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Optimization schemes on manifolds for structured matrices with fixed

eigenvalues

Jean-Paul Chehab∗ Harry Oviedo† Marcos Raydan‡

April 3, 2024

Abstract

Several manifold optimization schemes are presented and analyzed for solving a specialized inverse
structured symmetric matrix problem with prescribed spectrum. Some entries in the desired matrix
are assigned in advance and cannot be altered. The rest of the entries are free, some of them preferably
away from zero. The reconstructed matrix must satisfy these requirements and its eigenvalues must be
the given ones. This inverse eigenvalue problem is related to the problem of determining the graph, with
weights on the undirected edges, of the matrix associated with its sparse pattern. Our optimization
schemes are based on considering the eigenvector matrix as the only unknown and iteratively moving on
the manifold of orthogonal matrices, forcing the additional structural requirements through a change
of variables and a convenient differentiable objective function in the space of square matrices. We
propose Riemannian gradient-type methods combined with two different well-known retractions, and
with two well-known constrained optimization strategies: penalization and augmented Lagrangian.
We also present a block alternating technique that takes advantage of a proper separation of variables.
Convergence properties of the penalty alternating approach are established. Finally, we present initial
numerical results to demonstrate the effectiveness of our proposals.

Keywords: Riemannian optimization, Stiefel manifold, inverse eigenvalue problems, spectral graph theory,

augmented Lagrangian, alternating direction method of multipliers

AMS Subject Classification: 15A29, 65F18, 15A83, 15B10, 05C50, 90C30

1 Introduction

Given a set of real eigenvalues in no particular order, say {λ1, λ2, . . . , λn}, that defines a fixed diagonal
matrix D whose diagonal entries are the given λis, the problem of interest is to find a real symmetric
n× n matrix A with additional structural requirements, such that its eigenvalues are the given ones. In
other words, we need to find A such that A = XDX> (Schur factorization) for an orthogonal matrix X
whose columns are the eigenvectors of A.

There are, of course, some additional and fundamental requirements that add difficulty to the problem,
otherwise A = D is a valid solution. For some specified pairs (i, j) ∈ I0 the aij entries must be zero at
the solution. In addition, for some other specified pairs (i, j) ∈ Ifix the aij entries must have some given
(nonzero) values at the solution. For all other pairs (i, j), the aij entries are free. However, for a subset
of these pairs (say (i, j) ∈ Inz), it is preferable to choose them as nonzero free variables. The complement
of that subset (say (i, j) ∈ Ifree) contains entries that are completely free in R. Here, the four given
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sets of indices: I0, Ifix, Inz, and Ifree must form a partition of all possible pairs (i, j), with i and j in
{1, 2, 3, . . . , n}, and they need to reflect the symmetry of the desired matrix A.

The desired pattern, described above for the unknown symmetric matrix A, can be associated with
a weighted undirected graph with n vertices, in which two vertices i and j are connected (adjacent) if
and only if aij is not zero. The described inverse problem and the connection between the undirected
graph and the matrix A with preset eigenvalues appear in several real-life applications related to quantum
chemistry, information theory, social networks, and combinatorial optimization; see, e.g., [9, 10, 36, 37]
and the references cited therein. It is worth noting that not every arbitrary assignment of real eigenvalues
can guarantee the existence of a certain structure of the associated symmetric matrix. This is a topic
of recent interest in matrix analysis. For a unified theoretical development of whether a predetermined
distribution of eigenvalues can be achieved with a given graph, and also how the graph of a symmetric
matrix influences the possible multiplicities of its eigenvalues, we refer to the book by Johnson and Saiago
[19].

In the last few decades, numerous publications have addressed the general topic of Inverse Eigenvalue
Problems (IEP), which share some relationship with the problem at hand and the optimization techniques
used in our proposal. For instance, a Cayley transform based iterative method for solving IEP was
developed in [2]. Similarly, Bai et. al. [3] introduced an iterative approach equipped with the Cayley
transform for inverse singular value problems. In [35] some numerical optimization ideas on manifolds
are indicated for a more rigorous structured IEP problem. Moreover, stochastic IEP with incomplete
eigendata have been addressed in [38] via a Riemannian conjugate gradient method. Other Riemannian
conjugate gradient methods have also been developed to solve stochastic IEP; see, e.g., [33, 40]. For a
full review on structured IEP see [11] and references in there.

The rest of this document is organized as follows. In Section 2, we present the proposed continuously
differentiable optimization model that considers the eigenvector matrix X as the only unknown, such that
the orthogonality of X is a key constraint that needs to be imposed on the optimization problem. The rest
of the structural matrix requirements are included in the objective function using a penalization strategy.
In Section 3, we describe in detail the proposed iterative method for solving the orthogonality constrained
optimization problem. In particular, we apply a fast and robust Riemannian gradient scheme, using two
well-understood retractions and a suitable non-monotone globalization strategy. To enhance the practical
behavior of the overall procedure, in Section 4, we introduce a block alternating minimization algorithm
that takes advantage of a convenient variable splitting. The proposed procedure iterates alternatively
solving an optimization problem with orthogonality constraints, using the development of Section 3,
and a linearly constrained quadratic problem for which a closed formula is obtained. In Section 5, we
establish the convergence properties of the algorithm described in Section 4 under some mild assumptions.
Furthermore, in Section 6 we develop an alternating direction scheme that, instead of using a penalization
strategy, uses an augmented Lagrangian approach. In Section 7, we report the obtained numerical results,
and give further insights into the proposed schemes. Finally, in Section 8 we present some concluding
remarks.

2 Manifold approach and penalization strategy

The main idea is to minimize a conveniently defined function that only depends on the matrix of eigen-
vectors X for solving the problem described in Section 1. Since the matrix of eigenvectors must be
orthogonal, one constraint to be considered is X>X = I. The set formed by this constraint, that is
O(n) := {X ∈ Rn×n : X>X = I} is known as the orthogonal group [1, 8, 31]. Optimization prob-
lems over the orthogonal group has been recently studied, and for which a variety of effective iterative
methods have been proposed; see, e.g., [18, 25, 27, 29]. Now, to consider only X as the variable matrix
and to incorporate all the requirements described in Section 1, we need to introduce several suitable
matrix operators and notations. In here, the Hadamard product M1 ◦M2 between matrices M1 and M2

of the same dimensions will play a key role. Additionally, the trace of M ∈ Rm×n, i.e., the sum of its
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diagonal elements, is denoted by tr(M). The standard inner product between two matrices M1 ∈ Rm×n
and M2 ∈ Rm×n is defined as 〈M1,M2〉 = tr(M>1 M2). The Frobenius norm of M ∈ Rm×n is defined
as ‖M‖F =

√
〈M,M〉. The main objective is to force the eigenvalues to be the given ones by build-

ing up a convenient continuously differentiable constrained optimization model that guarantees that the
eigenvalues of any element of its feasible set are always the diagonal entries of the given diagonal matrix D.

Let P ∈ Rn×n be the matrix such that its entry (i, j) is given by

Pij =

{
0 if (i, j) ∈ I0,
1 else

This square matrix will be used to force the zero entries in the set of indices I0. Similarly, we need a
matrix Q with entries 1 if (i, j) ∈ Inz, and zero elsewhere. The matrix Q will be used to maximize those
entries in the obtained iterates while ensuring that at least one of them is nonzero. We also need a matrix
R with entries 1 if (i, j) ∈ Ifix, and zero elsewhere. The matrix R will be employed to force the given
specified nonzero entries, that will be represented by C, i.e., Cij = Aij if the pair (i, j) belong to Ifix, and
zero elsewhere. All these matrices can be seen as pattern matrices, and clearly they satisfy: P ◦ P = P ,
R ◦C = C, Q ◦Q = Q, and R ◦R = R. These properties will be used to establish the gradient expression
of a penalty objective function to be considered.

Our optimization model, to solve the specialized IEP described above, is given by

min
X∈O(n)

F (X) s.t. P ◦ (Φ(X))− Φ(X) = 0, R ◦ (Φ(X))− C = 0, (1)

where Φ(X) := X>DX and F : Rn×n → R is defined by F (X) = −‖Q ◦ Φ(X)‖2F .

In order to solve this challenging problem, we can incorporate a penalization strategy. First, let
us recall the main ideas of the classical and straightforward penalty approach for solving a constrained
optimization problem. Penalty methods transform optimization problems with constraints into a sequence
of unconstrained subproblems, whose solutions ideally converge to a minimizer of the original optimization
problem. In our case, the constraints to be included in the cost function are

P ◦ (Φ(X))− Φ(X) = 0 and R ◦ (Φ(X))− C = 0, (2)

Thus, our penalization strategy is to execute the following iterative process until convergence

Xk+1 = arg min
X∈O(n)

Fk(X), (3a)

(µk+1 , σk+1) = (ρ1µk , ρ2σk) (3b)

where ρ1 > 1, ρ2 > 1 and

Fk(X) := −‖Q ◦ Φ(X)‖2F + µk‖P ◦ (Φ(X))− Φ(X)‖2F + σk‖R ◦ (Φ(X))− C‖2F , (4)

and µk > 0, σk > 0 are the penalty parameters to penalize constraint violations. Starting from µ0 > 0
and σ0 > 0, if the monotonically increasing sequences {µk} and {σk} tend to infinity, then the sequence
of minimizers of (4), over the set X>X = I, converges to a solution of (1) for which (2) holds, when k
goes to infinity; see, e.g., [23, Secc. 12.1].

We close this section with a result dedicated to obtaining the gradient of the function Fk(·) in (4).

Lemma 2.1 Let us consider the functions f1 : X ∈ Rn×n 7→ −‖Q ◦ Φ(X)‖2F , f2 : X ∈ Rn×n 7→
‖P ◦ (Φ(X))− Φ(X)‖2F , f3 : X ∈ Rn×n 7→ ‖R ◦ (Φ(X))− C‖2F . It follows that
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• DΦ(X)(Z) = X>DZ + Z>DX.

• ∇f1(X) = −2
(
DX(Q ◦ (X>DX)) +Q ◦ (X>DX)X>D

)
.

• ∇f2(X) = DX
(
X>DX − P ◦ (X>DX)

)
+
(
X>DX − P ◦ (X>DX)

)
X>D.

• ∇f3(X) = 2
[
DX

(
R ◦ (X>DX)− C

)
+
(
R ◦ (X>DX)− C

)
X>D

]
.

Proof. The function Φ : Rn×n → Rn×n previously defined is differentiable and its Fréchet derivative
along Z, DΦ(X)(Z), is identified as the second term of the right hand side of the following equality (see,
e.g., [1, Section A.5]):

Φ(X + Z) = Φ(X) +DΦ(X)(Z) + o(‖Z‖).

Since Φ(X + Z) = Φ(X) +X>DZ + Z>DX + Z>DZ, then DΦ(X)(Z) = X>DZ + Z>DX.
The function f2 : Rn×n → R defined above is differentiable and its gradient can be obtained as follows.

Consider the auxiliary function g : R→ R, given by

g(t) = f2(X + tZ),

for any arbitrary matrix Z. From basic calculus we know that g′(0) = 〈∇f2(X), Z〉. After simple algebraic
manipulations, using that D> = D, P> = P and P ◦ P = P , we obtain

g′(0) = 〈X>DZ + Z>DX, X>DX − P ◦ (X>DX)〉
= 〈Z, DXW 〉+ 〈Z,WX>D〉,

where W = X>DX − P ◦ (X>DX), and the expression of the gradient of f2(·) is obtained. In a similar
way, the expressions for ∇f1(·) and ∇f3(·) can also be established.

We note that the computational work for building the gradient at any iteration k, given the matrix
Xk, requires the products DXk and X>k D, and from any of them we can obtain X>k DXk. Using those 3
matrices, that appear several times each, the entire gradient matrix is obtained, which is nothing but the
summation of the last 3 terms in Lemma 2.1 multiplying the last two by µk and σk, respectively.

3 Optimization over the orthogonal group

In this section, we describe some iterative methods for solving the orthogonality constrained optimization
problem (1). In particular, we briefly review two specialized Riemannian gradient methods to solve
optimization problems with orthogonal constraints. Let X ∈ O(n) be an arbitrary matrix, the tangent
space of the orthogonal group at X is given by

TXO(n) = {Z = XW ∈ Rn×n : W> = −W} = XSskew(n),

where Sskew(n) represents the set of all n× n skew-symmetric matrices, see [1, 14, 29].
On the other hand, it is well–known that if we equip each tangent space TXO(n) with the standard

matrix inner product 〈M1,M2〉, then the pair (O(n), 〈·, ·〉) forms a Riemannian manifold [1, 8]. In this
context, the inner product is so-called Riemannian metric, see [1, 8]. Under this specific Riemannian
metric, the orthogonal projection operator over the tangent space TXO(n) is given by

PX(V ) = Xskew(X>V ) =
1

2
(V −XV >X),

where skew(M) := 1
2

(
M −M>

)
is the skew-symmetric part of M ∈ Rn×n, for details see Example 3.6.2

in [1].
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In view of O(n) is an embedded Riemannian sub-manifold of the Euclidean space Rn×n, the Rieman-
nian gradient of the objective function F : Rn×n → R can be easily computed as follows

∇O(n)F (X) = PX(∇F (X)). (5)

Here we are using∇O(n)F (·) to denote the Riemannian gradient of F (·) and∇F (·) to denote the Euclidean
(classical) gradient of F (·). The justification for formula (5) appears in (3.37) in [1].

The Riemannian gradient provides us a search direction that we can use to minimize the function F
over the domain O(n), see [1, 18, 26, 27]. However, we need an additional tool to preserve the feasibility
of all the iterates. For this purpose we need a mapping called retraction [1, 8, 26]. Roughly speaking, a
retraction is a smooth function that sends vectors from TXO(n) to a point on the manifold O(n), with a
local rigidity property that preserves gradients at X. See [1, 8, 26] for a rigorous definition of retraction.

For the orthogonal group there are several retractions. In this work, we only consider two specific
retractions that to our knowledge are the ones that require the least computational cost to evaluate them.
The first retraction is based on the QR factorization. Let X ∈ O(n) and Z = XW ∈ TXO(n) the first
retraction is defined as follows

Rqr
X (Z) = qf(X + Z),

where qf(P ) denotes the function that sends the matrix P to the Q factor of its QR factorization such
that its R factor has strictly positive diagonal entries. We emphasize that this particular QR factorization
is unique.

The second considered retraction is given by,

Rcayley
X (Z) = X

(
I − 1

2
W

)(
I +

1

2
W

)−1

,

which is based on the Cayley transform [18]. Notice that since W ∈ Sskew(n), the matrix I + 1
2W is

non-singular. These two retractions are described in Example 4.1.2 in [1]. Notice that the computational
cost of performing either of the two retractions is O(n3).

The Riemannian gradient method [1, 8, 16, 28] is a line–search iterative scheme, which constructs a
sequence of iterates {Xk} ⊂ O(n), starting at X0 ∈ O(n), by using the following recursion

Xk+1 = RXk

(
−τk∇O(n)F (Xk)

)
,

where τ0 > 0 is the step-size and RXk
(·) is any retraction. Typically, the step-size τk is computed using

a backtracking strategy in such a way that it satisfies the following non-monotone globalization rule

F (Xk+1) ≤ Tk − c1τk‖∇O(n)F (Xk)‖2F ,

where c1 ∈ (0, 1) and {Tk} corresponds to the Zhang-Hager non-monotone strategy [39], i.e.,

Tk+1 =
ηqkTk + F (Xk)

qk+1
, qk+1 = ηqk + 1, η ∈ (0, 1), T0 = F (X0), and q0 = 1.

In order to accelerate the convergence, the Barzilai-Borwein step-sizes [4, 17] are incorporated in this
method; see, e.g., [16, 17, 25, 28].

4 Penalty alternating minimization methods

In this section we introduce a block alternating minimization algorithm to solve problem (1). Using the
combination of variable splitting and a penalty scheme, the proposed procedure solves the inverse eigen-
value problem by iteratively optimizing manifold problems and linearly constrained quadratic problems.
Let us start by reformulating problem (1) as follows

min
X∈Rn×n

F (X) s.t. X>X = I, PIknw [Φ(X)−A] = 0, (6)
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where Iknw = I0 ∪ Ifix and PIknw [M ] is the projection onto the subspace of n-by-n sparse matrices with
nonzero values in the entries indexed by Iknw, that is,

PIknw [M ] =

{
Mij if (i, j) ∈ Iknw,
0 otherwise.

An important property of the projection operator PIknw [·] is

PIknw [M1 + βM2] = PIknw [M1] + βPIknw [M2], ∀M1,M2 ∈ Rn×n, ∀β ∈ R,

which indicates that PIknw [·] is a linear operator. In addition, observe that the proposed optimization
model (6) is well-defined because of the compactness of the feasible set {X ∈ O(n) : PIknw [Φ(X)−A] = 0}
and the continuity of the objective function, which guarantees the existence of global minimizers (even
maximizers) for problem (6).

On the other hand, by applying the variable splitting technique to Problem (6), we obtain

min
X,Y ∈Rn×n

F (X) s.t. X>X = I, PIknw [Y −A] = 0, Y = Φ(X). (7)

To solve the above problem, we can use the quadratic penalty method to deal with the non-linear constraint
Y = Φ(X). It is well-known that, starting from (X0, Y0), the classic quadratic penalization method solves

min
X,Y ∈Rn×n

F (X) +
µk
2
‖Y − Φ(X)‖2F s.t. X>X = I, PIknw [Y −A] = 0, (8)

at the k-th iteration for (Xk+1, Yk+1), until convergence, where {µk} is an increasing sequence of positive
real numbers such that µk →∞. However, solving (8) for (X,Y ) simultaneously is challenging because of
the complicated form of the constraints. Additionally, the sub-problems (8) cannot be solved analytically
due to the non-linearity and non-convexity of the feasible domain.

Using the idea of the classical alternating minimization methods [5], we solve problem (8) with respect
to each matrix variable X and Y separately, while fixing the other at its previous values, and then the
penalty parameter is incremented. Particularly, starting from (X0, Y0) and µ0 = 1, we propose the
following framework

Xk+1 = arg min
X

F (X) +
µk
2
‖Φ(X)− Yk‖2F s.t. X>X = I (9a)

Yk+1 = arg min
Y

µk
2
‖Y − Φ(Xk+1)‖2F s.t. PIknw [Y −A] = 0 (9b)

µk+1 = ρµk, (9c)

where ρ > 1 is a global parameter. The orthogonality constrained sub-problems have no closed solution,
thus inner iterations are needed to solve (9a) approximately. In practice, we employ the Riemannian
gradient method discussed in Section 3. Nevertheless, the advantage of the iterative process (9a)-(9b)-
(9c) is that the second optimization sub-problem has an analytical solution (see Lemma 4.1) given by

Yk+1 = Φ(Xk+1) + PIknw [A− Φ(Xk+1)]. (10)

The following lemma provides the closed-form solution for the optimization problem (9b).

Lemma 4.1 Let A,B ∈ Rn×n be two given square matrices. Then, the global solution of the problem

min
Y ∈Rn×n

1

2
‖Y −B‖2F s.t. PIknw [Y −A] = 0, (11)

has the following closed-form
Y = B + PIknw [A−B].
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Proof. By introducing a Lagrange multiplier Λ̂ ∈ Rn×n, so that Λ̂ = PIknw [Λ̂], the Lagrangian function
associated with (11) is defined as

L(Y, Λ̂) =
1

2
‖Y −B‖2F − tr(Λ̂>PIknw [Y −A]).

Now, differentiating this function, we obtain the Karush-Kuhn-Tucker conditions for Problem (11):

Y −B − Λ̂ = 0 (12)

and
PIknw [Y −A] = 0. (13)

In view of (12)-(13) and PIknw [Λ̂] = Λ̂, we have

Λ̂ = PIknw [Y −B] = PIknw [Y ]− PIknw [B] = PIknw [A]− PIknw [B] = PIknw [A−B].

Merging this last result with (12), we arrive at Y = B + PIknw [A − B]. Therefore, the pair (Y, Λ̂) =
(B+PIknw [A−B], PIknw [A−B]) is a critical point of the Lagrangian function associated with the linearly
constrained optimization problem (11). Finally, since (11) is convex, this critical point is also the global
solution.

In numerical optimization, proximal-type algorithms [30, 29] are derived by incorporating a proximal
term in the objective function to enforce that the new iterate does not stray too far from the previous
iterate, such a property will be fundamental in our convergence analysis. Inspired by this strategy, we
propose the following modification of the method (9a)-(9b)-(9c),

Xk+1 = arg min
X

F (X) +
µk
2
‖Φ(X)− Yk‖2F s.t. X>X = I (14a)

Yk+1 = arg min
Y

µk
2
‖Y − Φ(Xk+1)‖2F +

αk
2
‖Y − Yk‖2F s.t. PIknw [Y −A] = 0 (14b)

µk+1 = ρµk, (14c)

where {αk} ⊂ R+, is a sequence of proximal parameters. The sub-problem (14b) is equivalent to

Yk+1 = arg min
Y

1

2
‖Y − ( τkΦ(Xk+1) + (1− τk)Yk )‖2F s.t. PIknw [Y −A] = 0,

where τk := µk
µk+αk

∈ (0, 1]. Therefore, it follows from Lemma 4.1 that the global solution of (14b) is
given by

Yk+1 = ( τkΦ(Xk+1) + (1− τk)Yk ) + PIknw [A− ( τkΦ(Xk+1) + (1− τk)Yk )]

= τk( Φ(Xk+1) + PIknw [A− Φ(Xk+1)] ) + (1− τk)Yk. (15)

Notice that Yk+1 is the convex combination between the previous iterate and the Yk+1 matrix of the
non-altered sub-problem in variable Y (9b). Later we will see that for suitable choices of αk, the sequence
{Yk} generated by the proximal variant satisfies that limk→∞ ‖Yk+1 − Yk‖F = 0, this property is crucial
in our analysis, and it is not fulfilled for the original iterative scheme (9a)-(9b)-(9c). It is precisely this
property that motivates the modification of the original alternating proposal.

5 Convergence analysis

This section begins by establishing the necessary first-order optimality conditions of Problem (7). The
Lagrangian function associated with this problem is defined by

L(X,Y,Λ, Λ̂, Λ̃) = F (X)− 1

2
〈Λ, X>X − I〉 − 〈Λ̂, PIknw [Y −A]〉 − 〈Λ̃, Y − Φ(X)〉, (16)

7



where the matrices Λ, Λ̂, Λ̃ represent the dual variables and satisfy Λ> = Λ and Λ̂ = PIknw [Λ̂], due
to the symmetry of the constraint X>X = I and the structure of the restriction PIknw [Y − A] = 0. By
differentiating the mapping (16) with respect to all its block variables, we derive the Karush-Kuhn-Tucker
(KKT) conditions (also known as the first-order optimality conditions) for problem (7),

∇F (X)−XΛ +DX(Λ̃> + Λ̃) = 0, (17a)

Λ̂ + Λ̃ = 0, (17b)

X>X − I = 0, (17c)

PIknw
[Y −A] = 0, (17d)

Y − Φ(X) = 0. (17e)

Let us recall that D denotes the diagonal matrix formed by the pre-established eigenvalues of A.

Proposition 5.1 The sequences {Xk}, {Yk}, generated by the iterative scheme (9a)-(9c), are bounded.

Proof. Since X>k Xk = I for all k ≥ 0, we have directly that ‖Xk‖F =
√
n. Thus, the sequence {Xk} is

bounded. In addition, from the updating formula (10), for all k, we get

‖Yk+1‖F = ‖Φ(Xk+1) + PIknw [A− Φ(Xk+1)]‖F
≤ ‖Φ(Xk+1)‖F + ‖PIknw [A− Φ(Xk+1)]‖F
= ‖D‖F + ‖PIknw [A− Φ(Xk+1)]‖F
≤ ‖D‖F + ‖A− Φ(Xk+1)‖F
≤ ‖D‖F + ‖A‖F + ‖Φ(Xk+1)‖F
= 3‖D‖F .

Therefore, {Yk} is also bounded.
Now, let {(Xk, Yk)} be any sequence generated by the alternating scheme (9a)-(9c). From the optimal-

ity of the iterates Xk and Yk, for each k ≥ 0 there must exist matrices Θk and Θ̂k (Lagrange multipliers)
verifying the following equations

∇F (Xk)−XkΘk + 2µk−1DXk(Φ(Xk)− Yk−1) = 0, (18)

and
µk−1(Yk − Φ(Xk))− Θ̂k = 0, (19)

respectively.

Before presenting our convergence result for the scheme (9a)-(9c), we need the following remark.

Remark 5.2 Notice that all the given eigenvalues, that defines the fixed diagonal matrix D, can be moved
to the positive side of the real line by a constant shift α > 0 for a sufficiently large α. In this case, the
new positive eigenvalues correspond to the eigenvalues of A+ αI, which has the same eigenvectors of A.
Moreover, the structural conditions on the diagonal elements of A must be adapted according to the sum of
α > 0. Once the problem is solved we can always recover the desired solution matrix A by subtracting αI.
Hence, for theoretical reasons and without any loss of generality we can assume that the given eigenvalues
{λ1, λ2, . . . , λn} are all positive and that the given matrix D is non-singular.

Theorem 5.3 Let {(Xk, Yk)} be a sequence generated by the iterative scheme (9a)-(9c). Let us assume
that {Θk} is a bounded sequence and that limk→∞ ‖Yk+1 − Yk‖F = 0. Let (X∗, Y∗,Θ∗) be a limit point of
the sequence {(Xk, Yk,Θk)}. Then, the pair (X∗, Y∗) is a KKT point for problem (7).
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Proof. It follows from equation (18) that

∇F (Xk+1)−Xk+1Θk+1 + 2µkDXk+1(Φ(Xk+1)− Yk) = 0, (20)

or equivalently

2µkDXk+1[(Φ(Xk+1)− Yk+1) + (Yk+1 − Yk)] = Xk+1Θk+1 −∇F (Xk+1).

Then, using the fact that Xk ∈ O(n) for each k ≥ 0 and that D is non-singular (Remark 5.2), we get

Φ(Xk+1)− Yk+1 =
1

2µk
X>k+1D

−1Xk+1( Θk+1 −∇F (Xk+1) ) + (Yk − Yk+1).

Applying the Frobenius norm on both sides of the last result, we obtain

‖Φ(Xk+1)− Yk+1‖F = ‖ 1

2µk
X>k+1D

−1Xk+1( Θk+1 −∇F (Xk+1) ) + (Yk − Yk+1)‖F

≤ ‖ 1

2µk
X>k+1D

−1Xk+1( Θk+1 −∇F (Xk+1) )‖F + ‖Yk − Yk+1‖F

=
1

2µk
‖D−1Xk+1( Θk+1 −∇F (Xk+1) )‖F + ‖Yk − Yk+1‖F

≤ 1

2µk
‖D−1‖F ‖Θk+1 −∇F (Xk+1)‖F + ‖Yk − Yk+1‖F ,

≤ 1

2µk
‖D−1‖F ( ‖Θk+1‖F + ‖∇F (Xk+1)‖F ) + ‖Yk − Yk+1‖F . (21)

Since F (·) is continuous and O(n) is compact then there exists C1 > 0 such that ‖∇F (Xk)‖F ≤ C1, for
all k. In addition, from the hypothesis there also exists a constant C2 > 0 such that ‖Θk‖F ≤ C2, for any
k. Substituting these two inequalities in (21) we arrive at

‖Φ(Xk+1)− Yk+1‖F ≤
(C1 + C2)

2µk
‖D−1‖F + ‖Yk − Yk+1‖F .

Applying limits in this last relation, we conclude that

lim
k→∞

‖Φ(Xk+1)− Yk+1‖F = 0.

Notice that this result directly implies that Φ(X∗)−Y∗ = 0, which indicates that the pair (X∗, Y∗) satisfies
the KKT condition (17e).

On the other hand, let us introduce the notations Λ̃k+1 := µk(Φ(Xk+1) − Yk) and Λ̂k+1 := Θ̂k+1 +
µk(Yk − Yk+1), where Θ̂k is the matrix that appears in (19). Thus, equation (18) can be rewritten as

∇F (Xk+1)−Xk+1Θk+1 + 2DXk+1Λ̃k+1 = 0,

which implies that

Λ̃k+1 =
1

2
X>k+1D

−1(Xk+1Θk+1 −∇F (Xk+1) ).

Hence by taking the limit as k ∈ K goes to ∞, we find that

Λ̃∗ := lim
k∈K

Λ̃k+1 =
1

2
X>∗ D

−1(X∗Θ∗ −∇F (X∗) ).
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Additionally, observe that the equation (19) can be reformulated as

0 = µk(Yk+1 − Φ(Xk+1) )− Θ̂k+1

= µk(Yk − Φ(Xk+1) + Yk+1 − Yk )− Θ̂k+1

= −µk( Φ(Xk+1)− Yk )− ( Θ̂k+1 + µk(Yk − Yk+1) )

= −Λ̃k+1 − Λ̂k+1,

which leads us to
Λ̂k+1 = −Λ̃k+1, ∀ k ≥ 0. (22)

By taking limits in (22), we conclude that

Λ̂∗ := lim
k∈K

Λ̂k+1 = −Λ̃∗,

and consequently
Λ̂∗ + Λ̃∗ = 0

which establishes the existence of two matrices satisfying the KKT condition (17b).

Similarly, since Λ̃k+1 is a symmetric matrix for all k ≥ 0, the equation (20) can be posed as

∇F (Xk+1)−Xk+1Λk+1 +DXk+1(Λ̃>k+1 + Λ̃k+1) = 0,

where we are using the notation Λk+1 := Θk+1. Here, it is important to note that Λ∗ := limk∈K Λk+1 = Θ∗.
Hence, applying limits in the previous equality we have

∇F (X∗)−X∗Λ∗ +DX∗(Λ̃
>
∗ + Λ̃∗) = 0.

This indicates that the KKT condition (17a) is also satisfied in the limit. Finally, notice that the KKT
condition (17c) is easily verified at X∗ because {Xk} ⊂ O(n) and O(n) is a closed set; and the condition
KKT (17d) is fulfilled trivially by applying the limit, since PIknw [Yk −A] = 0, for all k ≥ 0. Therefore the
theorem is proved.

Let us now analyze the proximal alternating scheme defined by (14a)-(14c).

Proposition 5.4 Let {(Xk, Yk)} be a sequence generated by the iterative scheme (14a)-(14c), starting
from a given Y0 ∈ Rn×n such that ‖Y0‖F ≤ 3‖D‖F . Then, the sequences {Xk} and {Yk} are bounded.

Proof. Clearly the sequence {Xk} is bounded because X>k Xk = I, for all k ≥ 0. Now we prove that {Yk}
is also bounded. In particular we are going to prove that

‖Yk‖F ≤ 3‖D‖F , ∀ k ≥ 0. (23)

The proof is by induction. In view of the initialization, (23) is trivially fulfilled for k = 0. Let us now
assume that, for an index k ≥ 0, ‖Yk‖F ≤ 3‖D‖F . Employing (15) and the inductive hypothesis, we
obtain

‖Yk+1‖F = ‖τk( Φ(Xk+1) + PIknw [A− Φ(Xk+1)] ) + (1− τk)Yk‖F
≤ τk‖Φ(Xk+1) + PIknw [A− Φ(Xk+1)]‖F + (1− τk)‖Yk‖F
≤ 3τk‖D‖F + 3(1− τk)‖D‖F
= 3‖D‖F ,

proving the inequality (23). Therefore {Yk} is bounded.
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Proposition 5.5 Let {(Xk, Yk)} be a sequence generated by the iterative process defined by (14a)-(14c),
starting from Y0 such that ‖Y0‖F ≤ 3‖D‖F . Assume that the proximal parameter is given by αk = σµ2

k,
for some σ > 0. Then,

lim
k→∞

‖Yk+1 − Yk‖F = 0.

Proof. It follows from the definition of Xk+1 in (14a) that

F (Xk+1) +
µk
2
‖Yk − Φ(Xk+1)‖2F ≤ F (Xk) +

µk
2
‖Yk − Φ(Xk)‖2F . (24)

Similarly, from the definition of Yk+1 in (14b), we have

µk
2
‖Yk+1 − Φ(Xk+1)‖2F +

αk
2
‖Yk+1 − Yk‖2F ≤

µk
2
‖Yk − Φ(Xk+1)‖2F . (25)

Combining the inequalities (24) and (25) we get

F (Xk+1) +
µk
2
‖Yk+1 − Φ(Xk+1)‖2F ≤ F (Xk) +

µk
2
‖Yk − Φ(Xk)‖2F −

αk
2
‖Yk+1 − Yk‖2F . (26)

By rearranging the inequality (26) we obtain

αk
2
‖Yk+1 − Yk‖2F ≤ F (Xk)− F (Xk+1) +

µk
2
‖Yk − Φ(Xk)‖2F −

µk
2
‖Yk+1 − Φ(Xk+1)‖2F

≤ F (Xk)− F (Xk+1) +
µk
2
‖Yk − Φ(Xk)‖2F

≤ −F (Xk+1) +
µk
2
‖Yk − Φ(Xk)‖2F

≤ ‖Q ◦ Φ(Xk+1)‖2F +
µk
2
‖Yk − Φ(Xk)‖2F .

As a consequence,

αk
2µ2

k

‖Yk+1 − Yk‖2F ≤
1

µ2
k

‖Q ◦ Φ(Xk+1)‖2F +
1

2µk
‖Yk − Φ(Xk)‖2F .

It follows from Proposition 5.4 that ‖Yk‖ ≤ 3‖D‖F , for all k. Using this bound and the formula αk = σµ2
k

provided by the hypothesis, we obtain

‖Yk+1 − Yk‖2F ≤ 2

σ

(
1

µ2
k

‖Q ◦ Φ(Xk+1)‖2F +
1

2µk
‖Yk − Φ(Xk)‖2F

)
≤ 2

σ

(
1

µ2
k

‖Φ(Xk+1)‖2F +
1

2µk
(‖Yk‖F + ‖Φ(Xk)‖F )2

)
≤ 2

σ

(
1

µ2
k

‖D‖2F +
1

2µk
(3‖D‖F + ‖D‖F )2

)
=

2

σ

(
1

µ2
k

‖D‖2F +
8

µk
‖D‖2F

)
≤ 2(1 + 8µk)

σµ2
k

‖D‖2F .

By taking limits in both sides of the above relation, and using (14c) we conclude that

lim
k→∞

‖Yk+1 − Yk‖2F = 0.
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From the optimality of the iterates, for the proximal alternating minimization approach there must
exists, at the k-th iteration, a matrix Θ̂k (Lagrange multiplier) such that for all k

µk−1(Yk − Φ(Xk)) + αk−1(Yk − Yk−1)− Θ̂k = 0.

Finally, using Propositions 5.4 and 5.5, and repeating the steps of the proof of Theorem 5.3 with a few
slight modifications, we obtain our convergence result for the proximal-type algorithm.

Theorem 5.6 Let {(Xk, Yk)} be a sequence generated by the iterative scheme (14a)-(14c), starting from
Y0 such that ‖Y0‖F ≤ 3‖D‖F . Let us assume that {Θ̂k} is a bounded sequence. Let (X∗, Y∗, Θ̂∗) be a limit
point of the sequence {(Xk, Yk, Θ̂k)}. Then, the pair (X∗, Y∗) is a KKT point for problem (7).

6 A manifold ADMM

In this section we design a Riemannian alternating direction method of multipliers (RADMM) as an
alternative to recover the matrix A. Let us recall the optimization model (7). Instead of penalizing
the equality constraint Y = Φ(X) to obtain the model (8), we now consider the Lagrangian function
associated with (7), given by

Lµ(X,Y, Θ̃) = F (X) + 〈Θ̃, Y − Φ(X)〉+
µ

2
‖ Y − Φ(X) ‖2F

= F (X) +
µ

2
‖ Y − Φ(X) + µ−1Θ̃ ‖2F −

1

2µ
‖ Θ̃ ‖2F ,

where Θ̃ ∈ Rn×n represents the dual variable related to the constraint Y = Φ(X). Starting from Θ̃0 = 0
and µ0 = 1, the classic augmented Lagrangian method (ALM) [6, 7] generates a sequence {(Xk, Yk, Θ̃k)}
by

(Xk, Yk) = arg min
X,Y
Lµk(X,Y, Θ̃k) s.t. X>X = I, PIknw [Y −A] = 0, (27)

then updates the multiplier matrix Θ̃ by the recursive formula

Θ̃k+1 = Θ̃k + µk(Yk+1 − Φ(Xk+1)),

and set µk+1 = ρµk, for some global parameter ρ > 1 selected by the user. An efficient approach to solve
the subproblem (27) is the well-known alternating direction method of multipliers ADMM [12, 13, 15].
Specifically, we propose the following iterative process:

Xk+1 = arg min
X
Lµk(X,Yk, Θ̃k) s.t. X>X = I (28a)

Yk+1 = arg min
Y
Lµk(Xk+1, Y, Θ̃k) s.t. PIknw [Y −A] = 0 (28b)

Θ̃k+1 = Θ̃k + µk(Yk+1 − Φ(Xk+1)) (28c)

µk+1 = ρµk, (28d)

Here, the subproblem (28a) can be solved by using the Riemannian gradient method described in
Section 3, while using Lemma 4.1 the subproblem (28b) has an exact solution given by

Yk+1 = Φ(Xk+1)− µ−1
k Θ̃k + PIknw [A− (Φ(Xk+1)− µ−1

k Θ̃k)]. (29)

We close this section with some remarks. The ALM is an effective tool for solving constrained opti-
mization problems, which has been well studied and enjoys global convergence under certain assumptions,
see, e.g., [6, 7] as two standard references. The alternating direction method of multipliers (ADMM) given
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by (28) can be seen as an approximated ALM specially designed to solve the non-convex problem (7).
In fact, at every cycle, our proposed ADMM scheme (28) needs to solve two optimization subproblems:
(28a) and (28b). Problem (28b) is solved exactly using (29), and (28a) minimizes a continuous function
on a (non-convex) compact set, and so it has global solutions. We note that the ADMM has been suc-
cessfully adapted to solve several non-convex problems; see, e.g., matrix completion [32, 34], noisy color
image restoration [21], and clustering in pattern recognition [24]. In addition, the global convergence
of ADMM for a class of non-convex and non-smooth optimization problems has been established; see,
e.g., [12, 13, 15]. Moreover, the ADMM strategy has been extended to solve optimization problems on a
manifold, see [20, 22].

7 Numerical Results

To give further insight into the inverse structured symmetric matrix problem with given eigenvalues, and
to illustrate the practical performance of the proposed algorithms, we present the results of some numerical
experiments. We compare several proposed methods: the penalization strategy (3a)-(3b) combined with
the Riemannian gradient method based on the QR retraction (R-QR), the same penalization strategy
combined with the Riemannian gradient method based on the Cayley retraction (R-Cayley); the proximal
alternating approach defined by equations (14a)-(14c) described in Section 4 (Alternating-P); and the
Riemannian alternating direction method of multipliers described in Section 6 (Alternating-AL). All
considered methods were implemented in Matlab with double precision. The experiments were executed
in a laptop computer with CPU Intel core i7, 4.7 GHz, RAM memory of 16 GB.

All runs are terminated as soon as one of the following three conditions holds: a maximum number of
iterations (maxiter) is reached, the difference in norm of two consecutive iterates is less than or equal to a
given tolerance (tol > 0), or the Riemannian gradient norm is less than or equal to tol. To guarantee that
the initial matrix X0 belongs to the Stiefel manifold, we generate a random symmetric matrix W such
that wi,j = 0 for all pairs (i, j) ∈ I0, and set X0 to be the orthogonal factor Q of the QR factorization
of W . The required input parameters in our algorithms are fixed as follows: maxiter = 500, tol = 10−5,
the growing factor (ρ) for the penalty parameters is 1.5, and any of the penalty parameters stop growing
when they reach the value 1020. The selected values of maxiter and tol are sufficient to demonstrate
the behavior of the iterative methods and evaluate the obtained solutions. The entries of the matrices
Θ̃k, in (28c), are kept between the bounds −1020 and 1020. In our experiments, we report the number
of required iterations (Iter), the value of the functions f1(X), f2(X), and f3(X) (f1, f2, f3) defined in
Lemma 2.1, the orthogonality (Orth) given by ‖X>X − I‖F , and the smallest entry in Inz in absolute
value (min(|NZ|)) at the solution matrix. We also report the final value of the penalty parameters µk
and σk, and the required running time in seconds (Time). When a method reaches maxiter iterations
and the Riemannian gradient norm is still greater than tol, we report the symbol (**) under f1.

For our first set of experiments, we fix the diagonal entries of D to be the eigenvalues of the tridiagonal
symmetric positive definite n×n matrix obtained by discretizing the second-order derivative, over a closed
interval in one variable, with zero values at the extreme points. In other words, the given λis are the
eigenvalues of the matrix tridiag(−1, 2,−1), which can be seen as a special case of the so-called Laplacian
matrices that have an impact in chemical graph theory [9, 36]. It is well–known that, for any n ≥ 2, the
eigenvalues of tridiag(−1, 2,−1) are given by λi = 2 − 2 cos(i π/(n + 1)) for 1 ≤ i ≤ n. The considered
structure is the following: The operator P is defined to guarantee that outside of the three main diagonals
all entries are zero; i.e., P = tridiag(1, 1, 1). As for additional structural requirements, the entries in the
main diagonal are all totally free variables (indicated with the symbol x); there are no nonzero preset
values, so R = 0, C = 0 and σk = 0 for all k; and all the entries in the main sub-diagonals are free
variables that must be nonzero (indicated with the symbol nz), thus the matrix Q has 1 at the entries of
the two main sub-diagonals and zero elsewhere. For example, the given matrix pattern for n = 6 is given
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by: 

x nz 0 0 0 0
nz x nz 0 0 0
0 nz x nz 0 0
0 0 nz x nz 0
0 0 0 nz x nz
0 0 0 0 nz x

 ,

which is identified with a simple undirected graph of 6 vertices [19, pp. 5-8]. For this tridiagonal matrix
and for several values of n, in Table 1 we report the performance of the 4 considered methods: R-QR, R-
Cayley, Alternating-P, and Alternating-AL. We note that the eigenvalues of the obtained matrix (although
each method obtains a different matrix) are the eigenvalues of tridiag(−1, 2,−1). From Table 1 we also
see that, even when the penalty parameter µk reaches the upper bound 1020 or a near-by value, the
corresponding method works but it requires many more iterations; see, e.g., the behavior of the R-QR
and the Alternating-P schemes for n = 10. Finally, as expected, for the Alternating-AL scheme the
parameter µk reaches a much smaller value than the one reached by the Alternating-P method.

Table 1: Performance of the 4 considered methods for the inverse structured tridiagonal matrix case.

n Method Iter f1 f2 f3 µk Orth min(|NZ|) Time

4 R-QR 47 -4.58 10−11 — 106 10−16 0.16 21.8
R-Cayley 48 -4.51 10−11 — 106 10−13 0.13 20.5

Alternating-P 42 -5.65 10−10 — 107 10−16 0.72 2.3
Alternating-AL 41 -5.33 10−12 — 104 10−16 0.37 9.1

7 R-QR 42 -7.86 10−11 — 106 10−15 0.28 21.4
R-Cayley 68 -5.62 10−16 — 1010 10−12 0.06 35.7

Alternating-P 172 -3.23 10−12 — 1018 10−16 0.15 41.4
Alternating-AL 38 -8.73 10−10 — 105 10−16 0.18 13.6

10 R-QR 143 -2.23 10−15 — 1020 10−15 0.08 77.4
R-Cayley 47 -7.2 10−12 — 107 10−12 0.11 23.8

Alternating-P 126 -2.87 10−16 — 1018 10−15 0.1 39.6
Alternating-AL 76 -11.2 10−16 — 1010 10−15 0.12 26.2

For n = 4 we now present the obtained matrices AAlt−P4 (left) and AAlt−AL4 (right), produced by the
Alternating-P and the Alternating-AL methods, respectively. We note that the matrices are different,
but they have the same 4 eigenvalues: 0.382, 1.382, 2.618, and 3.618.

2.1483 −1.2175 0 0
−1.2175 1.7251 −0.9095 0

0 −0.9095 2.4111 −0.7188
0 0 −0.7188 1.7155

 ,


2.2188 −1.5093 0 0
−1.5093 1.7435 −0.4979 0

0 −0.4979 2.5473 −0.3709
0 0 −0.3709 1.4903

 .
For the second experiment, we consider the 7× 7 symmetric Laplacian matrix described in [36, Table

II, p. 369]. These matrices have a potential for use in chemical graph theory. We fix the diagonal entries
of D to be the eigenvalues of the matrix displayed in [36], i.e., the given eigenvalues are: 0, 0.3672, 1.0571,
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2.3745, 4.4681, 7.0357, and 8.6973. The required structural pattern is the following:

x nz 0 0 0 0 0
nz x nz 0 0 0 −3
0 nz x nz 0 −3 0
0 0 nz x nz 0 0
0 0 0 nz x 0 0
0 0 −3 0 0 x 0
0 −3 0 0 0 0 x


,

which is identified with the undirected weighted graph (a linear tree in this case) of the 2,3-Dimethyl
pentane, shown in Figure 1. In Table 2 we report the behavior of the 4 considered methods for this 7× 7
Laplacian matrix. In all cases, the structural requirements are satisfied and the 7 eigenvalues are the
given ones.

1 

7 

2 

3 

4 

5 

-3 

nz 

nz nz 
nz 

6 

 -3 

Figure 1: Structural pattern graph of the symmetric Laplacian matrix (2,3-Dimethyl pentane).

Table 2: Performance of the 4 considered methods for the 7× 7 symmetric Laplacian case.

Method Iter f1 f2 f3 µk σk Orth min(|NZ|) Time

R-QR 142 −18.3 10−15 10−19 1020 1020 10−15 0.33 49.7
R-Cayley 198 −16.5 10−14 10−17 1020 1020 10−12 0.26 91.5

Alternating-P 169 −4.42 10−10 10−12 1020 — 10−16 0.12 50.2
Alternating-AL 59 −13.9 10−12 10−14 106 — 10−15 0.15 23.4

We notice that, for the 4 methods, the structural requirements are satisfied and the 7 eigenvalues
are the given ones. As an example, we now present the matrix AAlt−AL7 obtained by the Alternating-AL
method: 

2.3980 1.0306 0 0 0 0 0
1.0306 6.5352 −1.0112 0 0 0 −3

0 −1.0112 5.4677 −0.1578 0 −3 0
0 0 −0.1578 1.9569 2.2133 0 0
0 0 0 2.2133 2.5202 0 0
0 0 −3 0 0 2.9671 0
0 −3 0 0 0 0 2.1548


.
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For our third experiment, let us consider the 4 × 4 symmetric matrix indicated in [35, p. 265], in
which the only nonzero fixed value is π at the (2, 2) entry.

x x nz 0
x π nz x

nz nz x 0
0 x 0 nz

 .
We note that the associated undirected graph is not a tree since it has a cycle (vertices 1, 2, and 3). In this
case, we fix the given eigenvalues to be 1, 2, 3, and 4. Since the four eigenvalues are different, the existence
of a symmetric matrix with the described pattern is guaranteed [19, Chapter 11]. In Table 3 we report the
behavior of the 4 considered methods for this 4×4 matrix. In all cases, all the structural requirements are
satisfied and the 4 obtained eigenvalues are the given ones. We present the 4 different obtained solution

matrices AR−QR4 (up-left), AR−Cayley4 (up-right), AAlt−P4 (down-left), and AAlt−AL4 (down-right), produced
by the R-QR, R-Cayley, Alternating-P, and Alternating-AL methods:

1.0447 0.3031 0.1156 0
0.3031 3.1416 0.8863 −0.4011
0.1156 0.8863 2.7724 0

0 −0.4011 0 3.0414

 ,


1.8230 −0.3693 −1.2722 0
−0.3693 3.1416 0.2045 0.0326
−1.2722 0.2045 3.0345 0

0 0.0326 0 2.001




1.1665 −0.1108 0.3620 0
−0.1108 3.1416 0.1030 0.3614

0.3620 0.1030 1.8456 0
0 0.3614 0 3.8464

 ,


3.0773 −0.2011 0.4089 0
−0.2011 3.1416 −1.0775 0.5837

0.4089 −1.0775 1.6742 0
0 0.5837 0 2.1069

 .

Table 3: Performance of the 4 methods for the 4× 4 symmetric matrix indicated above.

Method Iter f1 f2 f3 µk σk Orth min(|NZ|) Time

R-QR 50 −10.8 10−12 10−20 106 108 10−16 0.115 17.8
R-Cayley 62 −7.3 10−14 10−22 106 108 10−13 0.204 20.6

Alternating-P 128 −14.8 10−12 10−20 1012 — 10−16 0.103 17.1
Alternating-AL 58 −14.9 10−12 10−20 107 — 10−16 0.4 3.5

For the fourth and last experiment, we consider the 10 × 10 symmetric matrix described in [19, p.
150], which is identified with the undirected graph shown in Figure 2. This graph is the smallest possible
nonlinear tree; see [19, Section 5]. Following the description in [19, p. 150], we fix the given eigenvalues
to be -3, -2, -2, 0, 0, 0, 0, 2, 2, and 3. These 5 eigenvalues together with their multiplicity guarantee that
there are possible solutions to the inverse structural matrix problem; see [19, Section 6]. The required
structural pattern is the following:

0 0 nz 0 0 0 0 0 0 0

0 0
√

2 0 0 0 0 0 0 0

nz
√

2 0 1 0 0 0 0 0 0

0 0 1 0
√

2 0 0
√

2 0 0

0 0 0
√

2 0 nz nz 0 0 0
0 0 0 0 nz 0 0 0 0 0
0 0 0 0 nz 0 0 0 0 0

0 0 0
√

2 0 0 0 0 nz nz
0 0 0 0 0 0 0 nz 0 0
0 0 0 0 0 0 0 nz 0 0


.
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Figure 2: Structural pattern graph of the symmetric matrix described in [19, p. 150].

In Table 4 we report the behavior of the 4 considered methods for this 10 × 10 matrix. It can be
observed that the methods R-QR and R-Cayley could not find a solution after 500 iterations, while the
Alternating schemes were able to find a solution for which all the structural requirements are satisfied
and the 10 obtained eigenvalues are the given ones. We note that after 500 iterations for both R-QR and
R-Cayley the achieved eigenvalues are already the right ones, however the Riemannian gradient norm is
still of the order of 10−2, and so when the process is stopped the values of f2 and f3 are not sufficiently
close to zero. We now present the matrix AAlt−AL10 obtained after 50 iterations by the Alternating-AL
method:

AAlt−AL
10 =



0 0 1.4142 0 0 0 0 0 0 0
0 0 1.4142 0 0 0 0 0 0 0

1.4142 1.4142 0 1 0 0 0 0 0 0
0 0 1 0 1.4142 0 0 1.4142 0 0
0 0 0 1.4142 0 −0.1893 1.991 0 0 0
0 0 0 0 −0.1893 0 0 0 0 0
0 0 0 0 1.991 0 0 0 0 0
0 0 0 1.4142 0 0 0 0 −1.1971 1.6022
0 0 0 0 0 0 0 −1.1971 0 0
0 0 0 0 0 0 0 1.6022 0 0


.

We also present the matrix AAlt−P10 obtained after 55 iterations by the Alternating-P method, by sim-
ply showing the entries that differ with respect to AAlt−AL10 : AAlt−P10 (5, 6) = AAlt−P10 (6, 5) = −0.0375,
AAlt−P10 (5, 7) = AAlt−P10 (7, 5) = 1.9996, AAlt−P10 (8, 9) = AAlt−P10 (9, 8) = −0.712, and AAlt−P10 (8, 10) =
AAlt−P10 (10, 8) = 1.869. It should be noted that [19, p. 127] presents yet another solution, which was
obtained manually using the interlacing theorem and other useful matrix analysis results.

Table 4: Performance of the 4 considered methods for the 10× 10 matrix described in [35, p. 150].

Method Iter f1 f2 f3 µk σk Orth min(|NZ|) Time

R-QR 500 ** 10−1 10−2 1020 1020 10−15 ** **
R-Cayley 500 ** 10−1 10−2 1020 1020 10−12 ** **

Alternating-P 55 −19.8 10−11 10−11 109 — 10−15 0.037 23.8
Alternating-AL 50 −19.9 10−11 10−11 105 — 10−15 0.189 23.5
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8 Concluding Remarks

We have focused on the inverse structured symmetric matrix problem for which certain entries have
preassigned values, including a sparse pattern, and such that the desired matrix eigenvalues are given
in advance. In principle, the variables of the problem are the rest of the entries, but it is desired that
some of them are nonzero, while the others are completely free. For this problem, we have presented a
continuously differentiable optimization model in the space of square matrices, which attempts to achieve
all the stated objectives only using the orthogonal eigenvector matrix of the solution as a variable. It
should be noted that with only this matrix as an unknown a solution can be achieved, even though this
matrix alone has no explicit value once the problem is solved.

To solve these challenging problems, we have developed several iterative methods that keep the iter-
ations on the Stiefel manifold of orthogonal matrices. In particular, we have combined a Riemmanian
gradient-type method with a non-monotone line search globalization strategy and with two types of re-
traction operators to stay on the manifold: QR and Cayley. The proposed Riemmanian gradient schemes
have been applied as internal methods of a penalty machinery that enforces the structural requirements
by imposing the orthogonality of the variable matrix as the only constraint, producing the R-QR and
the R-Cayley methods. In our numerical experiments we have observed the standard tendency of the
penalty parameters to grow to very high values to guarantee convergence. As a remedy to this numerical
difficulty, we have also proposed a block alternating scheme based on a suitable variable splitting. One
of the alternating steps is combined with either a penalty or an augmented Lagrangian strategy, and the
other alternating step is solved by a conveniently obtained closed formula.

In our numerical section we add understanding to the topic by illustrating the connection between
the desired symmetric matrix and the associated undirected graph. In particular, we take advantage of
knowledge recently developed in this line of research known as a spectral graph theory. First, as expected
from the formulation of the original inverse matrix problem and the non-convexity of our optimization
model, we note that if the problem has a solution, then it has many different solutions. In our exper-
iments, we have observed that the 4 considered methods tend to produce 4 different solutions for each
matrix problem and for each initial X0. This is a positive outcome for the user’s choice. Moreover, al-
though our experiments only involved cases where we knew that solutions existed for the structure under
consideration, the proposed numerical methods can also be applied to problems where the existence of
a solution is uncertain. Indeed, the optimization problems considered involve a continuous function over
a compact set. In this sense, the proposed schemes can be a useful tool for researchers in the field of
spectral graph theory to conjecture and discover achievable structures. This line of thought deserves
further investigation.

We have also observed that the Alternating-P and the Alternating-AL schemes present better practi-
cal performance compared to the R-QR and R-Cayley methods, especially when the size of the matrices
increases. Furthermore, in the case of the nonlinear tree with n = 10, only the alternating methods were
able to find a solution with few iterations, the other two exhibit a slow convergence and reached the
limit of 500 iterations without driving the norm of the Riemmanian gradient below the preestablished
tolerance. In general, we have observed that the alternating schemes are effective up to n = 20, which
includes all the graphs analyzed in [19, Appendix A], and require a significant number of iterations and
a high computational cost when n > 20. To address potential large-scale cases in the future, it may be
necessary to adapt the ideas presented in this work or develop other optimization schemes to avoid the
O(n3) computational cost of each retraction.
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