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ABSTRACT

We demonstrate EDA4Sum, a framework dedicated to generating
guided multi-step data summarization pipelines for very large
datasets. Data summarization is the process of producing inter-
pretable and representative subsets of an input dataset. It is usually
performed following a one-shot process with the purpose of finding
the best summary. EDA4Sum leverages Exploratory Data Analysis
(EDA) to produce connected summaries in multiple steps, with
the goal of maximizing their cumulative utility. A useful summary
contains 𝑘 individually uniform sets that are collectively diverse
to be representative of the input data. EDA4Sum accommodates
datasets with different characteristics by providing the ability to
tune the weights of uniformity, diversity and novelty when gen-
erating multi-step summaries. We demonstrate the superiority of
multi-step EDA summarization over single-step summarization
for summarizing very large data, and the need to provide guid-
ance to domain experts, by interacting with the VLDB’22 partici-
pants who will act as data analysts. The application is available at
https://bit.ly/eda4sum_application.
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1 INTRODUCTION

The goal of data summarization is to produce small and represen-
tative subsets [10] of an input dataset. Produced subsets must be
interpretable and representative of the input. Intuitively, a useful
summary contains 𝑘 individually uniform sets that are collectively
diverse [13]. Uniformity addresses interpretability, and diversity
addresses representativity by seeking to cover data variety. This is
particularly important for very large datasets. However, a single
one-shot summary of a large dataset will not be representative.
To this end, we present EDA4Sum a dedicated system that gener-
ates connected summaries in a multi-step fashion with the goal of
covering diversity in very large datasets.
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Figure 1: Examples of uniform and non-uniform itemsets.

Example. Consider the Sloan Digital Sky Survey (SDSS), a data-
base of galaxies belonging to 169 classes [11] 1. In SDSS, each galaxy
has 7 attributes describing magnitude in each color filter (the at-
tributes 𝑢,𝑔, 𝑟, 𝑖 , and 𝑧), size (the attribute petroRad_r), and how far
a galaxy is from the Earth (the attribute redshift). A summary is a
set of 𝑘 diverse itemsets each of which is uniform, i.e., contains items
that are similar to each other. Figure 1 shows examples of uniform
and non-uniform galaxy itemsets. One can see that uniform itemsets
are easier to interpret by humans. To build a summary for SDSS, a
one-shot approach that leverages diversity algorithms and finds the
𝑘 most uniform and diverse sets appears as a natural solution. Fig-
ure 2 shows a snapshot of a summary returned by SWAP, a common
diversity algorithm [13] that finds the most diverse itemsets subject to
a uniformity threshold.2 While the shown summary satisfies unifor-
mity and diversity, it does not cover the variety of galaxy types in the
database. Hence. multi-step summaries are needed for large datasets.

The first challenge of summarizing large datasets is how to gen-
erate high-quality connected summarization pipelines that are in-
terpretable and representative. Connected summaries preserve the
train of thought of the user [8] (challenge C1). This motivates Ex-
ploratory Data Analysis (EDA) for data summarization. However,
as in modern EDA [2, 7], the system should guide users by recom-
mending the next operation to discover more uniform and diverse
itemsets (challenge C2). Last, the system should have interactive
running times (challenge C3).

To address C1, we formalize the Eda4Sum Problem that seeks a
summarization pipeline whose cumulated utility (which combines
uniformity and diversity) is maximized. A summarization pipeline
has a fixed length and reduces to a one-shot summarization when
the length is equal to 1. A summarization pipeline in EDA4Sum
starts by running the SWAP algorithm that greedily finds the most
diverse itemsets subject to a threshold on uniformity. When pro-
ducing summaries sequentially, we must ensure that the generated
summaries at each step are both new and related to previous sum-
maries. Therefore, our utility measure also considers the novelty of

1https://www.sdss.org/
2The actual summary has 10 itemsets that do not cover the 169 galaxy types.
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Figure 2: A summary obtained with a diversity algorithm.

the current summary w.r.t. previous steps. Each summary is obtained
by applying an EDA operation on the last seen summary, thereby
connecting summaries. This exploits semantic relationships between
data regions to preserve the stream of consciousness of the user [8].

To address C2, EDA4Sum offers three summarization modes:
Manual, Partial Guidance and Full Guidance. In the first mode, the
system displays a summary at each step, and the user chooses an
itemset in the summary and an operation to apply to that itemset;
With Partial and Full Guidance, the system displays a 𝑡-size sum-
marization pipeline with the difference that in Partial Guidance,
users may intervene and modify a step by choosing a different input
itemset or a different operator.

To address C3, EDA4Sum relies on one of our two algorithms. At
each step, each algorithm picks one of the itemsets returned by the
previous step and chooses the next operator, resulting in a new sum-
mary. Our first algorithm, Top1Sum, applies a local optimization to
find the operation that produces the best utility summary.Our sec-
ond algorithm, RLSum, is faster as it relies on a pre-trained policy,
i.e., summarization pipeline. RLSum leverages Deep Reinforcement
Learning to simulate an agent that learns an end-to-end summa-
rization policy exploiting semantic relationships between different
data regions. The logic of RLSum is based on the system presented
in [5] that guides users in finding items of interest in large datasets.
However, while the offline phase of the two systems is identical,
our novel contribution is the online phase of EDA4Sum.

While the execution time of Top1Sum depends on data proper-
ties and on supported EDA operators, RLSum is agnostic to these
parameters and can perform interactive summarization. Our experi-
ments show that while Top1Sum produces higher utility summaries,
RLSum is at least one order of magnitude faster than Top1Sum and
performs better than Top1Sum in finding ground-truth itemsets.

Related Work. We provide the theoretical foundations and algo-
rithms underlying this framework in [12]. A variety of approaches
have been proposed for summarizing data [3]. Prominent exam-
ples include those that identify extreme aggregates [10], those that
summarize all aggregates [3], and those that produce 𝑘 diverse
clusters [6]. Unlike our work, all these methods consider data sum-
marization as a one-shot task. Approaches that summarize all data
typically trade-off summary size against information loss [3]. In
cases where the data size is massive, finding the most uniform
and diverse parts is more useful. EDA is known as a difficult task,
requiring profound analytical skills, experience [1]. Recent work
suggested fully automating this process using Reinforcement Learn-
ing [2, 5]. As opposed to this line of work whose goal is to extract

general insights, we aim to summarize massive datasets by finding
highly uniform and diverse itemsets.

2 TECHNICAL BACKGROUND

2.1 Data Model and Problem Formulation

We consider a set of items𝐷 describedwith a set of ordinal attributes
𝐴. Numerical attribute values are binned into a fixed number of
bins. We use the notion of itemset defined as a set of items that
share the same values for a set of attributes. Those attributes define
the itemset description that has the benefit of conveying the content
of the itemset at a glance. To illustrate, Figures 1 and 2 illustrate
galaxy itemsets. D denotes the set of all itemsets created from 𝐷 .
We represent each itemset 𝑠 with a vector 𝑣𝑠 of aggregated values
(e.g., mean or mode) of items in 𝑠 for each attribute in 𝐴.

A summary 𝑆 ⊆ D is a set of (at most) 𝑘 itemsets. Intuitively,
a useful summary contains pairwise different itemsets (diversity),
each of which consisting of similar items (uniformity). Since we
generate multi-step summaries, an important question is to what
extent itemsets in the current step differ to those in previous steps
(novelty). To that end, we define the utility of a summary as a
combination of its uniformity, diversity and novelty:

Uniformity. The uniformity of a summary measures how simi-
lar items are to each other in each of its itemsets. Itemset uniformity
is computed as the inverse of the mean of its attribute variances.
The uniformity of a summary is the smallest among the uniformity
scores of its itemsets. Other aggregations can be supported.

Diversity. The diversity of a summary is defined as the smallest
vector distance among its itemsets. We use the Manhattan distance
metric. Other metrics could be used. The intuition behind choosing
minimum is that a summary is diverse if its two most similar itemsets
are different. Here again, other aggregation functions could be used.

Novelty. The novelty of a summary is simply the proportion of
how many new itemsets the user is currently seeing.

The utility of a summary is defined as a linear combination of
uniformity, diversity and novelty, where 𝛼, 𝛽,𝛾 ∈ [0, 1] are the
coefficients of the uniformity, diversity and novelty, resp.

A summarization pipeline is a sequence of summaries, where
we move to the next summary using some exploration operator.
Generally, an operator takes an itemset 𝑠 and a number 𝑘 , and
returns a summary formed by (at most) 𝑘 itemsets that are related
to items in 𝑠 . In EDA4Sum, in addition to the traditional drill-down
(by-facet) and roll-up (by-superset) operations, we support the by-
distrib and by-neighborsoperators, that were introduced in [5]. The
cumulated utility of a pipeline is the sum of the utilities of the
summaries generated at each step.

The Eda4Sum Problem: Given a bound 𝑡 on the number of
summaries to be displayed, EDA4Sum solves the Eda4Sum Prob-
lem that seeks to find for a given dataset 𝐷 , the highest utility
summarization pipeline of length 𝑡 .

EDA4Sum accommodates datasets with different characteristics
by providing the ability to tune the weights of uniformity, diversity
and novelty when generating multi-step summaries.



2.2 Algorithms

We implemented two algorithms to solve the Eda4Sum Problem.
The initial summary is always obtained using the SWAP algorithm
[13]. In the following steps, the user sees a summary 𝑆 ′ that is ob-
tained by applying one of our two algorithms, Top1Sum or RLSum
to an itemset 𝑠 chosen from a summary 𝑆 that was shown in the
previous step. This provides an easy to follow sequence of sum-
maries that preserves the stream of consciousness of the user [8]
by connecting the summaries the user sees at each step.

Top1Sum: The Top1Sum algorithm applies local optimization
to find the operation that produces the highest utility summary at
each step of the summarization pipeline. Intuitively, at each step,
Top1Sum examines every possible next step, i.e., every (itemset,
𝑒𝑥𝑝𝑙𝑜𝑟𝑒 (), attributes) combination, and executes the step that yields
the summary with the highest utility. Top1Sum has no theoreti-
cal guarantees for the Eda4Sum Problem. While Top1Sum works
well in practice, and is able to generate high utility summarization
pipelines, its running time may be high.

RLSum: To address the high running time of Top1Sum, we adopt
Deep Reinforcement Learning to train a high-utility pipeline [5].

We model the Eda4Sum Problem as a Markov Decision Process
and define a summarization policy as a mapping from a summariza-
tion state to an action, and look for the policy maximizing expected
reward. The reward of an action on a state is the utility of its output
summary (with a discount factor affected by the policy length).

RLSum leverages the DRL algorithm presented in [5] for training.
This algorithm, guidance consists of an iterative process driven
by data familiarity and curiosity, whereas in RLSum the process is
driven by uniformity, diversity, and novelty.

We adapt model-free RL [5] and use A3C [4], a state-of-the-art
critic-based DRL framework. The appeal of A3C comes from its
parallelized and asynchronous architecture: multiple actor-learners
are dispatched to separate instantiations of the environment; they
interact with the environment and collect experience and asyn-
chronously push their gradient updates to a central target network.
We instantiate the environment interface for each worker with the
utility weights defined for the training. For every operator exe-
cution step, the reward is computed. The value network learns a
baseline state value to which the current reward estimate is com-
pared to obtain the “advantage”. The policy network adjusts the log
probabilities of the actions based on the advantage via the RL algo-
rithm.We then train the policy with the newly computed advantage
values and train the value function with the obtained reward. This
process is completed in parallel by each worker.

3 SYSTEM AND DEMONSTRATION

3.1 EDA4SUM

The architecture of EDA4Sum is given in Figure 3. The offline
phase is based on the system presented in [5]. Equi-depth binning
is applied to each attribute and we use [9] to generate itemsets.
Different RL models with different utility weights are trained. Our
novel contribution lies in the online phase, where we generate
summarization pipelines following one of three modes: Manual,
Partial Guidance and Full Guidance. Pipeline execution starts with
the SWAP algorithm [13] that finds the 𝑘 most uniform and diverse
itemsets. The next steps are picked by either Top1Sum or RLSum.
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Figure 3: Overall Architecture of EDA4Sum. The off-line

phase is based on the system presented in [5]. Our novel

part is the online summarization generation component.

System UI. The UI of EDA4Sum is depicted in Figure 4 (with
the SPOTIFY dataset). The current 7-step pipeline is shown in the
A zone and its results in the B zone. The user investigates a dataset
by specifying the summarization mode, underlying algorithm, and
possibly customizing the weights of uniformity, diversity and nov-
elty (C zone). In case RLSum is selected, the weights are used to
identify the pre-trained model which will be used for guidance. In
Manual and Partial modes, the user can override the next operator
and its parameters (D zone). The user may want to store the current
pipeline or upload a previously stored one to execute it (E zone).

RLSum implementation We use a Tensorflow-based imple-
mentation of A3C.3 The agents were trained on two servers with
Intel Xeon processors, one with 370GB and the other with 126GB
of RAM. Training took 100 hours for 4000 episodes on SDSS and
3000 on SPOTIFY, with 50 steps per episode. Each agent used 6
workers in parallel; the update interval was set to 20 steps, and we
concatenated three successive states for the LSTM layers.

3.2 Demonstration Overview

We demonstrate EDA4Sum over two large datasets, SDSS (includes
2.6M galaxies with 7 attributes) and SPOTIFY (includes 232𝐾 mu-
sic tracks with 11 attributes). For both datasets, we define a set of
"ground-truth" uniform itemsets to be discovered. For SDSS, they
correspond to 169 well-known galaxy types extracted from [11].
For SPOTIFY, they correspond to the partition of all music records
by the attribute genre (with 27 values). Attendees will be able to
compare Top1Sum and RLSum using different weighting schemes
(fixed or evolving weights) for the parameters 𝛼, 𝛽 and 𝛾 (affecting
the uniformity, diversity, and novelty resp.). For example, increas-
ing novelty weight (with decreasing uniformity and diversity), or
fixed balanced weights (for uniformity, diversity, and novelty). The
audience will engage with EDA4Sum via the following scenarios:

Summarization Guidance: We simulate a common real-life sce-
nario where a data analyst tries to identify highly uniform and di-
verse itemsets in a large dataset. To examine the benefit of guidance
during summarization, we will randomly assign each participant
to one of the Partial Guidance or Manual modes. We will then ask
them to find the ground-truth itemsets and highlight them (see the
3https://github.com/marload/DeepRL-TensorFlow2/

https://github.com/marload/DeepRL-TensorFlow2/


Figure 4: UI of EDA4Sum with SPOTIFY.

second ground-truth itemset in Figure 4 marked with a yellow label
indicating its genre.) The participants would then compare their
obtained results with the ones achieved by Full Guidance. This sce-
nario illustrates that data summarization is a difficult task, requiring
profound analytical skills, experience, and domain knowledge, and
highlights the benefit of EDA.

Utility and Relevance: This scenario leverages Full Guidance. The
audience can choose an algorithm and a weighting scheme and ex-
amine the proposed summarization pipeline in terms of cumulated
utility and the number of discovered ground-truth itemsets. The
participants would then be able to use the system with different
variants to compare the results.

(a) # attributes (b) # bins

Figure 5: Average execution times (SDSS).

Looking Under the Hood: The audience will be allowed to ex-
amine the efficiency of our algorithms. We will show that while
Top1Sum returns higher utility summaries, RLSum is at least one
order of magnitude faster than Top1Sum. As shown in our prelimi-
nary results in Figure 5, the difference in running times between the
algorithms increases as the number of attributes increases. Observe

that the performance of both algorithms improves with a higher
number of bins since increasing the number of bins reduces the
number of mined itemsets, resulting in reduced execution times.
However, in all cases RLSum is at least one order of magnitude
faster than Top1Sum.
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