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Abstract: Gene duplication is one of the main drivers of evo-

lution. It is well-known that copies arising from duplication can

undergo multiple evolutionary fates, but little is known on their rel-

ative frequency, and on how environmental conditions affect it. In

this paper we provide a general framework to characterize the fate

of duplicated genes and formally differentiate the different fates. To

test our framework, we simulate the evolution of populations using

aevol, an in silico experimental evolution platform. When classifying

the resulting duplications, we observe several patterns that, in addi-
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2 1 INTRODUCTION

tion to confirming previous studies, exhibit new tendencies that may

open up new avenues to better understand the role of duplications.

Keywords: Gene duplication, Duplication fates, Classification, Paralogy and

Simulation

1 Introduction

Gene duplication is largely responsible for boosting the innovation and function

variation of genomes (Carvalho et al., 2010; Kuzmin et al., 2021; Vosseberg

et al., 2021), and plays a central role in the evolution of gene families (Demuth

and Hahn, 2009). Copies of genes arising from duplication can undergo multiple

evolutionary fates (Ohno, 2013). For instance, the copies may perform the same

role, share functions, or one of them could accumulate mutations while the other

maintains the original function (Ohno, 1999). The more commonly-studied

fates, described in detail in the following section, are pseudogenization (one

gene is lost), (double)-neofunctionalization (both/one gene diverges in function),

conservation (both genes preserve functions), subfunctionalization (genes split

the functions) and specialization (genes split functions and acquire novel ones).

Still, little is known on whether some of these fates are more frequent than

others, and on how environmental conditions affect their relative frequency.

Inferring the fate of paralogous genes is a difficult task for two main reasons.

First, the functions of their lowest common ancestor is usually unknown, making

it difficult to predict how the roles of each gene evolved. Second, even if the

ancestral functions were known, their evolution may not fit perfectly into one of

the established classes. Several works have focused on understanding the role of

duplications (see e.g. (Ascencio et al., 2021)), but to our knowledge, no rigorous

framework has been developed to classify these roles. Here, we aim at providing

a general framework to formally characterize the possible fates of duplicated
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genes to be able to discriminate them using phylogenetic data. Our approach

is based on comparison of the biological functions of the original gene and the

duplicated ones, and provides a continuum between the different fates.

Most research works on the topic are theoretical and propose statistical

fate models to make predictions. For example, Lynch et al. (Lynch and Force,

2000; Lynch et al., 2001) model genes as discrete sets of functions and propose a

population-based model of subfunctionalization that considers mutation rates at

regulatory regions. They notably show that the probability of subfunctionaliza-

tion tends to 0 as population sizes increase. Using similar ideas, Walsh (Walsh,

2003) compares pseudogenization against other fates, showing that predictions

depend on mutation rates. In (Stark et al., 2017), the authors also compare

subfunctionalization and pseudogenization using a mechanistic model based on

Markov chains, which allows for data fitting and improved characterizations of

hazard rates of pseudogenization. Markov chains were also used in (Diao et al.,

2020) to predict the evolution of gene families undergoing duplications, loss,

and partial gain/loss of function. Also, the theoretical impacts of neofunction-

alization on orthology prediction were discussed in (Lafond et al., 2018). Classi-

fication tools based on gene-species reconciliation have also been proposed, e.g.

for xenologs (Darby et al., 2017), which are pairs of genes whose divergence

includes a horizontal gene transfer.

In more practical settings, perhaps the closest work to ours is that of Assis

and Bachtrog (Assis and Bachtrog, 2013). Based on the ideas of (Otto and

Yong, 2002), they used Euclidean distances between gene expression profiles

to distinguish between neofunctionalization, subfunctionalization, conservation

and specialization. Using drosophilia data, they show that neofunctionalization

is the dominant fate, followed by conservation and specialization, and they find

very few cases of subfunctionalization. In (He and Zhang, 2005), the authors use
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dN/dS ratios and expression data to distinguish subfunctionalization and neo-

functionalization. They notably conclude that such dichotomic fate models are

insufficient to explain the variety of functional patterns of duplicate genes. This

motivates the need to develop classification methods that account for hybrid

fates. Several works have also focused on pseudogenization, based on sequence

comparisons and homology detection, showing that it is very likely in certain

species (Jaillon et al., 2004; Brunet et al., 2006). For instance in Zebrafish, it is

estimated that up to 20% of duplicated genes are retained and the rest are non-

functional (Woods et al., 2005). Neofunctionalization has also been studied in

practice. It can occur through changes in the biological processes of a copy, but

also in the expression at the transcriptional level. The latter was argued to play

an important role in evolution (Gu et al., 2004; Huminiecki and Wolfe, 2004;

Gu et al., 2005). Functional changes can occur at the enzymatic level (Conant

and Wolfe, 2008) and, more recently, were shown to also occur at the post-

translational level (Nguyen Ba et al., 2014). This was achieved by comparing

one fate against another for three species in which short regulatory motifs were

identified and statistically correlated with observed post-translational changes.

Our framework aims at generalizing the approaches developed in these exper-

imental studies. To test our framework, we use an in silico experimental evolu-

tion platform that enable to simulate the evolution of a population of individuals

under the combined effect of selection and variation (Hindré et al., 2012; Batut

et al., 2013). Specifically, we used the aevol platform (Knibbe, 2006), a comput-

ing platform where populations of digital organisms can evolve under various

conditions, enabling to experimentally study the effect of the different evolution-

ary forces on genomes, gene repertoire and phenotypes. Aevol has already been

used to study the direct and indirect effect of segmental duplications/deletions,

showing that their mutational effect is likely to regulate the amount of non-
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coding sequences due to robustness constraints (Knibbe et al., 2007a; Rutten

et al., 2019). The platform has also been used to show that genetic association

can help maintaining cooperative behaviour in bacterial populations (Frénoy

et al., 2013). More recently, aevol has been used to study the “complexity

ratchet”, showing that epistatic conflicts between genes duplication-divergence

(i.e. neofunctionalization or double-neofunctionalization fates) and local events

(i.e. allelic variation of a single gene) opens the route to biological complexity

even in situations where simple phenotypes would easily thrive (Liard et al.,

2020). However, although it as been shown that gene duplications is a rather

frequent event in aevol, (almost half of the gene families being created by a

segmental event (Knibbe, 2014)), the precise fate of gene duplicates has never

been specifically studied in the model.

In this paper, we fill this gap by simulating the evolution of populations of

individuals via aevol and classifying the resulting duplications using our frame-

work. Our tests on aevol confirm the experimental studies on drosophilia data

(Assis and Bachtrog, 2013) and show that conservation of the original function

in both copies is rather unlikely, the general trend being that the more frequent

fates are those exhibiting a higher level of function acquisition.

2 Post-duplication fates

Several classes and sub-classes of post-duplication fates have been proposed in

the literature; here we recall the main ones that we model in our framework.

These fates have been chosen because they are generally agreed upon, as dis-

cussed in various surveys (see e.g. (Zhang, 2003; Hahn, 2009)); each class is

assigned an acronym that we shall use in the following of the paper.

Pseudogenization (P ): one copy retains its functions, while the other diverges

and becomes non-functional (Ohno, 2013). Pseudogenization is believed to be
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very likely, since losing one copy can repair an “accidental” duplication. In this

study, we consider only a type of pseudogenization, called compensatory drift,

in which the expression level of at least one of the duplicated genes is too low

to supply the function (Birchler and Yang, 2022; Thompson et al., 2016). Note

that a gene could be lost by a deletion event or by a mutation that would, e.g.,

inactivate its promoter. However, these fates are not considered here as we focus

on gene duplication leading to paralogy in extant genomes.

Neofunctionalization (N): when one copy diverges as above, it may acquire

novel functions instead of pseudogeneizing (Force et al., 1999). This is often be-

lieved to be a major mechanism of function acquisition, as neofunctionalization

can use a copy of a functional gene as a template to favor adaptation (Lynch

and Conery, 2000).

Double-neofunctionalization (DN): both copies acquire distinct functions

that are different from the original gene (hence, the original function is not

performed by any of the two copies). To our knowledge, there is no estab-

lished name for this fate, although this phenomenon occurs frequently in our

experiments. Double-neofunctionalization can arise when a gene is not required

for survival, for instance when a copy of a duplicated gene undergoes a second

duplication. In this case, both sub-copies are free to develop new functions.

Conservation (C): this process is such that neither of the duplicated copies

changes, both performing the same functions as the original gene, potentially

doubling its expression level. One could argue that this provides no advantage to

an adapted organism (it could even be harmful due to dosage effect). However,

conservation can also be advantageous when increased gene dosage is required

for adaptation (Panchy et al., 2016), or when one copy needs to be kept as a

“backup” (Birchler and Yang, 2022).

Subfunctionalization (SF ): the copies partition the original functions and
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are thus complementary and necessary to perform them (Conrad and Antonarakis,

2007). This is sometimes called duplication-degeneration-complementation (DDC)

(Panchy et al., 2016). Subfunctionalization has also been associated with changes

in expression patterns (Birchler and Yang, 2022), especially in cases where the

copies become expressed less but, together, still produce the same amount of pro-

teins as before. The latter is sometimes distinguished as hypofunctionalization

(Veitia, 2017). In this paper, we consider both situations as mere subfunction-

alization.

Specialization (SP ): this fate occurs when the genes copies are able to perform

the original functions, but also both develop novel functions. This differs from

DN , since the original function is still performed, but also differs from SF

because of the novel functions. The term was introduced in (Otto and Yong,

2002) and described as a mix of SF and N . In this work, we consider that this

fate occurs as long as the original function exists (whether it is by SF or not)

and both copies acquire a significant amount of new functions.

3 Methods

We first describe our theoretical model of fate classification, and then proceed

to describe our experiments.

We assume the existence of a set of possible biological functions that we

denote by F . We allow any representation of functions as a set and F can

be discrete or continuous (for instance, Gene Ontology terms, or coordinates

in a multidimensional functional universe). A gene g expresses some functions

of F to some degree. For this purpose, we model a gene as a (mathematical)

function g : F → R, where g(ζ) represents the activation level of function ζ ∈ F .

If g(ζ) = 0, then g does not contribute to performing function ζ. Importantly,

notice that g(ζ) can be negative, which models the fact that g inhibits function
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ζ. These concepts are illustrated in Figure (1.a), which shows a gene whose

expression pattern has a triangular shape (note that this shape is merely for

illustration, as our model applies to any shape). This gene expresses functions

in the range [0.25, 0.75], and the expression of each function ζ in this range

is the height of the triangle at x-coordinate ζ (for instance, g(0.5) = 1 and

g(0.75) = 0).

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

ζ

g
(ζ

)

(a) A gene g.

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

α

g
(α

)

g
h

(b) Two genes g and h.

Figure 1: An illustration of genes expressing functions in a triangle pattern.

We define the following comparative tools for two genes g and h:

• [g+h] represents function addition, which can be seen as a gene described

by the functional landscape that g and h accomplish together (note that

they may cancel each other in case of inhibition). For each ζ ∈ F , it is

defined as

[g + h](ζ) = g(ζ) + h(ζ)
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• [g ∩ h] represents function intersection and, for each ζ ∈ F , is defined as

[g ∩ h](ζ) =


min(g(ζ), h(ζ)) if g(ζ) ≥ 0, h(ζ) ≥ 0

max(g(ζ), h(ζ)) if g(ζ) < 0, h(ζ) < 0

0 otherwise

• for gene g, we define contrib(g) as the total functional contribution of the

gene, i.e. as the sum of absolute values of its expression levels. If F is

discrete, we define contrib(g) =
∑
ζ∈F |g(ζ)|, and if F is continuous, we

define contrib(g) =
∫
F |g(ζ)|dζ.

• ig|h represents the function coverage of g by h, i.e. the proportion of

functions of g that can be performed by h, and is defined as

ig|h =
contrib([g ∩ h])

contrib(g)

We may write g+h and g∩h without brackets when no confusion can arise.

Note that [g + h] = [h + g] and [g ∩ h] = [h ∩ g], but ig|h differs from ih|g if

contrib(g) 6= contrib(h). These notions can be visualized from Figure (1.b):

[g+h] can be seen as the points on the leftmost diagonal edge of the g triangle,

on the top edge of the light gray area, and on the rightmost diagonal edge of the

h triangle; [g∩h] can be seen as the points on the diagonal edges of the triangle

formed by the overlap of the g and h triangles, which is another triangle with

height 1/2 and width 1/4. Hence contrib([g ∩ h]) = ((1/2) · (1/4))/2 = 1/16.

Since contrib(g) = contrib(h) = 1/4 we have: ig|h = ih|g = (1/16)/(1/4) = 1/4.
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3.1 Classifying the fates of paralogs

Suppose that a and b are two extant paralogs and that their least common ances-

tor is g. For each fate described in Section 2, i.e. for each fate X ∈ {P,N,DN,

C, SF, SP}, we quantify how much a and b appear to have undergone X, using

appropriate ig|h proportions as defined above. The main challenge in develop-

ing a continuum between fates is to ensure that each fate has a distinguishing

feature against the others. In our design, each pair of fates has a factor that

contributes conversely to the two fates (while also correctly modeling them, of

course). For example, N expects exactly one of ia|g or ib|g to be 1, whereas DN

expects both to be 0, and values in-between have opposite effects. It was also

necessary to include thresholds to model some of the fates properly, as follows:

• δτ (x) = max(0, x−τ1−τ ) is a generic threshold function with respect to a

parameter τ . It equals 0 for x ≤ τ , and then increases linearly from 0 to

1 in the interval x ∈ [τ, 1]. This is useful to model fates that require a

threshold.

• ρ ∈ [0, 1] is a pseudogene threshold, used to determine how much function-

ality a copied gene must lose to be considered a pseudogene. For example,

if ρ = 0.2, the amount of P of a gene linearly increases from 0 to 1 as its

coverage of its parent drops between one fifth and 0.

• ν ∈ [0, 1] is a novelty threshold that determines how much a copy must

dedicate to the parental functions to be considered as “not too new”. For

instance if ν = 0.25, the fates C, SF require the copied genes to dedicate a

quarter or more of their functions to the parental functions, and otherwise

they are excluded as possible fates. Conversely, 1−ν could be interpreted

as “new enough”, and determines how much novelty is needed for SP .

The formulas for computing the proportion of each fate are detailed in Table 1.
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Fate Formula

Pseudogenization (P )

Pa = ia|g · (1−
ig|a
ρ )

Pb = ib|g · (1−
ig|b
ρ )

P = max(0, Pa, Pb)

Neofunc. (N)

Na = (1− ia|g) · δν(ib|g) · ig|b
Nb = (1− ib|g) · δν(ia|g) · ig|a
N = max(Na, Nb) · (1− P )

Double-neo. (DN) DN = (1− ia|g)(1− ib|g)(1− ig|b)(1− ig|b)(1− P )

Conservation (C) C = δν(ia|g) · δν(ib|g) · ig|a+b · (1− δ0.5(ia+b|g)) · (1− P )

Subfunc. (SF ) SF = δν(ia|g) · δν(ib|g) · ig|a+b · δ0.5(ia+b|g) · (1− P )

Specialization (SP ) SP = ig|a+b · (1− δν(ia|g)) · (1− δν(ib|g)) · (1− P )

Table 1: The formulas used to compute the proportion of each fate.

Using the triangular gene illustrations, Figure 2 shows that each canonical

fate has an inferred proportion of 1 in our model. It can also be verified that

when this occurs, the other fates have proportion 0. Also note that P and N

are the only fates to use a maximum of two values. This is because there are

two ways in which P can occur (either gene loses functions), and in which N

can occur (either gene diverges). In the other fates (DN,C, SF, SP ), the two

genes behave in a similar manner instead. Although it is difficult to validate

the formulas formally, we provide the rationale behind each of them:

• Pseudogenization: Pa should be close to 1 when a has not developed novel

functions and has lost most of g’s functions. The ia|g factor ensures the

first condition by checking that a is covered by g. The (1 − ig|a
ρ ) factor

implements our threshold idea for the second condition, as this factor

increases linearly as a covers less functions of g, but only once the threshold

ρ is crossed. The same applies to b and Pb, and P is the maximum of Pa

and Pb.
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0 0.2 0.4 0.6 0.8 1
−2 · 10−5

0.2

0.4

0.6

0.8

1

ib|g = 1

(1− ig|b/ρ) = 1

Pa = 1− 1/ρ < 0, Pb = 1

P = max(0, Pa, Pb) = 1

g
a
b

(a) Pseudo.
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(b) Neofunc.
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(c) Double-neo.
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(d) Conservation
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(e) Subfunc.
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(f) Specialization. (SP )

Figure 2: The canonical fates using the triangle representation (note that two
possible ways in which SF can occur are shown in the same subfigure). We
assume thresholds ρ = 0.2 (relevant for P ) and ν = 0.25 (mostly relevant for
SP ).

Note that all further fates consider the level of pseudogenization P by

multiplying them by (1 − P ). This is because the more a gene has pseu-

dogeneized, the less it should be considered for other fates.

• Neofunctionalization: Na should be close to 1 when a acquires entirely

new functions. Since a is novel, 1− ia|g should equal 1, and since b should

only perform g, δν(ib|g) should be 1 (and ig|b should equal 1 because b

covers g). The same applies to b and Nb when b neofunctionalizes.

• Double-neo: neither of a and b should intersect with g, and thus each of

ia|g, ib|g, ig|b, ig|a should be close to 0.

• Conservation: a and b should be identical to g, and thus a, b should be

dedicated to g without “too much” novelty (i.e. δν(ia|g), δν(ib|g) should
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be 1), and g should be covered by [a+ b] (ig|a+b should be 1). Moreover,

[a + b] should double each of g’s functions. The 1 − δ0.5(ig|a+b) factor

hence expects [a+ b] to be covered by g by a proportion of 0.5 or less, and

penalizes the fate if the coverage is higher. This factor separates C from

SF .

• Subfunctionalization: a and b should be dedicated to performing g without

too much novelty (δν(ia|g), δν(ib|g) should be 1), and a+ b should perform

g together (ig|a+b should be 1). Unlike conservation, [a + b] should be

entirely covered by g since a and b have split the functions of g. The

δ0.5(ia+b|g) factor increases linearly from 0 to 1 for ia+b|g ∈ [0.5, 1], which

is the opposite of conservation.

• Specialization: g should be performed by a and g, and thus ig|a+b should

be 1. Moreover, a and b should both develop enough novel functions.

For a, the amount of novelty is expressed as 1 − ia|g. We cannot expect

this term to be 1 in the SP fate, since a portion of a performs g. Using

1 − δν(ia|g) instead tolerates a to dedicate a proportion of up to ν to

perform g without penalty, as long as a has enough novelty. The same

holds for b.

If one considers our formulas as a probability distributions on fates, the sum

of values of each fate should sum to 1 (i.e. P +N +C + SF + SP +DN = 1).

However, the six categories presented here may not cover all the possible fates

of genes after a duplication. Indeed, in our experiments, we regularly observed

situations where P +N +C+SF +SP +DN < 1. Note however that we never

observed situations where the sum of fate values is larger than 1 (see table 4).

Since we studied thousands of duplications, we conjecture that the sum of fate

values should be bounded by 1, leaving the proof as an open problem.
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3.2 Computing the fate between all paralogs in a gene tree

The previous section describes how to compute the fate of a gene g and two of its

paralogous descendants a and b. However, in the case of successive duplications,

g may have multiple pairs of such paralogous descendants. In Algorithm 1, we

describe how to compute the fate proportions between all paralogs in a gene tree

G, in which leaves are extant genes and internal nodes are ancestral genes. For

the purposes of our algorithm, we assume that the functions of both extant and

ancestral genes are known. We also assume knowledge of a set of duplication

nodes D, which can be inferred through reconciliation (Chauve and El-Mabrouk,

2009; Jacox et al., 2016). Then for each gene g ∈ D affected by a duplication,

the algorithm looks at its two child copies g1 and g2. It then finds the extant

descendants a1, . . . , an of g1 (left leaves of g) and b1, . . . , bm of g2 (right leaves

of g), and calculates each fate for each triple of the form g, ai and bj . In our

results, we report the average proportion of each fate, taken over all pairs of

paralogs analyzed, as computed in Algorithm 1.

3.3 Simulations

As already mentioned, to test our method, we used simulated data generated

using the aevol platform. Aevol is an in silico experimental evolution platform

that simulates the evolution of a population or digital organisms1. In aevol,

each organism owns a genome (double-stranded circular sequence inspired from

bacterial chromosome, see Figure 3, upper part) and the model simulates tran-

scription and translation to identify genes on the sequence. Each gene is then

decoded into a [0, 1] → [−1, 1] mathematical kernel function (a “protein”) and

all the kernels are linearly combined to compute the phenotype (a [0, 1]→ [0, 1]

function – Figure 3, bottom). A population of such organisms replicate through

1http://www.aevol.fr and http://https://gitlab.inria.fr/aevol/aevol

http://www.aevol.fr
http://https://gitlab.inria.fr/aevol/aevol
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Algorithm 1: Algorithm to classify duplication events. The input
is a gene tree G and the set of duplication nodes D. The function
ComputeFate[X](g, ai, bj) calculates the average proportion of each fate
for each triple g, ai and bj .

Fates← array of 6 values, initialized to 0;
NbParalogies← 0;
for each g ∈ D do

Let g1, g2 be two children of g in G;
Let A = {a1, a2, . . . , an} be extant descendants of g1;
Let B = {b1, b2, . . . , bm} be extant descendants of g2;
for each X ∈ {P,N,DN,C, SF, SP} do

for each ai ∈ A do
for each bj ∈ B do

Fates[X] + = ComputeFate[X](g, ai, bj);
NbParalogies + = 1;

end

end

end

end

for each X ∈ {P,N,DN,C, SF, SP} do Fates[X] = Fates[X]
NbParalogies ;

a Wright-Fisher scheme. At each generation, the fitnesses of all the organisms

are computed by comparing the phenotypic function with a target function that

indirectly represents the environment (see Figures 3 and 4) and, during replica-

tion, organisms may undergo various kinds of sequence mutations, including

substitutions, Indels and chromosomal rearrangements (including inversions,

duplications and deletions). Organisms are thus embeded into an evolutionary

loop, enabling to study the relative effects of the different evolutionary forces

on genome structure, genome sequence and gene repertoire.

As aevol has already been extensively described elsewhere (Knibbe, 2006;

Knibbe et al., 2007b; Batut et al., 2013; Rutten et al., 2019; Liard et al., 2020),

we will not describe it in more details here. Now, given our objective, there are a

number of advantages of using aevol. First, the platform enables both variation

of gene content and genes sequences, a mandatory property to study the fate
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of duplicated genes. Second, in aevol, each gene is decoded into a mathemati-

cal function representing the genes function and the sum of all genes functions

enables computing the organisms phenotype. The reproductive success (or the

extinction) of an organism then depends on the adequacy of its phenotype func-

tion and the target function representing the environmental conditions. This

enables a formal characterisation of genes functions, hence of the different pos-

sible fates of gene duplicates. Finally, the aevol platform has already – and

successfully – be used as a benchmark to test bioinformatics methods (Biller

et al., 2016). Furthermore, it has not been designed specifically to test our

framework, hence providing an independent test-bed.

We now discuss our simulation framework. As briefly described above, in

aevol the environment is represented by a [0, 1]→ [0, 1] target function that the

phenotypes must fit. We considered four different environments shown in Figure

4. We used environment (a) to generate the initial genomes, which means we let

a population evolve for 1.1 million generations in this environment2, extracted

ancestor individual of final population at generation 1 million, and used it as

an initial genome for further simulations. These initial genomes are called wild-

types, and are well adapted to their environment (this “pre-evolution” step is

required since evolution is heavily random in naive populations). In aevol a

specific parameter (0 < wmax ≤ 1) enables tuning the maximum pleiotropy

in the model (the higher wmax the higher the pleiotropy level – wmax = 1

representing the maximum, where a gene can have an effect on all functions). As

pleiotropy level is suspected to influence the fate of duplicated genes (Guillaume

and Otto, 2012), we generated wild-types with four different values of wmax ∈

2All evolutionary simulations were conducted with a population size of 1024 individuals
and a mutation rate of 10−6 mutations per base pair per generation for each kind of mutational
event. Previous experiments with the model showed that this parameter set leads to genomic
structures akin to prokaryotic ones, though globally smaller (Knibbe et al., 2007a). For
instance, the wild-type presented on Figure 3 has a 10,541 bp-long genome carrying 118 genes
located on 50 mRNAs with a coding fraction of 77%.
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{0.01, 0.1, 0.5, 1} in environment (a). These four different wild-types enable us

to test whether the pleiotropy of an organism has an impact on duplication

fates. Figure 3 shows the sequence level (top) and functional level (bottom) of

a wild-type evolved for 1 million generations with a minimal pleiotropy level

(wmax = 0.01). Note the gene highlighted in red on the bottom-left figure.

Though not active enough to reach the target, it exists in three copies on the

genome, hence increasing its effect (red triangle on the bottom right). This

results from two successive duplication events with fate C.

Figure 3: Overview of an aevol wild-type. Top: sequence level (genome, RNAs
and genes). The double-stranded genome is represented by a circle (thin line).
Black arcs represent RNAs (left) and genes (right) on each strand (grey arcs
represent non-coding RNAs and non-functional genes respectively). Note the
presence of polycistronic sequences. Bottom: environmental target (red curve)
and functional levels (genes and phenotype, in black) with one specific function
highlighted in red (see main text for details). Left: each triangle corresponds to a
mathematical kernel which parameters are decoded from a gene sequence. Note
the presence of function-activating/repressing genes (positive/negative triangles
respectively). Right: organism’s phenotype resulting from the sum of all kernels.

We used each generated wild-type as an initial genome for further 1 million

generations of evolution in our four different environments. Note that, since
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wild-types are already adapted to environment (a), we expect very few dupli-

cations to occur in this environment. The other three environments range from

mild, medium, and heavy change with respect to the original environment; the

intent of these simulations is to evaluate how individuals respond to different

degrees of changes in their environment. Therefore, we expect the genomes that

evolve under (d) to undergo more duplications. For each wild-type and each

environment, we then performed 20 independent simulations.

Finally, we collected the most fit individuals at the end of each simulation.

The extant paralogs that we analyzed were those found in their genome at

the end of the process. As explained above, this procedure does not consider

genes lost after duplication (either through sequence deletion or inactivation of

transcription/translation initiation sequences). Thus, the pseudogenization fate

here only considers extant genes whose activity has been strongly reduced3.
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Figure 4: The four different environments used in the simulations. On the x-
axis, we assume that the set of functions (biological processes) is the interval
[0, 1]. The y-axis depicts the target level which, for each function, indicates the
ideal amount of expression to survive in the environment.

3The source code is available at https://github.com/r3zakalhor/

Post-Duplication-Fate-Framework.

https://github.com/r3zakalhor/Post-Duplication-Fate-Framework
https://github.com/r3zakalhor/Post-Duplication-Fate-Framework
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4 Results

4.1 Fates of duplication

As explained above, starting from wild-types evolved in environment (a) with

different maximum pleiotropic levels wmax, we simulated the evolution of 20

populations in 4 environments (ordered by increased variation compared to the

environment of the wild-type) and for 1 million generations. We first verified

that our phylogenies contain enough fixed duplications to enable studying the

fate of duplicated genes with a reasonable precision. Table 2 shows the number

of duplications per million generations observed for each environment. Recall

that observed duplications are only those that result in extant paralogs, i.e. we

do not consider duplications in intergenic regions, or in which a copy is lost.

Env. (a) Env. (b) Env. (c) Env. (d)

Gene dup. rate 3.559 15.825 40.712 55.326

Table 2: Rate of gene duplications for each environment (number of gene du-
plications fixed per million generations, averaged over every possible wmax).

wmax =
0.01

wmax = 0.1 wmax = 0.5 wmax = 1

Gene dup. rate 53.735 28.220 17.641 15.825

Table 3: Rate of gene duplications for each pleiotropy level (number of gene
duplications fixed per million generations, averaged over every environment).

Not surprisingly, the rate of fixed duplications is minimum when the organ-

isms evolve in the constant environment (a) and it increases with the amount of

change in the environments. Since each dataset comprises a million generations,

the number of duplications is large enough to observe a large variety of fates.

Interestingly, the number of gene duplications not only depends on the amount

of environmental variation but also on the degree of pleiotropy. Indeed, Table 3

clearly shows that the lower the pleiotropy (i.e. the smaller wmax), the higher

the number of fixed gene duplications (hence the higher the number of paralogs
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at the end of the simulation). One explanation is that a smaller wmax implies

that genes have a narrower function spectrum. Thus, having more genes may

increase the chance of adding new functions, thus improving fitness.

wmax P N DN C SF SP Total Dup. rate

Environment (a)

0.01 0.079 0.269 0.357 0.068 0.001 0.006 0.780 4.720

0.1 0.395 0.166 0.192 0.000 0.000 0.031 0.784 2.150

0.5 0.239 0.213 0.197 0.040 0.007 0.066 0.762 4.567

1 0.240 0.434 0.130 0.067 0.010 0.037 0.918 2.800

Environment (b)

0.01 0.080 0.286 0.459 0.049 0.002 0.010 0.886 34.510

0.1 0.133 0.241 0.343 0.044 0.000 0.069 0.830 13.850

0.5 0.183 0.227 0.261 0.102 0.004 0.064 0.841 8.117

1 0.112 0.232 0.244 0.069 0.017 0.100 0.774 6.825

Environment (c)

0.01 0.075 0.290 0.465 0.070 0.001 0.011 0.912 76.000

0.1 0.131 0.265 0.254 0.068 0.004 0.053 0.775 35.550

0.5 0.106 0.293 0.293 0.071 0.011 0.087 0.861 26.950

1 0.097 0.283 0.280 0.102 0.012 0.074 0.848 24.350

Environment (d)

0.01 0.089 0.273 0.482 0.052 0.002 0.011 0.909 99.713

0.1 0.110 0.266 0.340 0.063 0.007 0.053 0.839 61.333

0.5 0.156 0.266 0.260 0.072 0.008 0.080 0.842 30.933

1 0.117 0.306 0.233 0.119 0.014 0.071 0.860 29.325

Table 4: Average fate proportions. Most frequent fates are boldfaced.

Table 4 show the proportions of the different fates estimated on the aevol

simulations (for each wild-type we simulated 4 environments × 20 parallel repe-

titions evolved for 1 million generations4). Except in rare situations, all fates are

observed and classified by our classification rules. The column “Total” reports

the sum of proportions for each row. The gap between these values and 1 can

be interpreted as the amount of fates that remained “unclassified”. It would

4We note here that for some wmax we were able to generate and summarize statistics
for several wild types: for wmax = 0.01 we have five wild types, for wmax = 0.1 one, for
wmax = 0.5 three and for wmax = 1 two, leading to a total of 880 experiments.
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be easy to turn our predictions into a probability distribution by normalizing

them, but we prefer to emphasize the fact that paralogs underwent fates that,

on average, had between 10-25% of their behavior that did not fit any of the

canonical fates.

Several notable results can be observed from this table. When the organisms

must adapt to a new environment (b, c and d), the most frequent fate of dupli-

cations is N or DN while P is more frequent when the organisms face the same

environment as the wild-type. Moreover, while the rate of N seems independent

of the mean level of pleiotropy imposed by wmax, we observe that the rate of

DN decreases as pleiotroty increases. This emphasizes the need to differentiate

both classes as we do. Note that this phenomenon is not surprising. Indeed,

as pleiotropy increases, the range of functions performed by an individual gene

increases, hence the probability that both duplicates lose the ancestral function

and acquire a new one decreases. A most striking result is the very low percent-

age of SF fate. However, this result is coherent with the theoretical predictions

of (Lynch and Force, 2000) and the experimental results of (Assis and Bachtrog,

2013), and probably results from the fact that SF provides no fitness advan-

tage (since the extant function is the same as the ancestral one) but requires a

transitory loss of fitness (when both copies have not yet diverged). Notably, the

proportion of SF consistently increases with wmax. This may be explained by

the fact that a higher pleiotropy level allows for alternative adaptive pathways

(by adapting either genes with a high/low pleiotropy) which can compensate

each others. The situation is slightly more favorable for C, especially when the

environment has changed, in agreement with findings in (Assis and Bachtrog,

2013). This is probably due to the fact that the new environments may require

dosage adaptation for genes function (see Figure 3 for an example such effect).

In that case, duplicating a gene enables a rapid adaptation. A similar reasoning
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applies to SP , which has low frequency. This confirms that the conservation of

the original function in both copies is rather unlikely, the general trend being

SF < C, SP < DN,N , sorted by increasing level of function acquisition.

4.2 Fates and time of duplication

We also evaluated the relationship between the fate of a duplication and the time

at which it occurs (in terms of number of generations). Intuitively speaking,

more recent duplications are expected to be biased towards Conservation, since

there is less time to diverge, whereas more ancient duplications are expected to

tend towards the development of new functions.

We formed bins of 100,000 generations each and, for each duplication event

across all simulated wildtypes and environmental conditions, we put the dupli-

cation in the bin containing the generation it occurred in (recall that generation

0 is the most ancient and 1M the most recent). Then for each bin, we computed

the average proportion of each fate within the bin (sum of fate proportion di-

vided by number of duplications in the bin). Table 5 presents the number of

duplications in each bin, and Figure 5 illustrates the relationship between time

and fate.

Env. \Bins 100K 200K 300K 400K 500K 600K 700K 800K 900K 1000K

(a) 190 67 46 48 105 120 77 59 72 48

(b) 2,418 149 154 102 123 79 70 63 240 139

(c) 6,963 265 565 95 94 130 95 84 72 279

(d) 8,236 224 93 75 84 75 109 61 36 67

Total 17,807 705 858 320 406 404 351 267 420 533

Table 5: Number of duplications per generation bin, for bins of size 100K, for
each environment. For instance, column 400K contains the number of duplica-
tions during generations 300K to 400K.

It is immediately apparent from Table 5 that almost all duplications occur

within the first 100K generations when the environment changes (env. (b), (c),

(d)). Although this may not appear as a surprise, recall that in aevol, dupli-
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Figure 5: Average proportion of each duplication fate per generation bin.

cations are only one of the many evolutionary mechanisms that affect genome

evolution (other events include substitutions, InDels, transpositions, inversions

and segmental deletions). The fact that duplications are so prevalent early on

therefore shows how important it is during phases of adaptation. A detailed

comparison of the adaptation power of duplications against other evolutionary

mechanisms is out of the scope of the current paper, but it will be interesting

to perform these analyses in the future (Banse et al., 2023). In any case, there

appears to be no trend in the number of duplications after 100K or 200K gener-

ations. One may arguably view the early duplications as necessary for selection,

and the later ones as duplications becoming fixed by chance.

As for Figure 5, the fates DN , N , and P remain largely dominant through

most generations, which is to be expected from the results of the previous sec-

tion. Interestingly though, the last 200K generations introduce significant vari-

ations in the fate proportions. First, there is a sharp increase in the amount of
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Conservation towards the end, going from 0.02 in the 800K bin to 0.15 in the

1000K bin, which is in line with the intuition that time is needed for divergence.

It is worth noting that Conservation becomes even more frequent than Double-

Neofunctionalization and Pseudogeneization, which both see a sharp decrease

in the last 200K generations.

It is also noticeable that Neofunctionalization becomes the clearly dominant

fate in these last generations. This may be seen as standard divergence after

duplication: one copy must maintain the function and the other undergoes

random drift, and since only a limited time passes, the divergent copy remains

functional and observable. On the other hand, the fact that N is dominated

by DN and P in more ancient duplications suggests that, given enough time,

duplicated copies rather tend to eventually both diverge or to eliminate one

copy. One may also notice that the C and N curves are almost parallel, and

that the two fates appear to correlated.

4.3 Fates and successive duplications

We also checked whether rounds of successive duplications could affect fates.

When a gene duplicates and one or both copy also duplicate later on, it is

possible that a bias towards certain fates is introduced. Therefore, for each

duplication g, we looked at the number of descendants of g in its gene tree

(see Algorithm 1), where here the number of descendants is the number of

leaves under the duplication node. For instance, g having two descendants

means that no copy duplicated further, having three descendants means that

one copy also duplicated, and so on. The second column of Table 6 reports

the number of duplication events encountered for each number of descendants.

The vast majority of duplications have only two descendants and, across all the

simulations, the maximum number of descendants of a duplication is 12.
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Generally speaking, we found no specific relationship between the number

of descendants and fates. The numbers shown in Table 6 are distributed in

a similar manner across the rows, and are also similar to the fate proportions

reported in the previous section. However, we do observe a general downwards

trend in the totals column. This suggests that the when successive duplications

occur, the fate of the most ancestral duplication gets diluted in its descendants,

making it harder to characterize. In the future, it might be beneficial to classify

the fate of a duplication more “locally”, that is, by looking at its descending

genes until a certain point, as going too far down the gene tree may introduce

interference in our analysis.

Nb descendants Nb dups Subfunc Neo Cons Pseudo Spec Dblneo Total

2 19,792 0.001 0.202 0.047 0.289 0.006 0.281 0.826

3 1,698 0.000 0.150 0.016 0.329 0.005 0.285 0.785

4 402 0.000 0.134 0.024 0.290 0.011 0.274 0.733

5 107 0.000 0.167 0.031 0.253 0.005 0.262 0.718

6 44 0.000 0.086 0.008 0.227 0.004 0.267 0.592

7 13 0.000 0.091 0.086 0.242 0.000 0.394 0.813

8 6 0.000 0.222 0.133 0.222 0.000 0.111 0.689

9 3 0.000 0.133 0.017 0.067 0.000 0.025 0.467

10 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000

11 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000

12 6 0.000 0.210 0.037 0.037 0.000 0.272 0.556

Table 6: Average proportion of fates per number of descendants. The second
column reports the number of duplication events for each number of descen-
dants, and the last column the sum of fate proporitions for each row.

5 Discussion

In this paper, we proposed a methodology to formally classify the fate of gene

duplicates depending on the functions of the extant paralogs and of the ancestral

gene. The objective is to provide the community with clear definitions as well

as a mathematical toolbox to discriminate the different fates. Indeed, in the ab-

sence of such a toolbox it is almost impossible to compare experimental and/or
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theoretical studies limiting the possibility of developing a global understanding

of gene duplication, even though this mechanism is considered central in molec-

ular evolution. Our framework has been extensively tested on simulated data

provided by aevol, an independently designed platform. Our tests confirmed

several tendencies reported in the literature (Guillaume and Otto, 2012; Assis

and Bachtrog, 2013), showing the relevance of our classification. Further work

will permit to study a broader set of parameters, both for the simulations and

for the classification thresholds, to confirm these trends. Incidentally, our re-

sults also confirm the interest of using aevol as benchmark to test bioinformatics

tools.

Our work opens several fields of research, in comparative genomics and phy-

logeny, in simulation and, of course, in evolutionary biology. Indeed, although

the fraction of gene duplicates classified is high (> 0.75 in all situations), it also

shows that further work is required to analyze the remaining fates. Also, even

though these data are not reported here, we observed a small fraction of “hybrid

fates” which deserve a specific study. Finally, as our methodology is based on

the analysis of extant paralogs, it cannot account for the whole diversity of pseu-

dogeneization fates. Indeed, in our results P is always lower than 20% (except in

constant environment – see Table 4), which is much lower than the 80% observed

in the Zebrafish (Otto and Yong, 2002). We conjecture that the difference is

due to the way we selected gene duplicates in our study. Extending P class to

account for the whole variety of pseudogeneization fates is an exciting direction

of research. Finally, we could used real data available in published datasets such

as (Gaudet et al., 2011) to further test our approach. While aevol simulations

enabled testing the continuous version of our framework, other datasets could

enable testing the discrete version, e.g. by classifying paralogs annotated with

Gene Ontology (Zhao et al., 2020).
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In this study, we used aevol to test our framework, showing that it gener-

ates data similar to real observations. This motivates us to further study gene

duplications in the simulator. In particular, aevol not only provides the final

organisms, but also the past individuals and the exact gene phylogeny, making

it possible to know the exact fate of each gene along each branch (including gene

loss). We used this information to refine our study and tested how the fate of

duplicated genes evolves in time after the founding duplication event, a question

that is almost impossible to study in vivo. We showed that although, on the long

term, Neofunctionalization, Double-Neofunctionalization and Pseudogenization

are the most probable fates, immediately after the duplication events, the dom-

inant fates are Conservation and Neofunctionalization. Further studies could

reveal which fates are more likely to open the path to others, an information

that could be used to predict the evolution of specific gene branches following

recent duplications. We also showed that successive duplication events rapidly

blur the classification, opening questions for further refinement of the method.

The model also enables “in silico genetic engineering”. We plan to construct a

series of mutants in which genes are manually duplicated and let evolve. This

will open the route to a systematic study of gene duplication in the model. We

could also observe the fate of duplicates in more specific settings, such as after a

Whole Genome Duplication (WGD), and check whether it depends on the char-

acteristics of the ancestral gene (e.g., on essentiality, pleiotropy or transcription

level...). Another interesting line of investigation could be to understand the im-

pact of regulation on the fates frequency and especially on subfunctionalization.

While regulation was not included in the current version of aevol, an extension

is under development to account for the evolution of transcription factors that

will allow addressing this question.

Finally, it would also be interesting to study how specific biological dupli-
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cation mechanisms, for instance unequal crossing over, tandem duplication or

retrotransposition (Reams et al., 2012), are associated with fates. Such inves-

tigations would probably require to analyse not only gene functions but also

gene genealogies. Combining our framework to tools such as PAINT (Gaudet

et al., 2011) or PANTHER (Mi et al., 2017), that predict the functions of ances-

tral genes given a gene phylogeny and the functions of the extant genes, would

enable us to analyse real data. We leave this for future work.
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