfs P, X021 00 K0 2 and P, 11 X2 Zo U X 2o

as well as functions f; and f, on appropriate domains satisfying the new stationarity condition

/ !/
PU{UézleX1X2U1U2<u17 Uy, 21, 22, T1, T3)

. o / ~ ~ = o / ~ ~ ~
- Z PU{\X1Z1U1X121(“1|u17x1= <1, U1, T1, ZI)PU§|X222U2XQZQ(U2|1‘27Z2,U2,U2,$272’2)

U1,U2,T1,T2,21,22

Py, 751x, x5 (21, 22]@1, o) L{@y = fi(ug, G, &1, Z1) }1{xe = fo(ug, Uo, To, Z2) }

“Puivy 2, 2, %, 2010, (U1, Ug,s 21, 2o, T1, To, U, Un), (54)
In the following, all mentioned conditional and marginal pmfs are with respect to the joint pmf

We next explain the code construction, encodings and decodings.

For each k € {1,2}, for each block b € {1,...,B + 1}, and each message m;, € [2VF],

choose a subcodebook {uy, (my,j): j € [2V ]} by picking all entries i.i.d. Py;. Terminal k

then picks the codeword u{g\’ (b)(Wk,(b)a j) so that the following joint-typicality check is satisfied

for some fixed € > 0:

(Uﬁ(b)(Wk,(b),j), x}]c\{(b—ly lec\,[(b—ly ukN,(b—2)> 55]1@\{(1)—2)7 lec\,[(b—Q)) eTV (PU;XkaUkaZk)a (55)

and sets J;;(b_l) = j. By standard arguments, such an index j exists with probability tending to

1 as N = oo if
Ry, > I(Up; Xy, Zy, U, Xi, Zi), k€ {1,2}. (56)
Terminal & then sends the block-b input sequence
Xl?,f(b) =N (“ﬁ(b) (Wk,(b)‘]/;k,(b—l))’u{c\f(b—lymz,(b—l)v Zﬁ(b—l)) - (57)

Decoding is again performed using a joint-typicality decoder. At the end of block b, Terminal %
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looks for indices wj; and j,; satisfying the two typicality checks

(“g(b—n(l@bjk)»mﬁ(b)a Zl]f\,[(b)’ ukN,(b—l) ﬂka,(b_na z/]c\,f(b—l)) < 7;N <PU;€X;€Z,€U,€X;€Z;€> (58)

and
(U{Q\T(bq)(wi}ajk)ﬂﬁ(bq)? Zijc\,[(bﬂy UZ,(bfs)a x;c\{(bfii)? lec\,[(bfii)) S 7;N (PU,;XkaUkX'ka> - (59)
If a unique pair of such element exists, set WE,(b—l) = wy, and ﬁg(b_l) = ug(b_l)(w,;,j,;).

Decoding is successful with probability tending to 0 as N — oo if
Ry + Ry < I(Ug; Xy, Zi, U, X, Zi) + 1(Ugs X, Ze, Un, Xy Z1), - k€ {1,2}. (60)

State-estimation is similar to (46)), but where Terminal k replaces the compression codeword
oy ) by the joint source-channel codeword u;’ (b+1) and similarly to hybrid coding also uses the
inputs/outputs corresponding to the block where the codeword uf’ (b+1) is sent, i.e., inputs and

outputs in block b + 1. Thus, Terminal k£ computes its estimate of the block-b state as:

aN  _ «@QN (~N N N ~N N N N N N ~ N
Sk,(0) = P2k (“k,(b+1)» L, (b+1) “k,(b4+1) > Wk, (b)> Tk, (b)> “h,(b)> Wk, (b-1)7 Th,(b—1)> Zk,(b—1) “mb—l))’

(61)
where

* ror T . _ /
G5 1o (U Ty 2y U, They 2y Uk, T, 2y, Up) 1= arg min E Ps,1x,. 2,0, (8k|Tk, 21, ug) di(sk, S))-
S;Cesk SLESK

(62)

By standard arguments and because of the stationarity condition in the probability of

violating the distortion constraints tends to 0 as N — oo if
E[dk(ska gb;,k(U]éaXl,lei:?Uka?ZkuUkaxkuzkvﬁfc))} < Dk7 k€ {172}7 (63a)

where X| = f1(Uj,Uy, X1, 721) and X} = fo(Us, Us, Xo, Z5) and the outputs Z; and Z} are
obtained from X| and X via the channel transition law Pz, 7, x, x,-

From above considerations and by eliminating the dummy rates R| and R), we obtain the
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following theorem.

Theorem 7 (Inner Bound via Joint Source-Channel Coding). Any nonnegative rate-distortion

quadruple (Ry, Rs, D1, Ds) is achievable if it satisfies the following two rate-constraints

and the two distortion constraints in (63) for some choice of pmf Pyiv; 7, 2, x, x,vu,v, and functions

f1 and fs5 satisfying the stationarity condition (39).

Remark 7. We notice that the described compression technique does not use binning as in

Wyner-Ziv coding [32|]. Instead, decoder side-information is taken into account via the joint
typicality check in (59).

Remark 8. For the choice U, = (U}, Vi) with U} ~ Py, independent of all other random
variables and V| and Vy satisfying the Markov chains in [5)), the inner bound in Theorem [7]
achieved by our joint source-channel coding scheme specializes to the inner bound Theorem [0]
achieved by separate source-channel coding. For above choice of auxiliary random variables,
the reconstruction functions g, and gs can restrict their first arguments only to the V|- and

Vo-components without loss in performance.

VI. SUMMARY AND OUTLOOK

We considered integrated sensing and communication (ISAC) over multi-access channels
(MAC) and device-to-device (D2D) communication, where different terminals help each other
to improve sensing. We reviewed related communication schemes and proposed adaptations
that fully integrate the collaborative sensing into information-theoretic data communication
schemes. For D2D communication, we also proposed a joint source-channel coding (JSCC)
scheme to integrate compression and coding into a single codeword as in hybrid coding. Through
examples, we demonstrated the advantages of our collaborative sensing ISAC schemes compared
to non-collaborative ISAC schemes with respect to the achieved rate-distortion regions. Various
interesting future research directions arise. As already mentioned, the JSCC scheme proposed

for ISAC D2D communication could be integrated into our ISAC MAC scheme. Another
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interesting research direction for the MAC scheme is to include state-estimation at the Rx.
In this respect, it would be interesting to include an additional superposition compression layer
to generate compression information that is only decoded by the Rx but not the other Tx. For
D2D communication an interesting extension would be to consider specific channel models and
to replace Han’s result by two-way communication schemes that are tailored to these specific

channels.
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APPENDIX A

CONVERSE TO EXAMPLE 3

By the independence of the messages and Fano’s Inequality, we obtain for some function e,

that vanishes as n — oo,

1
Ry < E](Wk7Y;;n|WE) + € (65)
1 1
1 [ ‘ ,
= — | D TV WaSEYT W) — 1(Sps Y7 WS | + e (67)
Li=1
@ 1 [& . .
< - D IV XeaWiSE X Vi Wi) = I(Sp s YEWAWRSE) [ +en (68)
Li=1
® 1 [ .
< — ]YXI—] Eir Pk n 6
< - Z (Vi Xii) = 1(Spii Ska) | + e (69)
()
< nCj — R,;(D,;) + €,, (70)

where C) denotes the capacity of the point-to-point channel from X to X; + Sy and Rz(-)
denotes the rate-distortion function of source Sj. In our example, C; = 1 — Hy(px) and
Ri(Dyz) = [Ho(pr) — Hp(Dy)]™. Justification for above inequalities are as follows: (a) holds
because conditioning cannot increase entropy, because Xj; is a function of Wj and Yg’l,

and by the i.i.d.ness of the source sequence S}'; (b) holds because of the Markov chain
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Yei = (Xei, X)) — (Wk,W,;,Sg,Y]f_l) and because 5”7“ is a function of Y7* and again
because conditioning cannot increase entropy; (c¢) holds by the definition of the rate-distortion

function Ry () and because Rj(-) is convex and monotonic.

APPENDIX B

PROOF OF THEOREM

To derive an upper bound on the average error probability (averaged over the random code
construction and the state and channel realizations), we enlarge the error event to the event that

for some k =1,2and b=1,...,B:

Wiew) # Wiew oF Wipp # Wipp OF W;E,kc),(b) # Wiev) (71)
or
* 7 * 2(k *
ey = —1 ot Jew) # e or JIE,()b) # Ji - (72)
For ease of notation, we define the block-b Tx-error events for k =1,2 and b=1,...,B:
& =dWw® L JE g Ji = —1 (73)
Tx.ky(b) - k,c,(b) ke®) O Y 1) 7 JEp-1) O Jkp )
and
Eriimeny = { I # Fm ). ke{L2) (74)

Define also the Rx-error events for £k = 1,2 and block b=1,..., B + 1:

Erx,(b) = {Wk,c,(b—l) # Wie1) OF Wipt) Z Wipw) OF Jip1) 7 Jop-1y: k=1, 2}-(75)

By the union bound and basic probability, we find:

B+l _
U {ETx,l,(b’)a STX,Qv(b/)})

b'=1

B+1
+ Z Pr <5Tx,1,(b)

b=1

B+1
Pr (Wl LW, or Wa # W2> < Z Pr <5Rx,(b)
b=1

-1 B
U {5Tx,1,(b/)7 gTX:Qa(b/)}>

b'=1
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B+1
+ Z Pr <5Tx,2,(b)
b=1

We analyze the three sums separately. The first sum is related to Tx 1’s error event, the second

b—1
U {ng,l,(b’)a ng,Q,(b’)}) .(76)

=1

sum to Tx 2’s error event, and the third sum to the Rx’s error event.

1) Analysis of Tx 1’s error event: To simplify notations, we define for each block b €
{2,..., B+1} and each triple of indices (j;, 102, j2) the event Fry (1) (jf, W2, jo) that the following
two conditions and (only Condition for b = 1) hold:

o .
(ué\f(b) <W1,c,(b71)7W2(’c)7(b,1)>7 Ujlv,(b) <W1,c,(b), I -1y ‘ Wl,c,(bfl)awlc,(bfl))

ué\vf(b) (12}27 52 ‘ Wl,c,(bfl)a WQ,C,(b*l)) ? aji\vf(b) (Wl,p,(b) ‘ lecv(b)’ Ji(b—l)’ lecv(bfl)’ Wchv(b71)> )

U ) <jik

JT (b=1) Wie (o) W, T2y Wi e b1 Wz,c,(bq)) : Zf\f(b))

€ TN (Puytrvaxiviz) (77)
and if b > 1

(s (oo W),

Uf’/(bfl) (Wl,c,(b—l) ) Ji(bfl)

Wl,c,(b—?) ; WQ,C,(b—Q))
Wi e b-2) WQ,C,(b—2)> ;
Wi e 0-1), 1 (5-2) Wie,0-2) Wz,c,(b—2)> ,

Wi -1 J1 (5-2) Wae.0-1)5 3 (p—2)s Wie.(0-2), WQ,C,(b—Q)) ,

ug{(b,l) (WQ,C,(b—l)a J2,(-2)
$]1\,/(b_1) (WLp,(b—l)

N ~
Vg, (b—1) (]2

Z?f(b—l)) € 7;N(PUOU1U2X1V2Z1)' (78)

A

Notice that compared to (I6)) and (17), here we replaced the triple (Wélc)(bd), W2(1c)(b71)> Jz(l()b%))
by their correct values Wy . (,—2), Woc b-1), J5 (b—2))‘ Similarly, define the event ]-"Txl,(BH)(}Q)

as the event that the following two conditions are satisfied:

(Ué\,[(BH) (Wl,c,(B), WQ,C,(B)) ,



37

u{\f(BH)(L Ji(B) ’ W1,c,(B),W2,c,(B)), Ué\,[(Bﬂ) <l,j2 Wi e(B), W2,67(3)>,

$§(B+1)(1 ’ Wi e(B+1)s Jf,(B),Wl,c,(B)7W2,c,(B)>7 Z{Y(BH)) € TN (Puyu,vsx:2 X79)

and

(ué\v[(B) (lecv(Bfl)’ W2707(B*1)> 9
uff(B) (WLC:(B)v Ji(B) ’ Wi e (B-1): Wae,(B—1 >,
y (” )
B) (W27c7(B ‘ Wl C B 1 W B*l)) ,

T-(1
xiV(B) (W17p>(B) ‘ WLC,(B)a JL(B—l)’ Wl’c’(Bflb WZ(,C),(Bfl)>7

* 771 (1)
B); J17(B—1)7 WQ’C,(By JQ,(371)7 Wl,C,(B*l)a W2,c,(Bfl)> )

Zl (B)> 7;N(PU0U1U2X1VQZ1) (80)

We continue by noticing that event UZ;I 1 {ng,l,(b’), ETX727(,,/)} implies that for all ¥ =
1,....,b0—1, k=1,2:

Wk(’?( = Wiew) (81)
Jew) # —1 (82)

~(k "

Jlg,()b’—l) = Jk,(b’fl)‘ (83)

Moreover, for any block b = 1,...,B + 1, event S_Tx,l,(b) is implied by the event that
.FTXL(b)(jf,QI)Q,jQ) is not satisfied for any tuple (jf,ub,}g) with (11)2,52) = (W2,c,(b)7<];7(b_1))
or it is satisfied for some triple (57, ws, jg) with (wg,jg) # Wae) JQ*,(b—l))' Thus, the sequence
of inequalities on top of the next page holds, where the inequalities hold by the union bound.
By the Covering Lemma [35], the way we construct the codebooks and the weak law of large
numbers, and because we condition on event E_Tx,2,(b71) implying ‘];,b—l # —1, the first summand

in (84c) tends to 0 as N — oo if

Rl,v > ](W;Xlzl | UoUlUQ). (85)
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Pr <5Tx,1,(b)

-1 -
U {ng,l,(b’)a gTX,?v(b')}>

b=1
=Pr (( ﬂ ]'_—Tn,(b)(jfaWZc,(b)v J;(b—l)))
jree v ]
b—1
U( U Frxi,b (]1,1027]2)) U {ngJ,(b’); ngQ,(b/)})
(GF ab2,52): b'=1
1, W2,

(w2732)7£(w2,c,(b):JQ*’({,,U)
(84a)

b1 i
U {1y Erav) )

=1

<Pr| () FramUi Weew: Jsp-1)

jtefz ]

+ Pr ( U Frxi,(v) 3177«027]2
) (jF ab2,52):
(2,32)#Wa,c,(6)75 (1))

U{smb/ equ}) (84b)

=1

-1 -
U {Erx1,)> Ema) )

< Pr ﬂ ﬁTxl,(b) (97, Wae.v), Jz*,(b—l))

jre ] =
b—1
+ Z Pr (fol,(b) (]ika w27j2) U {5Tx,1,(b’)> ng,Q,(b’)})
(33 b2,52) : b'=1
W2FEW2 ¢ (b))
Jo# T} 5. (b—1)

+ Z Pr (fol,(b)(j;WZ:Cv(b) J2)
(G1.02):
J27J5 5-1)

+ g Pr <-FTXI (]1aw27J2 (b— 1
(41 ,w2):
WaFE W2 ¢ (b)

-1 ~
U {ng,l,(b’)a 5Tx,2,(b/)}>

b=1

b—1
U {Er1, )5 ng,2,(b’)}) ; (84¢)

b'=1

By the way we constructed the codebooks, and standard information-theoretic arguments [36],

the sum in the second line of (84c) tends to 0 as N — oo, if

Ri 4Ry + Ry < I(UsVi; 21 X0 | UgUs) + 1(Vo; Z1 Xy | UgUnUs), (86)
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the sum in the third line of tends to 0 as NV — oo if
Rl,v+R2,v < I(U2V1;Z1X1 ’ UoUl) + I(VQ;Zle | UOU1U2)7 (87)
and the sum in the fourth line of tends to 0 as N — oo if
Ry ,+Ry . < I(Z1X1; U V1 | Ugly). (88)

Since Condition (87) is obsolete in view of (86), we conclude that for any finite B the sum of
the probability of errors ZbB:Jrll Pr <5Tx,1,(b)| UZ,;II {ng,l,(b'), g’{yg}({;/)}) tends to 0 as N — oo
if Conditions (83)), (86), and (88)) are satisfied.

2) Analysis of Tx 2’s error event: By similar arguments, one can also prove that for finite
B the sum of the probability of errors S Pr <5TX,27(1,)| Us-, {Ere1, ), ngygy(b/)}) tends to
0 as N — oo if Conditions (22a), (22b), and (22¢)), are satisfied for k = 2.

3) Analysis of Rx’s error event: For each block b = 2,...,B and each tuple

(W16, Wa e, W1p, Wap, J1, J2) define Fry ) (W1,c, Wa e, Wi p, Wap, J1, j2) as the event

N .
W1,c, w?,c) ) u27(b) <W2,c,(b) »J2 | Wie, w2,c) )

(Ué\j(b) (wl,ca w2,c>7 Ujl\{(b) (Wl,c,(b) ,J1

N . N .
xL(b) (wl,p Wl,c,(b) y J1, Wies w2,c> 5 $27(b) (wZ,p WQ,C,(b) yJ2, Wi, w2,c>

v{\f(b) <J1,(b) ’ Wl,c,(b)a W2,c,(b)> W1,c, jla W2,c, ]2) ) Ué\j(b) (JQ,(b) | Wl,c,(b)a WQ,C,(b)a W1,c, j17 W2 ¢, j2)7

Yv(é\;) < 7-2€(PU0U1U2X1X2Y>' (89)
We continue by noticing that for b = 2,..., B event E_ny(b) is equivalent to the event that

Frx,(b) (W10, W, W1 p, Wap, J1, J2) is not satisfied for the tuple (wc, Wac, W1y, Wop, j1,J2) =
(Wie,0-1) Wae,-1)s Wip ), Wap ) I -1y Jék,(bq)) or it is satisfied for some tuple
(Wi Warer W1 p, Wap, J1, J2) # (Wie,-1), Ware0-1), Wi, 6)s Wop ), 1 (5-1)» S5, (5—1))- Similarly
for events Erx (1) and Egx(p+1). Thus, for b € {2,..., B}, the sequence of (in)equalities (90)
holds,

Pr (51()(7(1,)

B+l -
U {ng,l,(b’)’ ETX,Z(b’)})

v=1
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=Pr << U «/T_-Rx,(b)<w1,cyw2,ca W1 p, w2,p7j17j2)>

(W1,¢,W2,¢,W1,p,W2,p,J1,52)F
Wi e,0-1)Wa,e,0-1) Wi,p,0) W p,6) 7 1575, (5 1))

U Fret) Wieo-1) Wae,-1), Wip ) Wop, s 161 J5.0-1y)

B+1
U {ng,l,(b’)v 5Tx,2,(b')} > (90a)
b=1
B+1
= Z Pr (FRXv(b)(wl,cvw2,caw1,p7w2,p7j17j2)> U {ng,l,(b’)a 5Tx,2,(b')} )
(w1767w2,67w1,p7w2,p7j17j2)7é b'=1

(Wl,c,(b71)7W2,c,(b71)7W1,p,(b)7

Wap,(v) 7‘]f,b717‘];,(b—1))

+ Pr (fo,(b) (Whe,6-1), Wae,6-1), Wip, ), Wop5)s J16-1> Jo.0-1)) '

B+l )
U {ng,l,(b/), 5Tx,2,(b’)}> (90b)

b=1
where the inequalities hold by the union bound.

By the event in the conditioning and the way we construct the codebooks, and by the weak
law of large numbers and the Covering Lemma, both summands tend to 0 as N — oo if (22)
hold.

The scheme satisfies the distortion constraints because of and by the weak law of

large numbers.

APPENDIX C

FOURIER-MOTZKIN ELIMINATION

We apply the Fourier-Motzkin Elimination Algorithm to show that Constraints (22)) are

equivalent to the constraints in Theorem |3| For ease of notation, define

Io = I(Vi; X0 XoY | U) + 1(Va; X1 XoY'V1 | U) (91a)
I =1(Vi; X121 | U) (91b)
Iy = I(Va; X2 Z5 | U) 91¢)
Iy i= I(Uy: XoZs | UsUs) ©1d)
Li = I(Uy: X171 | Uol) Ole)



= ](Vl;X2Z2 | Q)

= ](V2;X121 | Q)

=1(X1 X9, YVIV, | U)

=I(X1; YWV | UX>)

=I1(Xo; YV1V2 | UXy)

I( XY | UpXy)

(X1 X, Y | Upls)

(
(
I(X, X, Y | Ugly)
(X1 X2,Y | Up)
(

(X1 X2 Y).
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(911f)
O1g)
(91h)
(91i)
91j)
(91K)
(911)
(91m)
(91n)
(910)

(91p)

Setting Ry . = Ry — Ry p, which is obtained from (??), with above definitions we can rewrite

Constraints (22) as:

Ri,>1
Ry > 1o
R+ Ry — Ry < Ir + I3
Ry+Ry — Ry < Iy + Iy
Riy+ Rop+ Ry — Ry < I+ I3+ I
Riy+Roy+ Ry — Ry < Iy + 1y + I
Rip,+ Ry )y < Iy
Ry, <Ig
Ry, < Iy
Rip+ Rip < Ilio+ 1o

Ry + Rop < Iy + I

(92a)
(92b)
(92¢)
(92d)
(92¢)
(92f)
(92g)
(92h)
(92i)
92))

(92k)
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Rl,v + Rl,p + RQ,p < ]12 + ]O (921)

R2,1} + Rl,p + RQ,p < -[13 + ]0 (92m)
Riy+ Rip+ Ry + Royp < Iy + I (92n)
Riy+ Ri+ Roy + Ry < Iis + I, (920)

In a next step we eliminate the variables R, , and R, to obtain:

Ry — Ry, < I (93a)
Ry — Rop < I (93b)
Ri—Ry,<Iz+1s—1I (93c)
Ro— Rop < Ii+1Ig— I (93d)
Ri, < min{ls, Iio + Iy — I} (93e)
Ra, < min{ly, Iy + Iy — I} (93)

RLP + RQ,P < min{I7, I+ Iy — Il,
Lis+ 1o — I, Iy + I — I — I} (93g)

R1+R2 <[15+[0—Il—12 (931’1)

Notice that I; > I5 and Iy > I because Vi — (Z; X1U) — (X2 Z3) form a Markov chain, and thus
Constraints (93a) and (93b) are inactive in view of Constraints and (93d). We thus neglect
(93a) and in the following. Eliminating next variable R; ,, where we take into account the

nonnegativity of R;, and R; — R; ,, we obtain:

Ry < I3+ Is — I + min{lg, 1o + Ip — I} (94a)

Ry + Ry, < Is+ I5 — I + min{l7, 1o + Iy — 14,
Lis+ 1o — Ip, Liu+ Ip — I — I} (94b)
Ry~ Ropy< I+ 15— I (94c)

R27p < min{lg, I + Io — IQ} (94(1)



R27p < min{]7, Iy + I() — 117
Ly+1o— Ly Liy+1Io— 1) — I}

Ri+ Ry <Ilis+1Iop— 1 — I
and

Is+ 15 > I

Lig+ Iy > 1.
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(94e)

(94f)

(%94¢g)

(94h)

Notice that I; > Iy and I3 > I;; and therefore the two Constraints and (94¢) combine to

R2,p < Hlin{lg, I+ 1y — 12,

Lo+ 1y— 11, L1y + 1o — I; — I}

(95)

Eliminating finally Ry, (while taking into account the nonnegativity of Ry, and Ry — Ry,)

results in:
Ry < I3+ 15— I + min{lg, Lo+ Io— I}
Ry < I3+ I5 — I + min{l;, I1o + Iy — I,
L+ 1loy— I, L1y + 1y — I — I3}
Ry < Iy+ Is — Iy + min{ly, I1; + Iy — I
Lo+ 1o — I, Iy + 1y — I — 1o}
Ri+Ro<ly+Ig—L+1Is3+1;— 1
+min{l;, I1o + Iy — I4,
Iis+ Iy — Iy, Iy + I — Iy — I}
Ri+Ry<lis+1Ip—1 — I,
and

I3+ 15 > 1

(96a)

(96b)

(96¢)

(96d)

(96¢)

(96f)



Iy + 1 > Iy
Ly+1o> 1 + 1y
Lo+ 1y > 1)
Ihw+1y> I

112 + [0 > [1‘
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(96g)

(96h)

(96i)
(96j)

(96k)

Notice that ;5 > I and thus (96K) is obsolete in view of (96i). Moreover, since also 7 > Ig,

Constraints and combine to

R1 < [3 + I5 - Il + min{lg, [10 + [0 — [1,

Ly + 1o — Iy, Ly + 1o — I — I}
The final expression is thus given by constraints:

Ry < I3+ I5 — I} + min{lg, Iip+ lh — I
Ls+1Io— I, [1y+ Io— I, — I}
Ry < I+ Ig — Iy + min{ly, I1; + Iy — 5
Lo+ Io— 1, L+ o — I — I}
Ri+Ry<Ily+1Ig— L+ 13+ 15— 1,
+min{l;, I1o + Iy — I,
ha+1Io— Iy, Ly + o — I — I}

Ri+Ro<lis+1hy—1— 1,
and

Is+1s > 1
L+ I > Iy

Ly+Ihy>1L+1,

O7)

(98a)

(98b)

(98c)

(98d)

(98e)
(98f)

(982)



(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

(15]
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Lo+ 1o > 1) (98h)
I+ Iy > L. (981)
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